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GROUP OF NORMALIZED UNITS OF COMMUTATIVE
MODULAR GROUP RINGS

TODOR ZH. MOLLOV AND NAKO A. NACHEV

RÉSUMÉ. Soit R un anneau commutatif avec identité de caractéristique p, avec
p un nombre premier, et soit G un groupe abélien. Soit V (RG) le groupe des uni-
tés normalisées de l’anneau de groupe RG, i.e. les unités d’augmentation 1, et soit
S(RG) le p-sous-groupe de Sylow du groupe V (RG), i.e. la p-composante du groupe
V (RG). Dans le présent article, nous donnons quatre conditions et nous démontrons
que V (RG) = GS(RG) si et seulement si l’une de ces conditions est satisfaite.

ABSTRACT. Let R be a commutative ring with identity of prime characteristic
p and let G be an abelian group. Let V (RG) be the group of normalized units of
the group ring RG, i.e., the units of augmentation 1, and let S(RG) be the Sylow
p-subgroup of the group V (RG), i.e., the p-component of the group V (RG). In the
present paper, we give four conditions and prove that V (RG) = GS(RG) if and only
if any one of them is fulfilled.

1. Introduction

Let RG be the group ring of an abelian group G over a commutative ring R with
identity of prime characteristic p and let S(RG) be the p-component of the group
V (RG) of normalized units ofRG. The investigation of the group S(RG) has begun in
1967 with the fundamental papers of Berman [1, 2] in which a complete description of
S(RG) (up to isomorphism) was given, when G is a countable abelian p-group and R
is a countable perfect field. Further, in 1977 and 1981, Mollov [8, 9] has calculated the
Ulm-Kaplansky invariants fα(S) of the group S(RG) when G is an arbitrary abelian
group andR is a field. In 1988, it was proved by May [7] that ifG is an abelian p-group
andR is a perfect field of prime characteristic p, then S(RG) is simply presented if and
only if G is simply presented. Hence, when G is a totally projective abelian p-group
and the field R is perfect, the above mentioned Ulm-Kaplansky invariants fα(S) give
a full system of invariants of the group S(RG). Besides, when the ring R is arbitrary,
Mollov and Nachev [10] have calculated in 1980 the invariants fα(S) under the restric-
tion that G is an abelian p-group, and Nachev [12] has calculated in 1995 the invariants
fα(S) without restrictions on the group G and the ring R.

When G = Gp, the equality V (RG) = S(RG) holds, while when G 6= Gp the
investigation of the group V (RG) is difficult and a full description of V (RG) has
not been obtained until now. In this latter situation, a very important problem is the
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following: find necessary and sufficient conditions under which V (RG) = GS(RG).
In 2005, Danchev [3, Proposition 5] has provided a partial answer to this question
when the ring R has no zero divisors and the group G contains an element of infinite
order, and in 2006 Mollov and Nachev [11] have given an answer to this question
when the ring R is arbitrary and the torsion subgroup tG of G coincides with Gp. In
Theorem 1 of [4] Danchev gives necessary and suffcient conditions for the equality
V (RG) = GS(RG) to hold for an arbitrary ring R of prime characteristic p and a
group G, but there are imperfections in the proof. In the present paper (see Theorem
4), we provide a transparent complete proof using a more direct approach.

2. Main result

Denote by Gp the p-component of G and by R∗p the p-component of the unit group
R∗ of the ring R. Let tG be the torsion subgroup of the group G and let 〈g〉 be the
cyclic subgroup of G generated by g ∈ G.

For our first preliminary result we also denote by (m,n) the greatest common divi-
sor of m and n, for m,n ∈ N. We shall multiplicatively write the abelian groups. The
abelian group terminology is in agreement with Fuchs [5, 6].

Lemma 1. Let R be a commutative ring with identity and A = 〈a〉 be a cyclic
group of order q such that (q, 6) = 1. Then the element x = 1− a+ a2 ∈ V (RA), i.e.,
x is a normalized invertible element in the group ring RA.

