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THE SPACE OF BINARY THETA SERIES

ERNST KANI

RÉSUMÉ. Le but de cet article est d’étudier l’espace ΘD engendré par les séries
thêta binaires ϑf qui sont attachées aux formes f primitives positives binaires quadra-
tiques d’un discriminantD < 0 fixé. En particulier, nous expliquons comment une telle
série thêta ϑf peut être exprimée comme une combinaison linéaire des éléments de la
base (étendue) d’Atkin-Lehner pour les formes modulaires de poids un. De plus, nous
montrons que cet espace a une base naturelle {ϑχ}χ consistant de fonctions propres
de Hecke ϑχ (attachées aux caractères χ du groupe Cl(D) des classes des formes de
discriminant D) et nous calculons les fonctions L(s, ϑχ) associées.

ABSTRACT. The purpose of this paper is to study the space ΘD generated by the
binary theta series ϑf attached to the primitive positive binary quadratic forms f of
a fixed discriminant D < 0. In particular, we explain how each such theta series
ϑf can be expressed as a linear combination of the elements of the (extended) Atkin-
Lehner basis for modular forms of weight one. Furthermore, we show that this space
has a natural basis {ϑχ}χ consisting of Hecke eigenforms ϑχ (attached to characters
χ of the class group Cl(D) of forms of discriminant D) and work out the associated
L-functions L(s, ϑχ).

1. Introduction

Let ΘD denote the space generated by the binary theta series ϑf attached to the
primitive, positive-definite binary quadratic forms f(x, y) = ax2 + bxy + cy2 of dis-
criminant D = b2 − 4ac < 0. It is curious that while much has been written about the
space generated by theta series attached to quadratic forms in 2k ≥ 4 variables (cf. [15]
and the references therein), the binary case does not seem to have been treated in detail
in the literature. It is the purpose of this paper to fill this gap by presenting a variety of
known and unknown results about this space.

By the work of Weber [33], Hecke [12] and Schoeneberg [26], it is known that ΘD

is a subspace of the space M1(|D|, ψD) of modular forms of weight 1, level |D| and
Nebentypus ψD, where ψD = (D· ) is the Kronecker-Legendre character. Contrary to
the case of higher weight, the space of binary theta series is often a proper subspace of
M1(|D|, ψD) (cf. Remark 16) and so it is of interest to be able to identify it inside the
space of modular forms.

As a first step towards this, we explain in this paper how each theta series ϑf can be
expressed explicitly as a linear combination of the canonical (extended) Atkin-Lehner
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basis of M1(|D|, ψD); cf. Remark 30(b). This (and other results) are used in the paper
[17] to give an intrinsic description of the space of all theta series.

To this end we first observe that ΘD has a natural basis {ϑχ} indexed by the char-
acters χ ∈ Cl(D)∗ of the class group Cl(D) of forms of discriminant D. It turns out
that each ϑχ is a normalized eigenform with respect to Hecke algebra T(D); the latter
is the algebra generated by all Hecke operators Tn with (n,D) = 1.

Theorem 1. The space ΘD is a T(D)-submodule of M1(|D|, ψD) of multiplic-
ity one, and has a canonical basis {ϑχ} consisting of normalized T(D)-eigenforms.
Furthermore, ϑχ is a cusp form if and only if χ is not a quadratic character.

This theorem implies the following interesting result.

Theorem 2. We have ΘD = ΘE
D ⊕ ΘS

D, where ΘE
D = ΘD ∩E1(|D|, ψD) denotes

the Eisenstein space part and ΘS
D = ΘD ∩ S1(|D|, ψ) denotes the cusp space part of

ΘD. Moreover,

(1) dim ΘE
D = gD and dim ΘS

D = 1
2(hD − gD),

where hD = |Cl(D)| denotes the number of classes of forms of discriminant D, and
gD = [Cl(D) : Cl(D)2] denotes the number of genera.

Note that it follows from (1) that ΘD has no non-zero cusp forms if and only if
hD = gD, i.e., if and only if D is an idoneal discriminant. As is explained in Remark
17(b) below, this can be viewed as an alternate version of Theorem 3 of Kitaoka [18].
Moreover, Theorem 2 implies that a classical result of Siegel [29] (for quadratic forms
in m ≥ 4 variables) extends to binary forms; cf. Corollary 18.

If D is a fundamental discriminant, i.e., if D = dK , where dK is the discriminant
of K := Q(

√
D), then Theorems 1 and 2 are essentially well-known, although I have

not been able to find an explicit reference (except for the comments in Hecke [14],
p. 792). Indeed, in this case each ϑχ is the modular form f(z;χ) associated to χ
(viewed as a Hecke character) by Hecke’s construction, and so each ϑχ is a primitive
form (newform); cf. Remark 16. In particular, in this case the ϑχ’s are part of the
canonical Atkin-Lehner basis.

However, if D is not a fundamental discriminant, then this is no longer true: ΘD

is not contained in the space generated by the modular forms f(z;χ) associated to
Hecke characters (cf. Theorem 3 and Corollary 33). More precisely, ϑχ is equal to
the modular form f(z;χ) associated to the character χ (viewed as Hecke character)
if and only if χ ∈ Cl(D)∗ is primitive, i.e., χ is not equal to the lift χ′ ◦ π of any
character χ′ ∈ Cl(D′)∗ of some “lower level” D′|D, D′ 6= D, via the canonical map
π = πD,D′ : Cl(D)→ Cl(D′). In the general case the situation is as follows.

Theorem 3. Let χ be a character on the class group Cl(D), where D = f2
DdK .

(a) There is a unique divisor fχ|fD and a unique primitive character χpr on the
class group Cl(Dχ), where Dχ = f2

χdK , such that χ = χpr ◦ π̄D,Dχ .

(b) The form ϑχpr ∈ ΘDχ is a primitive form of level |Dχ| whose L-function
is the Hecke L-function associated to a suitable Hecke character χ̃pr; in other words,



E. Kani 503

L(s, ϑχpr) = L(s, χ̃pr). Moreover, there exist constants cn(χ) ∈ R such that

(2) ϑχ(z) =
∑
n|f̄2

χ

cn(χ)ϑχpr(nz),

where f̄χ = fD/fχ. Furthermore, the function n 7→ cn(χ) is multiplicative and has the
generating function

(3) C(s, χ) :=
∑
n|f̄2

χ

cn(χ)n−s = L(s, ϑχ)/L(s, ϑχpr) = L(s, ϑχ)/L(s, χ̃pr) .

Note that whileL(s, ϑχpr) = L(s, χ̃pr) is a classical HeckeL-function and hence is
well-understood, the L-function L(s, ϑχ) is more complicated and is, in fact, unknown.
(It is computed incorrectly in [21] and in [1]; cf. Remark 11.) Thus, (3) does not help in
determining the constants cn(χ). Instead, we calculate C(s, χ) directly in Theorem 28
by using facts about ideals in quadratic orders which are presented in the Appendix
(see §6). As a consequence, we thus obtain not only the desired explict formula for ϑf
in terms of the Atkin-Lehner basis (cf. Remark 30(b)) but also an explicit expression for
L-function L(s, χ) which seems to be new; cf. Corollary 31. In particular, we obtain

Corollary 4. If pēp ||f̄χ denotes the largest power of p dividing f̄χ, then the p-Euler
factor Lp(s, χ) of L(s, χ) at p|f̄χ is

Lp(s, χ) =
1− p(1−2s)ēp

1− p1−2s
+

(
1− 1

pψDχ(p)
)
p(1−2s)ēp

1− ap(χpr)p−s + ψDχ(p)p−2s
·

At the end of §5, we present some special cases and numerical examples of these
results; cf. Examples 35 and 37.

After the first version of this paper was completed, Norm Hurt drew my attention
to the papers of Sun and Williams [30, 31] which are partially related to some of the
topics mentioned here. Indeed, Corollaries 31 and 4 can be viewed (for D < 0) as a
generalization of many of their results; cf. Remark 32(c) for more details.

2. The basis {ϑχ} of ΘD

As in the introduction, let f(x, y) = ax2 + bxy + cy2 be a primitive, positive
definite binary quadratic form of discriminant D = b2 − 4ac < 0. Thus a, b, c ∈ Z
and (a, b, c) = 1, and D = f2

DdK , where dK is the (fundamental) discriminant of the
imaginary quadratic field K = Q(

√
D). For a fixed D, let QD denote the set of all

such forms. The binary theta series attached to f ∈ QD is the function on the upper
half-plane H given by

ϑf (z) =
∑
x,y∈Z

e2πif(x,y)z =
∞∑
n=0

rn(f)e2πinz,

where rn(f) = #{ (x, y) ∈ Z2 : f(x, y) = n } denotes the number of representations
of n by f . The following fact is fundamental for most of this paper.
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Proposition 5. If f ∈ QD, then ϑf is a modular form of level |D| and Nebentypus
ψD =

(
D
·
)
. Thus ΘD :=

∑
f∈QD Cϑf is a subspace of M1(|D|, ψD).

Proof. See Schoeneberg [27], ch. IX, Theorems 4 and 5, or Miyake [22], Corollary
4.9.5(3). �

Remark 6. (a) This result was proved by Weber [33] in 1893 (see his formula
§15 (21)), except that he did not verify that ϑf is holomorphic at all the cusps. In
1926 Hecke [12] proved a more general result from which above result can be deduced
(cf. Remark 11(c)). Siegel [29] proved something weaker but for quadratic forms in an
arbitrary number m ≥ 2 of variables; cf. [29], Hilfssatz 30 and 31 and also Satz 4,
where the case m = 2 is excluded. In 1939 Schoeneberg [26] proved a very general
result about theta series which includes the above result as a special case.

(b) The L-function associated to the modular form ϑf is

Zf (s) = L(s, ϑf ) =
∑
n≥1

rn(f)

ns
=

∑
(x,y) 6=(0,0)

f(x, y)−s, where Re(s) > 1.

This function is often called the Epstein zeta-function of f (cf. e.g. [7]), even though it
was introduced by Dirichlet in 1839 (cf. [8], §6.18 (p. 358)) and was studied intensively
by him and by Kronecker [20] (and by others) many years before Epstein.

Recall that the group GL2(Z) acts on binary quadratic forms by change of coordi-
nates, and that this action preserves the set QD. It is immediate that rn(fT ) = rn(f),
for all n ≥ 0 and T ∈ GL2(Z), so ϑfT = ϑf . We can thus index the theta series by the
quotient set

QD = QD/GL2(Z) = QD/≈ ,

where ≈ denotes the equivalence relation induced by GL2(Z)-equivalence.

Proposition 7. 1 The set {ϑf : f ∈ QD} is a basis of the space ΘD. Thus

dim ΘD = hD := #QD .

As we shall see, this follows easily from the following basic facts about binary
quadratic forms which are due to Dirichlet [8] and Weber [32].

Lemma 8. Let f, f1, f2 ∈ QD be primitive quadratic forms. Then:

(a) There exist infinitely many prime numbers p with rp(f) > 0.

(b) If there is a prime number p - D with rp(fi) > 0, for i = 1, 2, then f1 ≈ f2.

Proof. (a) This was first proved by Dirichlet [8] for prime discriminants and by
Weber [32] in the general case. A proof using class field theory is given in Cox [6],
Theorem 9.12.

(b) Weber [33] states this (elementary) result on p. 259 and points out that it follows
easily from his paper [32] (or from a paper of Schering). It is restated and proved
(without references) as Satz 1 in Piehler [24]. �

1The referee pointed out that this can be viewed as a special case of the lemma on p. 158 of Kitao-
ka [19]
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Proof of Proposition 7. Let f1, . . . , fN ∈ QD be a system of representatives of
QD; thus, N = hD. It is clear from what was said above that ϑf1 , . . . , ϑfN generate
ΘD. To prove that they are linearly independent, suppose that c1ϑf1 +. . .+cNϑfN = 0,
for some c1, . . . , cN ∈ C. Thus c1rn(f1) + . . .+ cNrn(fN ) = 0, for all n ≥ 0.

