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RÉSUMÉ. Nous classifions les premiers p pour lesquels il existe des courbes el-
liptiques E/Q de conducteur NE ∈ {18p, 36p, 72p} avec une 2-torsion rationnelle
non triviale. En conséquence, nous montrons que, pour « presque tout » premier p,
l’équation diophantienne

x3 + y3 = pαzn,

où n ≥ 4 et α est un entier positif, possède au plus un nombre fini de solutions en
entiers non nuls copremiers x, y et z. Pour prouver ce résultat, nous faisons appel
à des techniques disparates telles que les bornes inférieures des formes linéaires en
logarithmes p-adiques, le théorème du sous-espace de Schmidt, et des méthodes basées
sur les courbes de Frey et sur la modularité des représentations galoisiennes associées.

ABSTRACT. We classify primes p for which there exist elliptic curves E/Q with
conductor NE ∈ {18p, 36p, 72p} and nontrivial rational 2-torsion. In consequence,
we show that, for “almost all” primes p, the Diophantine equation

x3 + y3 = pαzn

has at most finitely many solutions in coprime nonzero integers x, y and z and positive
integers α and n ≥ 4. To prove this result, we appeal to such disparate techniques as
lower bounds for linear forms in p-adic logarithms, Schmidt’s Subspace Theorem, and
methods based upon Frey curves and modularity of associated Galois representations.

1. Introduction

There are many aspects to what we might deem the “typical” arithmetic behaviour
of elliptic curves E/Q which are understood less well than we would like. The study
of, for example, the average Mordell-Weil rank of such curves is intimately connected,
via the conjecture of Birch and Swinnerton-Dyer, to the vanishing of associated L-
functions. In this regard, it is still unknown whether a positive proportion of elliptic
curves E/Q (by some measure) have positive rank (but see the remarkable recent work
of Bhargava and Shankar [1], [2]; an excellent overall survey in this area is [3].) There
are a number of senses in which one might claim that a typical elliptic curve E/Q has
only trivial rational torsion. It is possible to make such a statement precise for elliptic
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curves with prescribed bad reduction at only a few primes. In particular, one may prove
the following result (see [4]).

Theorem 1.1. For a set of primes p of density one, every elliptic curve E/Q with
good reduction outside the set {2, 3, p} and multiplicative reduction at p has trivial
rational torsion.

By this, we mean that the set P of primes for which there exists an E/Q with
conductor NE = 2α3βp and #E(Q)tors > 1 has the property that

# {p ≤ X : p ∈ P} = o (π(X)) as X → ∞.

It is worth noting (see e.g. [16]) that Theorem 1.1 cannot be extended to the case
of additive reduction at p, as there exist elliptic curves E/Q of conductor kp2 with a
rational 2-torsion point, for every prime p > 3, and each

k ∈ {32, 64, 256, 288, 576, 2304}.

A result such as Theorem 1.1 has immediate consequences for Diophantine equa-
tions. Indeed, a common obstruction to applying techniques based upon Frey curves
and modular Galois representations to Diophantine problems is the presence of elliptic
curves over Q at appropriate levels with rational isogenies corresponding to those pos-
sessed by the Frey curves. For instance, if one wishes (as in, say, Kraus [12]) to show
that the equation

(1) x3 + y3 = zn

has no solutions in coprime nonzero integers x, y and z, for n ≥ 3, then the presence of
an elliptic curve E/Q at level 72 with full rational 2-torsion represents a serious barrier
to progress (but see the remarkable recent paper of Chen and Siksek [7], who prove that
(1) has no such solutions for infinitely many n, including those n ≡ 2 or 3 (mod 5)
with n ≥ 5).

Though equation (1) is currently still somewhat intractable, in this paper we will
study “twisted” versions of this equation with the property that the corresponding Dio-
phantine equation may be shown to have at most finitely many solutions. In particular,
if S is the set of primes p ≥ 5 for which there exists an elliptic curve E/Q with con-
ductor NE ∈ {18p, 36p, 72p} and at least one nontrivial rational 2-torsion point, then
we will prove the following.

