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THE MÖBIUS CATEGORY OF A COMBINATORIAL
INVERSE MONOID WITH ZERO

EMIL DANIEL SCHWAB

RÉSUMÉ. Diverses propriétés (y compris les évaluations des fonctions de Möbius)
et les liens entre les monoïdes avec inverses combinatoires0-localement finis et les ca-
tégories de division de quasi-Möbius sont aisément déduits. Le monoïde polycyclique
et le monoïde de McAlister sont étudiés par l’intermédiairedes catégories de division
quasi-Möbius. La description du monoïde de McAlister impliquant le produit fibré
diffère des descriptions de Lawson et Munn.

ABSTRACT. Various properties (including evaluations of Möbius functions) and
connections between0-locally finite combinatorial inverse monoids and quasi-Möbius-
division categories are readily deduced. The polycyclic monoid and the McAlister
monoid are investigated via quasi-Möbius-division categories. Our description of
McAlister’s monoid involving the pushout product differs from Lawson’s and Munn’s
descriptions.

1. Introduction

According to Leech [11], anabstract division categoryis a pair(D, I), whereD
is a small category having finite pushouts, all of whose morphisms are epimorphisms,
andI is an object ofD (called thequasi initial object) such that for each objectX in
D, Hom(I,X) 6= ∅. A Loganathan and Leech category associated with an inverse
monoid ([2, Chapter VII, Section 8]) is, in particular, a division category. So, for each
inverse monoidS, there is a standard division category(C(S), 1) defined by:

- Ob(C(S)) = E(S), whereE(S) is the set of all idempotents of the inverse
monoidS;

- Hom(e, f) = {(s, e) ∈ S × E(S) | s−1s ≤ e andss−1= f}, where≤ is the
natural partial order on an inverse semigroup;

- The composition of two morphisms is given by

g
(t,g)
−→ e

(s,e)
−→ f = g

(st,e)
−→ f ; (s, e)(t, g) = (st, e).

All morphisms ofC(S) are epimorphisms, the quasi initial object is the identity ele-
ment1 of S and the square[(s, e), (t, e), (t−1ts−1, ss−1), (s−1st−1, tt−1)] is a pushout.
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Sometimes, instead of considering a standard division category of an inverse mo-
noidS, it is preferable to consider another division category ofS. In their application
of groupoids of fractions to inverse semigroups, James and Lawson [3]use, for the
connection between inverse monoids and division categories, the reduced standard di-
vision category of an inverse monoid. IfS is an inverse monoid andF is an idempotent
transversal of theD-classes ofS such that1 ∈ F , then the full subcategoryCF (S) of
the standard division categoryC(S) defined byOb(CF (S)) = F is a division category
(with 1 as the quasi initial object) called thereduced standard division category ofS
relative to the idempotent transversalF . If F andF ′ are two idempotent transversals
defined as above thenCF (S) andCF ′(S) are isomorphic. Furthermore, there exists an
equivalence of division categories(C(S), 1) ≈ (CF (S), 1); see [3].

The concept of Möbius category was introduced by Leroux [14]. We briefly sum-
marize the terminology from the theory of Möbius categories needed to understand
this paper. For adecomposition-finite categoryC (i.e., a small category in which
any morphismα has only finitely many non-trivial factorizationsα = βγ), the inci-
dence algebraA(C) over the field of complex numbersC is the C-algebra of all
functionsξ : MorC → C with the usual structure of vector space overC and the
multiplication (convolution) defined by:(ξ ∗ η)(α) =

∑

(β,γ)∈〈α〉 ξ(β) · η(γ), where
〈α〉 = {(β, γ) ∈ MorC × MorC | α = βγ}. The identity elementof A(C) is δ,
whereδ(α) = 1 if α is an identity morphism andδ(α) = 0 otherwise. AMöbius
categoryis a decomposition-finite categoryC satisfying the following condition: an
incidence functionξ ∈ A(C) has a convolution inverse if and only ifξ(α) 6= 0
for each identity morphismα of C. An equivalent characterization of Möbius cate-
gories is the following: a Möbius category is a decomposition-finite category with fi-
nite length (i.e., l(α) = sup{n ∈ N | there existα1, α2, . . . , αn non-identities such
thatα = α1α2 · · ·αn} is finite for any morphismα). In a Möbius category the iden-
tity morphisms are indecomposable morphisms of length0, and the non-identity inde-
composable morphisms are morphisms of length1. A Möbius category isgradedif
l(βγ) = l(β) + l(γ) wheneverβγ makes sense. AMöbius category of binomial typeis
a graded category in whichl(α) = l(α′) = n implies

(
α
k

)
=

(
α′

k

)
for any non-negative

integerk ≤ n, where
(
α
k

)
denotes the non-negative integer|{(β, γ) | βγ = α and

l(γ) = k}|. The Möbius categoryC of binomial type is calledfull if l : MorC → N

is onto. The Möbius functionµ of a Möbius category is the convolution inverse of the
zeta functionζ defined byζ(α) = 1 for each morphismα. We have the following basic
equivalence:ξ = η ∗ ζ if and only if η = ξ ∗ µ which is called the Möbius inversion
formula.