Fix i. By Lemma 8(a) we know that there is a prime p = pi - D with rp(fi) > 0,
and from Lemma 8(b) it follows that rp(fj) = 0 for all j 6= i. We thus have that
cirp(fi) = 0, so ci = 0, and hence {ϑfi} is a basis of ΘD, as claimed. �

We now introduce another basis of the space ΘD. For this, recall that by Gauss’s
theory of composition of forms (cf. Gauss [9]) the set

Cl(D) := QD/SL2(Z) = QD/∼

has the structure of an abelian group. The identity of Cl(D) is the class of the principal
form 1D which is defined by 1D(x, y) = x2 + εxy + ε−D

4 y2, for D ≡ ε (mod 4) and
ε ∈ {0, 1}. Note also that the SL2(Z)-equivalence relation ∼ is related to the previous
GL2(Z)-equivalence relation ≈ by

(4) f1 ≈ f2 ⇐⇒ f1 ∼ f2 or f1 ∼ f−1
2 ,

where f−1
2 denotes a representative of the inverse class of f2 (in the group Cl(D)).

From this it follows easily that

(5) hD =
1

2
(gD + hD), where hD = |Cl(D)| and gD = [Cl(D) : Cl(D)2] .

Let χ ∈ Cl(D)∗ := Hom(Cl(D),C×) be a character on Cl(D), and put

(6) ϑχ =
1

wD

∑
f∈Cl(D)

χ(f)ϑf ∈ ΘD,

where wD = r1(1D). (Thus, as is well known, wD = 2 when D < −4 and w−4 = 4
and w−3 = 6.) Note that the terms on the right-hand side are not linearly independent
since we sum over Cl(D) in place of QD. However, by using (4) and noting that
χ(f−1) = χ(f), we can re-write (6) in the form

(7) ϑχ =
1

wD

∑
f̄∈QD

w(f̄)Re(χ(f̄))ϑf̄ ,

where w(f̄) = #{ f ∈ Cl(D) : f ≈ f̄ }. (Thus, w(f) = 1, if f2 ∼ 1D and w(f) = 2
otherwise.) From this expression we see immediately that ϑχ−1 = ϑχ, and so it is
useful to index the ϑχ’s by the set Cl(D)

∗
= Cl(D)∗/(χ 7→ χ−1). We then have:

Proposition 9. If f ∈ QD is a primitive quadratic form, then

(8) ϑf =
wD
hD

∑
χ∈Cl(D)∗

χ(f)ϑχ =
wD
hD

∑
χ∈Cl(D)

∗

w(χ)Re(χ(f))ϑχ,

where w(χ) = #{χ, χ−1 }. Thus {ϑχ : χ ∈ Cl(D)
∗ } is also a basis of ΘD.
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Proof. Since ϑχ−1 = ϑχ, the second identity of (8) is clear. To prove the first
identity, recall that the orthogonality relations for group characters imply that

∑
χ∈Cl(D)∗

χ(f) =

{
hD if f ∼ 1D,

0 otherwise.

From this, together with the definition (6) of ϑχ, it follows that

wD
∑

χ∈Cl(D)∗

χ(f)ϑχ =
∑

χ∈Cl(D)∗

χ(f)
∑

f1∈Cl(D)

χ(f1)ϑf

=
∑

χ∈Cl(D)∗

χ(f−1)
∑

f1∈Cl(D)

χ(f1)ϑf1

=
∑

f1∈Cl(D)

ϑf1

∑
χ∈Cl(D)∗

χ(f−1f1) = hDϑf ,

which proves the first identity of (8) and hence (8) itself.

From (8) it is clear that the set {ϑχ : χ ∈ Cl(D)
∗ } generates the space ΘD. Since

Cl(D) ' Cl(D)∗, it follows that

#(Cl(D)
∗
) = #(Cl(D)/(f 7→ f−1)) = #QD = dim ΘD,

where the last two identities follow from (4) and Proposition 7, respectively. Thus, the
set {ϑχ : χ ∈ Cl(D)

∗} is a basis of ΘD. �

We now examine the Fourier coefficients an(χ) := an(ϑχ) of the modular form
ϑχ more closely. For this we shall use a basic result due to Dedekind that the class
group Cl(D) can be identified with the group Cl(OD) = Pic(OD) = I(OD)/P (OD)
of classes of invertible (fractional) ideals of the order OD of discriminant D in the
quadratic field K = Q(

√
D). (Here we use the terminology and notation of Appendix

§6.1.) More precisely, if L(f) = aZ + −b+
√
D

2 Z denotes the quadratic lattice in K
associated to the form f(x, y) = ax2 + bxy + cy2 ∈ QD, then the rule f 7→ L(f)
defines an isomorphism

λD : Cl(D)
∼→ Cl(OD) := I(OD)/P (OD);

cf. Cox[6], Theorem 7.7 (p. 137). We observe:

Proposition 10. Let χ ∈ Cl(D)∗. If n ≥ 1, then the n-th Fourier coefficient of ϑχ
is given by the formula

(9) an(χ) =
∑

a∈Idn(OD)

χ∗(a),

where Idn(OD) denotes the set of invertible ideals of OD of norm n and

χ∗ = χ ◦ λ−1
D ∈ Cl(OD)∗ .

Moreover, a0(χ) = 0 except when χ = 1 is trivial, and then a0(1) =
hD
wD

.
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Proof. Recall that if f ∈ QD, then

f(x, y) = ax2 + bxy + cy2 = NK(ax− βfy)/N(L),

where βf = −b+
√
D

2 , NK denotes the field norm and N(L) = a is the norm of the
lattice L := L(f); cf. [6], p. 137. We thus obtain (in the notation of the appendix) that

(10) ϑf (z) =
∑
x,y∈Z

e2πif(x,y)z

=
∑

α∈L(f)

e2πiNK(α)z/N(L(f)) = 1 + wD
∑

a ∈ Id(OD)
aL(f) ∈ P (OD)

e2πiN(a)z,

where the last equality follows from the fact that a := αL(f)−1 is an integral OD-ideal
if and only if α ∈ L(f) (where α ∈ K×), together with the fact that |O×D| = wD. From
this it thus follows from the definition that

ϑχ(z) =
1

wD

∑
f∈Cl(D)

χ(f)

(
1 + wD

∑
a ∈ Id(OD)

aL(f) ∈ P (OD)

e2πiN(a)z

)

= cχ +
∑

a∈Id(OD)

χ∗(a)e2πiN(a)z,

where cχ = 1
wD

∑
f∈Cl(D) χ(f). This proves (9). Note that cχ = 0 except when χ = 1;

in the latter case clearly cχ =
hD
wD

. �

Remark 11. (a) The above result shows that the L-function associated to ϑχ is

L(s, ϑχ) =
∑
n≥1

an(χ)

ns
=

∑
a∈Id(OD)

χ∗(a)

N(a)s
,

where χ∗ = χ◦λ−1
D . Thus, L(s, ϑχ) coincides with the L-function LOD(s, χ∗) defined

by the first equation on the bottom p. 280 of the first edition of [21]. (Note, however,
that the Euler product given by second equation in [21] is incorrect when D is not
fundamental; this is why Lang restricts his discussion to fundamental discriminants in
the second edition.) Similarly, L(s, ϑχ) = LFχ(s), where the latter is as on p. 204 of
Antoniadis [1]; in fact, we already have that ϑχ(z) = Fχ(z). Here too, the given Euler
product is incorrect in general, as Corollary 4 shows. (In fact, the assertion stated there
(without proof) that Fχ is always a newform is also incorrect; cf. Corollary 33.)

(b) For later reference we note that for the trivial character χ = 1 the equations (6)
and (9) yield that

(11) an(1) =
1

wD

∑
f∈Cl(D)

rn(f) = #Idn(OD).

This number will be computed below (cf. Remark 32(b)) and is well-known when
(n, fD) = 1; cf. (57).
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(c) Note that it follows from the first part of (10) that if f ∈ QD, then

ϑf (z) =

fD∑
i=1

ϑ(fDz; αi
√
dK , af , fD

√
dK),

where ϑ(z; ρ, a, Q
√
dK) =

∑
µ≡ρ(aQ

√
dK) e

2πizNK(µ)/(N(a)Q|dK |) is as in Hecke [12],
af = L(f)OK , and {αi} is a system of coset representatives of L(f)/fDaf . Thus, ΘD

is a subspace of the space generated by dilations of Hecke’s theta-functions.

By using results about ideals in the ring OD (cf. Appendix, §6.2), we obtain the
following important result.

Theorem 12. If χ ∈ Cl(D)∗, then the function n 7→ an(χ) is multiplicative. Thus
ϑχ is a normalized eigenfunction with eigenvalue an(χ) with respect to the Hecke
operator Tn whenever (n, fD) = 1.

Proof. Put χ∗ = χ ◦ λ−1
D ∈ Cl(OD)∗, and write Idn = Idn(OD). If (m,n) = 1,

then from (9) together with Proposition 44 of §6.2 we obtain that

amn(χ) =
∑

a∈Idmn

χ∗(a)

=
∑

b∈Idm

∑
c∈Idn

χ∗(bc)

=
∑

b∈Idm

χ∗(b)
∑
c∈Idn

χ∗(c)

= am(χ)an(χ),

which shows that the function n 7→ an(χ) is multiplicative. Moreover, since

a1(χ) = χ∗(OD) = 1,

we see that ϑχ is normalized.

From this it follows from Hecke [13], Satz 42, that ϑχ is a Tn-eigenfunction,2 at
least when (n, |D|) = 1. By using the results of [22], this can be refined to yield the
above assertion also for (n, fD) = 1, as we shall now show.

Fix n ≥ 1 with (n, fD) = 1, and consider the function

g := (ϑχ)|1Tn − an(χ)ϑχ ∈ M1(|D|, ψD) .

For any m ≥ 1 with (m,n) = 1 we have by [22], Lemma 4.5.14, and the above result
that the m-th Fourier coefficient of g is

am(g) = anm(χ)− an(χ)am(χ) = 0 .

Thus, since ψD has conductor |dK | and since |D|
|dK | = f2

D, we see that g satisfies the
hypothesis of Theorem 4.6.8(1) of [22] (with l = n), and so g = 0. This means that ϑχ
is a Tn-eigenfunction with eigenvalue an(χ), as asserted. �

2Note that this argument requires “only” the condition that amn(χ) = am(χ)an(χ), ∀m,n ≥ 1
with (m,n) = (n,D) = 1. However, one cannot weaken this hypothesis to requiring this condition only
for the m’s satisfying the extra condition (m,D) = 1, as easy counterexamples show.
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3. The Eisenstein and cuspidal parts of ΘD

By the basic theory of modular forms, the space Mk(N,ψ) of modular forms of
level N , weight k and Nebentypus ψ has a canonical decomposition

(12) Mk(N,ψ) = Ek(N,ψ)⊕ Sk(N,ψ)

into its Eisenstein part Ek(N,ψ) and cuspidal part Sk(N,ψ); cf. [22], Theorem 4.7.2
(together with Theorem 2.1.7).

Since ΘD ⊂M1(|D|, ψD), we can define its Eisenstein and cuspidal part by

ΘE
D := ΘD ∩ E1(|D|, ψD) and ΘS

D := ΘD ∩ S1(|D|, ψD),

respectively.

We now want to find canonical bases for these spaces. As we shall see, the ϑχ’s
serve this purpose: it turns out that either ϑχ ∈ ΘE

D or ϑχ ∈ ΘS
D; cf. Theorem 14 and

Remark 17(a) below.

