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THE AUTOMORPHISM GROUP OF
FINITE ABELIAN p-GROUPS

ADOLF MADER

RÉSUMÉ. Les endomorphismes et les automorphismes d’un groupe abélien
p-primaire fini sont concrètement représentés d’une manière efficace. L’ordre du
groupe d’automorphismes est calculé et sa structure étudiée. Finalement, les sous-
groupes caractéristiques sont décrits pour p > 2 ainsi que les sous-groupes complète-
ment invariants pour tout p.

ABSTRACT. The endomorphisms and the automorphisms of a finite abelian
p-group are presented in an efficient way. The order of the automorphism group is
computed and its structure investigated. Finally the characteristic subgroups are de-
scribed for p > 2 and the fully invariant subgroups for any p.

1. Introduction

In a recent article [HR07], the authors describe the automorphism group of an
abelian group in terms of integer matrices and compute the order of the automorphism
group. We use matrices whose entries are homomorphisms (they could be considered
elements of the endomorphism ring) and employ much more algebra than the papers
that enter deeper into the fine structure of the groups and must deal with integer matri-
ces with entries modulo different powers pn. In addition to computing the cardinality
of the automorphism group, we describe the structure of the automorphism group of
a finite abelian group. We describe all characteristic subgroups of G for p > 2, and
show that there is an injective, but not necessarily surjective, correspondence between
characteristic subgroups of G and normal subgroups of the automorphism group of G.

These results are not new but are special cases of results scattered in various papers
on infinite abelian groups (see “Remarks on the Literature”). However, the proofs are
new, elementary, and avoid all specialized terminology of infinite abelian group theory.
The idea is that many people may need knowledge about finite abelian groups, but
will never find it in specialized papers. This paper is self-contained and accessible to
students with a basic knowledge of abstract algebra.

Reçu le 11 novembre 2011 et, sous forme définitive, le 20 mars 2012.
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2. Background

We write our abelian groups additively. Maps on X to Y are defined by the scheme

f : X 3 x 7→ f(x) ∈ Y,

thereby avoiding the tiresome phrase “where x ∈ X”. The symbol “:=” stands for “by
definition equals”.

It is well known that every abelian torsion group is in a very canonical way the
direct sum of its maximal primary subgroups, and therefore questions on torsion groups
reduce to questions on primary groups. We therefore only consider finite p-groups G,
where p is a fixed prime number.

Important subgroups of a group G are the fully invariant subgroups

G[p] := {x ∈ G | px = 0},

called socle, more generally

G[pn] := {x ∈ G | pnx = 0},

and
pnG := {pnx | x ∈ G}.

Observe that G[p] may be considered a vector space over the prime field Z/pZ.

The following well-known lemma is fundamental.

Lemma 2.1. Let G be an abelian group of exponent pe. Then every element of
order pe generates a direct summand of G.

Proof. Let g ∈ G with ord(g) = pe. Let H be a subgroup of G that is maximal
with respect to H ∩ 〈g〉 = 0. We claim that G = 〈g〉 ⊕H .

We first establish an auxiliary result that also illustrates the further arguments. Sup-
pose that x ∈ G and px ∈ H . Then there is y ∈ H such that px = py.

Here is the proof. If x ∈ H , then y := x will do. So suppose that x /∈ H . Then by
maximality of H we have that (〈x〉+H) ∩ 〈g〉 6= 0. Hence there exist integers m,n
and h ∈ H such that 0 6= mg = h + nx and we have nx = mg − h. We must have
gcd(p, n) = 1, or else 0 6= mg = h + nx ∈ 〈g〉 ∩H = 0. Choose integers u, v such
that 1 = un+ vpe. Then x = unx = umg − uh and it follows that px = p(−uh).

We have G ⊇ 〈g〉 ⊕ H . To establish equality, we note that G[pe] = G and show
by induction on s that G[ps] ⊆ 〈g〉 ⊕ H . So suppose that x ∈ G, x /∈ H . By
maximality of H , we have integers m, n and h ∈ H such that 0 6= mg = h + nx and
so nx = mg − h. If gcd(n, p) = 1, then it follows that x ∈ 〈g〉 ⊕ H . If x ∈ G[p],
then necessarily gcd(n, p) = 1 and x ∈ 〈g〉 ⊕H . Now suppose that ord(x) = ps > p
and G[ps−1] ⊆ 〈g〉 ⊕ H by induction. Then there exist h ∈ H and an integer m
such that px = h + mg. From 0 = psx = ps−1h + ps−1mg, 〈g〉 ∩ H = 0, and
ord(g) = pe ≥ ps, it follows that m = pm′ for some integer m′. Thus p(x−m′g) = h
and from the auxiliary result we get that h = py for some y ∈ H . This says that
p(x−m′g − h′) = 0, i.e., x−m′g − h′ ∈ G[p] ⊆ 〈g〉 ⊕H , and so x ∈ 〈g〉 ⊕H . �
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Remark 2.2. It is an immediate corollary of Lemma 2.1 that every finite abelian
p-group is the direct sum of cyclic subgroups: just peel off summand after summand
using elements of largest order. Once it is known that a p-group G (finite or infinite) is
the direct sum of cyclic subgroups, it is easily seen that the number of cyclic summands
of order ps is given by the so-called Ulm invariant of the group

dimZ/pZ
(ps−1G)[p]

(psG)[p]
·

This then proves the Basis Theorem for finite abelian p-groups.

