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THE FEWEST PRIMES RAMIFIED
IN A G-EXTENSION OF Q
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Dedicated to Paulo Ribenboim on the occasion of his 80th birthday.

RÉSUMÉ. Si G est un groupe fini, nous conjecturons qu’il existe une G-extension
de Q ramifiée en exactement d premiers, où d ≥ 1 est le nombre minimal de géné-
rateurs de l’abélianisation de G (et nous montrons qu’aucune G-extension de Q n’est
ramifiée en moins de premiers). Nous conjecturons aussi que pour tout n ≥ d, il y a
une densité positive de G-extensions qui sont ramifiées en n premiers et dont la conju-
gaison complexe est égale à n’importe quel élément donné de G d’ordre 1 ou 2. Nous
apportons quelques éléments de preuves pour ces conjectures ainsi que des preuves
complètes pour certains cas particuliers.

ABSTRACT. If G is a finite group, then we conjecture that there exists a
G-extension of Q ramified at exactly d primes, where d ≥ 1 is the minimal num-
ber of generators of the abelianisation of G (and show that no G-extension of Q is
ramified at fewer primes). We also conjecture that for any n ≥ d there is a positive
density of G-extensions ramified at n primes with complex conjugation equal to any
given element ofG of order 1 or 2. Evidence for these conjectures, together with proof
in special cases, is given.

1. Introduction

Let G be a nontrivial finite group. The inverse Galois problem indicates that there
should exist a Galois extension K/Q with Galois group isomorphic to G. We call this
a G-extension of Q. Indeed, there should be such an extension of Q(t) that yields, by
Hilbert’s irreducibility theorem, infinitely many G-extensions of Q [16]. In this paper
we seek to refine this conjecture further by introducing constraints on ramification of
primes. In particular, if n is a positive integer, should there exist a G-extension of Q
ramified at no more than n primes and, if so, how many? For this question we also need
to specify whether the infinite prime is counted.

Throughout this paper, d will denote the minimal number of generators of the
abelianisation Gab of G, where if Gab = {1}, then d is taken to be 1. It is easy to
see by cyclotomic theory that if G is abelian, then there exists a G-extension K/Q
ramified at d primes, where K can even be specified to be totally real (so that there is
no ramification at the infinite prime). For certain groups there exist G-extensions K/Q
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ramified at d− 1 finite primes (for example, G = Z/2×Z/2 and K = Q(
√
−1,
√

2)),
but none of these are totally real. We conclude with the following theorem.

Theorem 1.1. If G is a nontrivial finite abelian group with exactly d generators,
then there exists a G-extension of Q ramified at exactly d primes (counting the infinite
prime). Moreover, there is no such extension ramified at fewer than d primes.

Proof. We sketch the proof. Suppose G ∼= Z/n1 × · · · × Z/nd. By Dirichlet’s
theorem we can pick primes pi ≡ 1 (mod 2ni). Then G is a quotient of

Z/ ((p1 − 1)/2)× · · · × Z/ ((pd − 1)/2)

and so is isomorphic to Gal(K/Q), where K is a subfield of the compositum of the
maximal real subfields of the pi-th cyclotomic fields (1 ≤ i ≤ d). Note that K is
ramified at exactly d primes.

Conversely, suppose K/Q has Galois group G and the only finite primes ramified
in K are p1, . . . , pk. By Kronecker-Weber K is a subfield of the n-th cyclotomic field
L, where n = pr11 . . . prkk (the pi’s are distinct, ri ≥ 1 and ri ≥ 2 if pi = 2). Note
that G is a quotient of Gal(L/Q) ∼= (Z/pr11 )∗ × · · · × (Z/prkk )∗, which has at most
k + 1 generators. If K is totally real, then K ⊆ L+, the maximal real subfield of L.
Then G is a quotient of Gal(L+/Q), which has at most k generators. In either case,
the number of generators of G is less than or equal to the number of ramified (finite or
infinite) primes. �

If G is nonabelian, then the above yields a Gab-extension of Q ramified at exactly
d primes. We believe that there need be no further primes ramified in obtaining a
G-extension of Q. In other words, our first main conjecture states the following.