To verify this, we shall compare the coefficients of ϑχ to those of a suitable mod-
ular form attached to some Hecke character on the ray class group mod fDOK of the
quadratic field K = Q(

√
D). To achieve this, recall first that the map a 7→ a ∩ OD

induces an isomorphism

ϕD : IK(fD)/PK,Z(fD)
∼→ Cl(OD),

where IK(f) is the group of fractional ideals of OK which are prime to f and PK,Z(f)
is the subgroup of IK(f) generated by principal ideals of the form αOK , where the
element α ∈ OK satisfies α ≡ a (mod fOK), for some a ∈ Z with (a, f) = 1;
cf. Cox[6], Proposition 7.22. We then have:

Proposition 13. Let χ ∈ Cl(D)∗, and let χ̃ := χ ◦ λ−1
D ◦ ϕD be the associated

Hecke character on IK(fD). If n ≥ 1, then

(13) an(χ) = an(χ̃) :=
∑

a∈Idn(OK)

χ̃(a), provided that (n, fD) = 1.

Proof. By Proposition 45 we know that the map a 7→ a ∩OD induces a bijection

Idn(OK)
∼→ Idn(OD), whenever (n, fD) = 1,

and so the assertion (13) follows in view of (9). �

In the next sections we shall study the precise relation between an(χ) and an(χ̃)
also in the case that (n, fD) > 1. As we shall see, the formula (13) is in general no
longer true in this case, and has to be replaced by the more complicated formula (28)
below. Nevertheless, the above relation (13) suffices to derive many useful properties
about the ϑχ’s. To formulate these in a convenient manner, it is useful to introduce the
following notation.

Notation. If f1 and f2 are two modular forms and if N an integer, then we write

f1 ∼N f2
def⇐⇒ an(f1) = an(f2), for all n ≥ 1 with (n,N) = 1.
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With this notation, we can then reformulate (13) in terms of the modular form f(z; χ̃)
(cf. [22], p. 183) as follows:

(14) ϑχ(z) ∼fD
∑

a∈Id(OK)∩IK(fD)

χ̃(a)e2πiN(a)z ∼fD f(z; χ̃) .

Theorem 14. Let χ ∈ Cl(D)∗ be a character. If χ is not quadratic, i.e., if χ2 6= 1,
then ϑχ is a cusp form, and otherwise ϑχ is in the Eisenstein space.

Proof. Let χ̃ := χ ◦ λ−1
D ◦ ϕD be the Hecke character on IK(fD) associated to χ.

Assume first that χ2 6= 1. In this case we have that χ̃ 6= ψ ◦NK , for any Dirichlet
character ψ mod fD. Indeed, if this were the case, then ψ is necessarily a quadratic
character because if (a, fD) = 1, then ψ(a2) = ψ(NK(aOK)) = χ̃(aOK) = 1 since
aOK ∈ PK,Z(fD). Thus χ̃ is also a quadratic character, contrary to the hypothesis.

Since χ̃ 6= ψ ◦ NK , we know by [22], Theorem 4.8.2, that f(z; χ̃) ∈ S1(N,ψD),
where N = |dK |NK(fDOK) = |D|; clearly f(z; χ̃) is a T(N)-eigenfunction. Since
ϑχ ∼fD f(z; χ̃) by (14), it follows from Lemma 15(c) below (together with Theorem
12) that ϑχ is also a cusp form.

Now suppose that χ ∈ Cl(D)∗ is a quadratic character. Then by Gauss’s genus
theory there exist fundamental discriminants D1, D2 such that D = c2D1D2 for some
integer c and such that χ̃ = ψD1 ◦NK = ψD2 ◦NK ; cf. Weber[34], §104 and §109.

Since the pair (ψD1 , ψD2) satisfies condition (4.7.2)(ii) on p. 176 of [22], there is
a form f1 := f1(z;ψD1 , ψD2) ∈ E1(|D1D2|, ψD1D2) ⊂ E1(|D|, ψD) such that its
L-function is L(s, f1) = L(s, ψD1)L(s, ψD2); cf. [22], Theorem 4.7.1. We now claim:

(15) ϑχ(z) ∼D f1(z;ψD1 , ψD2).

Indeed, since χ̃ = ψD2 ◦NK , it follows from (13) that for (n,D) = 1 we have that

(16) an(χ) = an(χ̃) =
∑

a∈Idn(OK)

ψD2(N(a))

= ψD2(n)#Idn(OK) = ψD2(n)
∑
t|n

ψdK (t),

the latter by (57). Since ψdK (t) = ψD1(t)ψD2(t) and

ψD2

(
nt
)

= ψD2

(
t2
n

t

)
= ψD2

(n
t

)
,

we thus see that an(χ) =
∑

t|n ψD1(t)ψD2(nt ) = an(f1;ψD1 , ψD2), which proves
(15). Using this, it follows from Lemma 15(c) below that ϑχ ∈ E1(|D|, ψD). �

Above we had used the following general fact about T(N)-eigenfunctions which is
proved implicitly on p. 179 of [22]. Here, as usual, T(N) ⊂ EndC(Mk(N,ψ)) is the
Hecke algebra generated by the Hecke operators Tn with (n,N) = 1.

Lemma 15. (a) If f ∈Mk(N,ψ) is a T(N)-eigenfunction, then either f ∈Sk(N,ψ)
or f ∈ Ek(N,ψ).

(b) If f1, f2 ∈ Mk(N,ψ) are two non-zero T(N)-eigenfunctions which have the
same T(N)-eigenvalues, then either both are cusp forms or both are in Ek(N,ψ).
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(c) Let f1, f2 ∈ Mk(N,ψ) be two normalized T(N)-eigenfunctions such that
f1 ∼N f2. Then f1 is a cusp form if and only if f2 is a cusp form, and similarly
f1 ∈ Ek(N,ψ) if and only if f2 ∈ Ek(N,ψ).

Proof. (a) This is implicitly proven in the course of the proof of Theorem 4.7.2 of
[22] on p. 179. For convenience of the reader, we sketch the proof.

If false, then f = f1 + f2 with f1 ∈ Sk(N,ψ), f2 ∈ Ek(N,ψ) and fi 6= 0 for
i = 1, 2. Then as [22] (loc. cit.), fi is a T(N)-eigenfunction with the same eigenvalues
as f and there exist normalized eigenfunctions

f̃1 ∈ Sk(N,ψ) and f̃2 = fk(z;χ1, χ2) ∈ Ek(N,ψ)

with the same T(N)-eigenvalues as f . Thus L(s, f̃1) ≈N L(s, f̃2), where ≈N means
equality except for the Euler factors at the primes p |N . If χ2 is trivial, then this is
impossible because Γ(s)L(s, f̃1) is entire while Γ(s)L(s, f̃2) has a pole at s = k, as
is explained in [22], p. 179. In the general case, by considering the twists (f1)χ̄2 and
(f2)χ̄2 , one obtains a similar contradiction.

(b) If false, then f = f1 + f2 is a T(N)-eigenfunction which contradicts part (a).

(c) The Tn-eigenvalue of fi is an(f1) = an(f2) as each fi is a normalized eigen-
function. Thus f1 and f2 satisfy the hypotheses of (b), and so the assertion follows. �

Remark 16. In the case that D = dK is a fundamental discriminant, it follows
from the above theorem that all the ϑχ’s are primitive forms in the sense of section 4
below. Indeed, since in this case ψD = ψdK is a primitive character, it follows from
the general theory of newforms (primitive forms in the terminology of [22], p. 164)
that all T(D)-eigenfunctions of S1(|D|, ψD) are newforms; cf. [22], Lemma 4.6.9(1)
and Theorem 4.6.12. In particular, it follows immediately that the ϑχ = f(z, χ̃) are
newforms when χ2 6= 1.

A similar result also holds for the Eisenstein series ϑχ when χ2 = 1, but this re-
quires a different argument. Here we use instead the structure theorem of the Eisenstein
space E1(|D|, ψD); cf. [22], p. 179. Specialized to the present situation, it yields that

(17) E1(|dK |, ψdK ) =
⊕

dK=D1D2

Cf1(z;ψD1 , ψD2),

where the sum is over all factorizations dK = D1D2 of dK into fundamental discrim-
inants D1, D2 (and the factorization dK = D2D1 is considered to be the same as the
factorization dK = D1D2), and f1(z;ψD1 , ψD2) is as in the above proof. To verify this
from formula (4.7.17) of [22], note first that if ψdK = ψ1ψ2 is any factorization into
characters ψi with conductorsMi such thatM1M2|dK , then necessarily |dK | = M1M2

and (M1,M2) = 1. By adjusting signs, we thus have the factorization dK = D1D2

into fundamental discriminants (with |Di| = Mi). Moreover, since ψi is necessarily
quadratic (because (M1,M2) = 1), it follows that

ψi = ψDi =

(
Di

·

)
is the Kronecker-Legendre character. This verifies (17).
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From (17) it follows that we can improve the relation (15) to an equality because
all T(D)-eigenspaces of E1(D,ψD) are 1-dimensional by (17), and so all the ϑχ with
χ2 = 1 are “primitive” as well.

We observe that it follows from (17) that

ΘE
dK

:= ΘD ∩ E1(|dK |, ψdK ) = E1(|dK |, ψdK ).

However, the analogous statement for

ΘS
dK

= ΘD ∩ S1(|dK |, ψdK )

is in general not true, as the discussion of Serre [28], §9, and/or [17] shows. In
particular, the table on p. 258 of [28] shows that we have ΘS

−p 6= S1(p, ψ−p) for
p = 139, 163, 211, 227, 283.

We are now ready to prove Theorems 1 and 2 of the introduction.

Proof of Theorem 1. By Proposition 9 and Theorem 12 we know that the subspace
ΘD of M1(|D|, ψD) has the basis {ϑχ} which consists of T(D)-eigenfunctions, and so
it follows that ΘD is a T(D)-submodule.

To verify that ΘD has multiplicity one, we have to show that ϑχ1 and ϑχ2 belong
to different T(D)-eigenspaces whenever ϑχ1 6= ϑχ2 , i.e., whenever χ1 /∈ {χ2, χ

−1
2 }.

For this, we first note that there is an f ∈ QD such that χ1(f) 6= χ2(f), χ2(f).
Indeed, the hypothesis on χ1, χ2 implies that ∃fi ∈ QD such that χ1(f1) 6= χ2(f1) and
χ1(f2) 6= χ−1

2 (f2) = χ(f2). Now if χ1(f1) 6= χ2(f1), then we can take f = f1 and
if χ1(f2) 6= χ2(f2), then we can take f = f2. If neither of these cases holds, then we
can take f ∼ f1f2 (product in Cl(D)) because here we have that χ1(f1) = χ2(f1) and
χ1(f2) = χ2(f2), and so

χ1(f) = χ1(f1)χ1(f2) 6= χ2(f1)χ1(f2) = χ2(f1)χ2(f2) = χ2(f),

and
χ1(f) = χ1(f1)χ1(f2) 6= χ2(f1)χ1(f2) = χ2(f1)χ2(f2) = χ2(f) .

With f as above, choose a prime p - D such that rp(f) > 0; cf. Lemma 8(a). Then
by (7) and Lemma 8(b) we see that

ap(χi) =
w(f)

wD
Re(χi(f))rp(f), for i = 1, 2.

Since χ1(f) 6= χ2(f), χ2(f) and |χi(f)| = 1, it follows that Re(χ1(f)) 6= Re(χ2(f)),
and so ap(χ1) 6= ap(χ2). Since ap(χi) is the Tp-eigenvalue of ϑχi by Theorem 12, we
see that ϑχ1 and ϑχ2 lie in distinct T(D)-eigenspaces, so ΘD has multiplicity one.

