GROUP OF NORMALIZED UNITS OF COMMUTATIVE MODULAR GROUP RINGS

Todor Zh. MOLLOV and Nako A. NACHEV

Abstract

RÉSumé. Soit R un anneau commutatif avec identité de caractéristique p, avec p un nombre premier, et soit G un groupe abélien. Soit $V(R G)$ le groupe des unités normalisées de l'anneau de groupe $R G$, i.e. les unités d'augmentation 1 , et soit $S(R G)$ le p-sous-groupe de Sylow du groupe $V(R G)$, i.e. la p-composante du groupe $V(R G)$. Dans le présent article, nous donnons quatre conditions et nous démontrons que $V(R G)=G S(R G)$ si et seulement si l'une de ces conditions est satisfaite.

Abstract

Let R be a commutative ring with identity of prime characteristic p and let G be an abelian group. Let $V(R G)$ be the group of normalized units of the group ring $R G$, i.e., the units of augmentation 1, and let $S(R G)$ be the Sylow p-subgroup of the group $V(R G)$, i.e., the p-component of the group $V(R G)$. In the present paper, we give four conditions and prove that $V(R G)=G S(R G)$ if and only if any one of them is fulfilled.

1. Introduction

Let $R G$ be the group ring of an abelian group G over a commutative ring R with identity of prime characteristic p and let $S(R G)$ be the p-component of the group $V(R G)$ of normalized units of $R G$. The investigation of the group $S(R G)$ has begun in 1967 with the fundamental papers of Berman [1, 2] in which a complete description of $S(R G)$ (up to isomorphism) was given, when G is a countable abelian p-group and R is a countable perfect field. Further, in 1977 and 1981, Mollov [8, 9] has calculated the Ulm-Kaplansky invariants $f_{\alpha}(S)$ of the group $S(R G)$ when G is an arbitrary abelian group and R is a field. In 1988, it was proved by May [7] that if G is an abelian p-group and R is a perfect field of prime characteristic p, then $S(R G)$ is simply presented if and only if G is simply presented. Hence, when G is a totally projective abelian p-group and the field R is perfect, the above mentioned Ulm-Kaplansky invariants $f_{\alpha}(S)$ give a full system of invariants of the group $S(R G)$. Besides, when the ring R is arbitrary, Mollov and Nachev [10] have calculated in 1980 the invariants $f_{\alpha}(S)$ under the restriction that G is an abelian p-group, and Nachev [12] has calculated in 1995 the invariants $f_{\alpha}(S)$ without restrictions on the group G and the ring R.

When $G=G_{p}$, the equality $V(R G)=S(R G)$ holds, while when $G \neq G_{p}$ the investigation of the group $V(R G)$ is difficult and a full description of $V(R G)$ has not been obtained until now. In this latter situation, a very important problem is the

[^0]following: find necessary and sufficient conditions under which $V(R G)=G S(R G)$. In 2005, Danchev [3, Proposition 5] has provided a partial answer to this question when the ring R has no zero divisors and the group G contains an element of infinite order, and in 2006 Mollov and Nachev [11] have given an answer to this question when the ring R is arbitrary and the torsion subgroup $t G$ of G coincides with G_{p}. In Theorem 1 of [4] Danchev gives necessary and suffcient conditions for the equality $V(R G)=G S(R G)$ to hold for an arbitrary ring R of prime characteristic p and a group G, but there are imperfections in the proof. In the present paper (see Theorem $4)$, we provide a transparent complete proof using a more direct approach.

2. Main result

Denote by G_{p} the p-component of G and by R_{p}^{*} the p-component of the unit group R^{*} of the ring R. Let $t G$ be the torsion subgroup of the group G and let $\langle g\rangle$ be the cyclic subgroup of G generated by $g \in G$.

For our first preliminary result we also denote by (m, n) the greatest common divisor of m and n, for $m, n \in \mathbb{N}$. We shall multiplicatively write the abelian groups. The abelian group terminology is in agreement with Fuchs [5, 6].

Lemma 1. Let R be a commutative ring with identity and $A=\langle a\rangle$ be a cyclic group of order q such that $(q, 6)=1$. Then the element $x=1-a+a^{2} \in V(R A)$, i.e., x is a normalized invertible element in the group ring $R A$.

Proof. Let k be the least positive solution of the congruence $6 k \equiv 1(\bmod q)$. It is easy to see that

$$
\begin{equation*}
\left(a^{3 n-2}+a^{3 n-1}\right) x=a^{3 n-2}+a^{3 n+1} \tag{1}
\end{equation*}
$$

for $n=1,2, \ldots, 2 k$. Multiplying the equalities of (1) with an even n by -1 and adding all equalities of (1) we obtain

$$
y x=a-a^{6 k+1}=a-a^{2}=1-x
$$

where y is a polynomial of a with integral coefficients. Thus, $y \in R A$ and $x(y+1)=1$, i.e., x is an invertible element of $R A$.