3. Endomorphisms and automorphisms

A p-group is homocyclic of exponent e if it is the direct sum of cyclic subgroups
all of order pe. The rank of a homocyclic p-group H , denoted rkH , is the number of
cyclic summands in an indecomposable decomposition of H , i.e.,

rkH = dimZ/pZ
(pe−1H)[p]

(peH)[p]
= dimZ/pZH[p].

We will frequently use that

(3.1) H homocyclic of exponent pe =⇒ H[pi] = pe−iH.

Theorem 3.2 fully describes the automorphisms of a finite abelian p-group. We
precede it with a special case.

Lemma 3.1. Let H be a finite homocyclic group of exponent pe. Then there is an
exact sequence

Hom(H, pH)
σ
� Aut(H)

ρ
� Aut(H[p]),

where σ : Hom(H, pH) 3 φ 7→ 1 + φ ∈ Aut(H) and ρ is the restriction map.
Consequently, |Aut(H)| = |Hom(H, pH)| · |Aut(H[p])|. Hence,

|Hom(H, pH)| =
(
pe−1

)(rkH)2 and |Aut(H[p])| =
rkH∏
i=1

(
prkH − pi−1

)
.

Proof. Note that H[p] = pe−1H . We will show below (see Remark 4.2) that the
restriction map Aut(H) → Aut(H[p]) is surjective. We compute its kernel. Suppose
that α ∈ Aut(H) and α �H[p]= 1. Let 0 6= x ∈ H . Then there is m ∈ N such that
0 6= pmx ∈ H[p] = pe−1H . Then α(pmx) = pmx, hence pm(x − α(x)) = 0, and so
(1 − α)(x) = x − α(x) ∈ H[pm] ⊆ pH . It follows that φ := α − 1 ∈ Hom(H, pH)
and α = 1 + φ.

Conversely, suppose that φ ∈ Hom(H, pH). Then φe = 0 and therefore 1 + φ is
invertible in End(H), so α := 1+φ ∈ Aut(H). It remains to show that 1+φ �H[p]= 0.
Let x ∈ H[p]. Then x ∈ pe−1H , say x = pe−1y, and we get that α(x) = x + φ(x)
where φ(x) = pe−1φ(y) = 0 because φ(y) ∈ pH and pe−1(pH) = 0.

Each of the rkH generators of H can be mapped to any element of pH and
|pH| = (pe−1)rkH . To do the other count, recall that H[p] is just a Z/pZ-vector space.
Thus counting the automorphisms is equivalent to counting the non-singular matrices
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of size rkH × rkH . This is done in the well-known fashion. There are prkH possible
first rows from which the 0-row must be omitted, leaving prkH − 1 possibilities. From
the prkH possibilities of the second row, the linear multiples of the first row must be
omitted, leaving prkH − p possibilities, and so on. �

We can now offer the main result of this section.

Theorem 3.2. Let G = G1 ⊕G2 ⊕ · · · ⊕Ge be a finite abelian p-group such that
Gi = 0 or Gi is homocyclic of exponent pi.

(1) Every endomorphism of G can be identified with a matrix

U =


u11 u21 · · · ue1
u12 u22 · · · ue2

...
...

. . .
...

u1e u2e · · · uee

 ,
where uij ∈ Hom(Gi, Gj). The action is given by

U x� =


u11x1 + u21x2 + · · ·+ ue1xe
u12x1 + u22x2 + · · ·+ ue2xe

...
u1ex1 + u2ex2 + · · ·+ ueexe

 ,
where x� = [x1, . . . , xe]

tr for xi ∈ Gi. This action can be interpreted as matrix multi-
plication and the composite of two endomorphisms is the product matrix.

(2) The endomorphism U = [uij ] is an automorphism if and only if we have that
uii ∈ Hom(Gi, Gi) is an automorphism for all i.

(3) We have

|Aut(G)| =

 ∏
(i,j): i>j

(
pj
)2(rkGi)(rkGj)

 ∏
Gi 6=0

(pi−1)(rkGi)
2
rkGi∏
j=1

(
prkGi − pj−1

) .

Note that the notation uij is so chosen that the first index indicates the domain Gi
of the homomorphism and the second index the codomain Gj . Also by preceding the
uij by the projection onto Gi and following it by the insertion of Gj , matrix U could
be turned into a matrix with entries in End(G).

Proof. (1) This is a standard fact resulting from the isomorphism

Hom(G,G) ∼=
⊕
i,j

Hom(Gi, Gj).

(2) Consider the restriction map

: End(G)→ End(G[p]).

It is clear that Aut(G) ⊆ Aut(G[p]). Suppose that U ∈ End(G), U ∈ Aut(G[p]),
and, by way of contradiction, assume that 0 6= x ∈ G such that U(x) = 0. Then there
exists an m such that 0 6= pmx ∈ G[p]. Then

U(pmx) = U(pmx) = pmU(x) = 0,
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contradicting the fact that U is injective. So U is injective, and therefore bijective
because G is finite. We have U = [uij ]. We have shown that

(3.2) U ∈ End(G) is an automorphism if and only if U is an automorphism.