Now, a reduced standard division categoryCF (S) is a Möbius category if and
only if the inverse monoidS is combinatorial (aperiodic) andlocally finite (that is,
the poset of idempotents(E(S),≤) is locally finite); see [24, Theorem 3.3]. It is
straightforward to see that for a locally finite combinatorial bisimple inverse monoid
S the Möbius categoryCF (S) is a monoid (a category which has precisely one object)
namely theR-class ofS containing the identity. Here is a categorical (and combina-
torial) interpretation of Clifford’s theory of bisimple inverse monoids: every bisimple
inverse monoid could be described in terms of a right cancellative monoid in which
the set of principal left ideals is closed under finite intersections. In particular, if S
is the bicyclic semigroup, then the incidence algebra ofCF (S) is (isomorphic to) the
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algebra of arithmetical functions with Cauchy product. IfS is the multiplicative ana-
logue of the bicyclic semigroup, then the incidence algebra ofCF (S) is (isomorphic to)
the algebra of arithmetical functions with Dirichlet product. So, the classicalMöbius
function is the Möbius function of the multiplicative analogue of the bicyclic semi-
group. If S is a fundamental simple inverseω-semigroup, thenCF (S) is free on a
non-trivial cyclic directed graph and soCF (S) is a Möbius category of full binomial
type. In this case, a reduced incidence algebra ofCF (S) is isomorphic to the alge-
bra of formal power seriesC[[X]], and the Möbius inversion formula forCF (S) is
one of special kind; see [25, Theorem 4.3]. The Möbius inversion formula of the
free monogenic inverse monoid is a two-dimensional analogue of the Möbius inver-
sion formula for the bicyclic semigroup, and in [27], a Dirichlet analogue ofthe free
monogenic inverse monoid via Möbius inversion is given. Now, any abstract Möbius-
division category(C, I) (i.e., an abstract division category which is a Möbius category)
is isomorphic to a reduced standard division categoryCF (S) of a locally finite com-
binatorial inverse monoidS. This inverse monoid is the Leech [11] inverse monoid
S = {(α, β) ∈ MorC × MorC | Domα = Domβ = I;Codomα = Codomβ}
with the multiplication defined by(α, β) · (α′, β′) = (pα, qβ′), where[β, α′, p, q] is a
pushout.

Zeros are special objects in semigroup theory and in Möbius-division category the-
ory. If S is an inverse monoid with zero, then(E(S),≤) is locally finite(that is, every
segment of(E(S),≤) is finite) if and only ifE(S) is finite. So, for a combinatorial
inverse monoidS with zero, the reduced standard division categoryCF (S) relative to
an idempotent transversalF of theD-classes ofS with 1 ∈ F is a Möbius category
if and only if E(S) is finite. This is a very restrictive condition. In the case where
E(S) is not finite we shall omit the terminal object0 of the reduced standard division
categoryCF (S) and we shall use Lawson’s [6] CRM category theory. One of the key
ideas in Lawson’s constructions [6, 7, 8] is to treat the zero as a distinguished element.
So, Lawson’s constructions are a slight generalization of [11], useful in our study via
Möbius categories.

Throughout this paper, we shall deal with inverse monoids with zero for which the
set of idempotents is not finite. Section 2 of this paper begins by defining (abstract)
quasi-Möbius-division categories. Up to isomorphism, the only quasi-Möbius-division
categories are the reduced standard division categories of0-locally finite combinatorial
inverse monoids. Some algebraic connections between quasi-Möbius-division cate-
gories and combinatorial inverse monoids are presented. The section ends with two
evaluations of the Möbius function of a0-locally finite combinatorial inverse monoid.
Section 3 contains two examples: the polycyclic monoid and the McAlister monoid
over a non-empty setΣ. Via their quasi-Möbius-division categories and their Möbius
functions, the step of generalizations from the bicyclic semigroup to polycyclic monoids
and from the free monogenic inverse monoid to McAlister’s monoids is then nothing
but the passing from the additive monoid of non-negative integersN to the free monoid
Σ∗. These generalizations require quasi-Möbius-division categories instead of Möbius-
division categories and therefore the resulting combinatorial inverse monoids are mo-
noids with zero. Our description of the elements of the resulting McAlister’s monoid in
terms of triples differs from Lawson’s [4, 5] and Munn’s [21] descriptions. We assume
that the reader is familiar with the basic theory of inverse semigroups and categories.
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We use [2] and [4] as standard references for the algebraic theory of inverse semigroups,
in particular with regard to division categories, polycyclic and McAlister semigroups.

2. Quasi-Möbius-division categories

Let S be an inverse monoid with zero for which the set of idempotentsE(S) is not
finite. We say thatS is 0-locally finite if every order interval of the poset(E∗(S),≤) is
finite, whereE∗(S) = E(S)\{0} and≤ denotes the natural partial order on an inverse
semigroup. Recall thatS is calledcombinatorial (aperiodic)if all subgroups ofS are
trivial, that isH = 1S (Green’sH relation is the equality relation).

By a quasi-Möbius-division categoryC we mean a small category with the follo-
wing properties:

(a) every morphism ofC is an epimorphism;

(b) C has a quasi initial objectI (i.e., for each objectX in C,Hom(I,X) 6= ∅);

(c) C has a terminal object0;

(d) the full subcategoryC∗ of C obtained by trimming the objects setObC to
ObC \ {0} is a Möbius category;

(e) if α, β ∈ MorC∗ such thatα′α = β′β for someα′, β′ ∈ MorC∗, thenα and
β have a pushout inC∗.

Theorem 1. LetS be an inverse monoid with zero andF be an idempotent transver-
sal of theD-classes ofS with 1 ∈ F . Then the reduced standard division category
CF (S) is a quasi-Möbius-division category if and only ifS is 0-locally finite and com-
binatorial.

Proof. Suppose thatCF (S) is a quasi-Möbius-division category. IfG is a non-
trivial subgroup ofS then anH-classHe, with e ∈ F ande 6= 0, is non-trivial. Let
s ∈ He such thats 6= e. Then(s, e) : e → e is a non-identity isomorphism ofC∗

F (S).
It follows that the length of the identity morphism frome to e is not finite, which is a
contradiction. Consequently,S is combinatorial.

To show that(E∗(S),≤) is locally finite it is enough to show that the interval[e, 1]
is finite for anye ∈ E∗(S). If e ∈ E∗(S) then there exists a necessarily uniquefe ∈ F ∗

(F ∗ = F \ {0}) such thate andfe areD-related. SinceS is combinatorial there exists
a necessarily uniquese ∈ S∗ (S∗ = S \ {0}) such thats−1

e se = e andses
−1
e = fe. If

g ∈ [e, 1] then it is straightforward to check that(ses
−1
g , fg) is a morphism ofC∗

F (S)
from fg to fe, that(sg, 1) is a morphism ofC∗

F (S) from 1 to fg, and that(se, 1) is a
morphism ofC∗

F (S) from 1 to fe. Moreover,(se, 1) = (ses
−1
g , fg) · (sg, 1), that is

((ses
−1
g , fg), (sg, 1)) belongs to〈(se, 1)〉. Since,g′ 6= g implies sg′ 6= sg, it follows

that the functionθ : [e, 1] → 〈(se, 1)〉 defined by

θ(g) = ((ses
−1
g , fg), (sg, 1))

is injective. But the Möbius categoryC∗
F (S) is decomposition-finite and therefore the

set〈(se, 1)〉 is finite. It follows that[e, 1] is finite.
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Conversely, suppose thatS is 0-locally finite and combinatorial. A reduced stan-
dard division category of an inverse monoid is a division category. ThusCF (S) has
a quasi-initial object (the identity element1 of S) and every morphism ofCF (S) is
an epimorphism. The zero element ofS is a final object ofCF (S). SinceS is com-
binatorial and(E∗(S),≤) is locally finite it follows (by a simple investigation of [24,
Theorem 3.3]) thatC∗

F (S) is a Möbius category.

