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THE MOBIUS CATEGORY OF A COMBINATORIAL
INVERSE MONOID WITH ZERO

EmiL DANIEL SCHWAB

RESUME. Diverses propriétés (y compris les évaluations des fonstile Mobius)
et les liens entre les monoides avec inverses combinatloeslement finis et les ca-
tégories de division de quasi-Mobius sont aisément dédietenonoide polycyclique
et le monoide de McAlister sont étudiés par I'intermédidies catégories de division
guasi-Mdbius. La description du monoide de McAlister irgpént le produit fibré
differe des descriptions de Lawson et Munn.

ABSTRACT. Various properties (including evaluations of Mdbius fiioes) and
connections betwednlocally finite combinatorial inverse monoids and quasidlis-
division categories are readily deduced. The polycyclicaid and the McAlister
monoid are investigated via quasi-Mébius-division catezg Our description of
McAlister’s monoid involving the pushout product differ®i Lawson’s and Munn'’s
descriptions.

1. Introduction

According to Leech [11], ambstract division categoris a pair(D, I), whereD
is a small category having finite pushouts, all of whose morphisms are egirnmg
and/ is an object ofD (called thequasi initial objec} such that for each object in
D, Hom(I,X) # @. A Loganathan and Leech category associated with an inverse
monoid ([2, Chapter VII, Section 8]) is, in particular, a division categ@wy, for each
inverse monoids, there is a standard division categdty(S), 1) defined by:

- 0b(C(S)) = E(S), whereE(S) is the set of all idempotents of the inverse
monoidS;

- Homf(e, f) = {(s,e) € Sx E(S)|s 's <eandss'= f}, where< is the
natural partial order on an inverse semigroup;

- The composition of two morphisms is given by

g " e B p = g Y b (s,0)(tg) = (st o).

All morphisms ofC/(S) are epimorphisms, the quasi initial object is the identity ele-
mentl of S and the squars, e), (¢, e), (t 'ts™1 ss71), (s~ tst~1 ¢t~ 1)] is a pushout.

Recu le 28 janvier 2009 et, sous forme définitive, le 2 juin 2009.
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Sometimes, instead of considering a standard division category of asenver-
noid S, it is preferable to consider another division categonyoin their application
of groupoids of fractions to inverse semigroups, James and Lawsamsg3]for the
connection between inverse monoids and division categories, the tesliacward di-
vision category of an inverse monoid.dfis an inverse monoid ankl is an idempotent
transversal of thé@-classes of5 such thatl € F, then the full subcategory'(S) of
the standard division categofy(.S) defined byOb(Cr(S)) = F'is a division category
(with 1 as the quasi initial object) called thieduced standard division category 8f
relative to the idempotent transvers&l If F' andF”’ are two idempotent transversals
defined as above thetiz(S) andCp (S) are isomorphic. Furthermore, there exists an
equivalence of division categorié§'(5),1) = (Cr(S), 1); see [3].

The concept of M6bius category was introduced by Leroux [14]. Yi&lip sum-
marize the terminology from the theory of Mdbius categories needed to staddr
this paper. For alecomposition-finite category' (i.e, a small category in which
any morphismn has only finitely many non-trivial factorizations = 3+), theinci-
dence algebraA(C) over the field of complex numbes§ is the C-algebra of all
functions¢ : MorC' — C with the usual structure of vector space o¢rnd the
multiplication (convolution) defined byt< « n)(a) = >_5.,)c () €(8) - n(7), where
(a) = {(B,v) € MorC x MorC | « = @v}. Theidentity elemenbf A(C) is ¢,
whered(a) = 1 if a is an identity morphism and(a) = 0 otherwise. AMObius
categoryis a decomposition-finite categoty satisfying the following condition: an
incidence functior € A(C) has a convolution inverse if and only §f«) # 0
for each identity morphisna of C'. An equivalent characterization of Mobius cate-
gories is the following: a Mobius category is a decomposition-finite categahyfiv
nite length (e, {(«) = sup{n € N | there exisiv, as, ..., a, non-identities such
thata = ajan - - - ay, } is finite for any morphism). In a Mobius category the iden-
tity morphisms are indecomposable morphisms of lefigénd the non-identity inde-
composable morphisms are morphisms of lengthA Moébius category iggradedif
1(Bv) = U(B) + () wheneversy makes sense. Mdbius category of binomial type
a graded category in whidlia) = I(a/) = n implies (}) = (‘Z/) for any non-negative
integerk < n, where (?) denotes the non-negative integé(s, ) | 3y = a and
I(v) = k}|. The Mobius categor¢’ of binomial type is calledull if [ : MorC — N
is onto. The Mdbius functiop of a Mobius category is the convolution inverse of the
zeta functior¢ defined by((«) = 1 for each morphism. We have the following basic
equivalencet = n * ( if and only if n = £ x u which is called the Mébius inversion
formula.