Lemma 2. Let R be a commutative ring with identity of prime characteristic p and A be a torsion abelian group. If $A_{p}=1$ and $V(R A)=A$, then A is a cyclic group either of order 2 or of order 3 .

Proof. Suppose that there is a non-trivial finite subgroup F of A which is different from A. Since $(|F|, p)=1$ and char $R=p$, where $|F|$ is the cardinality of $F,|F|$ is an invertible element in R. Consequently, there are idempotents

$$
e_{1}=\frac{1}{|F|} \sum_{f \in F} f \quad \text { and } \quad e_{2}=1-e_{1} .
$$

Let $a \in A \backslash F$. We form the element $x=a e_{1}+e_{2}$. Obviously, x is an invertible element and its inverse is $a^{-1} e_{1}+e_{2}$. Thus, $x \in V(R F) \subseteq V(R A)=A$, i.e., $x \in A$. This is a
contradiction since $e_{1} \neq 0$ and $e_{1} \neq 1$. Therefore, A is a cyclic group and the order of A is a prime number q.

We shall prove that either $q=2$ or $q=3$. If we suppose that $q \geq 5$, then $(q, 6)=1$ and, by Lemma 1 , the element $x=\left(1-a+a^{2}\right) \in V(R A)=A$, where $a \in A$. This is a contradiction. Consequently, either $q=2$ or $q=3$, i.e., A is a cyclic group either of order 2 or of order 3 .

We recall some well-known definitions. A ring R is called indecomposable if it cannot be decomposed into a direct sum of two or more non-trivial ideals of R, or equivalently, if R does not have non-trivial idempotents (i.e., different from 0 and 1).

Let R be a commutative ring with identity of characteristic 2 and let $N(R)$ be the nilradical of R. Further we shall consider the equation

$$
\begin{equation*}
X^{2}+X Y+Y^{2}=1+N(R) \tag{2}
\end{equation*}
$$

in the quotient ring $R / N(R)$. Clearly, equation (2) has three solutions in $R / N(R)$, namely $(\overline{1}, \overline{0}),(\overline{0}, \overline{1}),(\overline{1}, \overline{1})$, where $\bar{\lambda}=\lambda+N(R)$, with $\lambda \in R$. We call these solutions trivial.

Lemma 3. If R is a commutative ring with identity of characteristic 2 and equation (2) has only the trivial solutions in $R / N(R)$, then R is an indecomposable ring.

Proof. Suppose that $R=I \oplus J$ is a direct sum of non-trivial ideals I and J and $1=e_{1}+e_{2}$, where $e_{1} \in I$ and $e_{2} \in J$. Obviously, equation (2) has a solution $\left(e_{1}+N(R), e_{2}+N(R)\right.$), which is different from the trivial solutions. Namely, if we suppose that either $e_{1}+N(R)=1+N(R)$ or $e_{1}+N(R)=N(R)$, then we obtain that e_{1} is either invertible or nilpotent. This is a contradiction.

Further, if

$$
x=\sum_{i=1}^{n} \alpha_{i} g_{i},
$$

with $\alpha_{i} \in R$ and $g_{i} \in G$, then we let

$$
n(x)=\sum_{i=1}^{n} \alpha_{i} .
$$

We denote by Z_{p} the prime field of positive characteristic p.
In the next theorem we shall give necessary and sufficient conditions for the equality $V(R G)=G S(R G)$ to hold. This equality is very useful in the investigation of $V(R G)$. As we shall see, in this result the solutions of equation (2) in the quotient ring $R / N(R)$ will play an important role.

Theorem 4. Let R be a commutative ring with identity of prime characteristic p and G be an abelian group. Then $V(R G)=G S(R G)$ if and only if at least one of the following conditions is fulfilled:
(1) $G=G_{p}$;
(2) $G \neq G_{p}, t G=G_{p}$ and the ring R is indecomposable;
(3) $p=3, R^{*}=\langle-1\rangle \times R_{3}^{*}, G=A \times G_{3},|A|=2$;
(4) $p=2, R^{*}=R_{2}^{*}, G=A \times G_{2},|A|=3$ and equation (2) has only the trivial solutions in $R / N(R)$.