The last assertion of Theorem 1 follows immediately from Theorem 14. �

Proof of Theorem 2. Let VE and VS denote the C-subspace of ΘD generated by
{ϑχ : χ2 = 1} and by {ϑχ : χ2 6= 1}, respectively. By Theorem 14 we know that
VE ⊂ ΘE

D and VS ⊂ ΘS
D, and by Proposition 9 we know that VE + VS = ΘD. Since

ΘE
D ∩ ΘS

D = {0} by (12), it follows that VE = ΘE
D and VS = ΘS

D and that hence
ΘD = ΘE

D ⊕ΘS
D.
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Let Cl(D)∗[2] = {χ ∈ Cl(D)∗ : χ2 = 1 } denote the group of quadratic charac-
ters. By Proposition 9 we know that the set {ϑχ : χ ∈ Cl(D)∗[2]} is linearly indepen-
dent and hence is a basis of ΘE

D = VE . Thus

dim(ΘE
D) = |Cl(D)∗[2]| =

[
Cl(D) : Cl(D)2

]
= gD,

and hence

dim(ΘS
D) = dim(ΘD)− dim(ΘE

D) = h̄D − gD =
1

2
(hD − gD),

the latter by Proposition 7 and equation (5), respectively. This proves (1). �

Remark 17. (a) For later reference we note that the above proof of Theorem 2
shows more precisely that

{ϑχ : χ ∈ Cl(D)∗[2] } is a basis of ΘE
D,

and that
{ϑχ : χ ∈ Cl(D)

∗
, χ2 6= 1 } is a basis of ΘS

D.

(b) It follows immediately from (1) that

(18) ΘD ⊂ E1(|D|, ψD) ⇐⇒ ΘS
D = {0} ⇐⇒ hD = gD.

The discriminantsD < 0 which satisfy the last condition (or, equivalently, the condition
that Cl(D) is an elementary abelian 2-group) are called idoneal discriminants because
a number n ≥ 1 is idoneal (in the sense of Euler) if and only if −4n is an idoneal
discriminant; cf. [16] for a recent survey about idoneal numbers.

The above assertion (18) can be viewed as an alternate version of Theorem 3 of
Kitaoka [18], which states that

(19) ϑ1D ∈ E1(|D|, ψD) ⇐⇒ hD = gD .

Indeed, if hD = gD, then clearly ϑ1D ∈ θD ⊂ E1(|D|, ψD) by (18). To prove the
converse, note first that by (8) we have that

ϑ1D =
1

wD

∑
χ∈Cl(D)

∗

w(χ)ϑχ

(because χ(1D) = 1 for all χ ∈ Cl(D)∗). Thus, by part (a) we see that

ϑ1D ∈ E1(|D|, ψD)⇔ χ2 = 1,∀χ ∈ Cl(D)∗ ⇔ Cl(D)2 = {1} ⇔ hD = gD,

which proves (19).

The above results immediately imply the following corollary which generalizes the
work of Siegel [29] on theta-series attached to forms inm = 2k > 4 variables (cf. [29],
particularly pp. 577–581) to the case of binary forms. Note that this gives an alternate
proof (for binary forms) of Kitaoka’s extension of Siegel’s work to the case m ≥ 2;
cf. [18], Lemma 1.

Corollary 18. (a) Let f1, f2 ∈ QD be two primitive forms. Then ϑf1 − ϑf2 is a
cusp form if and only if f1 and f2 are genus-equivalent, i.e.,

(20) ϑf1 − ϑf2 ∈ S1(|D|, ψD)

⇐⇒ χ(f1) = χ(f2), ∀χ ∈ Cl(D)∗[2] ⇐⇒ f−1
1 f2 ∈ Cl(D)2 .
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(b) For any f ∈ QD we have that

(21) F (z, f) :=
gD

hD

∑
f1∈Cl(D)2

ϑff1(z) =
wD
hD

∑
χ∈Cl(D)∗[2]

χ(f)ϑχ(z) ∈ ΘE
D.

Thus, F (z, f) ∈ ΘE
D is the Eisenstein component of ϑf (z), and ϑf (z)−F (z, f) ∈ ΘS

D
is its cuspidal component.

Proof. (a) By (8) we have

ϑf1 − ϑf2 =
hD
wD

∑
χ∈Cl(D)

∗

w(χ)Re(χ(f1)− χ(f2))ϑχ,

and so it follows from Remark 17(a) that

ϑf1 − ϑf2 ∈ S1(|D|, ψD) ⇐⇒ Re(χ(f1)− χ(f2)) = 0,∀χ ∈ Cl(D)∗[2]

⇐⇒ χ(f1) = χ(f2), ∀χ ∈ Cl(D)∗[2]

because all χ ∈ Cl(D)∗[2] are real-valued. This proves the first equivalence of (20) and
hence also (20) because the second equivalence is obvious.

(b) By (8) we have that

F (z, f) =
gDwD
h2
D

∑
χ∈Cl(D)∗

c(f, χ)ϑχ(z)

with

c(f, χ) =
∑

f1∈Cl(D)2

χ(ff1)) = χ(f)
∑

f1∈Cl(D)2

χ(f1)) =

{
χ(f)

hD
gD

if χ2 = 1,

0 otherwise

where the last identity follows from a suitable orthogonality relation and the fact that
|Cl(D)2| = hD

gD
. From this the asserted identity (21) follows immediately.

By (21) and Theorem 14 it is clear that F (z, f) ∈ ΘE
D. Moreover, by (8) and (21)

we have that
ϑf (z)− F (z, f) =

wD
hD

∑
χ2 6=1

χ(f)ϑχ(z) ∈ ΘS
D ,

the latter by Theorem 14 again. This proves the last assertion. �

Remark 19. The Fourier coefficients an(F (z, f)) of the Eisenstein series F (z, f)
are easily determined, at least when (n,D) = 1. Indeed, we have

(22) an(F (z, f)) =
wDgD
hD

ε(f, n)#Idn(OK),

where ε(f, n) = 1 if n ≡ f(x, y) (mod |D|), for some x, y ∈ Z, and ε(f, n) = 0
otherwise. To see this, note first that

an(F (z, f)) =
wD
hD

∑
χ∈Cl(D)∗[2]

χ(f)an(χ)
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by (21). Thus an(F (z, f)) = 0 = ε(f, n), if Idn(OK) = ∅ (cf. (9)), so assume that
∃ an ∈ Idn(OK). If fn ∈ QD is such that λD(fn) = ϕD(an), then there exist x, y ∈ Z
such that f(x, y) = n. Now for any χ ∈ Cl(D)∗[2] we have by (16) that

an(χ) = χ̃(an)#Idn(OK) = χ(fn)#Idn(OK) ,

so we obtain that

an(F (z, f)) =
wD
hD

#Idn(OK)
∑

χ∈Cl(D)∗[2]

χ(ffn) .

By an orthogonality relation we have that
∑

χ2=1 χ(ffn) = |Cl(D)∗[2]| = gD if
ffn ∈ Cl(D)2 and equals 0 otherwise. By genus theory (cf. [6], §3.B), this means that
this sum equals gDε(f, n), and so (22) follows.

As another application of the above results we compute the trace tr(Tn|V ) of the
Hecke operator Tn on the vector spaces V = ΘE

D and V = ΘS
D.

Corollary 20. If (n, fD) = 1, then the traces of the Hecke operator Tn on the
spaces ΘE

D and ΘS
E are given by

(23)

 tr(Tn|ΘE
D) =

hD
wD

an(F (z, 1D))

tr(Tn|ΘS
D) =

hD
2wD

(
rn(1D)− an(F (z, 1D))

)
.

Proof. By Remark 17(a), Theorem 12, and (21) we have that

tr(Tn|ΘE
D) =

∑
χ∈Cl(D)∗[2]

an(χ) =
hD
wD

an(F (z, 1D)).

This clearly proves the first equation of (23). In order to prove the second equation, put
X = {χ ∈ Cl(D)

∗
: χ2 6= 1 }. Then by Remark 17(a) and Theorem 12 we have

tr(Tn|ΘS
D) =

∑
χ∈X

an(χ) =
1

2

∑
χ2 6=1

an(χ) =
1

2

∑
χ

an(χ)− 1

2

∑
χ2=1

an(χ) .

Since the first sum equals hD
wD

rn(1D) by (8) and since (as above) the second sum equals
hD
wD

an(F (z, 1D)) by (21), the formula (23) follows. �

4. Primitive characters and primitive forms

We now want to study the relation between the theta-series ϑχ and the modular
form f(z; χ̃) attached to the associated Hecke character χ̃ = χ ◦ λ−1

D ◦ ϕD in more
detail. For this, it is useful to introduce the following terminology.

Definition. If χ ∈ Cl(D)∗ is a character on the class group Cl(D), then we say
that χ is primitive if we have that Ker(πD,D/c2) 6⊂ Ker(χ), for all divisors c | fD with
c > 1. Here πD,D/c2 : Cl(D) → Cl(D/c2) is the homomorphism induced by the map
πOD,OD/c2 : Cl(OD) → Cl(OD/c2) which is defined in Remark 39 of the Appendix;

in other words, πD,D′ = λ−1
D′ ◦ πOD,OD′ ◦ λD, for D′ = D/c2.



516 THE SPACE OF BINARY THETA SERIES

Moreover, the conductor fχ of χ ∈ Cl(D)∗ is defined by

fχ = gcd
(
f : f | fD and Ker(πD,f2dK ) ⊂ Ker(χ)

)
.

Thus, if χ ∈ Cl(D)∗ is primitive, then clearly fχ = fD. Moreover, the converse is also
true, as the following result shows.

Proposition 21. Let χ ∈ Cl(D)∗ be a character with conductor fχ, and let f | fD.
Then

(24) Ker(πD,f2dK ) ⊂ Ker(χ) ⇐⇒ fχ | f.

Thus, if Dχ := f2
χdK , then χ = χpr ◦ πD,Dχ , for a unique character χpr ∈ Cl(Dχ)∗,

and χpr is primitive.

Proof. From the definition of Dχ and (49) we have that ODχ =
∏
f Of2dK , where

the product is over all f |fD with Ker(πD,f2dK ) ⊂ Ker(χ). It thus follows from Corol-
lary 41 that Ker(πD,Dχ) ⊂ Ker(χ), and so the assertion (24) is obvious. Moreover,
since πD,Dχ : Cl(D) → Cl(Dχ) is surjective (cf. Proposition 38), there is a unique
character χpr on Cl(Dχ) such that χ = χpr ◦ πD,Dχ . Finally, χpr is primitive because
if Ker(πDχ,Dχ/c2) ⊂ Ker(χpr), for some c|fDχ, then

Ker(πD,(fχ/c)2dK ) = π−1
D,Dχ

(Ker(πDχ,Dχ/c2)) ⊂ π−1
D,Dχ

(Ker(χpr)) = Ker(χ),

so fχ|fχc by (24) and hence c = 1, i.e., χpr is primitive. �

Using the results of the Appendix, we can now compute the Fourier coefficients
an(χ) of ϑχ in the case that n | f2

D. This is a key result that will be used in the next
section to determine the local factors of the L-series L(s, ϑχ).

Proposition 22. Let χ ∈ Cl(D)∗ be a character on Cl(D) with conductor fχ, and
put f̄χ = fD/fχ. If n|f2

D, then

(25) an(χ) =

 c
∏
p|c

(
1− 1

pψD/c2(p)
)

if n = c2 and c|f̄χ,

0 otherwise.

Proof. If n is not a square, then Idn(OD) = ∅ by Proposition 48, so by (9) we
have that an(χ) = 0 in this case. Thus, assume that n = c2, and put χ∗ = χ ◦ λ−1

D .
Then it follows from (9) and Proposition 48 that

an(χ) =
∑

a∈cKer(πOD,OD/c2
)

χ∗(a) =
∑

a∈Ker(πOD,OD/c2
)

χ∗(a).

Now from (52) and (24) we see that

Ker(πOD,OD/c2 )P (OD) ≤ Ker(χ∗) ⇐⇒ fχ |
fD
c
⇐⇒ c | f̄χ .

If this is not the case, i.e., if χ∗ is non-trivial on Ker(πOD,OD/c2 ), then this sum equals 0

by an orthogonality relation. On the other hand, if c | f̄χ, then from the above discussion
we see that an(χ) = |Ker(πOD,OD/c2 )| and so the assertion follows by using (54). �
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We now turn our attention to the modular form f(z; χ̃), where, as before, χ̃ is
defined by χ̃ = χ ◦ λ−1

D ◦ ϕD. To determine its properties, we need to know the
conductor cond(χ̃) of the Hecke character χ̃; here cond(χ̃) ∈ Id(OK) is as defined on
p. 91 of [22]. The following result is due to Hasse[10]:

Theorem 23. The conductor of the Hecke character χ̃ = χ ◦ λ−1
D ◦ ϕD is

cond(χ̃) = fχOK .