Conjecture 1.2. If G is a nontrivial finite group and d ≥ 1 denotes the minimal
number of generators of Gab, then there exists a G-extension of Q ramified at exactly d
primes (counting the infinite prime). Moreover, there is no such extension ramified at
fewer than d primes.

Note that the last sentence is proven by Theorem 1.1 and, if Gab = {1},
Minkowski’s Theorem. We refine this conjecture further to count G-extensions of Q
ramified at n finite primes with complex conjugation specified to be a particular ele-
ment σ of order 1 or 2 of G. This allows us, for instance, to specify whether we are
considering only totally real extensions (σ = {1}) or not. Let πn(x) denote the number
of n-tuples of rational primes all of which are less than or equal to x.

Conjecture 1.3. Let G be a nontrivial finite group and d ≥ 1 denote the minimal
number of generators ofGab. Let σ ∈ G have order 1 or 2 and n be any positive integer.
Let Sσ,n,x be the set of all G-extensions of Q ramified at at most n primes less than or
equal to x and with a complex conjugation equal to σ. Then |Sσ,n,x|/πn(x) tends to
a limit as x → ∞, depending only on G and n. Call this limit δ(G,n). Furthermore,
δ(G,n) > 0 if and only if n ≥ d. Set ε = 2 if G has even order, and 1 otherwise. Then
εδ(G,n)|Aut(G)| is an integer A(G,n).
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These two conjectures include special cases investigated by others, the history of
which is described in the next section. Subsequent sections give evidence for the con-
jectures in the cases when G has small order and when G belongs to certain families of
groups.

2. History

There is a long history of realising various finite groups as Galois groups over Q.
For example, in 1937, Scholz and Reichardt independently (see Serre [16]) realised
every group of odd prime power order, and in 1954, Shafarevich [18] realised every
finite solvable group. There are, however, still many open cases. For example, if G is
the Mathieu group on 23 letters, no G-extension of Q is currently known. It is widely
believed that G-extensions of Q (and even Q(t)) exist for any finite group G and this is
termed the inverse Galois problem.

Recently the question of the minimal number of primes ramified in a G-extension
of Q has been considered. In [15], Plans showed that Schinzel’s Hypothesis H implies
that Conjecture 1.2 above holds for all symmetric groups and dihedral groups. In [7],
Jones and Roberts made both conjectures in the case that d = n = 1, providing plenty
of evidence of both. In several of these cases they give a conjectural value for δ(G, 1)
based on work of Bhargava [1]. We discuss this more in the last section of this paper.

In the case that G is a finite p-group of order pm, Serre [16] noted that the Scholz-
Reichardt method produces a G-extension ramified at no more than m primes. Several
authors already made the conjecture that if d is the minimal number of generators for
Gab (and so, by Burnside’s basis theorem, for G itself), then there exists a G-extension
of Q ramified at no more than d finite primes. The purported proof by Cueto-Hernández
and Villa-Salvador [4] is flawed, as noted by Plans. Nomura [14] checked the conjecture
for all 3-groups of order less than or equal to 35. The most general result so far is the
recent proof by Kisilevsky and Sonn [8] that Conjecture 1.2 is true for all p-groups in the
class generated by cyclic p-groups and closed under direct products, wreath products,
and rank-preserving quotients. This also equals the class of semiabelian p-groups. It
does not contain any p-groups with derived length greater than their minimal number
of generators.

As regards Conjecture 1.3, we should also note that Malle [12, 13] has made some
far-reaching conjectures regarding the number of G-extensions of Q of discriminant of
absolute value less than or equal to x. Bhargava has several results in this direction [2].
Also, a preprint [3] of the first author and Ellenberg gives related conjectures regarding
which finite p-groups should arise as the Galois group of the maximal p-extension of
Q unramified outside a finite set of primes not including p and how often they should
arise. Connections between this and Conjecture 1.3, leading to proofs of several cases
of Conjecture 1.3, are discussed in the last section of this paper.

3. Small groups

In this section we describe various methods for establishing Conjecture 1.2 for
groups of small order. In particular these establish the following theorem.
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Theorem 3.1. Conjecture 1.2 holds for all groups of order less than or equal to 32.