Proof. (Necessity) Assume that $V(R G)=G S(R G)$. Obviously, either $G=G_{p}$ or $G \neq G_{p}$. Suppose first that $G \neq G_{p}$. We consider the following two subcases: $t G=G_{p}$ and $t G \neq G_{p}$.
(a) Let $t G=G_{p}$. We shall prove that R is an indecomposable ring. Suppose to the contrary that R is decomposable. Therefore, there are orthogonal idempotents e_{1} and e_{2} of R such that $e_{1}+e_{2}=1$. We form the element $x=g e_{1}+e_{2}$, with $g \in G \backslash G_{p}$. Since $x \in V(R G)=G S(R G)$, we have $x=g_{1} s$, with $g_{1} \in G$ and $s \in S(R G)$. Consequently, there is $k \in \mathbb{N}$, such that

$$
g^{p^{k}} e_{1}+e_{2}=x^{p^{k}}=g_{1}^{p^{k}},
$$

which is a contradiction, since $g^{p^{k}} e_{1}+e_{2}$ is an element of $R G$ in a canonical form and this element does not belong to G. Hence R is an indecomposable ring and the conditions of case (2) hold.
(b) Let $t G \neq G_{p}$.
(b1) We shall prove that $G=t G$ and

$$
\begin{equation*}
G=A \times G_{p}, \quad \text { where } A \neq 1 \tag{3}
\end{equation*}
$$

Since $t G \neq G_{p}$ and char $R=p$, there exists an element $a \in t G \backslash G_{p}$ whose order is $q \geq 2$, with (q, p) $=1$, and idempotents

$$
\begin{equation*}
e_{1}=(1 / q)\left(1+a+\cdots+a^{q-1}\right) \quad \text { and } \quad e_{2}=1-e_{1} . \tag{4}
\end{equation*}
$$

Suppose that $G \neq t G$. Let $g \in G$ be an element of infinite order. Then the element $x=g e_{1}+e_{2}$ belongs to $V(R G)=G S(R G)$ and $x^{p^{k}} \in G$ for some $k \in \mathbb{N}$. This is a contradiction, since formula (4) for the idempotents e_{1} and e_{2} implies that $x^{p^{k}}$ contains at least two non-zero summands in its canonical form. Therefore, $G=t G$ and equality (3) holds.
(b2) We shall prove that

$$
\begin{equation*}
R^{*}=\langle-1\rangle \times R_{p}^{*} . \tag{5}
\end{equation*}
$$

Suppose the contrary, and let $\lambda \in R^{*}$ be such that $\lambda \notin\langle-1\rangle \times R_{p}^{*}$. We form the element $y=e_{1}+\lambda e_{2}$ which belongs to $V(R G)=G S(R G)$. Consequently, $y=g s$ with $g \in G$ and $s \in S(R G)$. Since, by equality (3), $g=h g_{p}$, with $h \in A$ and $g_{p} \in G_{p}$, there exists $t \in \mathbb{N}$ such that

$$
e_{1}+\lambda^{p^{t}} e_{2}=y^{p^{t}}=h^{p^{t}} .
$$

Hence $y^{p^{t}} \in A$ and, by formula (4),

$$
\begin{equation*}
e_{1}+\lambda^{p^{t}} e_{2}=(1 / q)\left[\left(1+(q-1) \lambda^{p^{t}}\right)+\left(1-\lambda^{p^{t}}\right) a+\cdots+\left(1-\lambda^{p^{t}}\right) a^{q-1}\right] \tag{6}
\end{equation*}
$$

where a and q are chosen as in case (b1). Since $\lambda^{p^{t}} \neq 1$, the summand $\left(1-\lambda^{p^{t}}\right) a$ in this equality is different from 0 . If $q>2$, then there is at least one non-zero summand in (6) after $\left(1-\lambda^{p^{t}}\right) a$ which is a contradiction, since the right-hand side of (6) is in a canonical form and belongs to A. Consequently, $q=2$. Then the first summand in the right-hand side of (6) has the form $(1 / 2)\left(1+\lambda^{p^{t}}\right)$ and must be equal to 0 , since
the second summand $(1 / 2)\left(1-\lambda^{p^{t}}\right) a$ is different from 0 . Hence $\lambda^{p^{t}}=-1$, which contradicts the choice of λ. Therefore, (5) holds.
(b3) We shall prove that the prime p can take only the values 2 or 3, i.e., either $p=2$ or $p=3$. Suppose that $p \geq 5$. Since $Z_{p}{ }^{*} \subseteq R^{*}$ and $\left|Z_{p}{ }^{*}\right|=p-1$, there are elements in $Z_{p}{ }^{*}$ which, by (5), do not belong to $\langle-1\rangle \times R_{p}^{*}=R^{*}$. This contradicts (5). Consequently, either $p=2$ or $p=3$.
(b4) We shall prove that in equality (3) A is a cyclic group either of order 2 or of order 3. Namely, we consider $V\left(Z_{p} A\right) \leq V(R A) \leq V(R G)=G S(R G)$, i.e., $V\left(Z_{p} A\right) \leq G S(R G)$. However, $V\left(Z_{p} A\right)$ does not contain p-elements. Therefore, $V\left(Z_{p} A\right) \subseteq G$ and $V\left(Z_{p} A\right) \bigcap G=A$, i.e., $V\left(Z_{p} A\right)=A$. Then Lemma 2 implies that A is a cyclic group either of order 2 or of order 3 and, by case (b3), either $p=2$ or $p=3$. Consequently, by equality (3), if $p=3$, then A is a cyclic group of order 2 and if $p=2$, then A is a cyclic group of order 3 . These results show that the conditions of case (3) and of case (4), eventually without the last condition of case (4), are fulfilled.
(b5) Let $p=2$. We shall prove that the last condition of case (4) holds, i.e., that equality (2) has only the trivial solutions in $R / N(R)$. Since $p=2$, it follows from equality (3) that $G=A \times G_{2}$, with $|A|=3$. Let $A=\langle a\rangle$ and let