Let us prove assertion (e). Letα = (s, e) andβ = (t, e) be two morphisms of
C∗

F (S) such thatα′α = β′β for someα′ = (u, ss−1), β′ = (v, tt−1) ∈ MorC∗
F (S).

Thenus = vt 6= 0. Putx = t−1ts−1 andy = s−1st−1. It is routine to check that the
diagram

e
(t,e)

//

(s,e)

��

tt−1

(y,tt−1)
��

ss−1
(x,ss−1)

// xx−1 = yy−1

is a pushout inC∗
F (S). �

Recall that [26, Theorem 3.3] establishes that, up to isomorphism, the only Möbius-
division categories are the reduced standard division categories of combinatorial inverse
monoids with the poset of idempotents locally finite. A similar result holds for quasi-
Möbius-division categories.

Theorem 2. Every quasi-Möbius-division categoryC with a quasi initial object
I is isomorphic to a reduced standard division categoryCF (S) of a 0-locally finite
combinatorial inverse monoidS.

Proof. We wish to apply the Leech-Lawson construction (Leech [11], Lawson [6],
[7]). Let C be a quasi-Möbius-division category with a quasi initial objectI. Put

L(C) =

{

(α, β) ∈MorC∗ ×MorC∗

∣
∣
∣
∣

Domα = Domβ = I,

Codomα = Codomβ

}

∪ {0}.

Define a product (called thepushout product) onL(C) as follows:

(α, β) · (α′, β′) =

{

(pα, qβ′) if [β, α′, p, q] is a pushout,

0 if β, α′ has no pushout,

(and0 · (α, β) = (α, β) · 0 = 0 · 0 = 0). This product is associative and(1I , 1I) is the
identity element ofL(C). We have

E(L(C)) = {(α, α) | α ∈MorC∗} ∪ {0}.

The monoidL(C) is an inverse monoid,(α, β)−1 = (β, α) and 0−1 = 0. Since
(α1, β1)L(α2, β2) if and only ifβ1 = β2, and(α1, β1)R(α2, β2) if and only ifα1 = α2

(whereL andR are the Green relations), it follows thatL(C) is combinatorial. Next
observe that(α, α) ≤ (β, β) if and only if qβ = α for someq ∈MorC∗, and because
C∗ is decomposition finite it follows thatL(C) is 0-locally finite. Now, in the0-locally
finite combinatorial inverse monoidL(C), two idempotents(α, α) and(β, β) areD-
related if and only ifCodomα = Codomβ. We make a choiceαA from Hom(I, A)
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for anyA ∈ ObC∗ such thatαA = 1I if A = I. Then,

F = {(αA, αA) | DomαA = I, CodomαA = A}A∈ObC∗ ∪ {0}

is an idempotent transversal of theD-classes ofL(C) with (1I , 1I) ∈ F , and the
applicationG : C → CF (L(C)) defined by







G(0) = 0,

G(A) = (αA, αA),

G(β) = ((αCodomβ, βαDomβ), (αDomβ , αDomβ)),

G(A→ 0) = (αA, αA) → 0,

is an isomorphism of categories. �

As usual, by a0-E-unitary (or E∗-unitary) inverse monoidwe mean an inverse
monoidS such that for alls ∈ S∗(= S \ {0}) ande ∈ E∗(S), es ∈ E∗(S) implies
s ∈ E∗(S). We have (see also [6, Section 3, Theorem 5]):

Theorem 3. Let C be a quasi-Möbius-division category. ThenC∗ is cancellative
(that is, every morphism ofC∗ is both a monomorphism and an epimorphism) if and
only if the0-locally finite combinatorial inverse monoidL(C) isE∗-unitary.

Proof. Suppose thatC is cancellative. Let(α, β) ∈ L∗(C) and(γ, γ) ∈ E∗(L(C))
be such that(γ, γ)(α, β) ∈ E∗(L(C)). But,

(γ, γ)(α, β) = (pγ, qβ),

where the diagram

I
α

//

γ

��

Codomα

q

��

Codomγ
p

// •

is a pushout diagram. So,pγ = qβ impliesqα = qβ. By cancellativity,α = β. Hence,
L(C) isE∗-unitary.

Conversely, suppose thatL(C) is E∗-unitary. Now, we will show that every mor-
phism ofC∗ is a monomorphism. Letu, α andβ be three morphisms ofC∗ such that
uα = uβ. If w ∈ Hom(I,Domα = Domβ), then the diagram

I
αw

//

γ

��

Domu

u

��

Codomu
1Codomu

// Codomu

is a pushout diagram, whereγ = uαw = uβw. Therefore,

(γ, γ)(αw, βw) = (1Codomuγ, uβw) = (uβw, uβw).

SinceL(C) isE∗-unitary we obtain(αw, βw) ∈ E∗(L(C)), that isαw = βw. But in
C every morphism in an epimorphism, and thereforeα = β. Thus,u is a monomor-
phism. �
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Before moving on to other matters, let us remark that in a Möbius category the
condition

|Hom(A,A)| = 1, for any objectA,

holds frequently; see [25]. Recall that an inverse semigroup iscompletely semisimple
if the natural partial order is equality when restricted to anyD-class. IfS is a com-
pletely semisimple combinatorial inverse monoid with(E(S),≤) locally finite andF
is an idempotent transversal of theD-classes ofS with 1 ∈ F , then the reduced stan-
dard division categoryCF (S) is a Möbius category with the above condition; see [24,
Theorem 4.1]. We shall say that a Möbius category isof type1 if |Hom(A,A)| = 1
for any objectA.