Theorem 1.2. Suppose that p ≥ 5 is prime and that p ̸∈ S. Let α ≥ 1 be an
integer. Then the equation

(2) x3 + y3 = pαzn

has no solutions in coprime nonzero integers x, y and z, and prime n satisfying n ≥ p2p.

To complement this, we will deduce a less general version of Theorem 1.1, with
more precise upper bounds for the counting function of S.

Theorem 1.3. Let πS(x) = #{p ≤ x : p ∈ S}. Then

πS(x) ≪
√
x log2(x).
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Here and henceforth, the implied constant in the Vinogradov symbol is absolute. In
truth, it is not even known that S is an infinite set (though we expect that log πS(x) ∼
1
2 log x). The fact that “most” primes p have the property that E/Q with conductors
18p, 36p and 72p have no nontrivial rational 2-torsion, however, is not obvious from a
cursory examination of available data. Indeed, the set S contains every prime p with
5 ≤ p ≤ 193. One can check from Cremona’s tables, however, that in the interval
[1, 1000], the primes

197, 317, 439, 557, 653, 677, 701, 773, 797 and 821

lie outside S. In fact, it is rather easy to show that a positive proportion of all primes are
in the complement of S, most readily by noting (as we will show later) that S contains
no primes p satisfying p ≡ 317 or 1757 (mod 2040).

As an immediate consequence of Theorems 1.2 and 1.3, together with a result of
Darmon and Granville [8] (which implies, for fixed values of n ≥ 4 and p, that the
equation x3 + y3 = pαzn has at most finitely many solutions in coprime nonzero
integers x, y and z), we have the following.

Corollary 1.4. There exists a set T of natural density one in the primes such that
for every prime p ∈ T , equation (2) has at most finitely many solutions in coprime
nonzero integers x, y and z, and integers α ≥ 1, n ≥ 4. In particular, this is true for all
primes p ̸∈ S.

It is interesting (and nontrivial) to note that there is a bijection between isogeny
classes of elliptic curves E/Q with rational 2-torsion and conductor 144p, and those
with rational 2-torsion and conductor in the set {9p, 18p, 36p, 72p}, via twists. With
this in mind, we could replace Theorem 1.2 with a marginally weaker if cleaner state-
ment, substituting for S the set S′ of primes p for which there exists an elliptic curve
E/Q with conductor 144p and a rational 2-torsion point.

2. Frey curves and Galois representations

Here and henceforth, we let p ≥ 5 be prime, p ̸∈ S (so that p = 197 or p ≥ 317),
and α be a positive integer. Further, suppose that n is prime with n ≥ p2p; for most
of our arguments, we will in fact only require n ≥ 7, but even a slightly stronger
assumption simplifies matters a bit. We will assume that we have a proper, nontrivial
solution (a, b, c) of the equation

a3 + b3 = pαcn,

i.e., a solution with a, b and c coprime nonzero integers. We suppose further, without
loss of generality, that the following conditions are satisfied :

(3) ac is even, and b ≡

{
−1 (mod 4) if c is even,

1 (mod 4) if c is odd.

Darmon and Granville [8] associate to the triple (a, b, c) the elliptic curve

(4) Ea,b : y2 = x3 + 3abx+ b3 − a3,
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which has a point of order two given by (x, y) = (a − b, 0). The standard invariants
c4(a, b), c6(a, b) and ∆(a, b) attached to Ea,b are

c4(a, b) = −2432ab,

c6(a, b) = 2533(a3 − b3),

∆(a, b) = −2433p2αc2n.

It is not too difficult, via Tate’s algorithm, to determine the conductor NEa,b
of Ea,b

(for more details, the reader is directed to [16]). We designate by R the product of the
prime numbers distinct from 2, 3, and p that divide c, i.e., the largest squarefree integer
prime to 6p dividing c. Given an integer k and a prime number l, we denote by vl(k)
the exponent of l in the decomposition of k into prime factors.