$$
\begin{equation*}
(\bar{\lambda}, \bar{\mu}), \quad \text { with } \lambda, \mu \in R, \tag{7}
\end{equation*}
$$

be a solution of equation (2) in $R / N(R)$. Substituting $\bar{\lambda}$ and $\bar{\mu}$ in equation (2) gives

$$
\begin{equation*}
\lambda^{2}+\lambda \mu+\mu^{2}=1+r, \tag{8}
\end{equation*}
$$

where $r \in N(R)$. We consider the element

$$
\begin{equation*}
x=1+\mu+(1+\lambda) a+(1+\lambda+\mu) a^{2} . \tag{9}
\end{equation*}
$$

Obviously, $n(x)=1$. We shall prove that $x \in V(R G)$. Namely, we consider the element

$$
y=1+\mu+(1+\lambda+\mu) a+(1+\lambda) a^{2} .
$$

Then $x y=1+r a+r a^{2}$, where, by (8), $r=\lambda^{2}+\lambda \mu+\mu^{2}+1$ and $r \in N(R)$. Thus, $x y$ is an invertible element. Hence x is an invertible element and $x \in V(R G)=G S(R G)$. Consequently, we can represent x in the form $x=a^{k} h$, where $a \in A, h \in S(R G)$ and $x^{2^{n}} \in A$ for some $n \in \mathbb{N}$. Using (9) we get

$$
\begin{equation*}
x^{2^{n}}=1+\mu^{2^{n}}+\left(1+\lambda^{2^{n}}\right) a^{2^{n}}+\left(1+\lambda^{2^{n}}+\mu^{2^{n}}\right) a^{2^{n+1}} . \tag{10}
\end{equation*}
$$

We note that $a^{2^{n}}=a$ if n is even and $a^{2^{n}}=a^{2}$ if n is odd. We consider the following cases:
(i) Suppose that $x^{2^{n}}=1$. Then equality (10) implies that $\mu^{2^{n}}=0$ and $\lambda^{2^{n}}=1$, i.e., $\mu \in N(R)$ and $\lambda \in(1+N(R)$. Therefore, solution (7), namely $(\bar{\lambda}, \bar{\mu})$, coincides with the trivial solution ($\overline{1}, \overline{0}$) of equation (2).
(ii) Suppose that $x^{2^{n}}=a$ or $x^{2^{n}}=a^{2}$. Then $\mu^{2^{n}}=1$, i.e., $\mu \in(1+N(R))$ and either $1+\lambda^{2^{n}}=1$ or $\lambda^{2^{n}}=1$, i.e., either $\lambda \in N(R)$ or $\lambda \in(1+N(R))$. Consequently, solution (7), namely $(\bar{\lambda}, \bar{\mu})$, is a trivial solution of equation (2), i.e., equation (2) has only the trivial solutions in $R / N(R)$.

This proves the necessity.
(Sufficiency) Suppose that the condition of case (1) holds. Then $G=G_{p}$ and consequently $V(R G)=S(R G) \subseteq G S(R G)$. Hence, $V(R G)=G S(R G)$.

If the condition of case (2) holds, then $G \neq G_{p}, t G=G_{p}$ and the ring R is indecomposable. Then, by Mollov and Nachev [11], $V(R G)=G S(R G)$.