In particular, χ is primitive if and only if χ̃ is a primitive Hecke character.

Proof. The first assertion is Satz 2 of Hasse[10], and the second clearly follows
from the first. �

From the above theorem it follows easily that if χ ∈ Cl(D)∗ is a primitive character,
then f(z; χ̃) is a primitive form in the sense of the following definition.

Definition. A modular form f ∈ Mk(N,ψ) is called a primitive form if either
f ∈ Sk(N,ψ) is a normalized newform of some level M |N (so f is a primitive form
in the sense of [22], §4.6) or if f = fk(z;ψ1, ψ2) is one of the Eisenstein series defined
on p. 178 of [22].

Remark 24. It follows from the theory of newforms (cf. [22], §4.6) and the theory
of Eisenstein forms (cf. [22], §4.7) that each T(N)-eigenspace of Mk(N,ψ) contains
a unique primitive form. Thus, there is natural bijection between primitive forms and
T(N)-eigenspaces of Mk(N,ψ).

Corollary 25. If χ ∈ Cl(D)∗ is a primitive character, then f(z; χ̃) is a primitive
form of level |D|.

Proof. Suppose first that χ2 6= 1. Then from the proof of Theorem 14 we know
that χ̃ 6= χ′ ◦NK for all Dirichlet characters χ′, and by Theorem 23 we know that χ̃ is
a primitive Hecke character. It thus follows from Theorem 4.8.2 of [22] that f(z; χ̃) is
a primitive cusp form (of level |D|).

Now suppose that χ2 = 1. Since χ̃ is a primitive Hecke character by Theorem 23
and since f(z; χ̃) is not a cusp form by (the proof of) Theorem 14, it follows from the
last part of the proof of Theorem 4.8.2 of [22] that there exist Dirichlet characters χ1, χ2

with χ1χ2 = ψD such that L(s, f(z; χ̃)) = L(s, χ1)L(s, χ2). Since the latter equals
L(s, f1(z;χ1, χ2)) by [22], Theorem 4.7.1, we conclude that f(z; χ̃) = f1(z;χ1, χ2),
and hence f(z; χ̃) is primitive of level |D|. �

Remark 26. If χ ∈ Cl(D)∗[2] is a primitive quadratic character, then by combin-
ing the above proof with that of Theorem 14, we obtain the formula

(26) f(z; χ̃) = f1(z;ψD1 , ψD2), where χ̃ = ψD1 ◦NK = ψD2 ◦NK ,

andD = D1D2 is a suitable factorization ofD into fundamental discriminants. Indeed,
by the proof of Corollary 25 we know that (26) holds for some pair of characters χ1, χ2,
and the proof of Theorem 14, particularly equations (15) and (16), show that χi = ψDi
for i = 1, 2, where D = D1D2 is the fundamental factorization associated to χ.

We can now prove Theorem 3 of the introduction.
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Proof of Theorem 3. (a) This follows immediately from Proposition 21.

(b) Since χpr ∈ Cl(Dχ)∗ is primitive by part (a), it follows from Corollary 25 that
f(z; χ̃pr) ∈M1(|Dχ|, ψDχ) is a primitive form of level |Dχ|. By Theorem 12 and (14)
we know that ϑχpr is a normalized T(Dχ)-eigenfunction which has the same eigenval-
ues as f(z; χ̃pr). Since f(z; χ̃pr) is primitive of level |Dχ|, its associated eigenspace in
M1(|Dχ|, ψDχ) is one-dimensional (cf. [22], Theorems 4.6.12 and 4.7.2) and so

(27) ϑχpr(z) = f(z; χ̃pr)

because both forms are normalized. Thus ϑχpr is primitive and L(s, ϑpr) = L(s, χ̃pr).

Now by Theorem 12 we know that ϑχ is a T(D)-eigenfunction which lies in the
eigenspace defined by the primitive form ϑχpr(z) = f(z; χ̃pr) because by (14) we have
that ϑχ ∼fD f(z; χ̃) ∼fD f(z; χ̃pr). Since D/Dχ = (fD/fχ)2 = f̄2

χ, it follows from
the description of the T(D)-eigenspaces of M1(|D|, ψD) given in Corollary 4.6.20 and
(implicitly) in Theorem 4.7.2 of [22], that there exist constants cn(χ) ∈ C with n | f̄2

χ

such that (2) holds. Thus, if we put cn(χ) = 0 when n - f̄2
χ, then we have

(28) am(χ) =
∑
n|f̄2

χ

n|m

cn(χ)am/n(χpr) =
∑
n|m

cn(χ)am/n(χpr), for all m ≥ 1,

and so it follows that L(s, ϑχ) =
(∑

n≥1 cn(χ)n−s
)
L(s, ϑχpr); cf. [11], Theorem 284.

Thus (3) holds. Moreover, it follows that n 7→ cn(χ̃) is multiplicative because both
L(s, ϑχ) and L(s, ϑχpr) have Euler products by Theorem 12, and hence so does

(29) C(s, χ) :=
∑
n≥1

cn(χ)

ns
=

L(s, ϑχ)

L(s, ϑχpr)
=

L(s, ϑχ)

L(s, χ̃pr)
·

This means that n 7→ cn(χ) is multiplicative.

Finally, we note that it follows from (29) that all the cn(χ) are real because the
Fourier coefficients an(χ) and an(χpr) are real; cf. (7). �

5. The Dirichlet series C(s, χ)

In the previous section we had seen that each theta-series ϑχ can be expressed as
a linear combination of “shifted” modular forms f(nz; χ̃pr) = ϑχpr(nz) associated
to the primitive Hecke character χ̃pr; cf. Theorem 3. We now want to obtain precise
formulae for the coefficients cn(χ) of this linear combination. We thus study the (finite)
Dirichlet series C(s, χ) of equation (29) in more detail.

As in Hardy and Wright [11], §17.4, we let Fp(s) denote the p-Euler factor of a
Dirichlet series F (s) at the prime p, i.e.,

Fp(s) =
∑
k≥0

apkp
−ks, if F (s) =

∑
n≥1

ann
−s .

The following proposition gives the relation between the p-Euler factors Cp(s, χ) and
Lp(s, χ) of the Dirichlet series C(s, χ) and L(s, χ) := L(s, ϑχ).
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Proposition 27. If χ ∈ Cl(D)∗, then for any prime p we have that

(30) Cp(s, χ) = Lp(s, χ)
(
1− ap(χpr)p−s + ψDχ(p)p−2s

)
.

Proof. By taking m = pk (for k ≥ 0) in (28) we see that

Lp(s, χ) = Cp(s, χ)Lp(s, χpr),

and so (30) follows because

(31) Lp(s, χpr) =
(
1− ap(χpr)p−s + ψDχ(p)p−2s

)−1
.

Indeed, since ϑχpr = f(z; χ̃pr) is a primitive form of level |Dχ| by Theorem 3(b),
equation (31) follows from Corollary 4.6.22 and (4.7.16) of [22]. �

We are now ready to determine C(s, χ) explicitly.

Theorem 28. Let χ ∈ Cl(D)∗ be a character on Cl(D) of conductor fχ|fD, and
let χpr ∈ Cl(Dχ) be the associated primitive character on Cl(Dχ), where Dχ = f2

χdK .
Then

(32) C(s, χ) =
∏
p|f̄χ

Cp(s, χ),

where f̄χ = fD/fχ. Moreover, if p | f̄χ and if pēp ||f̄χ is the highest power of p dividing
f̄χ, then

(33) Cp(s, χ) =
1− p(1−2s)ēp

1− p1−2s

(
1− ap(χpr)p−s + ψDχ(p)p−2s

)
+
(

1− 1
pψDχ(p)

)
p(1−2s)ēp ;

in other words, we have for k ≥ 1 that

(34) cpk(χ) =



−ap(χpr)p(k−1)/2 if k ≡ 1 (mod 2) and k < 2ēp,

pk/2 + pk/2−1ψDχ(p) if k ≡ 0 (mod 2) and k < 2ēp,

pēp if k = 2ēp,

0 if k > 2ēp.

Proof. The first assertion (32) follows immediately from the multiplicativity of the
cn(χ)’s; cf. Theorem 3(b). To prove (33), we first observe that if 0 ≤ k ≤ 2ēp, then we
obtain from (25) that

(35) apk(χ) =


0 if k ≡ 1 (mod 2),

pk/2 if k ≡ 0 (mod 2) and k < 2ēp,

pēp
(

1− 1
pψDχ(p)

)
if k = 2ēp.

Indeed, if k is odd, then this is clear, so assume that k is even. Then (25) yields that
apk(χ) = pk/2

(
1 − 1

pψD/pk(p)
)
. Now if k < 2ēp, then p | D

pk
because p2ēp |D. Thus

ψD/pk(p) = 0, and hence (35) holds in this case. On the other hand, if k = 2ēp, then
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D
pk

= Dχf
2
1 , where f1 = f̄χp

−ēp . Since (f1, p) = 1, we have that ψD/pk(p) = ψDχ ,
and so (35) holds in all cases.

Note that by using the identity

ēp−1∑
k=0

pkX2 =
1− (pX2)ēp

1− pX2

we can re-write (35) in the form

(36)
2ēp∑
k=0

apk(χ)Xk =
1− (pX2)ēp

1− pX2
+
(

1− 1
pψDχ(p)

)(
pX2

)ēp .
Thus, viewing (30) as an identity of power series in X = p−s, it follows from (30)

and (36) that

Cp(s, χ) ≡ 1− (pX2)ēp

1− pX2

(
1− ap(χpr)X + ψDχ(p)X2

)
+
(

1− 1
pψDχ(p)

)(
pX2

)ēp (mod X2ēp+1).

Now since Cp(s, χ) is a polynomial of degree ≤ 2ēp (because cpk(χ) = 0 by
definition when k > 2ēp), and since the same is true for the right hand side, it follows
that these two polynomials are equal, and so (33) follows (by replacing X by p−s).
The last assertion (34) follows immediately from (33) by comparing the coefficients in
X = p−s. �

Corollary 29. In the situation of Theorem 28 we have that

(37) cf̄2
χ
(χ) = f̄χ.

Thus, ϑχ has exact level |D|, andC(s, χ) = 1 if and only if χ is primitive. In particular,
ϑχ is a primitive form if and only if χ is a primitive character.

Proof. Since f̄χ =
∏
p|f̄χ p

ēp and cn(χ) is multiplicative, we have by (34) that

cf̄2
χ
(χ) =

∏
p|f̄χ

cp2ēp (χ) =
∏
p|f̄χ

pēp = f̄χ,

which proves (37). From this and (2) it follows that ϑχ has exact level |D|.

If χ is primitive, i.e., if f̄χ = 1, then clearly C(s, χ) = 1 by definition (cf. (3)).
Conversely, if C(s, χ) = 1, i.e., if cn(χ) = 0 for all n > 1, then (37) forces that
f̄χ = 1, which means that χ is primitive.

To prove the last assertion, recall first that if χ = χpr is a primitive character, then
ϑχ is a primitive form by Theorem 3(b). Conversely, suppose that ϑχ is a primitive
form. Then ϑχ = ϑχpr because both are in the same T(D)-eigenspace ofM1(|D|, ψD),
and so C(s, χ) = L(s, χ)/L(s, χpr) = L(s, ϑχ)/L(s, ϑχpr) = 1, which means that χ
is primitive. �
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Remark 30. (a) It follows from equations (8) and (3) that if f ∈ QD, then its
(Epstein) zeta-functionZf (s) of Remark 6(b) can be written as a sum of theL-functions
L(s, χ) := L(s, ϑχ) and the Hecke L-functions L(s, χpr) = L(s, χ̃pr) in the following
way:

(38) Zf (s) =
wD
hD

∑
χ∈Cl(D)∗

χ(f)L(s, χ) =
wD
hD

∑
χ

χ(f)C(s, χ)L(s, χpr);

this generalizes the well-known relation (cf. [7]) for Zf when D = dk is a fundamental
discriminant. However, the above relation and Corollary 29 show that if D 6= dK is
not a fundamental discriminant, then Zf is never a linear combination of the associated
Hecke L-functions because in that case the factor C(s, 1) is not a constant since the
trivial character χ = 1 is not primitive; cf. Example 35 below.