Lemma 2.1. We have (under conditions (3) on a, b, and c)

NEa,b
=


18 pR if c even, b ≡ −1 (mod 4),

36 pR if c odd, v2(a) ≥ 2 and b ≡ 1 (mod 4),

72 pR if c odd, v2(a) = 1 and b ≡ 1 (mod 4).

In particular, since a and b are coprime, we have that Ea,b has multiplicative reduc-
tion at p.

Let us denote by
ρa,bn : Gal(Q/Q) → GL2(Fn),

the canonical mod n Galois representation on Ea,b[n], the subgroup of n-torsion points
of Ea,b(Q). It is easy to see that ρa,bn has weight 2 (in the sense of [20]). Let N(ρa,bn )

denote the conductor of ρa,bn , as defined in Serre [20]. Before we proceed further, we
will deduce Theorem 1.2 in case n | α. Following the arguments of Kraus [12], we find
that

n | p+ 1± ap,

where ap is the p-th Fourier coefficient of an elliptic curve over Q of conductor 72. It
follows that n ≤ p+1+2

√
p, contradicting n ≥ p2p. We will thus suppose, from now

on, that n does not divide α.

Lemma 2.2. The following statements hold:

(a) N(ρa,bn ) = NEa,b
/R.

(b) The representation ρa,bn is irreducible.

Proof. (a) Let q be a prime distinct from 2, 3, p and n. The curve Ea,b is readily
shown to have multiplicative reduction at q (Lemma 2.1) and the exponent of q in the
minimal discriminant of Ea,b is a multiple of n. This assertion then follows as a direct
consequence of Lemma 2.1 and, essentially, a result of Serre ([20], p.120).

(b) If ρa,bn were reducible, since Ea,b has a point of order 2, there would exist a
subgroup of Ea,b(Q) of order 2n stable under Gal(Q/Q). This contradicts the fact that,
for n ≥ 11, the modular curve Y0(2n) has no Q-rational points (see [10] and [15]). �
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Given a positive integer N , we let S2(Γ0(N)) denote the C-vector space of cuspidal
modular forms of weight 2 for the congruence subgroup Γ0(N). Denote by S+

2 (N) the
subspace of newforms of S2(Γ0(N)), and g+0 (N) its dimension as a C-vector space.
See [14] for an explicit determination of g+0 (N).

Since the representation ρa,bn is irreducible of weight 2 and Ea,b is modular (via e.g.
[5]), there exists a newform f ∈ S+

2 (N(ρa,bn )) whose Taylor expansion is

f = q +
∑
m≥2

am(f)qm where q = e2πit,

and a place N of Q lying above n, such that for all prime numbers l not dividing
nNEa,b

one has
al(f) ≡ al(Ea,b) (mod N ).

It follows that

(5) n | NormKf/Q(al(f)− al(Ea,b)),

where Kf denotes the field of definition of the coefficients. Similarly, we have

(6) n | NormKf/Q(al(f)± (l + 1)),

for each prime l ̸= n dividing R.

3. Proof of Theorem 1.2

We now proceed with the proof of Theorem 1.2. Let us suppose that f is a weight
2 and level N cuspidal newform (with trivial character), where

N ∈ {18p, 36p, 72p},
corresponding to a nontrivial solution to equation (2). If [Kf : Q] > 1 then, by
Lemme 1 of [11], there exists a prime l satisfying, in all cases, l ≤ 24(p + 1), and for
which al(f) ̸∈ Z. Since we have normalized f , the Fourier coefficients a2(f), a3(f)
and ap(f) are all in {0,±1}, whereby l ̸∈ {2, 3, p}. From the fact that al(Ea,b) is a
rational integer satisfying |al(Ea,b)| ≤ 2

√
l while, for any embedding σ : Kf → R we

have |σ(al(f)| ≤ 2
√
l, in each of the cases (5) or (6), the right-hand side is necessarily

nonzero and hence

n ≤
(
l + 1 + 2

√
l
)[Kf :Q]

≤
(√

l + 1
)2g+0 (N)

.