If the condition of case (3) holds, let $A=\langle a\rangle$. We form the idempotents $e_{1}=$ $(1 / 2)(1+a)$ and $e_{2}=(1 / 2)(1-a)$ of $R G$, i.e., $e_{1}=-1-a$ and $e_{2}=-1+a$. Therefore, $a e_{1}=e_{1}$ and $a e_{2}=-e_{2}$. Then

$$
R G=R G e_{1} \oplus R G e_{2}=R G_{3} e_{1} \oplus R G_{3} e_{2}
$$

If $x \in V(R G)$, then $x=\lambda e_{1}+\mu e_{2}$, where $\lambda, \mu \in R G_{3}$ are such that λ and μ are invertible elements. Consequently, $n(x)=n(\lambda)=1$. Hence $\lambda \in S\left(R G_{3}\right)$. Since μ is an invertible element of $R G_{3}$, we have $n(\mu) \in R^{*}=\langle-1\rangle \times R_{3}^{*}$, i.e.,

$$
n(\mu)= \pm \alpha
$$

with $\alpha \in R_{3}^{*}$. On the one hand, if $n(\mu)=\alpha$, then $x \in S(R G) \subseteq G S(R G)$. On the other hand, if $n(\mu)=-\alpha$, then

$$
x=\lambda e_{1}+\mu e_{2}=\lambda a e_{1}-\mu a e_{2}=a\left(\lambda e_{1}-\mu e_{2}\right) \in G S(R G) .
$$

Then both cases imply $V(R G) \subseteq G S(R G)$, i.e., $V(R G)=G S(R G)$.
Finally, assume that the condition of case (4) holds and let $A=\langle a\rangle$. We shall prove that $V(R G)=G S(R G)$. It is easy to see that the system

$$
\left\{1, a, a^{2}, g-1, a(g-1), a^{2}(g-1) \mid g \in G_{2} \backslash\{1\}\right\}
$$

is a basis of the R-algebra $R G$. Hence, if $x \in V(R G)$, then x can be written as

$$
x=x_{0}+x_{1},
$$

where

$$
\left\{\begin{array}{l}
x_{0}=\alpha_{0}+\alpha_{1} a+\alpha_{2} a^{2}, \quad \text { with } \alpha_{i} \in R, \tag{11}\\
x_{1}=\sum_{i=0}^{2} \sum_{g \in G_{2} \backslash\{1\}} x_{a^{i} g} a^{i}(g-1), \quad \text { with } x_{a^{i} g} \in R .
\end{array}\right.
$$

Since x_{1} is a nilpotent element, there is n such that $x^{2^{n}}=x_{0}^{2^{n}}$. Therefore, x_{0} is an invertible element. In view of the fact that $n(x)=1$ and $n\left(x_{1}\right)=0$, we have $n\left(x_{0}\right)=1$. Consequently, $x_{0} \in V(R A)$. Then

$$
x=x_{0}\left(1+x_{0}{ }^{-1} x_{1}\right),
$$

where $\left(1+x_{0}{ }^{-1} x_{1}\right) \in S(R G)$.
We shall prove that $x_{0} \in A S(R G)$. Hence it will follow that $x \in G S(R G)$, i.e., $V(R G)=G S(R G)$. For this sake we let $\lambda=1+\alpha_{1}$ and $\mu=1+\alpha_{0}$, i.e., $\alpha_{0}=1+\mu, \alpha_{1}=1+\lambda$. Since $\alpha_{0}+\alpha_{1}+\alpha_{2}=1$, we have $\alpha_{2}=1+\lambda+\mu$. If we substitute α_{0}, α_{1} and α_{2} in equality (11) we get

$$
\begin{equation*}
x_{0}=1+\mu+(1+\lambda) a+(1+\lambda+\mu) a^{2} . \tag{12}
\end{equation*}
$$

We form the idempotents $e_{1}=1+a+a^{2}$ and $e_{2}=a+a^{2}$. Therefore,

$$
\begin{equation*}
a^{2} e_{2}+a e_{2}=e_{2} \tag{13}
\end{equation*}
$$

It is easy to see, using (11), that $x_{0}=e_{1}+(\lambda+\mu a) e_{2}$. Consequently, $(\lambda+\mu a) e_{2}$ is an invertible element in $R A e_{2}$. Since the map $a \rightarrow a^{2}$ is an automorphism of the group A, the extension of this map gives an automorphism of $R A e_{2}$. Therefore, $\lambda e_{2}+\mu a^{2} e_{2}$ is an invertible element of $R A e_{2}$. Hence the product

$$
\left(\lambda e_{2}+\mu a e_{2}\right)\left(\lambda e_{2}+\mu a^{2} e_{2}\right)=\left(\lambda^{2}+\lambda \mu+\mu^{2}\right) e_{2}
$$

is an invertible element of $R e_{2}$, where, to obtain of this equality, we used equality (13). Hence $\left(\lambda^{2}+\lambda \mu+\mu^{2}\right) \in R^{*}=R_{2}^{*}=\{1\}+N(R)$. This equality implies that $\bar{\lambda}^{2}+\bar{\lambda} \bar{\mu}+\bar{\mu}^{2}=\overline{1}$, i.e., $(\bar{\lambda}, \bar{\mu})$ is a solution of equation (2). Consequently, $(\bar{\lambda}, \bar{\mu})$ is a trivial solution of equation (2), i.e., one of the following conditions holds:
(i) $\bar{\lambda}=\overline{1}$ and $\bar{\mu}=\overline{0}$,
(ii) $\bar{\lambda}=\overline{0}$ and $\bar{\mu}=\overline{1}$,
(iii) $\bar{\lambda}=\overline{1}$ and $\bar{\mu}=\overline{1}$.

