THE p-q MODEL BOLTZMANN EQUATION: CONVERGENCE OF THE SOLUTION.
R. FERLAND AND G. GIROUX

1. Introduction
We consider a nonlinear equation for probability measures on \mathbb{R}_+:

$$\left(\frac{d}{dt} + 1 \right) \mu(t, B) = \int_0^\infty \mu(t, dx) \int_0^\infty \mu(t, dy) Q(x, y; B)$$

with initial data $\mu_0 \in \mathcal{P}_1$, the set of probability measures on \mathbb{R}_+ with finite first moment, Q a Markov kernel and $B \in \mathcal{B}(\mathbb{R}_+)$ the Borel σ-field of \mathbb{R}_+. In [1], the weak convergence of $\mu(t)$ to an equilibrium was proved for a certain class of kernels. The purpose of this paper is to prove that convergence still occurs for a more complex class of kernels introduced by Futcher and Hoare [2], kernels that don’t belong to the class mentioned before.

2. The transition kernel
Let $W_{pq}(x; u)$ be the Beta densities over $[0, u]$:

$$W_{pq}(x; u) = \frac{\Gamma(p+1)\Gamma(q+1)}{\Gamma(p+q)} \frac{x^{p-1}(u-x)^{q-1}}{u^{p+q-1}} 1_{[0,u]}(x)$$

with integers $p, q \geq 1$. The kernels Q of interest here are given by

$$Q(x, y; B) = \int_B K(s; x, y) \, ds$$

where the densities K on $[0, x+y]$ are:

$$K(s; x, y) = \int_0^{x+y} dv W_{pq}(v; x) \int_{x+y}^{x+y} dw W_{qp}(w-x; y) W_{qq}(s-v; w-v)$$

For the limit case $p = 0$, these densities reduce to $W_{qq}(s; x+y)$ and the corresponding kernels fall in the class considered in [1]. We refer to [2] for a detailed account of the origin, significance and properties of the kernels Q.

* Research supported in part by NSERC, Canada, under Grant No A-5365 and in part by a grant of FCAR, Gouvernement du Québec.
3. Preliminaries

We need to describe the solution of (1). First define on \mathcal{P}_1 a composition operation using a kernel Q:

$$
\mu \circ \nu (B) = \int_0^\infty \mu(dx) \int_0^\infty \nu(dy) Q(x,y;B)
$$

For each binary tree τ with n nodes ($n \geq 1$) associate a n-fold product $\varphi(\mu)$ along with a weight $|\tau|$ according to the recursive rule:

$$
|\tau| = \frac{|\tau_1||\tau_2|}{n-1} \quad (n \geq 2), \quad |\tau| = 1 \quad (n = 1)
$$

and

$$
\varphi(\mu) = \varphi_1(\mu) \circ \varphi_2(\mu) \quad (n \geq 2), \quad \varphi(\mu) = \mu \quad (n = 1)
$$

where index 1 and 2 correspond to the left and right sub-tree of the root. E. Wild’s solution of Boltzmann problem for a 3-dimensional Maxwellian gas with cut-off [3,5,8] can be adapted to express $\mu(t)$ as a sum:

$$
\mu(t) = e^{-t} \sum_{n \geq 1} (1 - e^{-t})^{n-1} \sum_{\tau \in T_n} |\tau| \varphi(\mu_0) \quad (2)
$$

with T_n the set of all binary tree with n nodes.

The convergence of $\mu(t)$ will be established with respect to the Kantorovitch metric ρ defined as follows. For μ and ν in \mathcal{P}_1 let

$$
\rho(\mu, \nu) = \inf \{ \int_0^\infty \int_0^\infty |x-y| \eta(dx,dy) \mid \eta \in \mathcal{C}(\mu, \nu) \},
$$

where $\mathcal{C}(\mu, \nu)$ is the family of all coupling of μ and ν, namely probability measures η on \mathbb{R}^2_+ such that $\eta(A \times \mathbb{R}_+) = \mu(A)$ and $\eta(\mathbb{R}_+ \times A) = \nu(A)$ for any $A \in \mathcal{B}(\mathbb{R}_+)$.