Now, a reduced standard division categdry(S) is a Mobius category if and
only if the inverse monoids is combinatorial (aperiodic) anidcally finite (that is,
the poset of idempotentdZ(S), <) is locally finite); see [24, Theorem 3.3]. It is
straightforward to see that for a locally finite combinatorial bisimple inverseamon
S the Mobius categorg’r(S) is a monoid (a category which has precisely one object)
namely theR-class ofS containing the identity. Here is a categorical (and combina-
torial) interpretation of Clifford’s theory of bisimple inverse monoids: evesjrple
inverse monoid could be described in terms of a right cancellative monoid ichwh
the set of principal left ideals is closed under finite intersections. In péaticif S
is the bicyclic semigroup, then the incidence algebr&'pfS) is (isomorphic to) the
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algebra of arithmetical functions with Cauchy productS|fs the multiplicative ana-
logue of the bicyclic semigroup, then the incidence algebraafS) is (isomorphic to)
the algebra of arithmetical functions with Dirichlet product. So, the clasMcddius
function is the Mobius function of the multiplicative analogue of the bicyclic semi-
group. If S is a fundamental simple inverse-semigroup, therC'r(.S) is free on a
non-trivial cyclic directed graph and 0 (S) is a Mébius category of full binomial
type. In this case, a reduced incidence algebré&'efS) is isomorphic to the alge-
bra of formal power serie€[[X]], and the M&bius inversion formula far's(S) is
one of special kind; see [25, Theorem 4.3]. The Mobius inversiomdita of the
free monogenic inverse monoid is a two-dimensional analogue of the Mobies in
sion formula for the bicyclic semigroup, and in [27], a Dirichlet analoguéeffree
monogenic inverse monoid via Mdbius inversion is given. Now, any alis#ébius-
division category(C, I) (i.e, an abstract division category which is a M&bius category)
is isomorphic to a reduced standard division categogy.S) of a locally finite com-
binatorial inverse monoid. This inverse monoid is the Leech [11] inverse monoid
S ={(a,8) € MorC x MorC | Doma = Domf3 = I;Codoma = Codom[3}
with the multiplication defined by, 3) - (¢/, 5') = (pa, gB'), where[3,a/, p, ] is a
pushout.

Zeros are special objects in semigroup theory and in Mobius-divisiogaatéhe-
ory. If S'is an inverse monoid with zero, thé®(.S), <) is locally finite (that is, every
segment of £(S), <) is finite) if and only if £(.5) is finite. So, for a combinatorial
inverse monoidS with zero, the reduced standard division categOgy(S) relative to
an idempotent transversal of the D-classes of5 with 1 € F'is a Mobius category
if and only if E(S) is finite. This is a very restrictive condition. In the case where
E(S) is not finite we shall omit the terminal objegtof the reduced standard division
categoryC'r(S) and we shall use Lawson’s [6] CRM category theory. One of the key
ideas in Lawson’s constructions [6, 7, 8] is to treat the zero as a distheplisdlement.
So, Lawson’s constructions are a slight generalization of [11], ugefour study via
Mobius categories.

Throughout this paper, we shall deal with inverse monoids with zero fachwthe
set of idempotents is not finite. Section 2 of this paper begins by definirsgréab
quasi-Mobius-division categories. Up to isomorphism, the only quasi-Médivision
categories are the reduced standard division categorietoatlly finite combinatorial
inverse monoids. Some algebraic connections between quasi-Mobis®1aicate-
gories and combinatorial inverse monoids are presented. The sectisrwéhdwo
evaluations of the Mdébius function of(alocally finite combinatorial inverse monoid.
Section 3 contains two examples: the polycyclic monoid and the McAlister monoid
over a non-empty sef. Via their quasi-Mdobius-division categories and their Mobius
functions, the step of generalizations from the bicyclic semigroup to pdigeyionoids
and from the free monogenic inverse monoid to McAlister's monoids is then mpthin
but the passing from the additive monoid of non-negative intejecsthe free monoid
>*. These generalizations require quasi-Mobius-division categoriesthefeMobius-
division categories and therefore the resulting combinatorial inverse ideoage mo-
noids with zero. Our description of the elements of the resulting McAlister'samlan
terms of triples differs from Lawson’s [4, 5] and Munn’s [21] destiops. We assume
that the reader is familiar with the basic theory of inverse semigroups angbcia®
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We use [2] and [4] as standard references for the algebraic thEiomeose semigroups,
in particular with regard to division categories, polycyclic and McAlister seouigs.

2. Quasi-Mobius-division categories

Let S be an inverse monoid with zero for which the set of idempotéiits) is not
finite. We say tha¥ is 0-locally finite if every order interval of the poseE*(5), <) is
finite, whereE*(S) = E(S)\ {0} and< denotes the natural partial order on an inverse
semigroup. Recall that is calledcombinatorial (aperiodic)f all subgroups ofS are
trivial, that isH = 1g (Green’sH relation is the equality relation).

By a quasi-Mo6bius-division category we mean a small category with the follo-
wing properties:

(a) every morphism of’ is an epimorphism;
(b) C has a quasi initial objedt (i.e., for each objecX in C, Hom(I, X) # @);
(c) C has aterminal objedt,

(d) the full subcategory’* of C' obtained by trimming the objects sewC to
ObC' \ {0} is a MObius category;

(e) if o, 8 € MorC* such that'a = 33 for somed/, 3’ € MorC*, thena and
[ have a pushout in™*.

Theorem 1. Let S be an inverse monoid with zero akidbe an idempotent transver-
sal of theD-classes o with 1 € F. Then the reduced standard division category
Cr(S) is a quasi-Mébius-division category if and onlySfis 0-locally finite and com-
binatorial.

Proof. Suppose tha€'r(S) is a quasi-Mdbius-division category. ¢ is a non-
trivial subgroup ofS then anH-classH., with e € F ande # 0, is non-trivial. Let
s € H. such thats # e. Then(s,e) : e — e is a non-identity isomorphism @'.(S5).
It follows that the length of the identity morphism frogo e is not finite, which is a
contradiction. Consequently,is combinatorial.