Theorem 4. LetC be a quasi-Möbius-division category. Then the Möbius category
C∗ is of type1 if and only if the0-locally finite combinatorial inverse monoidL(C) is
completely semisimple.

Proof. Suppose thatC∗ is of type1. To show thatL(C) is completely semisimple,
let (α, α) and(β, β) be two idempotent elements ofL(C) such that(α, α)D(β, β) and
(α, α) ≤ (β, β). Then

Codomα = Codomβ and qβ = α, for someq.

Since|Hom(Codomβ,Codomα)| = 1, it follows thatq = 1Codomα. Consequently,
(α, α) = (β, β). HenceL(C) is completely semisimple.

Conversely, suppose that the0-locally finite combinatorial inverse monoidL(C) is
completely semisimple. Ifγ ∈ Hom(A,A) for some objectA of C∗, then the diagram

I
u

//

γu

��

A

γ

��

A
1A

// A

is a pushout for anyu ∈ Hom(I, A). It follows that(γu, γu)(u, u) = (γu, γu), that
is (γu, γu) ≤ (u, u). Now, it is clear that(γu, γu)D(u, u). SinceL(C) is completely
semisimple, we have(γu, γu) = (u, u), that isγu = u. Henceγ = 1A. We have
proved that|Hom(A,A)| = 1 for any objectA of C∗. So, the Möbius categoryC∗ is
of type1. �

If the inverse monoidS is combinatorial and(E∗(S),≤) is locally finite then the
Möbius categoryC∗

F (S) is a (Möbius) monoid ifC∗
F (S) has precisely one object. An

inverse monoidS with zero and twoD-classes,{0} andS∗, is 0-bisimple. IfC∗
F (S) is

a Möbius monoid thenMorC∗
F (S) = Hom(1, 1) = {(s, 1) | ss−1 = 1}.

Theorem 5. LetS be an inverse monoid with zero andF be an idempotent transver-
sal of theD-classes ofS with 1 ∈ F . Then,

(a) C∗
F (S) is a Möbius monoid if and only if(E∗(S),≤) is locally finite andS is

both combinatorial and0-bisimple.

(b) If C∗
F (S) is a Möbius monoid then the monoid of morphisms ofC∗

F (S) is
(isomorphic to) theR-class ofS containing the identity.
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Now, letS be a0-locally finite combinatorial inverse monoid (such thatE(S) is
not finite). ThenCF (S) is a quasi-Möbius division category and thereforeC∗

F (S) is a
Möbius category. We say that the Möbius function ofC∗

F (S) is theMöbius function of
the0-locally finite combinatorial inverse monoidS. Specializing to our case, we see
that [24, Theorem 3.5] leads to the following result.

Theorem 6. Let S be a0-locally finite combinatorial inverse monoid (such that
E(S) is not finite). The Möbius functionµ of S is given in either of the following
ways:

(a) µ(s, e) = µQ∗(e)

(
[(s, e), (e, e)]Q∗(e)

)
, whereµQ∗(e) is the Möbius function of

the poset of quotient objectsQ∗(e) of e in the Möbius categoryC∗
F (S);

(b) µ(s, e) = µE∗(eSe)([s
−1s, e]E∗(eSe)), whereµE∗(eSe) is the Möbius function

of the posetE∗(eSe).

3. Examples

In this section we will study two examples: the polycyclic monoid and the McAlis-
ter monoid. Both are0-locally finite combinatorial inverse monoids whose sets of idem-
potents are not finite. IfS is a0-locally finite combinatorial inverse monoid andE(S)
is not finite, then we say thatC∗

F (S) is theMöbius category ofS. We say that the
incidence algebra ofC∗

F (S) is theincidence algebra ofS, and the Möbius function of
C∗

F (S) is theMöbius function ofS. (Up to isomorphism,C∗
F (S) is uniquely deter-

mined.)

3.1. The free monoid as the Möbius monoid of full binomial type of the
polycyclic monoid

Let Σ∗ be the free monoid on a non-empty setΣ. For a stringu = x1x2 . . . xm, its
lengthm is denoted by|u|. The empty string is denoted by1 and|1| = 0. If w = uv,
thenu is aprefixof w andv is asuffixof w. If w = uzv, thenz is a factor of w. A
prefix and a suffix ofw are factors ofw.

The monoidΣ∗ is a Möbius monoid. Every morphism ofΣ∗ is both a monomor-
phism and an epimorphism. If the non-empty setΣ is not a singleton, then the Möbius
monoidΣ∗ is not a division monoid because it is not a category with pushouts: it is
easy to see that the coangle inΣ∗

•
v

//

u

��

•

•

has an embedding in a commutative square if and only ifu andv aresuffix-comparable
(that is, one is a suffix of the other). But ifv = u′u for someu′ ∈ Σ∗, or u = v′v for
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somev′ ∈ Σ∗, then one of the corresponding diagrams

•
v

//

u

��

•

1
��

•
u′

// •

and •
v

//

u

��

•

v′

��

•
1

// •

is a pushout. It follows that the categoryΣ∗
0, obtained fromΣ∗ (with |Σ| > 1) by

adjoining a terminal object0, is a quasi-Möbius-division category. By Theorem 2, there
is a0-locally finite combinatorial inverse monoidL(Σ∗

0) such that a reduced standard
division categoryCF (L(Σ∗

0)) relative to an idempotent transversalF of theD-classes
of L(Σ∗

0), with 1 ∈ F , is isomorphic toΣ∗
0. We shall denoteL(Σ∗

0) as simplyPΣ. The
monoidPΣ is given by (see the construction ofL(C) in the proof of Theorem 2, and
the above pushout diagrams)

PΣ = (Σ∗ × Σ∗) ∪ {0},

with the (pushout) product defined by

(u, v) · (u′, v′) =







(u, u′′v′) if u′ is a suffix ofv andv = u′′u′ for some stringu′′,

(v′′u, v′) if v is a suffix ofu′ andu′ = v′′v for some stringv′′,

0 otherwise,

(and0 · (u, v) = (u, v) · 0 = 0 · 0 = 0). This monoid is called thepolycyclic monoid
overΣ. Polycyclic monoids were introduced by Nivat and Perrot [22]. The following
corollary is a consequence of Theorems 2, 3 and 5 of the previous section):

Corollary 1. The polycyclic monoidPΣ (|Σ| > 1) is a0-locally finite, combinato-
rial, E∗-unitary,0-bisimple inverse monoid.