Proposition 1 [4]. $\mu_n \to_{\rho} \mu$ in \mathcal{P}_1 if and only if

$$
\mu_n \to_{w} \mu \quad \text{and} \quad \int_0^\infty x\mu_n(dx) \to \int_0^\infty x\mu(dx).
$$

From this proposition we see that the convergence of $\mu(t)$ with respect to ρ is equivalent to the weak convergence since, as we will now show, the first moment $m_1(\mu(t))$ of $\mu(t)$ is constant in t. Indeed, simple calculations give

$$
m_1(\mu \circ \nu) = \frac{2p+q}{2(p+q)} m_1(\mu) + \frac{q}{2(p+q)} m_1(\nu),
$$
from which it follows by induction that \(m_1(\varphi(\mu_0)) = m_1(\mu_0) \) for every \(n \)-fold product, and because of formula (2) we get \(m_1(\mu(t)) = m_1(\mu_0) \) for all \(t \geq 0 \).

Proposition 2 [7]. Let \(\mu \) and \(\nu \) belong to \(\mathcal{P}_1 \) then

\[
\rho(\mu, \nu) = \int_0^\infty |F_\mu(s) - F_\nu(s)| \, ds
\]

where \(F_\mu \) and \(F_\nu \) are the distribution functions of \(\mu \) and \(\nu \).

Proposition 3 [6]. Let \((\Omega, \mathcal{F}, \mathbb{P}) \) be an arbitrary probability space and suppose that we are given subfamilies \(\{ \mu^\omega, \omega \in \Omega \} \) and \(\{ \nu^\omega, \omega \in \Omega \} \) of \(\mathcal{P}_1 \) satisfying the following conditions.

(i) For each \(A \in \mathcal{B}(\mathbb{R}_+) \), \(\mu^\omega(A) \) and \(\nu^\omega(A) \) are \(\mathcal{F} \)-measurable in \(\omega \).

(ii) The probability measure \(\mu = \int_\Omega \mu^\omega \, d\mathbb{P}(\omega) \) and \(\nu = \int_\Omega \nu^\omega \, d\mathbb{P}(\omega) \) are in \(\mathcal{P}_1 \).

Then we have

\[
\rho(\mu, \nu) \leq \int_\Omega \rho(\mu^\omega, \nu^\omega) \, d\mathbb{P}(\omega).
\]

4. A convex type inequality

The proof of convergence for \(\mu(t) \) is based on a convex-type inequality that makes the connection between the metric \(\rho \) and the composition operation \(\mu \circ \nu \). For \(\mu \) and \(\nu \) in \(\mathcal{P}_1 \), we write \(\mu \star \nu \) and \(\mu \cdot \nu \) for the measures:

\[
\mu \star \nu([0, s]) = \int_0^s \mu(dx) \, F_\nu(s - x) = \int_0^s \nu(dy) \, F_\mu(s - y)
\]

\[
\mu \cdot \nu([0, s]) = \int_0^\infty \mu(dx) \, F_\nu(s/x) = \int_0^\infty \nu(dy) \, F_\mu(s/y)
\]

Lemma 1. Let \(\mu_1, \mu_2, \nu_1 \) and \(\nu_2 \) belong to \(\mathcal{P}_1 \). Then we have

\[
\rho(\mu_1 \star \mu_2, \nu_1 \star \nu_2) \leq \rho(\mu_1, \nu_1) + \rho(\mu_2, \nu_2).
\]
The p-q Model Boltzmann Equation

Proof:

\[
\rho(\mu_1 \ast \mu_2, \nu_1 \ast \nu_2) = \int_0^\infty |F_{\mu_1 \ast \mu_2}(s) - F_{\nu_1 \ast \nu_2}(s)| \, ds
\]

\[
= \int_0^\infty |F_{\mu_1 \ast \mu_2}(s) - F_{\mu_1 \ast \nu_2}(s) + F_{\nu_2 \ast \mu_1}(s) - F_{\nu_1 \ast \nu_2}(s)| \, ds
\]

\[
\leq \int_0^\infty |F_{\mu_1 \ast \mu_2}(s) - F_{\mu_1 \ast \nu_2}(s)| \, ds
\]