To show that E*(5), <) is locally finite it is enough to show that the interya 1]
is finite for anye € E*(S). If e € E*(S) then there exists a necessarily unidfues F™*
(F"* = F'\ {0}) such that and f. areD-related. Since is combinatorial there exists
a necessarily unique. € S* (S* = S\ {0}) such thats_'s, = e ands.s; ! = f.. If
g € [e,1] then it is straightforward to check thét.s; ', f,) is @ morphism o’} (S)
from f, to f., that(sg, 1) is a morphism ofC7(S) from 1 to f,, and that(s., 1) is a
morphism ofC%(S) from 1 to f.. Moreover,(s¢,1) = (Sesg_l, fq) - (sg,1), that is
((sesg‘l,fg), (s4,1)) belongs to((s., 1)). Since,g’ # g impliess, # s, it follows
that the functior® : [e, 1] — ((s., 1)) defined by

0(g) = ((363517 fq)s (5g,1))

is injective. But the Mobius categoly;:(.S) is decomposition-finite and therefore the
set((se, 1)) is finite. It follows that[e, 1] is finite.
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Conversely, suppose thatis 0-locally finite and combinatorial. A reduced stan-
dard division category of an inverse monoid is a division category. ThusS) has
a quasi-initial object (the identity elementof S) and every morphism of’'z(S) is
an epimorphism. The zero element®fs a final object ofC»(S). SinceS is com-
binatorial and(E*(.S), <) is locally finite it follows (by a simple investigation of [24,
Theorem 3.3]) tha€';.(.S) is a Mobius category.

Let us prove assertion (e). Let = (s,e) and = (¢, e) be two morphisms of
C%(S) such that/a = 33 for somed’ = (u,ss™1), B = (v, tt™1) € MorC%(S).
Thenus = vt # 0. Putz = t~'ts~! andy = s~'st!. Itis routine to check that the
diagram

is a pushout irC%(5). O

Recall that [26, Theorem 3.3] establishes that, up to isomorphism, the ordis4o
division categories are the reduced standard division categoriemicatorial inverse
monoids with the poset of idempotents locally finite. A similar result holds foriguas
Madbius-division categories.

Theorem 2. Every quasi-Mdobius-division categofy with a quasi initial object
I is isomorphic to a reduced standard division cateddgyS) of a 0-locally finite
combinatorial inverse monois.

Proof. We wish to apply the Leech-Lawson construction (Leech [11], Law6§n [
[7]). Let C be a quasi-Md6bius-division category with a quasi initial objedPut

Doma = Domf = 1,
Codoma = Codom3 } U0}

Define a product (called theushout produgton L(C') as follows:

(pa, qB') if [3,a/,p, q] is a pushout,
0 if 3, a’ has no pushout,

L(C) = {(a,ﬁ) € MorC* x MorC*

(., B) - (o, B') = {

(ando - (o, 8) = (o, ) - 0 = 0-0 = 0). This product is associative afitl;, 1;) is the
identity element of_.(C'). We have

E(L(C)) ={(a,a) |a € MorC*} U {0}.

The monoidL(C) is an inverse monoid(a, 3)~! = (3,a) and0~! = 0. Since
(041, ,31),6(012, 52) if and onIy if 51 = (o, and(al, ﬂl)R(Ozz, 52) if and onIy ifa; = as
(whereL andR are the Green relations), it follows tha{C') is combinatorial. Next
observe thata, o) < (5, 3) if and only if ¢35 = o for someq € MorC*, and because
C* is decomposition finite it follows that(C') is 0-locally finite. Now, in theD-locally
finite combinatorial inverse monoifl(C), two idempotentga, «) and (3, 3) are D-
related if and only ifCodoma = Codom/3. We make a choice 4 from Hom(I, A)
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forany A € ObC* such thatwy = 17if A = 1. Then,
F ={(aa,aa)| Domayg = I,Codomay = A} acopc+ U {0}

is an idempotent transversal of tli&classes ofL(C') with (17,1;) € F, and the
applicationG : C — Cp(L(C)) defined by

G(0) =0,

G(A) = (o4, a),

G(B) = ((acodomp, FDomp); (Dom s, Domp)),
G(A—0)=(aag,a4) — 0,

is an isomorphism of categories. O

As usual, by a&-FE-unitary (or E*-unitary) inverse monoidve mean an inverse
monoid .S such that for alls € S*(= S\ {0}) ande € E*(S), es € E*(S) implies
s € E*(S). We have (see also [6, Section 3, Theorem 5]):

Theorem 3. Let C' be a quasi-Mdébius-division category. Thé€h is cancellative
(that is, every morphism af* is both a monomorphism and an epimorphism) if and
only if the0-locally finite combinatorial inverse monoid C') is E*-unitary.

Proof. Suppose that' is cancellative. Leta, 5) € L*(C) and(y,~) € E*(L(C))

be such thaty, v)(«, 5) € E*(L(C)). But,
(v (e, B) = (P, 4B),
where the diagram
I ——>—— Codoma
Codomry —

is a pushout diagram. Spy = ¢ impliesqa = ¢3. By cancellativity,a = 3. Hence,
L(C) is E*-unitary.