Suppose that i > j and x ∈ Gi[p]. Then x = pi−1x′ for some x′ ∈ Gi, and

uij(x) = uij(p
i−1x′) = uij(p

i−1x′) = pi−1uij(x
′) = 0

because i− 1 ≥ j and pjGj = 0. We therefore have

U =


u11 0 · · · 0
u12 u22 · · · 0

...
...

. . .
...

u1e u2e · · · uee

 .
Suppose first that U is an automorphism of G[p]. By a routine computation, it is found
that the inverse V = [vij ] of U must also be lower triangular:

V =


v11 0 · · · 0
v12 v22 · · · 0

...
...

. . .
...

v1e v2e · · · vee

 .
It now follows from UV = Ie that uiivii = 1 for i = 1, . . . , e, showing that uii is
invertible.

Conversely, assume that (uii)
−1 exists for every i. Then the product matrix

diag
(
(u11)

−1, . . . , (uee)
−1)U is a subdiagonal matrix with 1 along the diagonal. So

V := diag
(
(u11)

−1, . . . , (uee)
−1)U − Ie

is a subdiagonal matrix with 0 on the diagonal and therefore it is nilpotent, say V n = 0.
Then

(Ie + V )(Ie + (−V ) + (−V )2 + · · ·+ (−V )n−1) = Ie.

Thus Ie+ V = diag
(
(u11)

−1, . . . , (uee)
−1)U is invertible and hence so is U . Finally,

by (3.2) applied with G = Gi, we have that uii is an automorphism if and only if uii is
an automorphism.

(3) The matrix representation of the automorphisms of G and (2) tell us that

|Aut(G)| =

 ∏
(i,j): i 6=j

|Hom(Gi, Gj)|

( e∏
i=1

|Aut(Gi)|

)
.

Suppose that i < j. Then piGi = 0, so uij(Gi) ⊆ Gj [p
i] = pj−iGj . Thus

Hom(Gi, Gj) = Hom(Gi, p
j−iGj) and

(3.3) |Hom(Gi, Gj)| = |pj−iGj |rkGi = (pi)(rk(Gj)(rkGi).

Suppose that i > j. Then pjGj = 0, hence pjGi ⊆ Keruij . Thus

Hom(Gi, Gj) = Hom(Gi/p
jGi, Gj)
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and

(3.4) |Hom(Gi, Gj)| = |Gj |rkGi = (pj)(rkGj)(rkGi).

For i 6= j, we know |Hom(Gi, Gj)| by (3.3) and (3.4) and |AutGi| for Gi 6= 0 is
obtained from Lemma 3.1. We obtain the final formula by observing the bijective cor-
respondence (i, j)↔ (j, i) for i 6= j, for which we get the same value (pm)(rkGi)(rkGj)

in (3.3) and (3.4), where m is the larger of i and j. �

4. Dissecting Aut(G)

In this section we will exhibit a chain of normal subgroups of Aut(G) and precisely
describe the quotients of consecutive normal subgroups.

Lemma 4.1. Let G be a finite p-group. Then every endomorphism of pG extends
to an endomorphism of G, and every automorphism of pG extends to an automorphism
of G.

Proof. Write G = G1 ⊕ H such that pG1 = 0 and H[p] ⊆ pH . This can be
done by starting with a direct decomposition of G with cyclic summands, collecting
the summands of order p to form G1, and combining the other summands to form H .
Let H = 〈h1〉 ⊕ · · · ⊕ 〈hn〉. Then

∀ i ∈ {1, . . . , n}, ord(hi) = p ord(phi).

Let ξ ∈ End(pH). Then

ξ(phi) =
n∑
j=1

pmijhj ,

with ord(phi)
∑n

j=1 pmijhj = 0. We define η ∈ End(G) by letting η be the identity
onG1 and setting η(hi) :=

∑n
j=1mijhj . This is a well-defined endomorphism because

ord(hi)
n∑
j=1

mijhj = ord(phi)
n∑
j=1

pmijhj = 0.

If ξ is an automorphism of pG = pH , then ξ is injective on H[p] ⊆ pH , η is
injective on G1 ⊕H[p] = G[p], and hence is an automorphism of G. �

Remark 4.2. Lemma 4.1 says that the restriction maps

End(G)→ End(pG) and Aut(G)→Aut(pG)

are surjective. If we apply these maps repeatedly, it follows that the restriction maps

End(G)→ End(pnG) and Aut(G)→Aut(pnG)

are also surjective.

Proposition 4.3. Let G be a finite abelian p-group. There is a short exact sequence

AutpGG
ι
� Aut(G)

ρ
� Aut(pG)

where ι is insertion, ρ is the restriction map, and

AutpG(G) := {α ∈ Aut(G) | α �pG = 1}.
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Proof. By Lemma 4.1 the restriction map ρ is surjective and clearly

Ker(ρ) = AutpG(G). �

We will now investigate AutpG(G) more closely.

Lemma 4.4. Let ϕ : G → G/pG be the natural epimorphism. There is an exact
sequence

Hom(G/pG, pG)
σ
� AutpG(G)→ Aut(G/pG)

where σ : Hom(G/pG, pG) 3 ξ 7→ 1 + ξϕ ∈ AutpG(G) and

: AutpG(G) 3 α 7→ α ∈ Aut(G/pG)

is given by ϕα = αϕ.