\[
+ \int_0^\infty |F_{\nu_2 \ast \mu_1}(s) - F_{\nu_2 \ast \nu_1}(s)| \, ds
\]

\[
\leq \int_0^\infty ds \int_0^s \mu_1(dx) |F_{\mu_2}(s - y) - F_{\nu_2}(s - y)|
\]

\[
+ \int_0^\infty ds \int_0^s \nu_2(dy) |F_{\mu_1}(s - y) - F_{\nu_1}(s - y)|
\]

\[
= \int_0^\infty \mu_1(dx) \int_0^\infty |F_{\mu_2}(s - x) - F_{\nu_2}(s - x)| \, ds
\]

\[
+ \int_0^\infty \nu_2(dy) \int_0^\infty |F_{\mu_1}(s - y) - F_{\nu_1}(s - y)| \, ds
\]

\[
= \rho(\mu_1, \nu_1) + \rho(\mu_2, \nu_2).
\]

Lemma 2. Let \(\lambda, \mu\) and \(\nu\) belong to \(\mathcal{P}_1\). Then we have

\[
\rho(\lambda \cdot \nu, \lambda \cdot \nu) \leq m_1(\lambda) \rho(\mu, \nu)
\]

Proof:

\[
\rho(\lambda \cdot \mu, \lambda \cdot \nu) = \int_0^\infty |F_{\lambda \cdot \mu}(s) - F_{\lambda \cdot \nu}(s)| \, ds
\]

\[
= \int_0^\infty ds \left| \int_0^\infty \lambda(dx) \left(F_{\mu}(s/x) - F_{\nu}(s/x) \right) \right|
\]

\[
\leq \int_0^\infty ds \int_0^\infty \lambda(dx) |F_{\mu}(s/x) - F_{\nu}(s/x)|
\]

\[
= \int_0^\infty \lambda(dx) \int_0^\infty |F_{\mu}(s/x) - F_{\nu}(s/x)| \, ds
\]

\[
= \int_0^\infty x \lambda(dx) \int_0^\infty |F_{\mu}(s) - F_{\nu}(s)| \, ds
\]

\[
= m_1(\lambda) \rho(\mu, \nu).
\]
Theorem 1. Let μ_1, μ_2, ν_1 and ν_2 belong to \mathcal{P}_1. Then we have

$$\rho(\mu_1 \circ \mu_2, \nu_1 \circ \nu_2) \leq \frac{2p + q}{2(p + q)} \rho(\mu_1, \nu_1) + \frac{q}{2(p + q)} \rho(\mu_2, \nu_2).$$

Proof: Let Ω be the set $\{(\omega_1, \omega_2, \omega_3) \mid 0 \leq \omega_i \leq 1; i = 1, 2, 3\}$ and \mathbf{P} a probability on Ω with density $W_{qp}(\omega_1; 1)W_{qp}(\omega_2; 1)W_{qq}(\omega_3; 1)$. Define the functions $f(\omega) = \omega_1 \omega_3 + (1 - \omega_1)$ and $g(\omega) = \omega_2 \omega_3$.

Then because of the scaling property $W_{pq}(x; u) = (1/u) W_{pq}(x/u; 1)$ of the Beta densities, one can show (after tedious but simple calculations) that

$$\mu \circ \nu = \int_{\Omega} (\delta_{f(\omega)} \cdot \mu) \ast (\delta_{g(\omega)} \cdot \nu) \, d\mathbf{P}(\omega).$$

So applying successively Proposition 3, Lemma 1 and 2 we obtain

$$\rho(\mu_1 \circ \mu_2, \nu_1 \circ \nu_2) \leq \int_{\Omega} \rho((\delta_{f(\omega)} \cdot \mu_1) \ast (\delta_{g(\omega)} \cdot \nu_1), (\delta_{f(\omega)} \cdot \mu_2) \ast (\delta_{g(\omega)} \cdot \nu_2)) \, d\mathbf{P}(\omega)$$

$$\leq \int_{\Omega} \rho(\delta_{f(\omega)} \cdot \mu_1, \delta_{f(\omega)} \cdot \nu_1) \, d\mathbf{P}(\omega) + \int_{\Omega} \rho(\delta_{g(\omega)} \cdot \mu_2, \delta_{g(\omega)} \cdot \nu_2) \, d\mathbf{P}(\omega)$$

$$\leq \int_{\Omega} (f(\omega) \rho(\mu_1, \nu_1) + g(\omega) \rho(\mu_2, \nu_2)) \, d\mathbf{P}(\omega)$$

$$\leq \frac{2p + q}{2(p + q)} \rho(\mu_1, \nu_1) + \frac{q}{2(p + q)} \rho(\mu_2, \nu_2).$$