Applying Theorem 1 of [14], we obtain

g+0 (N) ≤

p if N = 18p, 36p,

5p/4 if N = 72p,

whereby

n ≤
(√

24(p+ 1) + 1
)5p/2

.

For p ≥ 211 a simple exercise in calculus immediately implies that n < p2p. Since we
may assume that p = 197 or p ≥ 317, it remains to handle the former case. Here, the
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(very) slightly sharper inequality g+0 (N) ≤ 5(p − 1)/4 suffices to imply n < p2p and
hence, as desired, a contradiction.

We may thus suppose that the form f has rational integer Fourier coefficients am(f)
for all m ≥ 1, whereby f corresponds to an isogeny class of elliptic curves over Q with
conductor N = 18p, 36p or 72p. Applying Proposition 2 of Appendice II of Kraus
[11], we find that one of the following necessarily occurs:

(i) There exists a prime l ≤ 24(p+ 1), coprime to 6p, with al(f) ≡ 1 (mod 2).

(ii) al(f) ≡ 0 (mod 2) for all primes l coprime to 6p.

In the former case, since n divides the (nonzero) integer al(f)− al(Ea,b), we have
that

n ≤ l + 1 + 2
√
l ≤ 24(p+ 1) + 1 + 4

√
6(p+ 1) < p2p,

where the last inequality is valid for p ≥ 3. In case (ii), there exists an elliptic curve F ,
in the given isogeny class, with a rational 2-torsion point. That is, F is an elliptic curve
over Q with 2-torsion and conductor 18p, 36p or 72p. It follows that p ∈ S, contrary to
our earlier assumptions. This completes the proof of Theorem 1.2.

4. Classifying elliptic curves

If an elliptic curve possesses a rational torsion point or isogeny, then its discrimi-
nant splits into at least two factors, as a polynomial in its coefficients. Together with
the assumption that the curve has bad reduction at only a few primes, this leads us to a
number of Diophantine equations which, if lucky, we may be able to solve. This is the
approach Hadano [9] takes to classify elliptic curves with certain specified reduction
and nontrivial rational torsion. In the example we have in mind, we will however, con-
sider a case rather more general than that treated in [9], though we restrict our attention
to rational 2-torsion. For such E/Q, we may suppose that

E : y2 = x3 +Ax2 +Bx,

so that the assumption that NE is divisible by no primes outside {2, 3, p} leads us to
the conclusion that

∆E = 24B2(A2 − 4B) = ±2α3βpγ ,

and hence to equations of the shape

A2 =
∣∣∣2α03β0pγ0 ± 2α13β1pγ1

∣∣∣ .
To proceed, one combines case-by-case analysis with assorted tricks of the Diophantine
trade; the reader is directed to the relevant sections of [16] for details. The results we
quote here follow from combining Theorems 3.13, 3.14 and 3.15 with Lemmata 4.7 –
4.11 of [16], and appealing to the main results of Luca [13]. In what follows, we let
l(n) denote the least prime divisor of an integer n > 1.

Proposition 4.1. Let p > 3 be prime. Then there exists an elliptic curve E/Q of
conductor 18p and having at least one rational point of order 2 precisely when at least
one of the following occurs :
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(a) there exist integers a ≥ 5 and b ≥ 0 such that

(7) p = 2a3b ± 1;

(b) there exist integers a ≥ 5 and b ≥ 0 such that

(8) p =
∣∣∣3b ± 2a

∣∣∣ ;
(c) there exist integers a ≥ 7, b ≥ 0 and t such that

(9) p =
∣∣∣t2 ± 2a3b

∣∣∣ ;
(d) there exist integers a ≥ 7, b ≥ 0 and t such that

(10) 3b p = t2 + 2a;

(e) there exist integers a ≥ 7 and t such that

(11) p =
∣∣3t2 ± 2a

∣∣ .
Proposition 4.2. Let p > 3 be prime. Then there exists an elliptic curve E/Q of

conductor 36p and having at least one rational point of order 2 precisely when at least
one of the following occurs :