Conversely, suppose tha{C') is E*-unitary. Now, we will show that every mor-
phism of C* is a monomorphism. Lai, « and/ be three morphisms @™ such that
ua = uf. If w € Hom(I, Doma = Domf3), then the diagram

aw
I — Domu

% J

Codomu — Codomu
1C’on!om,u

is a pushout diagram, whefe= uaw = ufw. Therefore,

(7a 7)(0“07 ﬁw) = (1Codomu7a uﬁw) = (uﬁw, uﬁw)

SinceL(C) is E*-unitary we obtainaw, fw) € E*(L(C)), thatisaw = fw. Butin
C every morphism in an epimorphism, and therefare- 5. Thus,u is a monomor-
phism. O
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Before moving on to other matters, let us remark that in a Mobius category the
condition

|[Hom(A, A)| =1, forany object4,

holds frequently; see [25]. Recall that an inverse semigroaprispletely semisimple
if the natural partial order is equality when restricted to dnglass. IfS is a com-
pletely semisimple combinatorial inverse monoid Wfi(S), <) locally finite andF'

is an idempotent transversal of thieclasses of5 with 1 € F', then the reduced stan-
dard division category’'»(.5) is a Mobius category with the above condition; see [24,
Theorem 4.1]. We shall say that a Mobius categorgfisypel if |[Hom(A, A)| =1

for any objectA.

Theorem 4. LetC' be a quasi-Mébius-division category. Then the Mébius category
C* is of typel if and only if theO-locally finite combinatorial inverse monoidC') is
completely semisimple.

Proof. Suppose that™* is of typel. To show thatl(C') is completely semisimple,
let (o, @) and(3, 3) be two idempotent elements 6{C') such tha{«, «)D(3, 3) and
(o, ) < (B,5). Then

Codoma = Codomf and ¢f = «, for someg.

Since|Hom(Codom/3, Codoma)| = 1, it follows thatg = 1cogoma. COnsequently,
(o, ) = (B, B). HenceL(C') is completely semisimple.

Conversely, suppose that thdocally finite combinatorial inverse monoi(C) is
completely semisimple. € Hom(A, A) for some objectd of C*, then the diagram

I—— A

"I

A4
A

is a pushout for any. € Hom(I, A). It follows that (yu, yu)(u, ) = (yu,yu), that
is (yu, yu) < (u,w). Now, it is clear tha{yu, yu)D(u, ). SinceL(C) is completely
semisimple, we havéyu,yu) = (u,u), that isyu = u. Hencey = 14. We have
proved thai Hom(A, A)| = 1 for any objectA of C*. So, the M&bius category™* is
of typel. O

If the inverse monoids is combinatorial and E*(S), <) is locally finite then the
Mobius categoryC;(S) is a (MObius) monoid iiC}(.S) has precisely one object. An
inverse monoids with zero and twdD-classes{0} and.S*, is 0-bisimple. IfC%.(5) is
a Mobius monoid thedZorC(S) = Hom(1,1) = {(s,1) | ss t = 1}.

Theorem 5. Let S be an inverse monoid with zero afidbe an idempotent transver-
sal of theD-classes of with 1 € F. Then,

(a) C%(S) is a Mobius monoid if and only ifE*(S), <) is locally finite andS is
both combinatorial an@l-bisimple.

(b) If C}(S) is a Mébius monoid then the monoid of morphisms(gf(S) is
(isomorphic to) théR -class ofS containing the identity.
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Now, let.S be a0-locally finite combinatorial inverse monoid (such tHats) is
not finite). ThenC'r(S) is a quasi-Mdbius division category and therefofg(S) is a
Mobius category. We say that the Mobius function(gf(S) is theMobius function of
the O-locally finite combinatorial inverse monoifl. Specializing to our case, we see
that [24, Theorem 3.5] leads to the following result.

Theorem 6. Let S be a0-locally finite combinatorial inverse monoid (such that
E(S) is not finite). The Mdbius functiom of S is given in either of the following
ways:

@) p(s.e) = pg-(e) ([(s.€), (e, €)]gx(e)), Whereug- .y is the Mdbius function of
the poset of quotient objecty*(e) of e in the Mdbius categorg’;.(S);

(b) 1(s,€) = fip=(ese)([s7's, €] pr(ese)), Wherepp. .se) is the Mébius function
of the posets* (eSe).

3. Examples

In this section we will study two examples: the polycyclic monoid and the McAlis-
ter monoid. Both aré-locally finite combinatorial inverse monoids whose sets of idem-
potents are not finite. 1§ is a0-locally finite combinatorial inverse monoid ar¢( S)
is not finite, then we say that’;.(S) is the Mobius category ofS. We say that the
incidence algebra af';.(5) is theincidence algebra of, and the Mobius function of
C%(S) is theMobius function ofS. (Up to isomorphism(C7(S) is uniquely deter-
mined.)

3.1. The free monoid as the Mdbius monoid of full binomial type bthe
polycyclic monoid
Let >* be the free monoid on a non-empty 8etFor a stringu = x12s . . . .y, itS
lengthm is denoted byu|. The empty string is denoted ldyand|1| = 0. If w = uw,
thenu is aprefixof w andv is asuffixof w. If w = uzv, thenz is afactor of w. A
prefix and a suffix ofv are factors ofiv.