Now, in case (i), we have $\lambda=1+r_{1}$ and $\mu=r_{2}$, with $r_{1}, r_{2} \in N(R)$, and (12) implies that $x_{0}=1+r_{2}+r_{1} a+\left(r_{1}+r_{2}\right) a^{2}$. Hence $x_{0} \in S(R A) \subseteq A S(R G)$. In case (ii), we have $\lambda=r_{1}$ and $\mu=1+r_{2}$, with $r_{1}, r_{2} \in N(R)$, and equality (12) implies that $x_{0}=a\left[1+r_{1}+\left(r_{1}+r_{2}\right) a+r_{2} a^{2}\right]$. Hence $x_{0} \in A S(R A)$. Finally, in the case (iii), we have $\lambda=1+r_{1}$ and $\mu=1+r_{2}$, with $r_{1}, r_{2} \in N(R)$, and equality (12) implies that $x_{0}=a^{2}\left(1+r_{1}+r_{2}+r_{2} a+r_{1} a^{2}\right)$. Hence $x_{0} \in A S(R A)$. The theorem is proved.

In order to characterize the property $V(R G)=G S(R G)$, Danchev mentions in Theorem 1 of [4] the contradictory condition (2.2):

$$
R=L+N(R), 1_{R} \in L \leq R,|L|=2, G=G_{p} \times C, C \leq G, \text { and }|C|=2 .
$$

As a matter of fact, since L is a subring of R and $1_{R} \in L, L$ contains the elements $0,1_{R}, \ldots,(p-1) 1_{R}$. Then $|L|=2$ implies $p=2$. Therefore, $G=G_{2} \times C$ is a 2-group which contradicts the condition of case (2) $G \neq G_{p}$ in Theorem 1 of [4].

In the following proposition we prove that if case (3) of Theorem 4 holds, then the ring R is indecomposable.

Proposition 5. If $p=3$ and $R^{*}=\langle-1\rangle \times R_{3}^{*}$, then the ring R is indecomposable.
Proof. Assume that the ring R is decomposable. Therefore, there exist two nontrivial orthogonal idempotents e_{1} and e_{2} such that $e_{1}+e_{2}=1$. Then $e_{1}-e_{2} \in\langle-1\rangle$ since $\left(e_{1}-e_{2}\right)^{2}=e_{1}+e_{2}=1$. There are two possible cases to consider:
(i) If $e_{1}-e_{2}=1$, then $e_{1}+e_{2}=1$ implies $2 e_{2}=0$ which is a contradiction.
(ii) If $e_{1}-e_{2}=-1$, then $e_{1}+e_{2}=1$ implies $2 e_{1}=0$ which is also a contradiction. Therefore, the ring R is indecomposable.

Let $Z_{2}[x]$ be a polynomial ring of x with coefficients from Z_{2} and let $(f(x), g(x))$ be the greatest common divisor of $f(x)$ and $g(x)$ in $Z_{2}[x]$. In connection with the condition of case (4) of Theorem 4 and Lemma 3 we give an example, formulated as a proposition, which shows that there is an indecomposable ring R, of characteristic 2 , satisfying $R^{*}=R_{2}^{*}$ and such that equation (2) has a non-trivial solution in $R / N(R)$. Consequently, the condition in case (4) of Theorem 4 for the solutions of equation (2)
is essential. Besides, for this ring R of characteristic 2 the converse of Lemma 3 is not true.

Proposition 6. Let $A=Z_{2}[x]$ and y be a root of the equation

$$
\begin{equation*}
y^{2}+x y+\left(x^{2}+1\right)=0 . \tag{14}
\end{equation*}
$$

Then $R=A[y]$ is an indecomposable ring of characteristic $2, R^{*}=R_{2}^{*}$ and equation (2) has more than three solutions in $R / N(R)$.