The rest of the section outlines a proof of Theorem 3.1. First, note that by Theorem
1.1 we need only consider nonabelian groups. The method of Kisilevsky and Sonn [8]
takes care of the class of semiabelian p-groups, which by a result of Dentzer [5] includes
all p-groups of order less than or equal to 32. We therefore focus on nonabelian groups
which are not p-groups.

The first technique used is the bruteforce method of employing Klüners’s database
[9] of extensions of Q with root field of degree at most 15. The database allows one to
request the number of ramified primes and the signature. In each such case the Galois
group is a permutation group of degree at most 15. This method can therefore only
work for finite groups that have a subgroup with trivial core and index less than or
equal to 15. There exist groups with such a subgroup for which the database provides
no suitable extension, presumably because such an extension lies beyond the tables. In
any case, this method resolves Conjecture 1.2 affirmatively for all groups of order less
than or equal to 32 except for the i-th group of order n SmallGroup(n,i) in the
GAP SmallGroups Library, where [n, i] is in the following list:

(1) {[12, 1], [18, 3], [20, 3], [24, 4], [24, 7], [24, 11], [24, 13], [28, 3], [30, 2], [30, 3]}.

The remaining groups are taken care of by a variety of methods, the first one being
the following use of quadratic fields.

Lemma 3.2. Let h be odd and G = Z/ho Z/k, such that the image of the action
Z/k → Aut(Z/h) is generated by the inversion automorphism. If there exists a qua-
dratic field K = Q(

√
p) whose ideal class group has a cyclic quotient of order h and

p ≡ 1 (mod 2k) is a prime, then Conjecture 1.2 holds for G.

Proof. Let Kk denote the totally real subfield of Q(ζp) of degree k over Q and
H denote the subfield of the Hilbert class field of K corresponding to the cyclic quo-
tient of order h. This is Galois over Q. The extensions Kk and H are disjoint over
K, since Kk/K is totally ramified at the prime p above p, while H/K is unrami-
fied. Hence Gal(HKk/K) ∼= Z/(k/2) × Z/h while Gal(H/Q) ∼= Dh. We conclude
Gal(HKk/Q) ∼= Z/h o Z/k, with the action of the generator of Z/k given by inver-
sion. �

The other useful method is to employ the so-called simplest fields [11]. These are
one-parameter families of fields Ki(m) of degree i = 2, 3, 4, 5, and 6 whose members
are Galois over Q, totally real, and have cyclic Galois group. The simplest cubics were
introduced by Shanks in 1974 [17] and further families have since been introduced and
studied because of their explicit form and often large class numbers.

Definition 3.3 (Simplest Fields).

(a) Suppose m is not a square. The simplest quadratic field K2(m) is the splitting
field of polynomial x2 −m with discriminant 4m.

(b) The simplest cubic field K3(m) is the splitting field of polynomial

x3 −mx2 − (m+ 3)x− 1

with discriminant (m2 + 3m+ 9)2.
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(c) Let m 6= 0,±3. The simplest quartic field K4(m) is the splitting field of
polynomial

x4 −mx3 − 6x2 +mx+ 1

with discriminant 4(m2 + 16)3.

(d) The simplest quintic field K5(m) is the splitting field of polynomial

x5 +m2x4 − (2m3 + 6m2 + 10m+ 10)x3 + a2x
2 + a1x+ 1

with a2 = m4 +5m3 +11m2 +15m+5, a1 = m3 +4m2 +10m+10 and discriminant
(m3 + 5m2 + 10m+ 7)2(m4 + 5m3 + 15m2 + 25m+ 25)4.

(e) Let m 6= −8,−3, 0, 5. The simplest sextic field K6(m) is the splitting field of
polynomial

x6 − 2mx5 − (5m+ 15)x4 − 20x3 + 5mx2 + (2m+ 6)x+ 1

with discriminant 46656(m2 + 3m+ 9)5.

Similarly to the previous lemma, simplest fields provide a method of resolving
Conjecture 1.2 for metacyclic groups with cyclic abelianisation of order i ≤ 6. We
simply search through values of m that ensure Ki(m) has prime power discriminant,
for a field Ki(m) with the desired ideal class group.