The monoidX¥* is a Mobius monoid. Every morphism &f is both a monomor-
phism and an epimorphism. If the non-empty Sdt not a singleton, then the M6bius
monoid ¥* is not a division monoid because it is not a category with pushouts: it is
easy to see that the coangledii

v
—_— @

“l

has an embedding in a commutative square if and onlyaifidv aresuffix-comparable
(that is, one is a suffix of the other). Butif= «'u for someu’ € ¥*, oru = v'v for
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somev’ € ¥*, then one of the corresponding diagrams

e— e and o— e
L] dEE
°o——e ® *>1 L4

is a pushout. It follows that the categoky;, obtained fromx* (with |X| > 1) by
adjoining a terminal objed¢t, is a quasi-Mdbius-division category. By Theorem 2, there
is a0-locally finite combinatorial inverse monoib(Xf) such that a reduced standard
division categonyC'r(L(Xf)) relative to an idempotent transverdalof the D-classes

of L(3), with 1 € F', is isomorphic tag. We shall denotd.(Xf) as simplyPs.. The
monoid Py, is given by (see the construction 6{C') in the proof of Theorem 2, and
the above pushout diagrams)

Py = (2 x %) U {0},
with the (pushout) product defined by
(u,u"v") if « is a suffix ofv andv = " v’ for some string.”,
(u,v) - (u;0") =< (V'u,v’) if vis asuffix ofu’ andu’ = v"v for some string)”,
0 otherwise

(ando - (u,v) = (u,v) -0 = 0-0 = 0). This monoid is called thpolycyclic monoid
overX. Polycyclic monoids were introduced by Nivat and Perrot [22]. THedong
corollary is a consequence of Theorems 2, 3 and 5 of the previousrgectio

Corollary 1. The polycyclic monoidPs, (|X| > 1) is a0-locally finite, combinato-
rial, E*-unitary,0-bisimple inverse monoid.

Remark 1. If ¥ is a singleton, thel* is isomorphic to the monoid of non-negative
integers with respect to addition. This monoid is a Mdbius-division monoid thed do
not require a terminal object attachment. Sco¥ifs a singleton, the zero is omitted
and Py, (with |X| = 1) is the bicyclic semigroup. The polycyclic monoids are natural
generalizations of the bicyclic semigroup. In the cgSe= 1, the incidence algebra
of the Mobius-division monoid:* is the algebra of arithmetical functions with Cauchy
product.

It remains the assumptidi| > 1. The set
E(Pg) = {(u,u) | ue X"} U{0}

is the set of idempotents of the polycyclic monadit. Two non-zero idempotents
(u,u), (v,v) areD-related and therefore,

F={(1,1),0}
is an idempotent transversal of theclasses of;.

Corollary 2. (a) The Mdbius monoid”}.(Px) is isomorphic to the free mo-
noid>*.

(b) The free monoid:* is isomorphic to thék -class of the polycyclic monoiés,
which contain the identity oPs,.
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Theorem 7. The Mébius category (monoid) @%; is of full binomial type and the
reduced incidence algebra

R={¢e A(X") [ &(u) = &(v) if [u] = |v]}

is isomorphic to the algebra of formal power sefi8sX|].

Proof. For the Mdbius monoid*, the length functiord : ¥* — N is given by
l(u) = |u|l. Then(}) = 1if & < I(u); l(uv) = I(u) + I(v); andl is onto. Thus
the Md6bius monoid of the polycyclic monois is a Mobius category of full binomial
type.

If £ € R, then we write{(n) for £(u) if |u| = n. Then,® : R — C[[X]] defined
by

O = &m)xX"
n>0
is an algebra isomorphism. O

Now, for two non-zero idempotents, «) and(v, v) of the polycyclic monoidPs,,
we have(u, u) < (v,v) if and only if v is a suffix ofu. It follows that in the locally finite
partial ordered setE* (Px), <), the interval[(u, u), (1,1)] is a chain for any. € ¥*.
But, o* = {s = (u,v) € Pg|ss~! = (1,1)} = {(1,v) | (1,v) € Pg}. By Theorem
6 (b), it follows that

() = p(l,v) = pg-pgy) ([(v,v), (1, 1)] g+ (py))
and therefore

1 ifvo=1,
p(v) =< =1 if o] =1,
0 otherwise.

Theorem 8 (The Mdbius inversion formula for Ps). Let&,n : ¥* — C such that
£(1) =n(1). Then

E(zrxe - ) = (1) +n(z1) + n(z122) + - - + n(T122 - - T4
for any stringrxo - - - x,, € X% if and only if
77(3311‘2 e SUm) = 5(51?1562 e SCm) - 5(561962 T $m71)~
Proof. The theorem follows from the basic equivalenée= n * ¢ if and only if
n=E&x*pu. O

Notice that the Mobius-division categotyr(.S) (as a reduced standard division
category) of the bicyclic semigroup is the monoid (as a category with one object) of
the non-negative integers with the usual additibin+) and with the Mobius function

1 ifn=0,
pun)=¢ —1 ifn=1,
0 otherwise,

with n € N; see [24].
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Using the free monoid&* (as a quasi-Mobius-division category if 0 is adjoined)
instead of(N, +), the resulting0-locally finite combinatorial inverse monoid (as the
Leech-Lawson monoid) is the polycyclic mondid with the Mobius function obtained
before Theorem 8.