Proof. Obviously, A and R are rings of characteristic 2 and $A^{*}=1$. It is not hard to see that the left-hand side of equation (14) is an indecomposable polynomial over $A=Z_{2}[x]$, and the A-algebra $R=A[y]$ has $\{1, y\}$ as an A-basis. We divide the proof in several steps.
(a) We shall prove that $N(R)=0$. Suppose the contrary. Then there exists an element $v \in N(R)$, with $v \neq 0$, such that $v^{2}=0$. The element v has the form $v=a(x)+b(x) y$, with $a(x), b(x) \in Z_{2}[x]$. The equality

$$
v^{2}=a^{2}(x)+b^{2}(x) y^{2}=a^{2}(x)+b^{2}(x)\left(x y+x^{2}+1\right)=0
$$

implies that $b^{2}(x) x=0$ and, since the ring $Z_{2}[x]$ does not have zero divisors, we have $b^{2}(x)=0$. Therefore, $b(x)=0$ and $a(x)=0$. Consequently, $v=a(x)+b(x) y=0$ which is a contradiction. Therefore $N(R)=0$.
(b) Equation (2) has a solution $X=x$ and $Y=y$, where $x, y \in R=A[y]$, i.e., equation (2) has a non-trivial solution in $R / N(R)$.
(c) Now we shall prove that $R^{*}=1=R_{2}^{*}$ by the using $N(R)=0$. Suppose to the contrary that there exists $(a(x)+b(x) y) \in R^{*}$, with $a(x), b(x) \in Z_{2}[x]$, such that $a(x)+b(x) y \neq 1$, i.e., the following condition holds:

$$
\begin{equation*}
\text { either } a(x) \neq 1 \text { or } b(x) \neq 0 \tag{*}
\end{equation*}
$$

Then there exists $\left(a_{1}(x)+b_{1}(x) y\right) \in R^{*}$, with $a_{1}(x), b_{1}(x) \in Z_{2}[x]$, such that

$$
\begin{equation*}
(a(x)+b(x) y)\left(a_{1}(x)+b_{1}(x) y\right)=1 \tag{15}
\end{equation*}
$$

i.e.,

$$
a(x) a_{1}(x)+\left(a(x) b_{1}(x)+a_{1}(x) b(x)\right) y+b(x) b_{1}(x)\left(x^{2}+x y+1\right)=1 .
$$

Since $\{1, y\}$ is a basis of $R=A[y]$,

$$
\left\{\begin{array}{l}
a(x) a_{1}(x)+\left(x^{2}+1\right) b(x) b_{1}(x)=1, \tag{16}\\
a(x) b_{1}(x)+a_{1}(x) b(x)+b(x) b_{1}(x) x=0 .
\end{array}\right.
$$

If $b(x)=0$, then (16) implies that $a(x)=a_{1}(x)=1$, which contradicts the condition $(*)$. If $b_{1}(x)=0$, then again (16) implies that $a(x)=a_{1}(x)=1$ and from the second equation of (16) we get $b(x)=0$, which, together with $a(x)=1$, contradicts the condition $(*)$. Consequently, $b(x) \neq 0$ and $b_{1}(x) \neq 0$. Now we write the second equation of (16) in the form

$$
\begin{equation*}
b(x) a_{1}(x)=(a(x)+b(x) x) b_{1}(x) \tag{17}
\end{equation*}
$$

Since the greatest common divisor $(b(x), a(x)+b(x) x)=(b(x), a(x))=1$, where the second equality follows from (15), equation (17) implies that $b(x)$ divides $b_{1}(x)$. In an analogous manner, (15) implies that $\left(a_{1}(x), b_{1}(x)\right)=1$. Therefore, we get from
(17) that $b_{1}(x)$ divides $b(x)$. Since $b_{1}(x)$ and $b(x)$ are monic polynomials, we have $b_{1}(x)=b(x)$. Hence $b_{1}(x)=b(x) \neq 0$ and (17) implies that $a_{1}(x)=a(x)+b(x) x$. We substitute $a_{1}(x)$ and $b_{1}(x)$ in the first equation of (16) with $a(x)+b(x) x$ and $b(x)$, respectively, and obtain

$$
\begin{equation*}
a^{2}(x)+a(x) b(x) x+\left(x^{2}+1\right) b^{2}(x)=1 \tag{18}
\end{equation*}
$$