Remark 1. If Σ is a singleton, thenΣ∗ is isomorphic to the monoid of non-negative
integers with respect to addition. This monoid is a Möbius-division monoid that does
not require a terminal object attachment. So, ifΣ is a singleton, the zero is omitted
andPΣ (with |Σ| = 1) is the bicyclic semigroup. The polycyclic monoids are natural
generalizations of the bicyclic semigroup. In the case|Σ| = 1, the incidence algebra
of the Möbius-division monoidΣ∗ is the algebra of arithmetical functions with Cauchy
product.

It remains the assumption|Σ| > 1. The set

E(PΣ) = {(u, u) | u ∈ Σ∗} ∪ {0}

is the set of idempotents of the polycyclic monoidPΣ. Two non-zero idempotents
(u, u), (v, v) areD-related and therefore,

F = {(1, 1), 0}

is an idempotent transversal of theD-classes ofPΣ.

Corollary 2. (a) The Möbius monoidC∗
F (PΣ) is isomorphic to the free mo-

noidΣ∗.

(b) The free monoidΣ∗ is isomorphic to theR-class of the polycyclic monoidPΣ

which contain the identity ofPΣ.
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Theorem 7. The Möbius category (monoid) ofPΣ is of full binomial type and the
reduced incidence algebra

R = {ξ ∈ A(Σ∗) | ξ(u) = ξ(v) if |u| = |v|}

is isomorphic to the algebra of formal power seriesC[[X]].

Proof. For the Möbius monoidΣ∗, the length functionl : Σ∗ → N is given by
l(u) = |u|. Then(u

k) = 1 if k ≤ l(u); l(uv) = l(u) + l(v); and l is onto. Thus
the Möbius monoid of the polycyclic monoidPΣ is a Möbius category of full binomial
type.

If ξ ∈ R, then we writeξ(n) for ξ(u) if |u| = n. Then,Φ : R → C[[X]] defined
by

Φ(ξ) =
∑

n≥0

ξ(n)Xn

is an algebra isomorphism. �

Now, for two non-zero idempotents(u, u) and(v, v) of the polycyclic monoidPΣ,
we have(u, u) ≤ (v, v) if and only ifv is a suffix ofu. It follows that in the locally finite
partial ordered set(E∗(PΣ),≤), the interval[(u, u), (1, 1)] is a chain for anyu ∈ Σ∗.
But, Σ∗ ∼= {s = (u, v) ∈ PΣ | ss−1 = (1, 1)} = {(1, v) | (1, v) ∈ PΣ}. By Theorem
6 (b), it follows that

µ(v) = µ(1, v) = µE∗(PΣ)([(v, v), (1, 1)]E∗(PΣ))

and therefore

µ(v) =







1 if v = 1,

−1 if |v| = 1,

0 otherwise.

Theorem 8 (The Möbius inversion formula forPΣ). Let ξ, η : Σ∗ → C such that
ξ(1) = η(1). Then

ξ(x1x2 · · ·xm) = η(1) + η(x1) + η(x1x2) + · · · + η(x1x2 · · ·xm)

for any stringx1x2 · · ·xm ∈ Σ∗ if and only if

η(x1x2 · · ·xm) = ξ(x1x2 · · ·xm) − ξ(x1x2 · · ·xm−1).

Proof. The theorem follows from the basic equivalence:ξ = η ∗ ζ if and only if
η = ξ ∗ µ. �

Notice that the Möbius-division categoryCF (S) (as a reduced standard division
category) of the bicyclic semigroupS is the monoid (as a category with one object) of
the non-negative integers with the usual addition(N,+) and with the Möbius function

µ(n) =







1 if n = 0,

−1 if n = 1,

0 otherwise,

with n ∈ N; see [24].



E. D. Schwab 103

Using the free monoidΣ∗ (as a quasi-Möbius-division category if 0 is adjoined)
instead of(N,+), the resulting0-locally finite combinatorial inverse monoid (as the
Leech-Lawson monoid) is the polycyclic monoidPΣ with the Möbius function obtained
before Theorem 8.

3.2. The McAlister monoid
Following [25], the Möbius-division categoryCF (S) (as a reduced standard divi-

sion category) of the free monogenic inverse monoidS is given by

- ObCF (S) = N;

- Hom(m,n) =

{ {
(a, n, b) ∈ N

3 | a+m+ b = n
}

if m ≤ n,

∅ otherwise;

- The composition of two morphisms(a, n, b) : m → n and(a′, p, b′) : n → p is
given by(a′, p, b′) · (a, n, b) = (a′ + a, p, b′ + b); and the Möbius functionµ of CF (S)
is the following one:

µ(a, n, b) =







1 if a = b = 0 or a = b = 1,

−1 if (a = 0, b = 1) or (a = 1, b = 0),

0 otherwise.

UsingΣ∗ instead ofN, we consider the (quasi-Möbius-division) categoryCΣ de-
fined by

- ObCΣ = Σ∗, with a terminal object0 adjoined;

- Hom(u, v) =

{
{(a, v, b) | v = u′uu′′, |u′| = a, |u′′| = b} if u is a factor ofv,

∅ otherwise;

- The composition of two morphisms(a, v, b) : u → v and(a′, w, b′) : v → w is
given by(a′, w, b′) · (a, v, b) = (a′ + a,w, b′ + b).

The resulting0-locally finite combinatorial inverse monoidL(CΣ) (the Leech-Lawson
monoid ofCΣ) and the Möbius function will be computed below.

It is straightforward to see that the small categoryC∗
Σ (the full subcategory ofCΣ

obtained by trimming the objects setObCΣ to Σ∗) is a decomposition-finite category
with finite length. So the categoryC∗

Σ is a Möbius category of type1.

Theorem 9. The Möbius categoryC∗
Σ is graded but it is not of binomial type.