3.2. The McAlister monoid
Following [25], the M&bius-division categoy/»(.S) (as a reduced standard divi-
sion category) of the free monogenic inverse morid given by
- ObCR(S) =N,
{(a,n,b) eN*[a+m+b=n} ifm<n,
- Hom(m,n) =

@ otherwise

- The composition of two morphisnia, n,b) : m — n and(a’,p,V') : n — pis
given by(a’, p,V') - (a,n,b) = (a’ + a,p, b’ + b); and the Mdbius functiop of C(.S)
is the following one:

1 ifa=b=00ra=56=1,
ula,n,b)=¢ —1 if(a=0,b=1)or(a=1,b0=0),
0 otherwise.

Using X* instead ofN, we consider the (quasi-Mdbius-division) categ6ty de-
fined by

- ObCyx; = ¥*, with a terminal object adjoined;

- Hom(u,v) = {

- The composition of two morphisn{s, v, ) : v — v and(a’,w, V) : v — wis
given by(a’, w, ) - (a,v,b) = (a’ + a,w, b’ +b).

{(a,v,b) | v =vuu”, |u'| = a,|u”| =b} if uis afactor ofv,

I} otherwise

The resulting)-locally finite combinatorial inverse monoiti(Cy,) (the Leech-Lawson
monoid ofCy;) and the Md6bius function will be computed below.

It is straightforward to see that the small categ6ky (the full subcategory of’s;
obtained by trimming the objects s@bC’y;, to ¥*) is a decomposition-finite category
with finite length. So the categolys; is a MObius category of typé.

Theorem 9. The Mobius categor¢'s; is graded but it is not of binomial type.

Proof. First,l(a,v,b) = a + b = |v| — |u| is the length of a morphisrtu, v, b) of
C%, fromutow. Itfollows thati((a, w, V') (a, v, b)) = I(a', w,b") +(a, v, b) whenever
the compositior{a’, w, b')(a, v, b) makes sense.

If v = vwd”, with |v/| = |u”| = 1, then(1,v,1) = (0,v,1)(1,u'u,0) and
(1,v,1) = (1,v,0)(0,uu”, 1) are the non-identity indecomposable factorizations of
(1,v,1) € Hom(u,v). Moreover, ifw = u/v"u, with [«/| = [u"| = 1, then

(2,w,0) = (1,w,0)(1,u"u,0) is the unique non-identity indecomposable factoriza-

tion of (2,w,0) € Hom(u,w). Hence((_f) = 2 and <§> = 1, wherea = (1,v,1)
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andg = (2,w,0). Buti(«) = I(8). Thus, the Mobius categolys; is graded but it is
not of binomial type. O

Our further efforts to compute the Mobius functiprof Cs; will be greatly simpli-
fied by the use of Theorem 6 (a). The po§&{w) of quotient objects ofi € X* is the
setUyes+ Hom(u, v) under the usual quotient ordering:

(a,v,b) < (d',o', V) ifand only if (a”, v, ") - (a’, ", V') = (a,v,b)
for some morphisnta”, v, ") of C5,, i.e., (a,v,b) < (a’,7', V') if and only if
() o’ <aandd <o,

(i) o is afactor ofv,

”U,/| =a— a/a

(i) v =u/v'w’, where

lw'| =b—-V,

ie.,
(a,v,b) < (a'v'V') ifand only if (a — @', v,b — b') is a morphism of’5; from v to v,
where both morphism@:, v, b) and(a’, v’, b") have the same domain

By Theorem 6 (a),

M(a’ v, b) = HQ*(u) ([(a’ v, b)v (0’ U, O)]Q*(u))'

The interval[(a, v,b), (0,u,0)]g=(y) is described by the Hasse diagram:

(0,b)

N 7 (a,0)

@b)
A straightforward computation of Mdbius function of the above lattices gilies
Mdbius functiony of the Mobius categorg’s, (via Theorem 6 (a)):
1 fa=b=00ra=0=1,
pla,v,0) =¢ —1 if (a=0,b=1)or(a=1,b=0),
0 otherwise.



E. D. Schwab 105

Since the incidence functiorgs 6 andy of the Mobius categorg’s, do not depend
on strings, the basic equivalenge- n«( if and only if n = £« for strings-independent
incidence functiong andn leads to a classic case of Mébius inversion:

Given functiong,n : N x N — C, the relation

a b
g(aa b) = Z Z n(iaj)

i=0 j=0
holds for alla,b > 0 if and only if
§(a,b) —€&(a—1,b) —€(a,b—1) +&(a—1,b—1) ifa,b>1,
&(a,0) —&(a—1,0) ifa>1butb=0,
n(a’b) = .
£(0,b) —£(0,b—1) ifa=0andb>1,
£(0,0) ifa=0b=0.

We now change focus somewhat and take up the study@f,) (thatis, the Leech-
Lawson monoid of’y;). We will use Lawson'’s [5] superscript-1” defined by

. w if w=uwv, . v if w=uw,
woy = ) and u w= )
1 otherwise, 1 otherwise,

and we denote by’ (w) (or S(w)) the set of all prefixes (or suffixes, respectively)of

Itis straightforward to see that the empty strinig a quasi-initial object of’y; and
every morphism oy, is an epimorphism (moreovérs, is cancellative). However, if
¥ is not a singleton thed’; is not a division category. The coangle

(cow,d)
—_—w

(a,v,b)

S——=¢

has no embedding in a commutative square if there is no common faofor andw
with certain properties. We distinguish four cases.