(a) there exist integers t and b, where b ≥ 0 is even, and

(12) p = t2 + 4 · 3b;

(b) there exist integers n, t and b, where b ≥ 1 is odd, n = 1 or l(n) ≥ 7, and

(13) pn =
∣∣∣t2 − 4 · 3b

∣∣∣ ;
(c) there exist integers t and b, where b ≥ 1 is odd, and

(14) 4p = t2 + 3b,

where p ≡ −1 (mod 4);

(d) there exist integers t and n ∈ {1, 2} such that

(15) 4pn = 3t2 + 1

where p ≡ 1 (mod 4);

(e) there exists an integer t such that

(16) p = 3t2 − 4.

Proposition 4.3. Let p > 3 be prime. Then there exists an elliptic curve E/Q of
conductor 72p and having at least one rational point of order 2 precisely when p = 29
or at least one of the following occurs :

(a) there exists an odd integer b such that

(17) 4p = 3b + 1;

(b) there exist integers t and b, where b ≥ 1 is odd, and

(18) p = t2 + 4 · 3b;
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(c) there exist integers a ∈ {2, 3} and b ≥ 0 such that

(19) p = 2a3b ± 1;

(d) there exist integers a ∈ {4, 5}, b ≥ 0, t and n = 1 or l(n) ≥ 7, such that

(20) pn =
∣∣∣t2 ± 2a3b

∣∣∣ ;
(e) there exist integers t and b, where b ≥ 1 is odd, and

(21) 4p = t2 + 3b,

where p ≡ 1 (mod 4);

(f) there exist integers a ∈ {2, 3} and b ≥ 0 such that

(22) p = 3b ± 2a;

(g) there exist integers t and n ∈ {1, 2} such that

(23) 4pn = 3t2 + 1;

(h) there exist integers n, t and b, where b ≥ 1 is odd, n = 1 or l(n) ≥ 7, and

(24) 3bpn = t2 + 32;

(i) there exist integers a ∈ {4, 5} and t such that

(25) p = 3t2 − 2a;

(j) there exist integers a ∈ {2, 4, 5} and t such that

(26) p = 3t2 + 2a.

At this juncture, it is appropriate to note that, in Propositions 4.2 and 4.3, the con-
dition l(n) ≥ 7 can likely be omitted (though we cannot currently prove this); there are
no known solutions to the corresponding Diophantine equations.

With these results in hand, it is a relatively straightforward matter to deduce the
following.

Corollary 4.4. If p is prime with p ≡ 317 or 1757 (mod 2040), then p ̸∈ S,
i.e., there does not exist an elliptic curve E/Q of conductor 18p, 36p or 72p, with a
nontrivial rational 2-torsion point.

Proof. To prove this, we note that Propositions 4.1, 4.2 and 4.3 together with some
elementary calculations imply that primes p for which there exists an elliptic curve
E/Q of conductor 18p, 36p or 72p, with at least one nontrivial rational 2-torsion point,
necessarily satisfy p ̸≡ 77 (mod 120), unless we have one of

p = 2a − 3t2 with a ≥ 7, a ≡ 1 (mod 4) and 5 | t, or(27)

pn = t2 + 4 with n ≡ 3 (mod 4), or(28)

4p2 = 3t2 + 1,(29)
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where t is an integer. In this last case, since positive integer solutions (T,U) to the
Diophantine equation T 2 − 3U2 = 1 have T ≡ 1, 2 (mod 5), any p satisfying (29)
must be such that p ≡ 1, 3 (mod 5). For equation (28), an old result of Nagell [17]
implies that the only positive integral solutions to t2 + 4 = yn with n ≥ 3 are with
t = 2 and t = 11, whereby p = 5.

It remains to treat (27). Here, it is easy to check that, since a ≡ 1 (mod 4), we
have

p = 2a − 3t2 ̸≡ ±6 (mod 17).

It follows, as claimed, that p ̸≡ 317 or 1757 (mod 2040). �

5. Bounding S

We will now proceed with the proof of Theorem 1.3. Let Sk denote the set of
primes p satisfying equation (k) for k ∈ {7, . . . , 26}, so that

S =
26∪
k=7

Sk.