Proof. Let ξ ∈ Hom(G/pG, pG). Then (1 + ξϕ)(1− ξϕ) = 1 and

(1 + ξϕ)(px) = px

for every x ∈ G. So Hom(G/pG, pG) maps into AutpG(G) and

{1 + ξϕ | ξ ∈ Hom(G/pG, pG)} ⊆ Ker( ).

Suppose that α ∈ AutpG(G) and α = 1. Then ϕα = ϕ and ϕ(α − 1) = 0.
Hence α − 1 ∈ Hom(G, pG) and (1 − α)(pG) = 0. Hence α = 1 + ξϕ for some
ξ ∈ Hom(G/pG, pG). �

There remains the problem of determining Im( ) and the precise structure of
AutpG(G). A special case is very simple.

Proposition 4.5. Suppose that G[p] ⊆ pG and let ϕ : G → G/pG be the natural
epimorphism. Then

AutpG(G) =
{
1 + ξϕ

∣∣∣ ξ ∈ Hom
(
G
pG , pG

)}
∼= Hom

(
G
pG , pG

)
.

Proof. We only need to check that every α ∈ AutpG(G) induces the identity on
G/pG. This is the case because p(1− α)(G) = (1− α)(pG) = 0, and so

(1− α)(G) ⊆ G[p] ⊆ pG. �

The hypothesis of Proposition 4.5 is equivalent to saying that G has no direct sum-
mands of order p. This necessitates looking at G = G1 ⊕ H , where G1 is the direct
sum of all summands of order p in some decomposition of G as a direct sum of cyclic
subgroups. Again, we will understand endomorphisms of G as matrices[

α11 α21

α12 α22

] {
α11 ∈ Hom(G1, G1), α21 ∈ Hom(H,G1),

α12 ∈ Hom(G1, H), α22 ∈ Hom(H,H),

with the action (x ∈ G1, y ∈ H)[
α11 α21

α12 α22

]
(x+ y) =

[
α11 α21

α12 α22

] [
x
y

]
=

[
α11(x) + α21(y)
α12(x) + α22(y)

]
.
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Proposition 4.6. Write G = G1 ⊕ H , where pG1 = 0 and H[p] ⊆ pG. Then
AutpG(G) contains the subgroups

A1 :=

{[
1 0
ξϕ 1 + ξϕ

] ∣∣∣∣ ξ ∈ Hom

(
G

pG
, pG

)}
,

A2 :=

{[
1 ξ
0 1

] ∣∣∣∣ ξ ∈ Hom(H,G1)

}
,

A3 :=

{[
α11 0
0 1

] ∣∣∣∣ α11 ∈ Aut(G1)

}
.

(1) A1 = Ker( ) and Hom
(
G
pG , pG

)
3 ξ 7→ 1 + ξϕ =

[
1 0
ξϕ 1 + ξϕ

]
∈ A1

is an isomorphism.

(2) Hom(H,G1) 3 ξ 7→
[
1 ξ
0 1

]
∈ A2 is an isomorphism.

(3) Aut(G1) 3 α11 7→
[
α11 0
0 1

]
∈ A3 is an isomorphism.

(4) The group AutpG(G) is the iterated semi-direct product of the groups Ai, i.e.,
AutpG(G) = (A1 oA2)oA3.

Proof. (1) We must write 1 + ξϕ in terms of its components G1 → G1, H → G1,
G1 → H , and H → H . Let x ∈ G1. Then (1 + ξϕ)(x) = x + ξϕ(x), where
ξϕ(x) ∈ H . This shows that the entry in position (1, 1) in the matrix representation of
1 + ξϕ must be 1. It also shows that the entry in position (2, 1) must be ξϕ. Now let
x ∈ H . Then (1 + ξϕ)(x) = x + ξϕ(x) ∈ H , hence the component in G1 is 0 which
shows that the entry in position (1, 2) of the matrix must be 0, and the entry in position
(2, 2) must be 1 + ξϕ. This proves (1) because it is already known that ξ 7→ 1 + ξϕ is
an isomorphism.

(2) and (3). It is readily seen that the A2, A3 are subgroups of AutpG(G) and
isomorphic to Hom(H,G1) and Aut(G1) respectively.

(4) We remark that A1 = Ker( ) is normal in AutpG(G), A3 normalizes A2, and

A1 ∩A2 = {1}. The elements of A1A2 are matrices of the form
[

1 α21

α12 α22

]
, where

α21 ∈ Hom(H,G1) = Hom(H/pH,G1), α12 ∈ Hom(G1, H) = Hom(G1, H[p]),
and α22 ∈ AutpH H . Hence A3 ∩ (A1A2) = {1}. This establishes that AutpG(G)
contains the subgroup (A1oA2)oA3). It remains to show that the iterated semi-direct
product (A1 oA2)oA3 exhausts AutpG(G).

Let α =

[
α11 α21

α12 α22

]
∈ AutpG(G). We show first that α11 ∈ Aut(G1). Let

x ∈ G1. Then

α(x) =

[
α11 α21

α12 α22

] [
x
0

]
=

[
α11x
α12x

]
, where α12x ∈ H[p] ⊆ pH = pG.

Therefore α−1(α12x) = α12(x). Suppose that α11(x) = 0. Then α(x) = α12(x), and
hence α−1(α12x) = x. We now have that α12(x) = α−1(α12x) = x ∈ G1 ∩H = 0,
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α11 is injective, and hence an automorphism of G1. We compute that[
α11 α21

α12 α22

] [
α−111 0
0 1

]
=

[
1 α21

α12α
−1
11 α22

]
∈ AutpG(G).