Case (1)We havea > ¢, b < d, and there exists € ¥* with the following
properties:

() z € S(v)andz € P(w);
(i) wisafactor ofz, z = vuu” and|u/| = ¢, [u”]| = b.
(Then we have (z~!w) = (vz~!)w and we denote this string by |y| = a + |u| +d.)
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Case (2)We havea < ¢,b > d, and there exists € X* with the following
properties:

(i) z € P(v)andx € S(w);
(i) wis afactorofz, x = vw'vwu” and|u'| = a, |u"| = d.

(Then we havéwz—')v = w(z~'v) and we denote this string by |y| = ¢+ |u| +b.)

Case (3)We havea > ¢,b > d and, forx = w, z is a factor ofv such that
v =v"zv"”, where|v'| = a — cand|v”| = b — d. (Then we denote by y.)

—
V: ———l—m e — —— = —— ——
u
—
w: o === — =
x
Yy —— === — = — = — = ——

Case (4)We havea < ¢,b < d and, forx = v, x is a factor ofw such that
w = w'zw”, where|w'| = ¢ — a and|w”| = d — b. (Then we denote by y.)
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Only in these four cases, the above coangle has an embedding in a comenutativ
square and the corresponding pushout diagrams are as below.

(a,v,b)h J(ac,y,(]) (a,v,b)‘ B(O,y,bd)
vV—Y vV—m-Y
(07yrd7b) (cfa,y,O)
(a,v,b)h J(ac,v,bd) (a,v,b)h B(O,w,ﬂ)
V————Y =" V——mmYyY=w
(071}70) (cfa,w,dfb)

The following result follows at once.
Theorem 10. The category’s, is a quasi-Mdbius-division category.

Now, if u is the empty string, then the above four cases become:

Case (1)We havea > ¢, b < d, and there exists € X* such thatr € S(v),
x € P(w) and|z| = ¢+ b.

Case (2)We havea < ¢, b > d, and there exists € ¥* such thatr € P(v),
z € S(w) and|z| = a+d.

Case (3)We havea > ¢, b > d, andw is a factor ofv such thaty = v'wv”, where
[v'| = a—cand[v"| =b—d.

Case (4)We haveu < ¢, b < d, andv is a factor ofw such thatv = w'vw”, where
|w!| = ¢ —aand|w”| =d —b.

Eliminating redundant relations, we obtain:

Case (1)We havea > ¢, and there exists € ¥* such thatt € S(v), x € P(w)
and|v| — |z] = a —c.

Case (2)We havea < ¢, and there exists € ¥* such that: € P(v), z € S(w),
and|w| — |z| = ¢ — a.

Case (3)We havea > ¢, andw is a factor ofv such thatv = v'wv”, where
V| =a—c.

Case (4)We havea < ¢, andwv is a factor ofw such thatw = w’vw”, where
|w'| = ¢ — a.
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A morphism from the quasi initial objedtto v is a triple(a, v, b) with b = |v| — a
anda € {0,1,...,|v|} (actually a paifa, v)) and therefore we have
} U {0}
(in short,

a,ae€{0,1,...,|v|},ve X
= |v| — a’ andb = |v| —
L(Cg) = {(d',a,v) | v € ¥ andd’,a € {0,1,..., |v|}} U {0}).
We will use the pushout product definition from the proof of Theorentf Zhe inner
square of the diagram

L(Cs) = {((a',v b'), (a,v,b))

C’LU

—>
R

1
(c,w,d)
(a’ vb)‘ (a0
[

')

b) (7:9,9)
—>
a,y,0)

L— 8

is a pushout, then
(@', v,0), (a,0,0)) - ((c,w,d), (,w,d)) = (e +d',y, B+V), (v + ¢y, 0 + d)).
It follows that the product irl.(CY,) is defined by

((a/,v,0), (a,v,0)) - ((¢,w,d), (,w,d")) =

((a’,v(z7tw), d—b+b), (a—c+c,v(z7 w),d'))
(d —a+c,w(@ ), b)), (¢, wz ), b—d+d))
((d',0,1), (a—c+c,v,b—d+d'))

((a‘/ia’+ca w, dib"»b/)? (Cla w, d,))

if a > candz € S(v) N P(w) :
v]=lz| = a—c;

if a <candz € P(v) N S(w):
w|—|z| = c—a;

if a > candv = v'wv”
with [v'| = a—¢;

if a < candw = w'vw”

with |w'| = c—a;

0 otherwise;
(ando - ((a',v,b), (a,v,b)) = ((d’,v,b), (a,v,b)) -0 =0-0=0).

Thus, in the above short description of the elements(d@fy;) (and now we shall
denoteL(Cy) as simplyMsy), we have

My, ={(d’,a,v) |v € *andd’,a € {0,1,....
and the product is given as follows:

(d,a,v) - (c,d,w) =
if @ > candx € S(v) N P(w) : |v] —
if a <candx € P(v)NS(w):

if a > candv = v'wv” with [v'| = a — ¢

a,a—c+c,v(z7 w)) |z] = a —¢;

1

(
(@' —a+c,d,wx " v)) lw| — |z| = c—a;
(

if a < candv = w'vw” with [w'| = ¢ — a;

otherwise;
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(ando - (d’,a,v) = (d’;a,v)-0=0-0=0).
Consequently, we have

(a‘lv a, U) ’ (Cv Cl7 w) =

(d';a—c+d,v(x tw)) ifa>c andr € P(w):v=1v20"
with (v =1 orz = w)and|v'| = a — ¢;

(' —a+c,d,wxtv)) ifa<ec andr € P(v): w = w'zw"
with (w” = 1 orx = v) and|w’| = ¢ — q;

0 otherwise;

(ando - (d’,a,v) = (a’;a,v)-0=0-0=0).