We now systematically eliminate the groups remaining in list (1).

SmallGroup(12,1): This has Gab ∼= Z/4 and G′ ∼= Z/3. Searching with
MAGMA among primes that are 1 (mod 8) eventually yields p = 257 for which
Q(
√
p) has class number divisible by 3. By application of Lemma 3.2 we are done.

SmallGroup(18,3): This has Gab ∼= Z/6 and G′ ∼= Z/3. We search with
MAGMA through primes that are 1 (mod 12) and find that for p = 229, Q(

√
p) has

class number divisible by 3, giving by Lemma 3.2 the desired G-extension.

SmallGroup(20,3): This has Gab ∼= Z/4 and G′ ∼= Z/5. We search through
the fields K4(m) for one with prime power discriminant and class number divisible by
5. The first such is for m = 21 and the corresponding prime p is 457.

SmallGroup(24,4): This group G is the only group of order 24 with quotients
isomorphic to S3 and to the quaternion group Q8 of order 8. We therefore look in [9]
for a totally real S3-extension ramified at exactly one prime p, together with a totally
real Q8-extension ramified at the same p and exactly one other prime. This method
works for p = 229, the other prime being 5.

SmallGroup(24,7): This group is isomorphic to

SmallGroup(12,1)× Z/2

and so this case is resolved by compositing our first example above with Q(
√
p) for any

prime p ≡ 1 (mod 4), p 6= 257.

SmallGroup(24,11): This group G is isomorphic to Q8 × Z/3 with Gab just
2-generated. Reference [9] yields a totally real Q8-extension ramified only at 13 and
61 whose compositum with the cubic subfield of the 61st cyclotomic field is then a
G-extension.
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SmallGroup(24,13): This group is isomorphic to a semidirect product
(Z/2 × Z/2) o Z/6. The field K6(17) has class group isomorphic to (Z/2)4 and
discriminant 3495. All the groups of order 96 with a normal subgroup isomorphic to
(Z/2)4 with quotient Z/6 have a quotient isomorphic to SmallGroup(24,13).

SmallGroup(28,3): This group G is isomorphic to D7 × Z/2. Reference [9]
gives a totally real D7-extension ramified only at 577, whose compositum with any
Q(
√
p) with prime p ≡ 1 (mod 4), p 6= 577 then produces the desired G-extension.

SmallGroup(30,2): This has Gab ∼= Z/6 and G′ ∼= Z/5. We use MAGMA to
search for a prime p ≡ 1 (mod 12) such that the class number of Q(

√
p) is divisible by

5. Application of Lemma 3.2 with prime p = 1093 produces the desired G-extension.

SmallGroup(30,3): This is D15. Looking for a quadratic field Q(
√
p) with

p ≡ 1 (mod 4) and class number divisible by 15 works for p = 11321.

4. Families of groups

As indicated earlier, Conjecture 1.2 is known for various families without further
hypothesis (e.g., all abelian groups and semiabelian p-groups) and various others with
further hypothesis (e.g., all dihedral groups under Schinzel’s Hypothesis H). Families
where Gab is cyclic were studied in great detail by Jones and Roberts [7]. They, how-
ever, did not impose requirements on the infinite prime. Searching for totally real ex-
tensions increases the difficulties and disallows some arithmetic geometric methods.
For example, cuspidal eigenforms of level 1 yield Galois representations into GL(2, p),
for which the only finite prime ramified is p. For large enough p their image contains
SL(2, p) but they are surjective if and only if gcd(p − 1, k − 1) = 1, where k is the
weight of the eigenform. This yields, for many primes p, a GL(2, p)-extension of Q
ramified at exactly one finite prime p. Unfortunately they do not resolve Conjecture 1.2
for GL(2, p) since these extensions are totally imaginary. Not enough is known about
even Galois representations to help, but Darrin Doud kindly supplied the authors with
results from his investigations [6]. In particular, Conjecture 1.2 holds forA5×A5 since
there exist disjoint totally real A5-extensions ramified at only the prime 26591.