Hence it suffices to show that α ∈ A1A2A3 when α11 = 1. We find further that[
1 α21

α12 α22

] [
1 −α21

0 1

]
=

[
1 0
α12 α22 − α12α21

]
∈ AutpG(G).

Hence it suffices to show that α ∈ A1A2A3 when α21 = 0 and α11 = 1. We claim that[
1 0
α12 α22

]
∈ AutpG(G) =⇒

[
1 0
α12 α22

]
∈ Ker( ) = A1.

In fact, [
1 0
α12 α22

] [
x
y

]
=

[
x

α12(x) + α22(y)

]
.

Here, α12(x) ∈ H[p] ⊆ pH = pG and α22 ∈ AutpH(H), hence

α22(y) + pG = y + pG

by Proposition 4.5. This says that αφ(x + y) = ϕα(x + y) = ϕ(x + y), so
α = 1G/pG. �

Remark 4.7. Corresponding to the ascending chain of fully invariant subgroups

peG = {0} ⊆ pe−1G ⊆ · · · ⊆ pnG ⊆ pn−1G ⊆ · · · ⊆ pG ⊆ p0G = G,

there is a descending chain of normal subgroups of Aut(G) given by

Aut(G) =AutpeG(G) ⊇ Autpe−1G(G) ⊇ Autpe−2G(G) ⊇ · · · ⊇ Autpn+1G(G)

⊇ AutpnG(G) ⊇ · · · ⊇ AutpG(G) ⊇ AutG(G) = {1}.
For every n there is a short exact sequence

AutpnG(G) � Autpn+1G(G) � Autpn+1G(p
nG).

From Proposition 4.6, we obtain the structure of
Autpn+1G(G)

AutpnG(G)
∼= Autpn+1G(p

nG)

as an iterated semi-direct product of three groups.

With this result the cardinality of Aut(G) can be obtained by induction.

5. Characteristic and fully invariant subgroups

Recall that a characteristic subgroup of a group is one that is mapped onto itself by
every automorphism of the group, while a fully invariant subgroup is one that is mapped
into itself by every endomorphism. Thus fully invariant subgroups are characteristic.
We will show that for finite abelian p-groups with p ≥ 3, the characteristic subgroups
are necessarily fully invariant. This is achieved by showing that every endomorphism
is a sum of automorphisms.

Proposition 5.1. Let p ≥ 3 and G be a finite abelian p-group. Then every endo-
morphism of G is a sum of automorphisms of G.
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Proof. We use the fact that multiplication by 2 is an automorphism in any p-group
with p > 2. So 2−1 makes sense and 2 ◦ 2−1 = 1.

(a) Suppose first that G is elementary, i.e., a vector space over Z/pZ. Let
U ∈ End(G). ThenG = Ker(U)⊕H for someH . For i ∈ {1, 2} define Ui ∈ Aut(G)
by stipulating that U1 = 1 on Ker(U) and U1 = 2−1U on H , while U2 = −1 on
Ker(U) and U2 = 2−1U on H . Clearly the Ui’s are injective and hence automor-
phisms. For x ∈ Ker(U) and y ∈ H , it follows that

(U1 + U2)(x+ y) = U1(x) + U2(x) + U1(y) + U2(y)

= x− x+ 2−1U(y) + 2−1U(y)

= U(y)

= U(x+ y).

Thus U = U1 + U2.

(b) Suppose next thatG is homocyclic of exponent pe. Letϕ ∈ Hom(G,G/pe−1G)
be the natural epimorphism. Then we have a short exact sequence

Hom(G/pe−1G,G) � End(G) � End(G[p])

with maps Hom(G/pe−1G,G) 3 ξ 7→ ξϕ ∈ End(G) and End(G) → End(G[p])
being the restriction map. The restriction map is surjective by Remark 4.2 because
G[p] = pe−1G. A map α ∈ End(G) is the 0-map on G[p] = pe−1G if and only if
α(pe−1G) = 0 and this is equivalent to the existence of ξ ∈ Hom(G/pe−1G,G) such
that α = ξϕ. The exactness of the sequence is now established.

Let U ∈ End(G) and let U [p] be its restriction to G[p]. By (a) there exist auto-
morphisms U1 and U2 of G[p] such that U [p] = U1 + U2. By Lemma 4.1 there exist
automorphisms Vi of G such that Vi[p] = Ui. We find that

(U − V1 − V2)[p] = U [p]− V1[p]− V2[p] = 0,

and therefore U = V1 + V2 + ξϕ for some ξ ∈ Hom(G/pe−1G,G). Now

(V2 + ξϕ)[p] = V2[p] = U2

is injective on G[p], and therefore V2+ ξϕ is also injective on G and hence an automor-
phism. Thus U is the sum of the automorphisms V1 and V2 + ξϕ.