If $\operatorname{deg}(a(x))=-\infty$, i.e., $a(x)=0$, then the left and the right-hand sides of (18) have degrees at least 2 and 0 , respectively, which is a contradiction. If $\operatorname{deg}(a(x))=0$, then $a(x)=1$ and by comparing the degrees of the left and the right-hand sides of (18) we get a contradiction. Let $n=\operatorname{deg}(a(x)) \geq 1$. Then, in the left-hand side of (18), there are two of the first three summands whose degrees are equal. Consequently, letting $\operatorname{deg}(b(x))=k$, we have three cases:
(i) The first two summands in the left-hand side of (18) have equal degrees, i.e., $2 n=n+k+1$.
(ii) The first and the third summands in the left-hand side of (18) have equal degrees, i.e., $2 n=2 k+2$.
(iii) The second and the third summands in the left-hand side of (18) have equal degrees, i.e., $n+k+1=2 k+2$.
For all these cases, we obtain $k=n-1$. Let

$$
a(x)=c_{0} x^{n}+c_{1} x^{n-1}+\cdots+c_{n} \quad \text { and } \quad b(x)=d_{0} x^{k}+d_{1} x^{k-1}+\cdots+d_{k}
$$

with $c_{i}, d_{j} \in Z_{2}$ and $c_{0}=d_{0}=1$. Then, on the one hand, the summand in the left-hand side of (18) of degree $2 n$ has coefficient $c_{0}^{2}+c_{0} d_{0}+d_{0}^{2}=1$ and, on the other hand, this coefficient $c_{0}^{2}+c_{0} d_{0}+d_{0}^{2}$ must be equal to 0 . This is a contradiction.
(d) We shall prove that the ring $R=A[y]$ is indecomposable. Suppose the contrary. Then R has a non-trivial idempotent $e=a(x)+b(x) y$, where $a(x), b(x) \in Z_{2}[x]$ (i.e., different from 0 and 1). If $b(x)=0$, then we get that either $e=a(x)=0$ or $e=a(x)=1$, which is a contradiction. Therefore, $b(x) \neq 0$ and $e^{2}=e$ implies that $a^{2}(x)+b^{2}(x) y^{2}=a(x)+b(x) y$, i.e.,

$$
a^{2}(x)+b^{2}(x) x y+b^{2}(x) x^{2}+b^{2}(x)=a(x)+b(x) y
$$

Hence $b^{2}(x) x=b(x)$, i.e., $b(x) x=1$, which is a contradiction, since $b(x) \in Z_{2}[x]$ is a non-zero polynomial of x. This completes the proof.

Acknowledgements. Research partially supported by the fund "NI" of University of Plovdiv, Bulgaria. The authors are grateful to the referee for the valuable suggestions.

References

[1] S. D. Berman, Group algebras of countable abelian p-groups, Dokl. Akad. Nauk SSSR 175 (1967) no. 3, 514-516.
[2] S. D. Berman, Group algebras of countable abelian p-groups, Publ. Math. Debrecen 14 (1967), 365-405.
[3] P. V. Danchev, Warfield invariants in abelian group rings, Extracta Math. 20 (2005), no. 3, 233-241.
[4] P. V. Danchev, On a decomposition of normalized units in abelian group algebras, An. Univ. Bucureşti Mat. 57 (2008), no. 2, 133-138.
[5] L. Fuchs, Infinite abelian groups, Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970, xi+290 pp.
[6] L. Fuchs, Infinite abelian groups, Vol. II, Pure and Applied Mathematics, Vol. 36-II, Academic Press, New York-London, 1973, ix+363 pp.
[7] W. May, Modular group algebras of simply presented abelian groups, Proc. Amer. Math. Soc. 104 (1988), no. 2, 403-409.
[8] T. Z. Mollov, Ulm invariants of the Sylow p-subgroups of the group algebras of the abelian groups over a field of characteristic p, Sixth Congress of the Bulgarian Mathematicians, Varna, Reports Abstracts, Section A2 (19977), p. 2.
[9] T.Z. Mollov, Ulm invariants of Sylow p-subgroups of group algebras of abelian groups over a field of characteristic p, PLISKA Stud. Math. Bulgar. 2 (1981), 77-82.
[10] T. Z. Mollov and N. A. Nachev, The Ulm-Kaplansky invariants of the group of normed units of a modular group ring of a primary abelian group, Serdica 6 (1980), no. 3, 258263.
[11] T. Z. Mollov and N. A. Nachev, Unit groups of commutative modular group rings, C. R. Acad. Bulgare Sci. 59 (2006), no. 6, 589-592.
[12] N. A. Nachev, Invariants of the Sylow p-subgroup of the unit group of a commutative group ring of characteristic p, Comm. Algebra 23 (1995), no. 7, 2469-2489.
T. Z. Mollov, Dept. of Algebra, U. of Plovdiv, 24 Tzar Assen Str., 4000 Plovdiv, BulGARIA.
mollov@uni-plovdiv.bg
N. A. Nachev, Dept. of Algebra, U. of Plovdiv, 24 Tzar Assen Str., 4000 Plovdiv, BulGARIA.
nachev@uni-plovdiv.bg

[^0]: Reçu le 10 octobre 2008 et, sous forme définitive, le 26 janvier 2009.