Basic structural properties @ffy; that can be obtained by routine verifications are
listed below.

Theorem 11. In the inverse monoidls,,

(a) the inverse ofd’, a,v) is(a,d’,v);

(b) E(Ms) = {(a,a,v) € N> x ¥* | a < |v|} U {0} is the set of idempotents;
©) (d/,a,v)"'-(d,a,v) = (a,a,v) and(a’,a,v) - (a’,a,v)"' = (d’,d,v);

d) (a',a,v)L(V,b,w) ifand only ifa = b andv = w;

e) (a,a,v)R(V,b,w) ifand only ifa’ = b andv = w;

® (d,a,0)H,b,w) ifand only ifa = b,a’ =V andv = w;

9) (d,a,v)D(V,b,w) ifand only ifv = w;

(h) ¢ : ¥* — My defined by (v) = (0, |v|,v) is an embedding.

The following result follows from Theorems 2, 3 and 4 of the previousicec
Theorem 12. The monoidMs, (with |X| > 1) is a0-locally finite, combinatorial,
completely semisimpldy*-unitary inverse monoid.

This monoidMs; is just the McAlister monoid oveE. In the casgX| = 1 the
McAlister monoid (without zero) is the free monogenic inverse monoid. Inj&lyson
introduces McAlister semigroups in terms of triples of strings. Our descrigtidhe
elements of the McAlister monoid is also a description in terms of triples but differin
from those in [5] and [21]. In Lawson’s description (see [5] andJdc¢tion 9.4]),

Mg = {(u,v,w) € 2 |u € P(v),w € S(v)} U{0}
together with the multiplication given by

(x,y, Z) : (u,v,w) =

([(w2)y™ 1, [(uz)y~ yl(uz)"to], wlv™H(uz)]) if ¥ (uz) NSy # @
and(uz) X X #£ o

0 otherwise;
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(and0 - (u,v,w) = (u,v,w) -0 =0-0 = 0), is the McAlister monoid. It is routine to
check thatp : M3, — My, defined by

o(u,v,w) = (|u|, |v| — |w|,v) and ¢(0) =0

is an isomorphism of monoids.

If |X| = 1 then the categorg’s, is a Mdbius-division category and therefore it does
not require a terminal object attachment. In this case the McAlister monoides iy

M= = {(d';a,m) € N* |d',a < m},
with the multiplication

d,a—c+d,n+a—c) if a=candn+a—c>m;

(a';a,m)-(c,d,n) =

a,a—c+d,m) if a>candn+a—c

(

(@ —a+c,d,m+c—a) if a
( m;
(

> >
<candm +c¢c—a > n;
> <
< <

a—a+ed,n) if a<candm+c—a<n;

that is

(dya—c+d,max{n+a—c,m}) if a>c,

C.

VAN

(a';a,m) - (c,c,n) = {

(@ —a+c,d,max{m+c—a,n}) if a
Consequenth|s_; = {(a’,a,m) € N* | ¢/, a < m} equipped with the product
(d',a,m) - (c,c',n) = ((d/,a) o (¢,d), max{(m,a) o (c,n)}),

whereo denotes the bicyclic multiplication ([4, Section 3.4, Proposition 2)), is an iso-
morphic copy of the free monogenic inverse monoid.

3.3. Concluding discussion

The two examples of Section 3 are natural generalizations of two fundanmenta
verse monoids via quasi-Moébius-division categories. The two gendiafizavia quasi
Mdbius-division categories involving the free monaid (with |3| > 1) have a deep
similarity as outlined in the following table:
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(1) The starting locally finite combinatorial inverse monoid S:

(A) S = the bicyclic semigroup (B) § = the free monogenic inverse monoid

(2) The M bius-division category of S (as a reduced standard division category of S) and the
M dbius function of S:

(A) The monoid (as a category with (B)The truly standard division category D(N) of the
one object) of the non-negative inte- additive monoid (N, +):
gers with the usual addition (N, +):
-Ob(D(N))=N;
{(a,n,b)e N*la+m+b=n} if m<n,
- Hom(m,n)= .
otherwise
- (a',p,b)-(a,n.b)=(a+a,p,b'+b);
1 if n=0, 1 if a=b=0ora=b=1
u(n)= -1 ifn=1, M(a,n,b)=3-1 if (a=0,b=1) or (a=1,b=0)

0 otherwise. 0 otherwise

(3) The step of generalization to a quasi M dbius-division category involving the free monoid ¥+
(IZ1>1) ; the Mbius function :

(A) The free monoid X* adjoined (B) The category Cy:
with a terminal object 0;
- ObCy, =X* with a terminal object 0 adjoined;

_H@v,p)lv=u'uu",a=lu"l,b=lu"l},
Hom(u,v) _{ ¢  if uisnota factor of v.
-(a'\w,b")-(a,v,b)=(a+a,w,b'+b);
I oifv=l, 1 if a=b=0 or a=b=1
uvy=< -1 if =1, wa,v,by=:-1 if (a=0,b=1)or (a=1b=0)

0 otherwise. 0 otherwise

(4) The resulting 0-locally finite combinatorial inverse monoid (its reduced standard division
category is the above quasi M obius-division category):

(A) The polycyclic monoid Py (B) The McAlister monoid My,
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