A measure γ is called an equilibrium if $\gamma \circ \gamma = \gamma$. The Gamma laws with parameters $p + q$ and $\lambda > 0$ are equilibrium measures. The next result shows that in \mathcal{P}_1, there is no other equilibrium measures.

Corollary. Let γ be a Gamma law with parameters $p + q$ and $\lambda > 0$ and suppose $\mu \in \mathcal{P}_1$ is such that $m_1(\mu) = m_1(\gamma)$. Then

$$\rho(\mu \circ \mu, \gamma) < \rho(\mu, \gamma)$$

if $\mu \neq \gamma$.

Proof: Since $\gamma \circ \gamma = \gamma$ the preceding theorem already gives

$$\rho(\mu \circ \mu, \gamma) \leq \rho(\mu, \gamma).$$
Assuming that equality holds, we prove that \(\mu = \gamma \). Indeed, looking at the proof of Theorem 1, we see that if there is equality then
\[
\rho((\delta_f(\omega) \cdot \mu) \ast (\delta_g(\omega) \cdot \mu), (\delta_f(\omega) \cdot \gamma) \ast (\delta_g(\omega) \cdot \gamma)) = \rho(\delta_f(\omega) \cdot \mu, \delta_f(\omega) \cdot \gamma) + \rho(\delta_g(\omega) \cdot \mu, \delta_g(\omega) \cdot \gamma),
\]
and this almost surely with respect to \(\mathbf{P} \). Pick \(\omega \in \Omega \) for which both \(\delta_f \) and \(\delta_g \) are zero and such that equality above holds. Now looking at the proof of Lemma 1, we get
\[
\left| \int_0^{s} (\delta_g(\omega) \cdot \gamma)(dx) (F_{\delta_f(\omega)} \mu(s-x) - F_{\delta_f(\omega)} \gamma(s-x)) \right|
= \int_0^{s} (\delta_g(\omega) \cdot \gamma)(dx) \left| F_{\delta_f(\omega)} \mu(s-x) - F_{\delta_f(\omega)} \gamma(s-x) \right|
\]
almost everywhere in \(s \). This implies that the sign of the integrand \(F_{\delta_f(\omega)} \mu(x) - F_{\delta_f(\omega)} \gamma(x) \) is the same (say positive) almost everywhere for \(x \geq 0 \). Thus
\[
\rho(\delta_f(\omega) \cdot \mu, \delta_f(\omega) \cdot \gamma) = \int_0^{\infty} \left| F_{\delta_f(\omega)} \mu(s) - F_{\delta_f(\omega)} \gamma(s) \right| ds
= \int_0^{\infty} \left[F_{\delta_f(\omega)} \mu(s) - F_{\delta_f(\omega)} \gamma(s) \right] ds
= \int_0^{\infty} f(\omega) [F_{\mu}(s) - F_{\gamma}(s)] ds
= f(\omega) \int_0^{\infty} ([1 - F_{\gamma}(s)] - [1 - F_{\mu}(s)]) ds
= f(\omega) (m_1(\gamma) - m_1(\mu)) = 0.
\]
But, by Lemma 2 we have \(\rho(\delta_f(\omega) \cdot \mu, \delta_f(\omega) \cdot \gamma) = f(\omega) \rho(\mu, \gamma) \). Hence \(\rho(\mu, \gamma) = 0 \) and \(\mu = \gamma \).

5. Convergence to equilibrium

In this section we make use of the results of Section 4 to prove the convergence to equilibrium assuming only the existence of the first moment of the initial law. To prove the convergence theorem we use a compactness argument and this can be done because of the following lemma.