As regards Conjecture 1.3, Jones and Roberts [7] made this conjecture in the case
Gab cyclic, i.e., d = 1 and n = 1. For example, following heuristics of Bhargava
[1], they propose that δ(Sn, 1) equals the number of conjugacy classes in Sn which lie
outside An, divided by 2|Aut(Sn)|. Note that their δG is obtained by summing over
all possible complex conjugations, so will be our δ(G, 1) multiplied by the number of
elements of G of order 1 or 2.

For example, this gives δ(Sn, 1) = 1/2, 1/12, 1/24, 1/80, 1/576, 1/1440, 1/8064
for n = 2, 3, . . . , 8. Recall that A(Sn, 1) is defined to be 2δ(Sn, 1)|Aut(Sn)|. In this
case, it is the number of conjugacy classes of Sn that lie outside An.

In general, A(G,n) is the number of n-tuples of conjugacy classes of G that gen-
erate G and that satisfy condition (∗). To describe (∗), suppose that

Gab ∼= Z/n1 × · · · × Z/nd.
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We need that d of the conjugacy classes are closed under taking qi-th powers (with
1 ≤ i ≤ d), where qi is some prime that is 1 (mod ni), which is explained as follows.

The n-tuples of primes containing a prime dividing the order of G are of vanishing
density among all n-tuples of primes. The generic case is therefore that of a tamely
ramified G-extension. Let K/Q be such an extension. Let q be one of the n primes that
are tamely ramified in K/Q. Then the corresponding inertia subgroup of Gal(K/Q)
is cyclic, generated by say τq, which is defined up to conjugacy. Let cq denote the
conjugacy class of Gal(K/Q) containing τq. The element τq is conjugate to its q-th
power by a lift of Frobenius – equivalently cq is closed under taking q-th powers.

Since there are no nontrivial extensions of Q unramified at every finite prime, the
subgroup generated by all the cq must be the whole of Gal(K/Q). Thus, Gal(K/Q) is
generated by n conjugacy classes, each closed under certain power maps. If Gal(K/Q)
is isomorphic to G, then G must also be generated by such conjugacy classes. All we
are conjecturing is that the frequency with whichG arises is proportional to the number
of ways such conjugacy classes can be found in G. As noted in [3], this should be
weighted by 1/|Aut(G)|.

Thus A(G,n) is simply counting all the possibilities for (cq1 , . . . , cqn). Note that
not every n-tuple of conjugacy classes whose images generate Gab generate G, but
there is the following consistency between Conjectures 1.2 and 1.3.

Lemma 4.1. Let d1 ≥ 1 be the minimal number of generators of Gab. Let d2 be
the minimal number of conjugacy classes of G that generate G. Then d1 = d2.

Proof. If conjugacy classes generate G, then their images generate Gab and so
d1 ≤ d2. As for the other direction, let R(G) denote the intersection of all maximal
normal subgroups of G. Then G/R(G) ∼= S1×· · ·×Sk, where the Si are finite simple
groups. Suppose the last k − r are abelian, so that

G/R(G) ∼= S1 × · · · × Sr ×A,
where A is an abelian quotient of G and so generated by d1 elements. Extending these
d1 elements to elements of G/R(G) by picking nontrivial elements of the S1, . . . , Sr
components, we see that G/R(G) is generated by the conjugates of d1 elements. Pick
any lifts of these to G. If the conjugates of these d1 elements do not generate G, then
they lie in some maximal normal subgroup N . But then their images in G/R(G) lie in
N/R(G) and so do not generate G/R(G), a contradiction. Thus, d1 = d2. �

We can prove several cases of the positive density part of Conjecture 1.3 for nilpo-
tent groups G. By this we mean that if the density exists, then it is positive. Alterna-
tively, we obtain a positive lower bound for the density defined as a lim inf rather than
a limit.

Theorem 4.2. Let G be a d-generated nilpotent group of odd order, such that the
commutator subgroup [G,G] is contained in the center of G. Then δ(G, d) is positive.

Proof. Let e denote the exponent of G. Suppose Gab ∼= Z/n1 × · · · × Z/nd.
Consider any d-tuple S of primes {p1, . . . pd} satisfying

(a) pi ≡ 1 (mod e), 1 ≤ i ≤ d,
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(b) pi (mod pj) ∈ (Z/pj×)nj , 1 ≤ i 6= j ≤ d.