(c) In the general case, we identify an endomorphism with a matrix [uij ] as in
Theorem 3.2. By (b) every diagonal map uii is the sum of two automorphisms:
uii = vi1 + vi2. Our proof consists of a partial but fully convincing example: u11 u21 u31

u12 u22 u32
u13 u23 u33

 =

 v11 0 0
0 1 0
0 0 1

+

 v12 0 0
0 −1 0
0 0 −1


+

 1 2−1u12 0
0 1 0
0 0 1

+

 −1 2−1u12 0
0 −1 0
0 0 −1

+ · · · �

Corollary 5.2. In a finite abelian p-group with p > 2, the characteristic subgroups
are fully invariant.
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In 2-groups there exist characteristic subgroups that are not fully invariant and
hence there are endomorphisms that are not sums of automorphisms. A general re-
sult to this effect is [Kap69, Theorem 27]. A simple example is the following.

Example 5.3. Let G = 〈a1〉 ⊕ 〈a2〉 ⊕ 〈a3〉 with ord(ai) = pi, and let

H = 〈x ∈ G | x /∈ pG, 0 6= px ∈ p2G〉.

Then clearly H is characteristic in G. Computations reveal that the generators of H are
(without loss of generality) of the form a1 + pαa3 and a1 + pβa2 + pγa3, where α, β
and γ are relatively prime to p. The projection a1 7→ a1, a2 7→ 0 and a3 7→ 0 maps H
onto 〈a1〉. For p ≥ 3,

2a1 = (a1 + (p2 − 1)pa3) + (a1 + pa3)

so 〈a1〉 ⊆ H , but for p = 2, one finds that a1 /∈ H , and therefore H is not fully
invariant.

We proceed to describe all fully invariant subgroups of finite abelian p-groups. The
basic fully invariant subgroups are psG, G[pt] and their intersections (psG)[pt].

Proposition 5.4. The fully invariant subgroups of a finite abelian p-group are ex-
actly the subgroups of the form

n∑
i=1

(psiG) [pti ] where si ≥ 0 and ti > 0.

Proof. Let g ∈ G. Then End(G)g is the smallest fully invariant subgroup contain-
ing g. Every fully invariant subgroup H can be written in the form

H =
∑
{End(G)h | h ∈ H},

and therefore it suffices to determine the single generator fully invariant subgroups
End(G)g. We utilize again a homocyclic decomposition G = G1 ⊕ · · · ⊕Gn (Gi = 0
allowed) and the corresponding decomposition g = g1+ · · ·+ gn where gi ∈ Gi. Each
gi is an endomorphic image of g via projection, hence End(G)g ⊇

∑
i End(G)gi, but

also for every ξ ∈ End(G) we have

ξ(g) =
∑
i

ξ(gi) ∈
∑
i

End(G)gi

and we have reduced the problem to finding End(G)gi where gi ∈ Gi.
Let 0 6= g ∈ Gi ord(g) = pt. Then g ∈ pi−tGi by (3.1) because Gi is homocyclic

of exponent pi. Set s = i − t. Clearly End(G)g ⊆ (psG)[pt]. To show the reverse
containment, choose g0 ∈ Gi such that g = psg0. Then ord(g0) = i. By Lemma 2.1
〈g0〉 is a direct summand of Gi and hence of G. Therefore, g0 can be mapped to any
element of order≤ pi by some endomorphism ofG. Let x ∈ (psG)[pt]. Then x = psx0
and ord(x0) ≤ t+s = i. Hence there is an endomorphism ξ ofG such that ξ(g0) = x0
and therefore

ξ(g) = ξ(psg0) = psξ(g0) = psx0 = x.

We have shown that also (psG)[pt] ⊆ End(G)g, which concludes the proof of the
equality. �



570 THE AUTOMORPHISM GROUP OF FINITE ABELIAN p-GROUPS

The description of the fully invariant subgroups can be refined somewhat.

Corollary 5.5. Let H be a fully invariant subgroup of G. Fix a decomposition
G = G1⊕· · ·⊕Ge, where Gi is 0 or homocyclic of exponent pi for i = 1, . . . , e. Then
H has a description

H = G[pt] + (H ∩ pG) = (G1 ⊕ · · · ⊕Gt)⊕ (H ∩ pG ∩G∗t )
with G∗t = Gt+1 ⊕ · · · ⊕Ge, where t = 0 is allowed and means that

H = H ∩ pG ∩G∗t = H ∩ pG.

Proof. Beginning with H =
∑n

i=1 (p
siG) [pti ], we get

H =
∑
{(psiG)[pti ] | si = 0}+

∑
{(psiG)[pti ] | si > 0},

where {(psiG)[pti ] | si = 0} = G[pt] for t := max{ti | si = 0} and∑
{(psiG)[pti ] | si > 0} ⊆ H ∩ pG.

Using that
G[pt] = G1 ⊕ · · · ⊕Gt ⊕ pGt+1 ⊕ · · · ⊕ pe−tGe,

this shows that

H = G[pt] + (H ∩ pG) = (G1 ⊕ · · ·Gt) + (H ∩ pG).
Note that H ∩ pG is a fully invariant subgroup of G. Hence intersecting

G = (G1 ⊕ · · · ⊕Gt)⊕G∗t
with H ∩ pG, we get

H ∩ pG = ((G1 ⊕ · · · ⊕Gt) ∩ (H ∩ pG))⊕ (H ∩ pG ∩G∗t ).
Substituting in H = (G1⊕· · ·⊕Gt)+ (H ∩ pG) we obtain the desired decomposition

H = (G1 ⊕ · · · ⊕Gt)⊕ (H ∩ pG ∩G∗t ). �

6. Normal subgroups of Aut(G)

The normal structure of Aut(G) has been a topic of interest since Shoda. We will
study a connection between characteristic subgroups of G and normal subgroups of
Aut(G).