Lemma 3. The second moments \(m_2(\mu(t)) \), \(t \geq 0 \), are bounded as soon as \(m_2(\mu_0) \) exist.

Proof: Since
\[
m_2(\mu(t)) = \sum_{n \geq 1} e^{-t} (1 - e^{-t})^{n-1} \sum_{\tau \in T_n} |\tau| m_2(\varphi(\mu_0))
\]
it is enough to show that the second moments \(m_2(\varphi(\mu_0)) \) are bounded.
It is shown in [2] that
\[
m_2(\mu \circ \nu) = a_{20} m_2(\mu) + 2a_{21} m_1(\mu)m_1(\nu) + a_{22} m_2(\nu)
\] (3)
where the coefficients \(a_{20}, a_{21}\) and \(a_{22}\) may be explicitly computed. Let \(\gamma\) be an equilibrium measure with its first moment equal to the one of \(\mu_0\). It is surely possible to find a constant \(C \geq 1\) such that \(m_2(\mu_0) \leq C m_2(\gamma)\).

Now suppose \(m_2(\varphi(\mu_0)) \leq C m_2(\gamma)\), for every \(k\)-fold product with \(k \leq n\). Then for a \((n + 1)\)-fold product
\[
m_2(\varphi(\mu_0)) = a_{20} m_2(\varphi_1(\mu_0)) + 2a_{21} m_1(\varphi_1(\mu_0))m_1(\varphi_2(\mu_0)) \\
+ a_{22} m_2(\varphi_2(\mu_0)) \\
\leq C(a_{20} m_2(\gamma) + 2a_{21} m_1(\gamma)m_1(\gamma) + a_{22} m_2(\gamma)) \\
= C m_2(\gamma).
\]
The last equality follows from (3) and the fact that \(\gamma \circ \gamma = \gamma\).

Theorem 2. Let \(\mu_0 \in \mathcal{P}_1\) and suppose \(\gamma\) is an equilibrium measure such that \(m_1(\gamma) = m_1(\mu_0)\). Then, \(\rho(\mu(t), \gamma)\) decreases to 0 as \(t \uparrow \infty\).

Proof: An approximation argument shows that we can restricted ourselves to the case \(m_2(\mu_0) < \infty\). As a consequence of Theorem 1 it is possible [6] to prove that
\[
\rho(\mu(t), \gamma) \leq \rho(\mu_0, \gamma) - \int_0^t \bar{\rho}(\mu(s), \gamma) \, ds,
\] (4)
where \(\bar{\rho}(\mu(s), \gamma) = \rho(\mu(s), \gamma) - \rho(\mu(s) \circ \mu(s), \gamma)\). This shows that \(\rho(\mu(t), \gamma)\) is decreasing. Now define \(\mathcal{P}(\epsilon, M)\) as the set of all \(\lambda\) in \(\mathcal{P}_1\) such that
\[
m_1(\lambda) = m_1(\gamma) \quad m_2(\lambda) \leq M \quad \rho(\lambda, \gamma) \geq \epsilon,
\]
then \(\mathcal{P}(\epsilon, M)\) is compact with respect to \(\rho\). Suppose \(\rho(\mu(t), \gamma)\) doesn’t decrease to zero. By Lemma 3, \(\mu(t) \in \mathcal{P}(\epsilon, M)\) for some \(\epsilon\) and \(M\). But since \(\bar{\rho}(\cdot, \gamma)\) is continuous on \(\mathcal{P}(\epsilon, M)\), the infimum of \(\bar{\rho}\) is achieved for \(\mu^* \in \mathcal{P}(\epsilon, M)\) and
\[
\bar{\rho}(\mu(t), \gamma) \geq \bar{\rho}(\mu^*, \gamma) = \delta > 0,
\]
because of the Corollary. Then by (4), \(\rho(\mu(t), \gamma) \leq \rho(\mu_0, \gamma) - \delta t\) which leads to a contradiction for \(t\) large enough.
REFERENCES

Département de mathématiques et d’informatique
Université de Sherbrooke
Sherbrooke, Québec
Canada J1K 2R1