Define πSk
(x) = # {p ≤ x : p prime, p ∈ Sk} . We will deduce upper bounds for

each πSk
(x); it is perhaps interesting to note that, in each case, we will in fact bound

the integers p satisfying equation (k) for k ∈ {7, . . . , 26}, without appealing to the
primality of p.

Before we start, let us take care of the cases where n > 1 in (13), (15), (20), (23)
and (24). Indeed, if p, n, a, b, t satisfy one of these equations then Shorey and Tijdeman
([21], page 180) implies that n is bounded by an absolute constant, and Darmon and
Granville ([8], Theorem 2) implies there are only finitely many solutions for p, n, a, b, t.
If n = 2 in (23), then p is a term in a (fixed) binary recurrence sequence (and hence
there are ≪ log x such primes p ≤ x). We will suppose, henceforth, that n = 1. Under
this assumption, it is almost immediate that

πSk
(x) ≪

√
x log2 x for k ∈ {7, 12, 14, 15, 16, 17, 18, 19, 21, 23, 25, 26}

and that like inequalities obtain for primes p in (8), (9), (11), (20) and (22) with corre-
sponding + rather than − signs. To see this in case, by way of example, k = 12, note
that t2 + 4 · 3b ≤ x implies that t ≤

√
x and b ≤ log x, so that the number of integers

of the form t2 + 4 · 3b up to x (never mind primes) is at most
√
x log x. Our weakest

upper bound here corresponds to the + case of (9).

It remains to count primes of the shape

(30) p =
∣∣∣3b − 2a

∣∣∣ ,
(31) p =

∣∣∣t2 − 2a3b
∣∣∣ ,

(32) p =
∣∣3t2 − 2a

∣∣ ,
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and

(33) p =
t2 + 2a

3b
·

Let us begin with (30) and suppose that we have∣∣∣3b − 2a
∣∣∣ ≤ x.

We appeal to a result of Tijdeman.

Theorem 5.1. ([22, Theorem 1]) Let A and B be positive integers with 3 < A < B
and let r and p denote the number of distinct prime factors and the greatest prime factor
of AB, respectively. Then

B −A >
A

(logA)C1
,

where logC1 = r4 c1 + 14r2 log log p, with c1 an effectively computable absolute
constant.

This result, with (A,B) = (2a, 3b) or (3b, 2a), implies the existence of an effec-
tively computable positive constant κ such that∣∣∣3b − 2a

∣∣∣ > 3b b−κ,

at least provided that b > 2 (if b ≤ 2, an upper bound of order log x upon a is immedi-
ate). It follows that 3b b−κ < x and so b ≪ log x. Since |3b − 2a| ≤ x, we thus have
2a < xτ for some absolute positive constant τ , whereby max{a, b} ≪ log x. We may
thus conclude that

πSk
(x) ≪ log2(x) for k ∈ {8, 22}.

To treat primes of the shape (31), we write a = 2α + δ0 and b = 2β + δ1, where
δi ∈ {0, 1}. If both a and b are even, i.e., if δ0 = δ1 = 0, then

p = |t− 2α3β||t+ 2α3β|,
whence

p = 2α+13β ± 1.

The number of such primes up to x is ≪ log2 x. If, however, we have

(δ0, δ1) = (1, 0), (0, 1) or (1, 1),

then p ≤ x implies that∣∣∣∣√2δ03δ1 − t

2α03β0

∣∣∣∣ < x

2α03β0 (|t|+ 2α03β0)
<

x

(2α03β0)
2 ·

Besides this, a classic result of Ridout [18] (a p-adic version of Roth’s theorem) implies,
given a nonsquare positive integer d and ϵ > 0, the existence of a positive constant c(ϵ)
such that if α0, β0 and t are nonnegative integers then

(34)
∣∣∣∣√d− t

2α03β0

∣∣∣∣ > c(ϵ)

(2α03β0)1+ϵ
·

Applying this with d ∈ {2, 3, 6} and, say, ϵ = 1/2 yields the inequality

max{α0, β0} ≪ log x
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and so the number of primes of the shape (31) up to x is O(
√
x log2 x), as desired.