(b) Similarly (and equivalently), by combining (8) with (2), we obtain in view of
(32) and (35) the following explicit expression of the theta series ϑf in terms of the
(extended) Atkin-Lehner basis:

(39) ϑf (z) =
wD
hD

∑
χ∈Cl(D)∗

χ(f)ϑχ(z) =
wD
hD

∑
χ

χ(f)
∑
n|fχ

ϑχpr(nz).

As was mentioned in the introduction, Theorem 28 yields immediately a formula
for the L-function L(s, χ) = L(s, ϑχ).

Corollary 31. If χ ∈ Cl(D)∗, then the L-function L(s, χ) of ϑχ has the Euler
product

(40) L(s, χ) =
∏
p

Lp(s, χ)

where for p - f̄χ the p-Euler factor Lp(s, χ) is

Lp(s, χ) =
(

1− ap(χ)p−s + ψD(p)p−2s
)−1

(41)

=
(

1− ap(χpr)p−s + ψDχ(p)p−2s
)−1

,

whereas for p | f̄χ it is given by

(42) Lp(s, χ) =
1− p(1−2s)ēp

1− p1−2s
+

(
1− 1

pψDχ(p)
)
p(1−2s)ēp

1− ap(χpr)p−s + ψDχ(p)p−2s
·

Proof. Since the an(χ)’s are multiplicative (cf. Theorem 12), it follows thatL(s, χ)
has an Euler product (40). Since Cp(s, χ) = 1 when p - f̄χ, it follows from (3) that
Lp(s, χ) = Lp(s, χpr), so in particular ap(χ) = ap(χpr). Moreover, since D = Dχf̄

2
χ,

we see that ψD(p) = ψDχ(p), so the second equality of (41) holds, and hence the first
equality follows from (31).

The formula (42) follows immediately from (30) and (33). �

Remark 32. (a) The above Corollary 31 shows that the second identity of the
equation on the bottom of p. 280 of Lang [21] is incorrect when χ is not a primitive
character.
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(b) An alternate way of writing formula (42) is follows: if pēp ||f̄χ, then

apk(χ) =


0 if k ≡ 1 (mod 2) and k < 2ēp,

pk/2 if k ≡ 0 (mod 2) and k < 2ēp,

pep
(

1− 1
pψDχ(p)

)
apk−2ēp (χpr) if k ≥ 2ēp.

(c) Corollary 31 can be viewed as a partial generalization of some of the main
results of the articles of Sun and Williams [30, 31]. Indeed, for a negative discriminant
D < 0, the function F (A,n) of [30] is essentially the same as the function an(χ)

above. More precisely, if we put χA(K) = e2πi[K,A], where [K,A] (which depends on
a choice of a “basis” of Cl(D)) is as defined on p. 143 of [30], then a comparison of
formula (6) with the formula for F (A,n) on p. 144 of [30] shows that

an(χA) = F (A,n), ∀A ∈ Cl(D), n ≥ 1.

In particular, Corollary 31 generalizes Theorem 5.3 of [31] (for D < 0) to the non-
cyclic case, and gives a succinct general formula for it (and also for the many special
cases discussed in §8 of [30]). In addition, Corollary 31 generalizes (for D < 0)
Theorem 4.3 of [30] because an(χD,0) = N(n,D)/w(D) in the notation of Example
35(b) and that of [30].

As another application of Theorem 28, we determine when ϑχ is an eigenfunction
under the full Hecke algebra T|D| = 〈Tn : n ≥ 1〉 of level |D|.

Corollary 33. If χ ∈ Cl(D)∗, then ϑχ is a T|D|-eigenfunction if and only if χ is
primitive.

Proof. If χ = χpr is primitive, then by (31) the L-function of ϑχ has the Euler
product

(43) L(s, χ) =
∏
p

(
1− ap(χ)p−1 + ψD(p)p−2s

)−1
.

Thus, by a theorem of Hecke (cf. [22], Theorem 4.5.16), it follows that ϑχ is a T|D|-ei-
genfunction.

Conversely, suppose that ϑχ is a T|D|-eigenfunction. Then by Hecke’s Theorem
again, we know that its L-function L(s, χ) has an Euler product (43). If χ is not prim-
itive, then f̄χ = fD/fχ > 1, so there exists a prime p | f̄χ. Then by (35) we know
that ap(χ) = 0, so the p-Euler factor of ϑχ is trivial, i.e., Lp(s, χ) = 1. (Recall that
p | f̄χ |D.) Thus by (30) we see that Cp(s, χ) = 1 − ap(χpr)p−1 + ψDχ(p)p−2s, i.e.,
that

cp(χ) = −ap(χ), cp2(χ) = ψDχ(p) and cpk(χ) = 0, ∀k > 2.

Comparing this to (34) shows that ēp ≤ 1. But if ēp = 1, then by (34)

cp2(χ) = p 6= ψDχ(p),

a contradiction. Thus f̄χ = 1, and hence χ is primitive. �
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The above corollary allows us to determine when the spaces ΘD, ΘE
D and ΘS

D are
T|D|-modules.

Proposition 34. (a) The space ΘD is a T|D|-module if and only if its Eisenstein
space ΘE

D is a T|D|-module if and only if D is a fundamental discriminant.

(b) The space ΘS
D of cusp forms is a T|D|-module if and only if every proper

discriminental divisor D′ of D idoneal, i.e., if and only if D satisfies the following
condition:

(44) gD/p2 = hD/p2 , for all primes p such that p2 |D and D/p2 ≡ 0, 1 (mod 4).

Proof. (a) If D is a fundamental discriminant, then every χ ∈ Cl(D)∗ is primitive,
and hence by Corollary 33 (and Proposition 9) ΘD has a basis consisting of T|D|-
eigenforms and hence is a T|D|-module.

Next, suppose that ΘD is a T|D|-module. Then we have:

(45) ϑχ is a T|D|-eigenfunction, ∀χ ∈ Cl(D)∗ .

To see this, note first f := ϑχ is a T(D)-eigenfunction by Theorem 12. Consider n ≥ 1
and put fn := f |Tn. By hypothesis, fn ∈ ΘD. Since Tn commutes with the operators
in T(D), fn is the same T(D)-eigenspace as f . By multiplicity 1 (cf. Theorem 1), it
follows that fn = cnf , for some cn ∈ C. Thus f = ϑχ is a T|D|-eigenfunction, as
claimed.

Thus, if ΘD is a T|D|-eigenspace, then it follows from (45) that ΘE
D =

∑
χ2=1 Cϑχ

is also a T|D|-eigenspace.

Now assume that ΘE
D is a T|D|-eigenspace. Then the above proof of (45) yields that

for each quadratic χ, the series ϑχ is a T|D|-eigenfunction, and hence by Corollary 33
we obtain that all quadratic characters are primitive. In particular, the trivial character
χ = 1 is primitive, which can happen only when D is fundamental; cf. Example 35
below.

(b) By the same argument as in part (a) we see that ΘS
D is a T|D|-module if and only

if every non-quadratic χ ∈ Cl(D)∗ is primitive. But this means that for each prime p
as in (44) we have that Cl(D/p2)∗ has only quadratic characters, and so Cl(D/p2) is
an elementary abelian 2-group, that is to say, gD/p2 = hD/p2 . Thus (44) holds (and
conversely). �

We now illustrate the main results of this paper by working out some special cases.
The first example examines ϑχ when χ = 1 ∈ Cl(D)∗ is the trivial character.

Example 35. (a) If D = dK < 0 is a fundamental discriminant, then the theta
function of associated to the trivial character χdK ,0 = 1 ∈ Cl(dK)∗ is

ϑK(z) := ϑχdK,0(z) = f1(z; 1, ψdK ) with L(s, ϑK) = ζ(s)L(s, ψdK ) = ζK(s);

i.e., its associated L-function is just the Dedekind ζ-function of K = Q(
√
D). In

particular, the Tp-eigenvalue of ϑK is ap(ϑK) = 1 +
(
dK
p

)
, for all primes p.
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(b) If D = dKf
2
D is any negative discriminant, then the trivial character χD,0 = 1

on Cl(D) has conductor fχD,0 = 1, and its associated primitive character is

(χD,0)pr = χdK ,0 = 1 ∈ Cl(dK)∗

Thus, by (2), (3) and part (a) we have that

ϑχD,0(z) =
∑
n|f2

D

cn(χD,0)ϑK(nz) and L(s, ϑχD,0) = C(s, χD,0)ζK(s),

where the coefficients cn(χD,0) of the finite Dirichlet series C(s, χD,0) are given ex-
plicitly by Theorem 28.

We thus obtain an expression for an(χ0,D) = #Idn(OD) for all n ≥ 1. In particu-
lar, the formula of Remark 32(b) complements the expression obtained in the Appendix
(cf. Proposition 48). Thus, if pep ||fD, then we have

#Ipk(OD) = pep
(

1− 1
pψdK (p)

)
#Ipk−2ep (OK)

= pep
(

1− 1
pψdK (p)

) k−2ep∑
i=0

ψdK (p)k,

if k ≥ 2ep. (For k < 2ep we have that #Ipk(OD) = 0 and that #Ipk(OD) = pk/2, for
k odd and even, respectively, as can also be deduced from the Appendix §6.2.)

We now illustrate what happens when the class number hD is small.

Example 36. (a) hD = 1. In this case Cl(D) = {1D} and Cl(D)∗ = {χD,0 }.
Thus, by (6) we have that ϑ1D = wDϑχD,0 . If D = dK is a fundamental discriminant
(i.e., if −D = 3, 4, 7, 8, 11, 19, 43, 67, 163), then we have by Example 35(a) that

ϑχD,0 = ϑK and L(s, χD,0) = ζK(s).

In the remaining cases (i.e., −D = 12, 16, 27, 28) this formula is no longer true. In-
deed, since f = fD ∈ {2, 3} is here a prime, we obtain from Theorem 28 that

C(s, χD,0) = 1− aDf−s + f1−2s, where aD := af (χdK ,0) = 1 +

(
dK
f

)
,

(i.e., aD = 0, 1, 1, 2, respectively), and so ϑχD,0(z) = ϑK(z)− aDϑK(fz) + fϑK(f2z),

L(s, ϑχD,0) = (1− aDf−s + f1−2s)ζK(s).

(b) hD = 2. Here Cl(D) ={ 1D, cl(f) } and Cl(D)∗={χD,0, χ }. Since D < −4,
we have that wD = 2 and hence it follows from (6) that

ϑχD,0 = 1
2(ϑ1D + ϑf ) and ϑχ = 1

2(ϑ1D − ϑf ).

Since gD = hD = 2, we know by genus theory that D = D1D2c
2, where D1 < 0 and

D2 > 0 are fundamental discriminants (with (D1, D2) = 1) and c ≥ 1, and that the
associated Hecke character χ̃ satisfies χ̃(p) = ψDi(NK(p)), for i = 1, 2 and p - D.
Thus, fχ = D1D2 and f̄χ = c, and

ϑχpr(z) = f1(z;ψD1 , ψD2) and L(s, ϑχpr) = L(s, ψD1)L(s, ψD2).
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In particular, the Tp-eigenvalue of ϑχ is ap(χ) =
(
D1
p

)
+
(
D2
p

)
, for p - D. Note that

if χ is primitive, i.e., if c = 1, then ϑχ = ϑχpr . If c > 1, then a check of all 29 D’s
with hD = 2 shows that necessarily D = −60, and then ϑχ is worked out in Example
37(b) below.