Definition 6.1. Let H ≤ G. Set

AutH(G) := {α ∈ Aut(G) | ∀x ∈ H : α(x) = x}.

Let N be a subgroup of Aut(G). Define Fx(N) := {x ∈ G | N(x) = x}.
Lemma 6.2. The following statements hold true.

(1) If H is a characteristic subgroup of G, then AutH(G) is normal in Aut(G).

(2) If N is normal in Aut(G), then Fx(N) is a characteristic subgroup of G.

(3) If H1, H2 are characteristic subgroups of G and H1 ≤ H2, then

AutH2(G) ⊆ AutH1(G).
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(4) If N1, N2 are normal subgroups of Aut(G) and N1 ⊆ N2, then

Fx(N2) ⊆ Fx(N1).

(5) Let H be a characteristic subgroup of G and let N be a normal subgroup of
Aut(G). Then

H ⊆ Fx(AutH(G)), N ⊆ AutFx(N)G.

(6) AutFx(AutH(G))(G) = H and Fx(AutFx(N)(G)) = N .

(7) Let H1 and H2 be characteristic subgroups of G. Then

AutH1+H2(G) = AutH1(G) ∩AutH2(G).

Proof. (1) Let α ∈ AutH(G), β ∈ Aut(G), and x ∈ H . Then

(β−1αβ)x = β−1α(βx) = β−1(βx) = x.

Thus AutH(G) is normal in Aut(G).

(2) LetN be a normal subgroup of Aut(G), α ∈ N , x ∈ Fx(N), and β ∈ Aut(G).
Then α(βx) = β(β−1αβ)(x) = β(x).

The verifications of (3) through (7) are routine consequences of the definitions. �

Example 6.3. Assume that G is p-elementary, i.e., a direct sum of cyclic sub-
groups of order p. Then G can be considered to be a Z/pZ-vector space and Aut(G)
acts transitively on the subset of non-zero elements. Hence there are only two charac-
teristic subgroups, namely {0} and G, but there are more than two normal subgroups
of Aut(G), for example the center of Aut(G). The assignment H 7→ AutH(G) on
characteristic subgroups of G to normal subgroups of Aut(G) is injective in this case.

Example 6.3 shows that the map N 7→ Fx(N) on normal subgroups of Aut(G) is
not injective and the map H 7→ AutH(G) on characteristic subgroups is not surjective.
However, we will show that the assignment H 7→ AutH(G) is injective.

Proposition 6.4. Let p > 2 and let G be a finite abelian p-group. Then the assign-
ment on characteristic subgroups H , H 7→ AutH(G) is injective.

Proof. (a) Note that “characteristic” coincides with “fully invariant” because
p > 2. Also, given two fully invariant subgroupsHandH ′with AutH(G)=AutH′(G),
we have

AutH(G) = AutH(G) ∩AutH′(G) = AutH+H′(G).

If we can show that H = H + H ′, then it follows that H ′ ⊆ H and by symmetry
H = H ′. Therefore it suffices to show that AutH(G) 6= AutH′(G) for fully invariant
subgroups H ′ < H . Hence assume that H ′ and H are characteristic subgroups with
H ′ < H . We claim that AutH(G) 6= AutH′(G).

(b) By Example 6.3 the claim is true for an elementary p-group. We therefore can
proceed by induction on the order of G.

(c) Choose a decomposition G = G1 ⊕ · · · ⊕ Ge where Gi is 0 or homocyclic of
exponent pi. This decomposition will be fixed for the rest of the proof. Suppose that
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H ′ ⊆ H are characteristic subgroups of G. Then, by Corollary 5.5,

H ′ = (G1 ⊕ · · ·Gm)⊕ (H ′ ∩ pG ∩G∗m)
and

H = (G1 ⊕ · · ·Gn)⊕ (H ∩ pG ∩G∗n).

Case I: m < n, Gn 6= 0, and n ≥ 2. In this case there is a non-zero homomor-
phism ξ : Gn � Gn/pGn → pGn and therefore a non-identity automorphism 1 + ξ
of Gn that leaves pGn element-wise invariant. Let α ∈ Aut(G) be the identity on
G1 ⊕ · · · ⊕ Gn−1 ⊕ G∗n and equal 1 + ξ on Gn. Then α fixes pG element-wise and
therefore H ′, but it moves elements of Gn ⊆ H .

Case II: m < n = 1, G1 6= 0. In this case G = G1 ⊕ G∗1 and pG = pG∗1 ⊆ pG.
As p > 2, there is an automorphism of G that is not the identity on G1, but restricts to
the identity on G∗1. Since H ′ ⊆ pG, this automorphism fixes H ′ but not H .

Case III: n = m and Gn 6= 0. In this case, necessarily

(H ′ ∩ pG ∩G∗n) 6= (H ∩ pG ∩G∗n)
and these are characteristic subgroups of G∗n. The case is easily settled by induction.

Case IV: n = m = 0. In this case H ′, H ⊆ pG and since the restriction map
Aut(G)→ Aut(pG) is surjective, the claim follows by induction. �

7. Endomorphisms and automorphisms as integral matrices

We conclude with a short characterization of the numerical description of endo-
morphisms and automorphisms of finite abelian groups.