A similar argument (applying (34) with d ∈ {3, 6}) implies that the corresponding
number of primes of the form (32) is O(

√
x log x).

It remains to treat primes of the shape (33); we will show that the number of such
primes is O(

√
x log x). Here, we must argue somewhat more carefully. We begin by

noting that if (t2 + 2a)/3b ≤ x is an integer (where a, b and t are positive integers),
then

2a < t2 + 2a ≤ 3bx,

whereby

(35) a ≤ log(3bx)

log 2
≪ b+ log x.

Fix a and b. Then the congruence

t2 + 2a ≡ 0 (mod 3b)

has exactly 2 solutions modulo 3b. Call these least positive solutions t1 and t2, so that
t = tj + 3bλ for some j ∈ {1, 2} and λ ≥ 0. Then

t2 + 2a

3b
=

t2j + 2a

3b
+ 2tjλ+ 3bλ2 ≤ x

and so 3bλ2 < x, whereby λ ≤ x1/2/3b/2. Thus, for a and b fixed, the number of such
positive integers t is at most

(36)
2x1/2

3b/2
+ 2.

Our goal will be to show that

(37) b ≪ log x.

If this inequality is satisfied, then (35) implies that also a ≪ log x. Thus, summing (36)
over all the values of a once b is fixed, then over b, we find that the number of integers
of the shape t2+2a

3b
which are less than or equal to x and satisfy (37) is

O

(
x1/2 log x

( ∞∑
b=1

1

3b/2

)
+ log2 x

)

and hence ≪ x1/2 log x, as desired.

We will suppose, then, that κ > 4×107 is a (large) positive constant to be specified
later, and that there exists an integer of the form t2+2a

3b
which is less than or equal to x

and satisfies

(38) b > κ log x.

We wish to deduce a contradiction. Begin by writing

t2 + 2a = 3bm
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for positive integers m and b. Since 3 divides t2 + 2a, it follows that a is odd, say
a = 2a1 + 1. Factoring the above equation in Z[i

√
2] (which has class number one),

we readily conclude that

(39) t+ i
√
2 · 2a1 = αbm1,

where m1 = u + i
√
2v is such that u and v are integers with u2 + 2v2 = m, and α is

one of 1± i
√
2. Conjugating (39) and eliminating t we find that

(40) i
√
2 · 2a1 = αbm1 − βbn1,

where β = α and n1 = m1. We will exploit relation (40) in two different ways.

On the one hand, we compute the 2-adic valuation of both sides of relation (40).
From the left-hand side, it is greater than or equal to a/2. On the other hand, from the
right-hand side, it equals

ν2(α
bm1 − βbn1) = ν2((α/β)

b(m1/n1)− 1),

where we use the fact that β and n1 have odd norms in Q[i
√
2]. Putting γ = α/β

and δ = m1/n1, we apply a lower bound for linear forms in 2-adic logarithms due to
Bugeaud and Laurent ([6], Théorème 4) with, in the notation of that paper, µ = 10 and
ν = 5. We deduce the inequality

ν2((α/β)
b(m1/n1)− 1) < 3656 log2

(
b

log x

)
log x.

Here, we have used the fact that the absolute logarithmic height of γ is log 3, while that
of δ is log(m1n1)/2 = logm ≤ log x. Thus we may conclude that

a < 7312 log2
(

b

log x

)
(log x).

If a > (log κ)−1b, it follows that

b
log x

log2
(

b
log x

) < 7312 log κ,

whereby, from (38),
κ < 7312 log3 κ,

contradicting κ > 4× 107.

We may thus assume that

(41) a ≤ (log κ)−1b.

Next, we apply Schmidt’s Subspace Theorem [19] to equation (40). Let K = Q[i
√
2].