Proof. First, l(a, v, b) = a+ b = |v| − |u| is the length of a morphism(a, v, b) of
C∗

Σ from u to v. It follows thatl((a′, w, b′)(a, v, b)) = l(a′, w, b′)+ l(a, v, b) whenever
the composition(a′, w, b′)(a, v, b) makes sense.

If v = u′uu′′, with |u′| = |u′′| = 1, then (1, v, 1) = (0, v, 1)(1, u′u, 0) and
(1, v, 1) = (1, v, 0)(0, uu′′, 1) are the non-identity indecomposable factorizations of
(1, v, 1) ∈ Hom(u, v). Moreover, ifw = u′u′′u, with |u′| = |u′′| = 1, then
(2, w, 0) = (1, w, 0)(1, u′′u, 0) is the unique non-identity indecomposable factoriza-

tion of (2, w, 0) ∈ Hom(u,w). Hence

(
α

1

)

= 2 and

(
β

1

)

= 1, whereα = (1, v, 1)
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andβ = (2, w, 0). But l(α) = l(β). Thus, the Möbius categoryC∗
Σ is graded but it is

not of binomial type. �

Our further efforts to compute the Möbius functionµ of C∗
Σ will be greatly simpli-

fied by the use of Theorem 6 (a). The posetQ∗(u) of quotient objects ofu ∈ Σ∗ is the
set∪v∈Σ∗Hom(u, v) under the usual quotient ordering:

(a, v, b) ≤ (a′, v′, b′) if and only if (a′′, v, b′′) · (a′, v′, b′) = (a, v, b)

for some morphism(a′′, v, b′′) of C∗
Σ, i.e., (a, v, b) ≤ (a′, v′, b′) if and only if

(i) a′ ≤ a andb′ ≤ b,

(ii) v′ is a factor ofv,

(iii) v = u′v′w′, where

{

|u′| = a− a′,

|w′| = b− b′,

i.e.,

(a, v, b) ≤ (a′v′b′) if and only if (a− a′, v, b− b′) is a morphism ofC∗
Σ from v′ to v,

where both morphisms(a, v, b) and(a′, v′, b′) have the same domainu.

By Theorem 6 (a),

µ(a, v, b) = µQ∗(u)([(a, v, b), (0, u, 0)]Q∗(u)).

The interval[(a, v, b), (0, u, 0)]Q∗(u) is described by the Hasse diagram:

A straightforward computation of Möbius function of the above lattices givesthe
Möbius functionµ of the Möbius categoryC∗

Σ (via Theorem 6 (a)):

µ(a, v, b) =







1 if a = b = 0 or a = b = 1,

−1 if (a = 0, b = 1) or (a = 1, b = 0),

0 otherwise.
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Since the incidence functionsζ, δ andµ of the Möbius categoryC∗
Σ do not depend

on strings, the basic equivalenceξ = η∗ζ if and only ifη = ξ∗µ for strings-independent
incidence functionsξ andη leads to a classic case of Möbius inversion:

Given functionsξ, η : N × N → C, the relation

ξ(a, b) =
a∑

i=0

b∑

j=0

η(i, j)

holds for alla, b ≥ 0 if and only if

η(a, b) =







ξ(a, b) − ξ(a− 1, b) − ξ(a, b− 1) + ξ(a− 1, b− 1) if a, b ≥ 1,

ξ(a, 0) − ξ(a− 1, 0) if a ≥ 1 but b = 0,

ξ(0, b) − ξ(0, b− 1) if a = 0 andb ≥ 1,

ξ(0, 0) if a = b = 0.

We now change focus somewhat and take up the study ofL(CΣ) (that is, the Leech-
Lawson monoid ofCΣ). We will use Lawson’s [5] superscript “−1” defined by

wv−1 =

{

u if w = uv,

1 otherwise,
and u−1w =

{

v if w = uv,

1 otherwise,

and we denote byP (w) (orS(w)) the set of all prefixes (or suffixes, respectively) ofw.

It is straightforward to see that the empty string1 is a quasi-initial object ofCΣ and
every morphism ofCΣ is an epimorphism (moreoverC∗

Σ is cancellative). However, if
Σ is not a singleton thenC∗

Σ is not a division category. The coangle

u
(c,w,d)

//

(a,v,b)
��

w

v

has no embedding in a commutative square if there is no common factorx of v andw
with certain properties. We distinguish four cases.

Case (1)We havea ≥ c, b ≤ d, and there existsx ∈ Σ∗ with the following
properties:

(i) x ∈ S(v) andx ∈ P (w);

(ii) u is a factor ofx, x = u′uu′′ and|u′| = c, |u′′| = b.

(Then we havev(x−1w) = (vx−1)w and we denote this string byy; |y| = a+ |u|+d.)

v : −−−
...−−−

u
︷ ︸︸ ︷

| − − − |− −−
...

w :
...−−−

u
︷ ︸︸ ︷

| − − − |− −−
...−−−

y : −−−
...

x
︷ ︸︸ ︷

−−− | − −− | − −−
...−−−
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Case (2)We havea ≤ c, b ≥ d, and there existsx ∈ Σ∗ with the following
properties:

(i) x ∈ P (v) andx ∈ S(w);

(ii) u is a factor ofx, x = u′uu′′ and|u′| = a, |u′′| = d.

(Then we have(wx−1)v = w(x−1v) and we denote this string byy; |y| = c+ |u|+ b.)

v :
...−−−

u
︷ ︸︸ ︷

| − − − |− −−
...−−−

w : −−−
...−−−

u
︷ ︸︸ ︷

| − − − |− −−
...

y : −−−
...

x
︷ ︸︸ ︷

−−− | − −− | − −−
...−−−

Case (3)We havea ≥ c, b ≥ d and, forx = w, x is a factor ofv such that
v = v′xv′′, where|v′| = a− c and|v′′| = b− d. (Then we denotev by y.)

v : −−−
...−−−

u
︷ ︸︸ ︷

−−−−−−
...−−−

w :
...−−−

u
︷ ︸︸ ︷

−−−−−−
...

y : −−−
...

x
︷ ︸︸ ︷

−−−−−−−−−
...−−−

Case (4)We havea ≤ c, b ≤ d and, forx = v, x is a factor ofw such that
w = w′xw′′, where|w′| = c− a and|w′′| = d− b. (Then we denotew by y.)

v :
...−−−

u
︷ ︸︸ ︷

−−−−−−
...

w : −−−
...−−−

u
︷ ︸︸ ︷

−−−−−−
...−−−

y : −−−
...

x
︷ ︸︸ ︷

−−−−−−−−−
...−−−
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Only in these four cases, the above coangle has an embedding in a commutative
square and the corresponding pushout diagrams are as below.