Let G = 〈g1〉 ⊕ · · · ⊕ 〈gr〉 be a finite abelian group,

ord(gi) = pei , 1 ≤ e1 ≤ e2 ≤ · · · ≤ er.
In the following we will need the following diagonal matrix:

D := diag(pe1 , . . . , per) :=


pe1 0 · · · 0
0 pe2 · · · 0
...

...
. . .

...
0 0 · · · per

 .
The group G is the epimorphic image of a free abelian group of column vectors
Z� := {[m1, . . . ,mr]

tr | mi ∈ Z} with basis {ci | 1 ≤ i ≤ r}, where ci is the
column vector with 1 in position i and 0 elsewhere, that is

(7.1)
Z�

DZ�
∼= G induced by ci 7→ gi.

By Mr(Z) we denote the ring of all r × r integral matrices. A matrix U ∈ Mr(Z)
induces an endomorphism of Z� by left multiplication.

Lemma 7.1. A matrix U ∈Mr(Z) induces an endomorphism of the quotient Z�

D Z�

if and only if there exists V ∈Mr(Z) such that UD = DV .
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Proof. Clearly U induces an endomorphism of the quotient Z�

D Z� if and only if
UDZ� ⊆ DZ�. The columns V∗j of the matrix V are obtained from the equations

UDcj = DV∗j . �

By means of the isomorphism (7.1), the endomorphisms ofG can also be described
by matrices. As in linear algebra, the action of a matrix U on G is realized via matrix
multiplication on coordinate vectors of the elements of G with respect to a given basis
of G.

Theorem 7.2. Let G = 〈g1〉 ⊕ · · · ⊕ 〈gr〉 be a finite p-group.

(1) A matrix

U =


u11 u12 · · · u1r
u21 u22 · · · u2r

...
...

. . .
...

ur1 ur2 · · · urr

 ∈Mr(Z)

induces an endomorphism of G given by
U(m1g1 +m2g2 + · · ·+mrgr) = (u11m1 + u12m2 + · · ·+ u1rmr)g1

+ (u21m1 + u22m2 + · · ·+ u2rmr)g2 + · · ·

+ (ur1m1 + ur2m2 + · · ·+ urrmr)gr,

if and only if there exists V ∈Mr(Z) such that UD = DV .

(2) Let U ∈ End(G). Then U ∈ Aut(G) if and only if gcd(p,detU) = 1.

Proof. (1) This part follows from the isomorphism (7.1) and Lemma 7.1.

(2) By U [p] we mean the matrix that is obtained from U by viewing the entries as
elements of Z/pZ. Note that U [p] is the linear transformation obtained by restricting
U to G[p]. Also we will use that U is injective on G if and only if U [p] is injective on
G[p].

Suppose first that U ∈ Aut(G). Then U [p] is an invertible linear transformation on
G[p], hence has non-zero determinant which means that gcd(p,detU) = 1.

Conversely, suppose that gcd(p,detU) = 1. Then det(U [p]) 6= 0 which means
that U [p] is an invertible linear transformation, hence injective. It follows that U is also
surjective and hence invertible. �

8. Remarks on the literature

There is a large literature concerning endomorphisms and automorphisms of abelian
groups, mostly for infinite groups where many difficult questions arise. Perhaps the old-
est paper on automorphisms is [Ran07]. Ranum treats automorphisms as matrices and
so does Shoda ([Sho28], [Sho30]) who also studies chains of normal subgroups and
determines the quotients similar to Remark 4.7. These results were generalized to in-
finite p-groups in [Fuc60] and [Mad66]. In particular, Fuchs proves a general version
of Proposition 4.3. The recent paper [HR07] and the older [GG60] also approach the
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automorphism group of a finite abelian group via integral matrices. The compact char-
acterization (Lemma 7.1) of those matrices that induce endomorphisms can be found in
Jacobson [Jac74, Theorem 3.15]. The book [Spe45], [Spe56] contains a good descrip-
tion of the automorphism group of a finite abelian group that is similar to ours. The
description of the fully invariant subgroups as in Proposition 5.4 is studied in detail
by Shiffman [Shi40] for infinite abelian p-groupsG without elements of infinite height,
i.e., it is assumed that

⋂
n∈N p

nG = 0. Another generalization to algebraically compact
groups is in [Mad70].

A different approach to fully invariant and characteristic subgroups in terms of Ulm
sequences was introduced by Kaplansky ([Kap52], [Kap54], [Kap69]), which led to a
large number of papers concerned with associated questions. These papers have little
impact on finite abelian groups.

The question of whether endomorphisms are sums of (two) automorphisms is treated
in [Cas68], [Fre68], and [Fre69]. W. Liebert [Lie67] determined which abstract rings
can be realized as endomorphism rings of a finite abelian p-group and obtains such char-
acterizations for more general classes of groups (see, for example, [Lie68], [Lie83]).
While the endomorphism rings of abelian p-groups are very special, the endomorphism
rings of torsion-free abelian groups can be very general. The most admired and influ-
ential result in this direction is due to A.L.S. Corner [Cor63] with the revealing title
“Every countable reduced torsion-free ring is an endomorphism ring”. Baer-Kaplansky
type theorems are theorems that say that groups with isomorphic endomorphism rings
or automorphism groups are themselves isomorphic ([Bae43], [Kap52], [Lep60]).
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