(c) hD = 3. Here Cl(D) = { 1D, cl(f), cl(f)−1 } and Cl(D)∗ = {χD,0, χ, χ−1 }.
Since Re(χ(f)) = Re(−1±

√
−3

2 ) = −1
2 , we have by (7) that

ϑχD,0 = 1
2(ϑ1D + 2ϑf ) and ϑχ = ϑχ−1 = 1

2(ϑ1D − ϑf ).

By Remark 17(a) we know that ΘE
D = CϑχD,0 and that ΘS

D = Cϑχ; in particular, ϑχ is
a cusp form and a T(D)-eigenfunction; cf. Theorem 1. Moreover, Corollary 29 shows
that ϑχ is a newform of level |D| if and only if χ is primitive, i.e., if and only there is no
c > 1 such that hD/c2 = 3. This condition holds for 23 of the cases with hD = 3 (i.e.,
for −D = 23, 31, 44, 59, 76, 83, 92, 107, 108, 124, 139, 172, 211, 243, 268, 283,
307, 331, 379, 499, 547, 643, 652, 883, 907) but fails for the two cases

−D = 92 = 22 · 23 and −D = 124 = 22 · 31 .

We complement the above discussion by working out two numerical examples.

Example 37. (a) D = −23.

Here Cl(D) = { [1, 1, 6], [2, 1, 3], [2,−1, 3] }, where [a, b, c] denotes the equivalence
class of the form ax2 + bxy+ cy2, and so hD = 3. Since D is a fundamental discrimi-
nant, we have by Examples 35(a) and 36(c) that ϑχD,0 = ϑK = f1( · ; 1, ψ−23) and ϑχ
are primitive forms of level 23, and that ϑχ is a cusp form. (In fact, N = |D| = 23 is
the smallest level for which ΘS

D 6= {0}.) Moreover,

ϑχD,0 = ϑK = 1
2(ϑ[1,1,6] + 2ϑ[2,1,3]) and ϑχ = 1

2(ϑ[1,1,6] − ϑ[2,1,3]),

and from this (or from (8)) we obtain that

ϑ[1,1,6] = 2
3(ϑK + 2ϑχ) and ϑ[2,1,3] = 2

3(ϑK − ϑχ).

(b) D = −60 = −15 · 22.

Here Cl(D) = { [1, 0, 15], [3, 0, 5] }, so hD = 2 and Cl(D)∗ = {χD,0, χ }. Since
hdK = h−15 = 2, we see that fχD,0 = fχ = 1 and so both χD,0 and χ are imprimitive
with f̄χD,0 = f̄χ = 2. The theta-functions of the associated primitive characters are
ϑK = f1( · ; 1, ψ−15) and ϑχpr = f1( · ;ψ−3, ψ5), respectively. Since

a2(ϑK) = 1 +

(
−15

2

)
= 2 and a2(χpr) =

(
−3

2

)
+

(
5

2

)
= −2,

it follows from Theorem 28 that

C(s, χD,0) = 1− 2 · 2−s + 2 · 2−2s

and that
C(s, χ) = 1 + 2 · 2−s + 2 · 2−2s .

Thus,
ϑχD,0(z) = ϑK(z)− 2ϑK(2z) + 2ϑK(4z)
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and
ϑχ(z) = ϑχpr(z) + 2ϑχpr(2z) + 2ϑχpr(4z),

and the associated L-functions are

L(s, χD,0) =
(
1− 21−s + 21−2s

)
ζK(s) and L(s, χ) =

(
1 + 21−s + 21−2s)L(s, χpr

)
,

where L(s, χpr) = L(s, ψ−3)L(s, ψ5).

6. Appendix: Ideals of quadratic orders

The purpose of this appendix is to collect some well-known results about ideals in
an order OD of an imaginary quadratic fieldK, and to extend these to obtain the results
which were used in this article.

6.1. Lattices in an imaginary quadratic field
Let K = Q(

√
dK) be an imaginary quadratic field of discriminant dK < 0, and

let OK = Z + ωKZ denote its ring of integers, where ωK = 1
2(dK +

√
dK). For any

f ≥ 1, put D = f2dK and

OD = Z + fωKZ = Z + ωDZ, where ωD = 1
2

(
D +

√
D
)
.

It is immediate that OD is a subring of OK of index fOD := [OK : OD] = f . The
ring OD is called the order of discriminant D (or of conductor f ), and it is well-known
that every subring R of OK with quotient field K is of this form, i.e., R = OD with
D = f2

RdK , where fR = [OK : R]. (For such and other basic facts about orders see
[34], §90-113, [3], §II.7, [21], §8.1, [6], §II.7.)

Let Lat(K) denote the set of all lattices in K, i.e., the set of all finitely generated
Z-submodules of K which contain some Q-basis of K.

If L ∈ Lat(K) is a lattice, then its associated order is O(L) = {λ ∈ K : λL ⊂ L}.
It is easy to see that O(L) is an order of K, i.e., O(L) = OD, for some D = f2dK .

The norm of the lattice L is by defined by N(L) = | det(T )|, where T ∈ GL2(Q)
is such that T (O(L)) = L; cf. [3], §II.6. Note that if L ⊂ OK , then

(46) [OK : L] = [OK : O(L)]N(L).

If L1, L2 ∈ Lat(K) are two lattices, then the product (module) L1L2 is again a
lattice. By [3], §II.7, Ex. 6 and 10, its order and norm are given by the formulae

(47) O(L1L2) = O(L1)O(L2) and N(L1L2) = N(L1)N(L2).

In particular, we see that the set I(OD) = {L ∈ Lat(K) : O(L) = OD } is closed
under multiplication. In fact, I(OD) is a group with unit element OD: it can be iden-
tified with the group of invertible OD-submodules of K; cf. Lang [21], p. 91. Thus, if
P (OD) = {λOD : λ ∈ K× } denotes the subgroup of principal OD-modules, then
the quotient

Cl(OD) = Pic(OD) = I(OD)/P (OD)

is called the class group (or Picard group) of the order OD, and its cardinality (or group
order) hD := |Cl(OD)| is called the class number of OD.
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If ODi are two orders of K with discriminants Di = f2
Di
dK , then

(48) OD1 ⊃ OD2 if and only if fD1 | fD2 ,

and hence

(49) OD1 ∩ OD2 = Olcm(fD1
,fD2

)2dK and OD1OD2 = Ogcd(fD1
,fD2

)2dK .

Proposition 38. If R and R′ are two orders of K with R ⊂ R′, then the rule
L 7→ LR′ defines a surjective homomorphism πR,R′ : I(R)→ I(R′) with kernel

(50) Ker(πR,R′) =
{
L ∈ I(R) : L ⊂ R′ and [R′ : L] = [R′ : R]

}
.

Proof. If L ∈ I(R), then by (47) we have

O(LR′) = O(L)O(R′) = RR′ = R′,

so LR′ ∈ I(R′). Thus, the rule L 7→ LR′ defines a map π = πR,R′ : I(R) → I(R′).
Moreover, π is a homomorphism because

π(L1)π(L2) = L1R
′L2R

′ = L1L2R
′R′ = L1L2R

′ = π(L1L2) .

To prove (50), let L ∈ Ker(π). Then LR′ = R′. Since R′ is an order, we have that

N(R′) = [O(R′) : R′] = [R′ : R′] = 1,

and so by (47) we obtain that

N(L) = N(L)N(R′) = N(LR′) = N(R′) = 1 .

Thus, since O(L) = R, we see that

[R′ : R] = [R′ : R]N(L) = [R′ : R][R : L] = [R′ : L] .

Moreover, since L = L · 1 ⊂ LR′ = R′ it follows that L ⊂ R′, and hence

L ∈ K :=
{
L ∈ I(R) : L ⊂ R′ and [R′ : L] = [R′ : R]

}
.

Conversely, if L ∈ K, then

N(L) = [R : L] = [R : L]/[R′ : R] = 1,

and hence
N(LR′) = N(L)N(R′) = 1 · 1 = 1.

Now since
O(LR′) = O(L)O(R′) = RR′ = R′,

we have that 1 = N(LR′) = [R′ : LR′]. But since L ⊂ R′, we have LR′ ⊂ R′ and so
this forces LR′ = R′. Thus L ∈ Ker(π), which proves (50).

It remains to show that π is surjective. Let L′ ∈ I(R′). Then by [21], Theorem 5
(p. 93), there exists λ ∈ K× such that λL′ + fR′ = R′, where f = [OK : R]. We then
have that L := λL′ ∩ R ∈ I(R) and that LR′ = λL′ by applying [21], Theorem 4 (p.
92), to R′ and R. (See also Proposition 48 below.) Thus π(λ−1L) = (λ−1L)R′ = L′,
and so π is surjective. �
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Remark 39. Since πR,R′(λR) = λR′, for all λ ∈ K×, it is clear that πR,R′ induces
a surjective homomorphism

(51) πR,R′ : Cl(R) = I(R)/P (R) → Cl(R′) = I(R′)/P (R′) .

Moreover, it is immediate that

(52) Ker(πR,R′) = Ker(πR,R′)P (R)/P (R)

because if LP (R) ∈ Ker(πR,R′), then L = λR′, for some λ ∈ K×, and then

LP (R) = (λ−1L)(λR)P (R) ∈ Ker(πR,R′)P (R)/P (R),

so (52) follows.

The following result, which gives the order and a presentation of Ker(πR,R′), can
be viewed as a refinement of the well-known results which give a presentation and
the order of Ker(πR,R′); cf. Lang [21], p. 95 and Cox [6], p. 147. Note that while the
formula for |Ker(πR,R′)| involves the unit index [R× : (R′)×], this is not the case for
that of |Ker(πR,R′)|; cf. (54).

Corollary 40. In the above situation put f̄ = [R′ : R]. Then the map defined by
the rule λ 7→ Lλ := Zλ+ f̄R′ induces the exact sequence

(53) 0 −→ (Z/f̄Z)× −→ (R′/f̄R′)×
LR′,f̄−→ Ker(πR,R′) −→ 0 .

Thus, if D′ denotes the discriminant of R′ = OD′ and if ψR′(p) =
(
D′

p

)
denotes the

associated Legendre-Kronecker symbol, then

(54) |Ker(πR,R′)| = f̄
∏
p|f̄

(
1− 1

p
ψR′(p)

)
,

Proof. First note that if λ ∈ R′, then Lλ/f̄R′ ≤ R′/f̄R′ is the cyclic subgroup
generated by λ̄ = λ + f̄R′, and hence Lλ = Lλ̄ depends only on λ̄. Moreover,
since λf̄R′ = f̄R′, if λ̄ ∈ (R′/f̄R′)×, it is clear that LλLλ′ = Lλλ′ , and so the rule
λ 7→ Lλ defines a homomorphism LR′,f̄ : (R′/f̄R′)× → Lat(K). Next we show that
Im(LR′,f̄ ) ⊂ Ker(πR,R′). For this, note first that Lλ is clearly an R-module because
R = Z + f̄R′. Moreover, since λλ′ ≡ 1 (mod f̄R′), for some λ′ ∈ R′, we see that
LλLλ′ = L1 = R, and so Lλ ∈ I(R). In addition, LλR′ = R′ because LλR′ is an
R′-ideal which contains 1, and so Lλ ∈ Ker(πR,R′).

To show that LR′,f̄ is surjective, let L ∈ Ker(πR,R′). Then by (50) we know that
L ⊂ R′ and that [R′ : L] = f̄ , so L ⊃ f̄R′ and

[L : f̄R′] =
[R′ : f̄R′]

[R′ : L]
=
f̄2

f̄
= f̄ .