We take S = {α, β,∞} as normalized valuations over K. Put x = (x1, x2). For
j = 1, 2 and ν ∈ S , we take Lj,ν(x) = xj for all (j, µ) ∈ {1, 2} × S except for
(j, µ) = (2,∞) for which we take L2,∞(x) = x1 − x2. Next we compute

(42)
∏

(j,µ)∈{1,2}×S

|Lj,µ(x)|µ,
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where x = (x1, x2) = (αbm1, β
bm2). Obviously∏

µ∈S
|L1,µ(x)|µ =

∏
µ∈S

|x1|µ = |m1|.

Furthermore, ∏
µ∈S\{∞}

|L2,µ(x)|µ = |x2|α|x2|β = 3−b/2.

Finally, |L2,∞(x)| = |x1 − x2| = 2a/2. Thus, the double product appearing in (42) is
bounded by

|m1|2a/2

3b/2
≤ x1/22a/2

3b/2
·

From (41), it follows that 2a/2 ≤ 3b/4, and hence∏
(j,µ)∈{1,2}×S

|Lj,µ(x)|µ ≤ x1/2

3b/4
< 3−b/8,

where the last inequality is a consequence of (38). Noting that

|x1| = |x2| ≤ 3b/2x ≤ 3b

(via (38)), we conclude that∏
(j,µ)∈{1,2}×S

|Lj,µ(x)|µ ≪ 1

(max{|x1|, |x2|})1/8
·

The Subspace Theorem [19] asserts that in this case there exist finitely many pairs
(ci, di) ∈ K2\{(0, 0)}, with i = 1, . . . , s, such that all solutions x of (40) satisfy
cix1 = dix2 for some i = 1, . . . , s. We may assume that ci and di are coprime. For
a fixed i, this relation implies that αb | diβbn1, and since α and β are coprime, that
αb | din1. Since |n1| ≤

√
x, choosing κ suitably large (relative to max |di|), this

contradicts (38). This completes the proof of Theorem 1.3.

6. Extending Theorem 1.2

We can, in fact, strengthen Theorem 1.2 substantially, so that its conclusion applies
to many primes p ∈ S. To see how this is achieved, we begin by noting that the
Frey curve constructed in (4) provides us with somewhat more information than just
the existence of a nontrivial rational 2-torsion point. Indeed, the curve is of the form
y2 = f(x), where

f(x) = (x− b+ a)(x2 + (a− b)x+ (a2 + ab+ b2)).

This last quadratic has discriminant −3(a+ b)2 and hence f splits completely modulo
l for l ≥ 5 prime, precisely when

(−3
l

)
= 1; i.e., for l ≡ 1 (mod 6). For each such l,

we thus have

(43) al(Ea,b) ≡ l + 1 (mod 4).

For each p ∈ S, there exists (by definition) at least one E/Q with conductor in
{18p, 36p, 72p} and 2 | #E(Q)tors. Besides, it might be that there are no such curves
with 4 | #E(Q)tors. In such a case, then, there is a chance that (43), in conjunction
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with (5) and (6), might imply that equation (2) has no nontrivial solutions for suitably
large prime n.

A short computation reveals that the following p ∈ S, with p < 197, have the
property that every E/Q with conductor in {18p, 36p, 72p} has at most a single rational
torsion point of exact order 2 :

79, 83, 103, 149, 151, 157, 163, 167, 173, 181

(indeed, one may show that this is true of “most” elements of S). From this list,
the primes p = 83, 149, 167 and 173 have the property that every E/Q of conduc-
tor 18p, 36p and 72p has at least one corresponding prime l ≡ 1 (mod 6) for which
al(E) ̸≡ l + 1 (mod 4). Arguing carefully (and computing Fourier coefficients of
modular forms via, say, Magma), we can prove, for instance, a result of the following
flavour.

Proposition 6.1. The equation

x3 + y3 = 83αzn

has no solutions in coprime nonzero integers x, y and z, integer α ≥ 1 and prime
n ≥ 17.

It is not too difficult to classify the elements of S for which we may apply these
arguments, but we will not undertake this here.
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