(1) u
(c,w,d)

//

(a,v,b)

��

w

(a−c,y,0)

��

(2) u
(c,w,d)

//

(a,v,b)

��

w

(0,y,b−d)

��

v
(0,y,d−b)

// y v
(c−a,y,0)

// y

(3) u
(c,w,d)

//

(a,v,b)

��

w

(a−c,v,b−d)

��

(4) u
(c,w,d)

//

(a,v,b)

��

w

(0,w,0)

��

v
(0,v,0)

// y = v v
(c−a,w,d−b)

// y = w

The following result follows at once.

Theorem 10. The categoryCΣ is a quasi-Möbius-division category.

Now, if u is the empty string, then the above four cases become:

Case (1)We havea ≥ c, b ≤ d, and there existsx ∈ Σ∗ such thatx ∈ S(v),
x ∈ P (w) and|x| = c+ b.

Case (2)We havea ≤ c, b ≥ d, and there existsx ∈ Σ∗ such thatx ∈ P (v),
x ∈ S(w) and|x| = a+ d.

Case (3)We havea ≥ c, b ≥ d, andw is a factor ofv such thatv = v′wv′′, where
|v′| = a− c and|v′′| = b− d.

Case (4)We havea ≤ c, b ≤ d, andv is a factor ofw such thatw = w′vw′′, where
|w′| = c− a and|w′′| = d− b.

Eliminating redundant relations, we obtain:

Case (1)We havea ≥ c, and there existsx ∈ Σ∗ such thatx ∈ S(v), x ∈ P (w)
and|v| − |x| = a− c.

Case (2)We havea ≤ c, and there existsx ∈ Σ∗ such thatx ∈ P (v), x ∈ S(w),
and|w| − |x| = c− a.

Case (3)We havea ≥ c, andw is a factor ofv such thatv = v′wv′′, where
|v′| = a− c.

Case (4)We havea ≤ c, andv is a factor ofw such thatw = w′vw′′, where
|w′| = c− a.
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A morphism from the quasi initial object1 to v is a triple(a, v, b) with b = |v| − a

anda ∈ {0, 1, . . . , |v|} (actually a pair(a, v)) and therefore we have

L(CΣ) =

{

((a′, v, b′), (a, v, b))

∣
∣
∣
∣
∣

a′, a ∈ {0, 1, . . . , |v|}, v ∈ Σ∗,

b′ = |v| − a′ andb = |v| − a

}

∪ {0}

(in short,

L(CΣ) = {(a′, a, v) | v ∈ Σ∗ anda′, a ∈ {0, 1, . . . , |v|}} ∪ {0}).

We will use the pushout product definition from the proof of Theorem 2.If the inner
square of the diagram

1
(c′,w,d′)

//

(c,w,d)
//

(a,v,b)

��

(a′,v,b′)

��

w

(γ,y,δ)

��

v
(α,y,β)

// y

is a pushout, then

((a′, v, b′), (a, v, b)) · ((c, w, d), (c′, w, d′)) = ((α+ a′, y, β + b′), (γ + c′, y, δ + d′)).

It follows that the product inL(CΣ) is defined by

((a′, v, b′), (a, v, b)) · ((c, w, d), (c′, w, d′)) =






((a′, v(x−1w), d−b+b′), (a−c+c′, v(x−1w), d′)) if a ≥ c andx ∈ S(v) ∩ P (w) :
|v|−|x| = a−c;

((a′−a+c, w(x−1v), b′), (c′, w(x−1v), b−d+d′)) if a ≤ c andx ∈ P (v) ∩ S(w) :
|w|−|x| = c−a;

((a′, v, b′), (a−c+c′, v, b−d+d′)) if a ≥ c andv = v′wv′′

with |v′| = a−c;

((a′−a+c, w, d−b+b′), (c′, w, d′)) if a ≤ c andw = w′vw′′

with |w′| = c−a;

0 otherwise;

(and0 · ((a′, v, b′), (a, v, b)) = ((a′, v, b′), (a, v, b)) · 0 = 0 · 0 = 0).

Thus, in the above short description of the elements ofL(CΣ) (and now we shall
denoteL(CΣ) as simplyMΣ), we have

MΣ = {(a′, a, v) | v ∈ Σ∗ anda′, a ∈ {0, 1, . . . , |v|}} ∪ {0},

and the product is given as follows:

(a′, a, v) · (c, c′, w) =






(a′, a− c+ c′, v(x−1w)) if a ≥ c andx ∈ S(v) ∩ P (w) : |v| − |x| = a− c;

(a′ − a+ c, c′, w(x−1v)) if a ≤ c andx ∈ P (v) ∩ S(w) : |w| − |x| = c− a;

(a′, a− c+ c′, v) if a ≥ c andv = v′wv′′ with |v′| = a− c;

(a′ − a+ c, c′, w) if a ≤ c andv = w′vw′′ with |w′| = c− a;

0 otherwise;
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(and0 · (a′, a, v) = (a′, a, v) · 0 = 0 · 0 = 0).

Consequently, we have

(a′, a, v) · (c, c′, w) =






(a′, a− c+ c′, v(x−1w)) if a ≥ c, andx ∈ P (w) : v = v′xv′′

with (v′′ = 1 or x = w) and|v′| = a− c;

(a′ − a+ c, c′, w(x−1v)) if a ≤ c, andx ∈ P (v) : w = w′xw′′

with (w′′ = 1 or x = v) and|w′| = c− a;

0 otherwise;

(and0 · (a′, a, v) = (a′, a, v) · 0 = 0 · 0 = 0).

Basic structural properties ofMΣ that can be obtained by routine verifications are
listed below.