There exists a unique Gab-extension K of Q unramified outside S.

First consider the case when G is a p-group. Note that the conditions on the primes
in S guarantee that K satisfies the Scholz condition SN [16], where pN = e. Having
obtained a Gab-extension K, we proceed to obtain a G-extension L of Q containing K
by solving a series of central embedding problems each having a kernel of prime order
using the method of Scholz-Reichardt as in [16]. By Corollary 2.1.8 [16], there exists
a G-extension unramified outside S.

Now consider the case when G is nilpotent. For each Sylow-p subgroup Gp of
G, the maximal p-subfield Kp of K is a Gabp -extension. We obtain a Gp-extension Lp
containing Kp unramified outside S as in the p-group case. The compositum

∏
p||G| Lp

gives the desired G-extension ramified only at {p1, . . . , pd}.
In each case, the density of the set of d-tuples of primes satisfying the two con-

ditions above gives us the lower bound φ(e)−d(n1 · · ·nd)1−d ≤ δ(G, d), where φ is
Euler’s phi function. �

The result above also follows from the work of Plans [15]. Note that the conditions
given in the proof of Theorem 4.2 are sufficient but not necessary. For example, Koch
[10, p. 121] showed that if {p, q} are primes satisfying

(a) p, q ≡ 1 (mod l),

(b) p, q 6≡ 1 (mod l2),

(c) xl − p has no solutions (mod q),

then the Galois group of the maximal l-extension unramified outside {p, q} is the non-
abelian group of order l3 and exponent l2. The set of primes {p, q} satisfying the three
conditions above is of positive density and is disjoint from the set of primes satisfying
the conditions of Theorem 4.2. Taking the union of the two sets we obtain a tighter
lower bound on δ(G, 2) for nonabelian groups G of order l3 and exponent l2.

Lemma 4.3. The positive density part of Conjecture 1.3 holds for all the nilpotent
groups of order less than or equal to 32.

The method of Kisilevsky and Sonn [8] chooses ramifying primes from a set of
primes which split completely in given finite extensions. This implies a positive lower
bound, call it λ(G), for δ(G, d) when G is a p-group of order less than or equal to 32.
There are only two nonabelian nilpotent non-p groups of order less than or equal to
32, namely SmallGroup(24,10), SmallGroup(24,11), and each has a pos-
itive density δ(G, d) ≥ λ(G)/3. This follows by using the method in [8] to realise
the Sylow-2 subgroup of G with two ramifying primes. The factor 1/3 comes from
choosing one of the primes to be additionally 1 (mod 3), which gives the Sylow-3
subgroup.

Whereas the above is proven by solving embedding problems, an alternative ap-
proach is to work from above instead of below, i.e., by realising larger groups mapping
onto our desired groups. This is related to work in a recent preprint of the first author
and Ellenberg [3].
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Suppose thatG is a finite p-group with the same number d of generators as relators.
Suppose Gab ∼= Z/n1 × · · · × Z/nd. If p is odd, let A(G) be the number of d-tuples
of conjugacy classes (c1, . . . , cd) that generate G and where ci is closed under taking
(1 + ni)-th powers. (There is a more complicated version for p = 2 that takes account
of the greater diversity of subgroups of Z∗2. ) The preprint contains the conjecture
that among all finite p-groups which have the same abelianisation as G, the probability
(measured as a natural density) that a d-tuple S of primes, all 1 (mod p), will satisfy
that the Galois group of the maximal p-extension of Q unramified outside S is isomor-
phic to G, is A(G)/|Aut(G)|.

Thus, for all the p-groupsG in [3] for which this conjecture is proven and for which
A(G) 6= 0, we have proven the positive density part of Conjecture 1.3. Moreover, if
G is a quotient of such a p-group, then we also deduce the positive density part of
Conjecture 1.3. In general, that density will be∑

H

aHA(H)
|Hab||Aut(H)|

summed over all finite p-groups H with generator rank and relation rank both equal to
d (the generator rank of G), where aH denotes the number of normal subgroups N of
H such that H/N is isomorphic to G. The above results suggest that the infinite sum is
always rational.
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