Since LR′ = R′, we see that L 6⊂ pR′, for any prime p|f̄ , and hence L/f̄R′ is cyclic,
i.e., L = Zλ + f̄R′ for some λ ∈ R′. Since |L/f̄R′| = f̄ , this means that λ has order
f̄ in R′/f̄R′ ' Z/f̄Z× Z/f̄Z. Then λ = a+ bf̄ωD′ with a, b ∈ Z and (a, b, f̄) = 1,
whereD′ is the discriminant ofR′ = OD′ , and so it follows easily that λ ∈ (R′/f̄R′)×.
Thus L = Lλ = LR′,f̄ (λ), and hence LR,f̄ is surjective.
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Next we observe that λ̄ ∈ Ker(LR′,f̄ ) ⇔ Lλ̄ = R = Z + f̄R′ ⇔ λ̄ = n + f̄R′,
for some n ∈ Z with (n, f̄) = 1. Thus, since the map Z/f̄Z→ R′/f̄R′ is injective, it
follows that the sequence (53) is exact.

It remains to verify (54). Applying (53) with R′ = OK (and hence f̄ = f := fR)
yields that

|Ker(πR,OK )| =
φ(fOK)

φ(f)
= f

∏
p|f

(
1− 1

p
ψOK (p)

)
,

where the second formula is deduced as in Lang [21], p. 95. (Here, as in Lang [21],
φ(fOK) = |(OK/fOK)×|.) From this (and the surjectivity of πR,R′) it follows that
for any R′ ⊃ R we have

|Ker(πR,R′)| =
|Ker(πR,OK )|
|Ker(πR′,OK )|

= f̄
∏

p|fR, p-fR′

(
1− 1

p
ψdK (p)

)

= f̄
∏
p|f̄

(
1− 1

p
ψR′(p)

)
. �

Corollary 41. If R ⊂ R1 ∩R2 and R3 = R1R2, then

Ker(πR,R3) = Ker(πR,R1) ·Ker(πR,R2) and Ker(πR,R3) = Ker(πR,R1) ·Ker(πR,R2).

Proof. By (52) it is enough to prove the first assertion. Moreover, since

Ker(πR,Ri) = π−1
R,R1∩R2

(Ker(πR1∩R2,Ri)), for i = 1, 2, 3,

it suffices to verify the formula for R = R1 ∩R2. For this, write

f = [OK : R], fi = [OK : Ri] and f̄i =
f

fi
= [Ri : R], for i = 1, 2, 3.

Then by (49) we have that f3 = (f1, f2). Since R = R1 ∩ R2, we have that f = f1f2

f3

by (49), so f̄3 = f̄1f̄2 and (f̄1, f̄2) = 1. It thus follows from (54) that

|Ker(πR,R3)| = |Ker(πR,R1)| · |Ker(πR,R2)| .

Thus, the assertion follows once we have shown that Ker(πR,R1)∩Ker(πR,R2) = {R}.
Now if L ∈ Ker(πR,R1) ∩ Ker(πR,R2), then L ⊂ R1 ∩R2 = R. But since

[R : L] = N(L) = 1

(the latter because LRi = Ri), it follows that L = R, and hence

Ker(πR,R1) ∩ Ker(πR,R2) = {R},

as claimed. �
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6.2. The ideal theory of OD

We now study the ideals of the orderR = OD ⊂ K more closely. For this, we shall
use the following general result which is applicable here because OD is a noetherian
domain of (Krull) dimension 1; cf. Neukirch [23], p. 77.

Proposition 42. Let A be a noetherian domain of dimension 1, and let a ⊂ A be
a non-zero ideal of A. If m ∈ max(A) is any maximal ideal of A with a ⊂ m, then
a(m) := aAm ∩ A is an m-primary ideal of A. In particular, if |A/m| < ∞, then
|A/a(m)| = |A/m|s, for some integer s = sm(a) ≥ 1. Moreover, we have

(55) a =
⋂
m

a(m) =
∏
m

a(m).

Thus a is an invertible ideal if and only a(m) is invertible for all maximal ideals m.

Proof. Since Am is a local 1-dimensional noetherian domain, every proper ideal of
Am is primary, and hence a(m) is primary ideal of A with radical m. This proves the
first assertion. From this the second assertion is an immediate consequence because by
[4], p. 265, we know that the A-module M = A/a(m) has a composition series {Mi}
with Mi/Mi+1 ' A/m, and so the assertion follows (with s = length(M)).

The first identity of (55) is true in any domain; cf. [4], p. 89. Next, if m and m′ are
two distinct maximal ideals of A, then a(m) 6⊂ m′ and hence a(m)Am′ = Am′ . Thus,
if we put a′ =

∏
a(m), then a′Am = a(m)Am = aAm, for every m ∈ max(A), and so

a′ = a, which proves the second equality of (55).

Finally, if a(m) is invertible for all m ∈ max(A), then a is invertible by (55).
Conversely, suppose that a is invertible and fix m ∈ max(A) with m ⊃ a. Then
a(m)Am = aAm is principal, and for every m′ 6= m we have a(m)Am′ = Am′ . Thus
a(m) is locally principal and hence invertible; cf. [4], p. 117. �

Notation. Let Id(R) = {L ∈ I(R) : L ⊂ R} denote the set of invertible R-ideals.
Moreover, for any integer n ≥ 1, let Idn(R) = { a ∈ Id(R) : N(a) = n } denote the
set of invertibleR-ideals of norm n, and let Id(R,n) = { a ∈ Id(R) : (N(a), n) = 1 }
denote the set of invertible R-ideals whose norm is relatively prime to n.

Corollary 43. Let a ∈ Id(R) be an invertible R-ideal, and m ∈ max(R) be a
maximal ideal, where R = OD. Then a(m) ∈ Id(R) is also invertible and has norm
N(a(m)) = ps, for some s, where p |m, i.e., p is the unique prime number with p ∈ m.
Furthermore,

a =
∏
m

a(m) and hence N(a) =
∏
m

N(a(m)).

In particular, if m ∈ supp(a) := {m ∈ max(R) : a ⊂ m }, and p |m, then p |N(a).

Proof. If m ∈ max(R), then R/m is a finite field of characteristic p, where p ∈ m.
Thus, since R is a 1-dimensional noetherian ring and since N(a) = [R : a], whenever
a ∈ Id(R), the corollary follows immediately from Proposition 42 (together with (47)).

�

We now want to study the set Idn(R) of invertible ideals of norm n of R more
closely. First we note:
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Proposition 44. If (m,n) = 1, then the map (a, b) 7→ ab induces a bijection

Idm(R)× Idn(R)
∼→ Idmn(R) .

Proof. If (a, b) ∈ Idm(R) × Idn(R), then ab ∈ Idmn(R) by (47). Suppose now
that c ∈ Idmn(R), and put, for an integer k,

suppk(c) := supp(c + kR) =
{
m ∈ supp(c) : p |m⇒ p | k

}
and ck =

∏
m∈suppk(c) a(m). Then by Corollary 43 we have

supp(c) = supp(c)m ∪̇ supp(c)n,

and so c = cmcn. Since

(N(cm), n) = (N(cn),m) = 1,

we see that (cm, cn) ∈ Idm(R) × Idn(R), and so the map is surjective. It is injective
because c is uniquely determined by its local components c(m). �

Thus, by the above result, it is enough to study the sets Idn(R) for prime powers
n = pr. If p is prime to the conductor fR of R, i.e., if p - fR = [OK : R], then Idn(R)
is essentially the same as Idn(OK), as the next (well-known) result shows.

Proposition 45. The rule a 7→ a ∩R induces an injection

ϕ̃R : Id(OK , fR) ↪→ Id(R)

with image Id(R, fR), and we have that

(56) ϕ̃R(Idn(OK)) = Idn(R), for all n ≥ 1, (n, fR) = 1.

Thus

(57) #Idn(R) = #Idn(OK) =
∑
d|n

ψdK (d), if (n, fR) = 1.

Proof. The first assertion follows from [21], Theorem 4 (p. 92). Moreover, since
that theorem also asserts that ϕ̃R(a)OK = a, if a ∈ Id(OK , fR), it follows from (47)
that N(ϕ̃R(a)) = N(ϕ̃R(a))N(OK) = N(a). Thus (56) holds, and hence the first
equality of (57) follows. The second equality of (57) is well-known; cf. Weber [34],
p. 345. �

We now turn to study the ideals of R = OD with norm dividing the conductor
fR = fD. Here we first prove the following result which is closely related to Theorem
3.1.17 of Schertz [25].

Proposition 46. If p | fD is a prime divisor of the conductor fD = [OK : OD] of
OD, then mp := pOD/p2 is the unique maximal ideal of OD containing p. Moreover,
|OD/mp| = p and mp is an OD-ideal which is not invertible, i.e., mp /∈ Id(OD). In
particular, Idp(OD) = ∅.

Proof. Since mp = p(Z + (fD/p)ωKZ) = pZ + fDωKZ, it immediately follows
that mp ⊂ OD = Z + fDωKZ and that [OD : mp] = p. Clearly, mp is a principal
OD/p2-ideal, and hence a fortiori an OD-ideal. Thus, mp is a maximal ideal of OD and
O(mp) = OD/p2 , so mp cannot be invertible as an OD-ideal.
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Now suppose that m ⊃ pOD is a maximal ideal. Then (by Cohen-Seidenberg)
m = mOD/p2 ∩OD ⊃ pOD/p2 ∩OD = mp, and so m = mp. Thus mp is the unique
maximal ideal containing p.

Finally, if a ∈ Idp(OD), then [OD : a] = N(a) = p, so a is a maximal ideal
of OD with p ∈ a, and hence a = mp. But m /∈ Id(OD), contradiction. Thus
Idp(OD) = ∅. �

Corollary 47. Suppose that c | fD = [OK : OD]. If a ∈ Idn(OD) and c2 |n, then
aOD/c2 = cb, for some b ∈ Idn/c2(OD/c2).

Proof. Suppose first that c = p. Then by Corollary 43 and Proposition 46 we know
that a ⊂ mp = pOD/p2 , and so b′ := aOD/p2 ⊂ pOD/p2 . Thus b := 1

pb
′ ⊂ OD/p2 ,

and hence b ∈ Idn/p2(OD/p2) and aOD/p2 = pb. Thus the assertion holds for c = p.

To prove the general case, induct on c. Since the assertion is trivial for c = 1, we
may assume that there is a prime p|c. Put D′ = D/c2, D̄ = D/p2 and n̄ = n/p2.
Then, by what was just shown, aOD̄ = pā with ā ∈ Idn̄(OD̄). Put c̄ = c/p. Then
c̄|fp = [OK : OD̄] and c̄2|n̄, so by induction āOD′ = c̄b with b ∈ Idn̄/c̄2(OD). Thus
aOD′ = (pā)OD′ = pc̄b = cb, and so the assertion also holds for c. �

As we shall now see, the above results show that when n|f2
D, there is close connec-

tion between Idn(OD) and Ker(πOD,OD/n).

Proposition 48. Suppose that n|f2
D = D/dK . If n is not a square, then we have

that Idn(OD) = ∅, whereas for n = c2 we have the formula

Idc2(OD) = cKer(πOD,OD/c2 ) .

Proof. Suppose first that n is not a square, i.e., suppose that there is a prime p such
that p2r+1 ‖ n, for some r ≥ 0. If a ∈ Idn(OD), then ap := a(mp) ∈ Idp2r+1(OD),
and hence, putting D′ = D/p2r, we have by Corollary 47 that apOD′ = prb, for
some b ∈ Idp(OD′). But since p | [OK : OD′ ], this contradicts Proposition 46. Thus
Idn(OD) = ∅.

Now suppose that n = c2, and put D′ = D/c2. If a ∈ Idn(OD), then by Corollary
47 we have that aOD′ = cb with b ∈ Id1(OD′), i.e., aOD′ = cOD′ , and hence a = cL
with L = 1

ca ∈ Ker(πOD,OD′ ). Thus Idn(OD) ⊂ cKer(πOD,OD′ ).

Conversely, if L ∈ Ker(πOD,OD′ ), then L ⊂ OD′ (cf. (50)), so cL ⊂ cOD′ ⊂ OD,
the latter because c = [OD′ : OD]. Thus, cL ∈ Idn(OD) because

N(cL) = c2N(L) = c2 = n,

and hence Idn(OD) = cKer(πD,D′), as claimed. �
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