Theorem 11. In the inverse monoidMΣ,

(a) the inverse of(a′, a, v) is (a, a′, v);

(b) E(MΣ) = {(a, a, v) ∈ N
2 × Σ∗ | a 6 |v|} ∪ {0} is the set of idempotents;

(c) (a′, a, v)−1 · (a′, a, v) = (a, a, v) and(a′, a, v) · (a′, a, v)−1 = (a′, a′, v);

(d) (a′, a, v)L(b′, b, w) if and only if a = b andv = w;

(e) (a′, a, v)R(b′, b, w) if and only if a′ = b′ andv = w;

(f) (a′, a, v)H(b′, b, w) if and only if a = b, a′ = b′ andv = w;

(g) (a′, a, v)D(b′, b, w) if and only if v = w;

(h) ψ : Σ∗ →MΣ defined byψ(v) = (0, |v|, v) is an embedding.

The following result follows from Theorems 2, 3 and 4 of the previous section.

Theorem 12. The monoidMΣ (with |Σ| > 1) is a0-locally finite, combinatorial,
completely semisimple,E∗-unitary inverse monoid.

This monoidMΣ is just the McAlister monoid overΣ. In the case|Σ| = 1 the
McAlister monoid (without zero) is the free monogenic inverse monoid. In [5],Lawson
introduces McAlister semigroups in terms of triples of strings. Our descriptionof the
elements of the McAlister monoid is also a description in terms of triples but differing
from those in [5] and [21]. In Lawson’s description (see [5] and [4,Section 9.4]),

M ′
Σ = {(u, v, w) ∈ Σ∗3

| u ∈ P (v), w ∈ S(v)} ∪ {0}

together with the multiplication given by

(x, y, z) · (u, v, w) =






([(uz)y−1]x, [(uz)y−1]y[(uz)−1v], w[v−1(uz)]) if Σ∗(uz) ∩ Σ∗y 6= ∅

and(uz)Σ∗∩vΣ∗ 6= ∅;

0 otherwise;
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(and0 · (u, v, w) = (u, v, w) · 0 = 0 · 0 = 0), is the McAlister monoid. It is routine to
check thatϕ : M ′

Σ →MΣ defined by

ϕ(u, v, w) = (|u|, |v| − |w|, v) and ϕ(0) = 0

is an isomorphism of monoids.

If |Σ| = 1 then the categoryCΣ is a Möbius-division category and therefore it does
not require a terminal object attachment. In this case the McAlister monoid is given by

M|Σ|=1 = {(a′, a,m) ∈ N
3 | a′, a 6 m},

with the multiplication

(a′, a,m)·(c, c′, n) =







(a′, a− c+ c′, n+ a− c) if a > c andn+ a− c > m;

(a′ − a+ c, c′,m+ c− a) if a 6 c andm+ c− a > n;

(a′, a− c+ c′,m) if a > c andn+ a− c 6 m;

(a′ − a+ c, c′, n) if a 6 c andm+ c− a 6 n;

that is

(a′, a,m) · (c, c′, n) =

{

(a′, a− c+ c′,max{n+ a− c,m}) if a > c,

(a′ − a+ c, c′,max{m+ c− a, n}) if a 6 c.

ConsequentlyM|Σ|=1 = {(a′, a,m) ∈ N
3 | a′, a 6 m} equipped with the product

(a′, a,m) · (c, c′, n) = ((a′, a) ◦ (c, c′),max{(m, a) ◦ (c, n)}),

where◦ denotes the bicyclic multiplication ([4, Section 3.4, Proposition 2]), is an iso-
morphic copy of the free monogenic inverse monoid.

3.3. Concluding discussion
The two examples of Section 3 are natural generalizations of two fundamental in-

verse monoids via quasi-Möbius-division categories. The two generalizations via quasi
Möbius-division categories involving the free monoidΣ∗ (with |Σ| > 1) have a deep
similarity as outlined in the following table:
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(1) The starting locally finite combinatorial inverse monoid S:          

 

(A) S = the bicyclic semigroup                       (B)  S = the free monogenic inverse monoid 

(2) The M�bius-division category of S (as a reduced standard division category of S)  and the     

     M�bius function of S: 
 

(A) The monoid (as a category with               (B)The truly standard division category D(N) of the           

one object) of the non-negative inte-               additive monoid (N,+): 

gers with the usual addition (N,+):                    

                                                                                     -Ob(D(N))=N; 

                                                                                   

                                                                                    -
3{( , , ) | } if ,

( , )
otherwise

a n b N a m b n m n
Hom m n

φ

��
�
��

∈ + + = ≤
=  

                                                                                    - ( ', , ') ( , , ) ( ' , , ' );a p b a n b a a p b b⋅ = + +                                         

1 if 0,

( ) 1 if 1,

0 otherwise.

n

n nµ

�
�
�
�
�
��

=

= − =                                      

1 if 0 or 1

( , , ) 1 if ( 0, 1) or ( 1, 0)

0 otherwise

a b a b

a n b a b a bµ

�
�
�
�
�

= = = =

= − = = = =  

(3) The step of generalization to a quasi M�bius-division category involving the free monoid *Σ       

     (| Σ |>1) ; the M�bius function : 
 

(A) The free monoid *Σ  adjoined                   (B) The category CΣ :                                                             

with a terminal object 0;                               

                                                                         - ObCΣ = *Σ  with a terminal object 0 adjoined; 

                                                                                      -
{( , , ) | ' ", | ' |, | "|},

( , )
if is not a factor of .

a v b v u uu a u b u
Hom u v

u vφ

��
�
��

= = =
=                                                       

                                                                                      - ( ', , ') ( , , ) ( ' , , ' );a w b a v b a a w b b⋅ = + +  

 

1 if 1,

( ) 1 if 1,

0 otherwise.

v

v vµ

�
�
�
�
�
��

=

= − =                                       

1 if 0 or 1

( , , ) 1 if ( 0, 1) or ( 1, 0)

0 otherwise

a b a b

a v b a b a bµ

�
�
�
�
�

= = = =

= − = = = =  

(4) The resulting 0-locally finite combinatorial inverse monoid (its reduced standard division 

category is the above quasi M�bius-division category): 

  

(A) The polycyclic monoid PΣ                           (B) The McAlister monoid MΣ   
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