Proof. Let k be the least positive solution of the congruence 6k ≡ 1 (mod q). It
is easy to see that

(1) (a3n−2 + a3n−1)x = a3n−2 + a3n+1

for n = 1, 2, . . . , 2k. Multiplying the equalities of (1) with an even n by−1 and adding
all equalities of (1) we obtain

yx = a− a6k+1 = a− a2 = 1− x,

where y is a polynomial of awith integral coefficients. Thus, y ∈ RA and x(y+1) = 1,
i.e., x is an invertible element of RA. �

Lemma 2. Let R be a commutative ring with identity of prime characteristic p and
A be a torsion abelian group. If Ap = 1 and V (RA) = A, then A is a cyclic group
either of order 2 or of order 3.

Proof. Suppose that there is a non-trivial finite subgroup F of A which is different
from A. Since (|F |, p) = 1 and charR = p, where |F | is the cardinality of F , |F | is an
invertible element in R. Consequently, there are idempotents

e1 =
1
|F |

∑
f∈F

f and e2 = 1− e1.

Let a ∈ A\F . We form the element x = ae1+e2. Obviously, x is an invertible element
and its inverse is a−1e1 + e2. Thus, x ∈ V (RF ) ⊆ V (RA) = A, i.e., x ∈ A. This is a
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contradiction since e1 6= 0 and e1 6= 1. Therefore, A is a cyclic group and the order of
A is a prime number q.

We shall prove that either q = 2 or q = 3. If we suppose that q ≥ 5, then (q, 6) = 1
and, by Lemma 1, the element x = (1− a+ a2) ∈ V (RA) = A, where a ∈ A. This is
a contradiction. Consequently, either q = 2 or q = 3, i.e., A is a cyclic group either of
order 2 or of order 3. �

We recall some well-known definitions. A ring R is called indecomposable if it
cannot be decomposed into a direct sum of two or more non-trivial ideals of R, or
equivalently, if R does not have non-trivial idempotents (i.e., different from 0 and 1).

Let R be a commutative ring with identity of characteristic 2 and let N(R) be the
nilradical of R. Further we shall consider the equation

(2) X2 +XY + Y 2 = 1 +N(R)

in the quotient ring R/N(R). Clearly, equation (2) has three solutions in R/N(R),
namely (1, 0), (0, 1), (1, 1), where λ = λ+N(R), with λ ∈ R. We call these solutions
trivial.

Lemma 3. IfR is a commutative ring with identity of characteristic 2 and equation
(2) has only the trivial solutions in R/N(R), then R is an indecomposable ring.

Proof. Suppose that R = I ⊕ J is a direct sum of non-trivial ideals I and J and
1 = e1 + e2, where e1 ∈ I and e2 ∈ J . Obviously, equation (2) has a solution
(e1 + N(R), e2 + N(R)), which is different from the trivial solutions. Namely, if we
suppose that either e1 + N(R) = 1 + N(R) or e1 + N(R) = N(R), then we obtain
that e1 is either invertible or nilpotent. This is a contradiction. �

Further, if

x =
n∑
i=1

αigi,

with αi ∈ R and gi ∈ G, then we let

n(x) =
n∑
i=1

αi.

We denote by Zp the prime field of positive characteristic p.

In the next theorem we shall give necessary and sufficient conditions for the equa-
lity V (RG) = GS(RG) to hold. This equality is very useful in the investigation of
V (RG). As we shall see, in this result the solutions of equation (2) in the quotient ring
R/N(R) will play an important role.

Theorem 4. Let R be a commutative ring with identity of prime characteristic p
and G be an abelian group. Then V (RG) = GS(RG) if and only if at least one of the
following conditions is fulfilled:

(1) G = Gp;

(2) G 6= Gp, tG = Gp and the ring R is indecomposable;

(3) p = 3, R∗ = 〈−1〉 ×R∗3, G = A×G3, |A| = 2;
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(4) p = 2, R∗ = R∗2, G = A × G2, |A| = 3 and equation (2) has only the trivial
solutions in R/N(R).

Proof. (Necessity) Assume that V (RG) = GS(RG). Obviously, either G = Gp
or G 6= Gp. Suppose first that G 6= Gp. We consider the following two subcases:
tG = Gp and tG 6= Gp.

(a) Let tG = Gp. We shall prove that R is an indecomposable ring. Suppose to the
contrary that R is decomposable. Therefore, there are orthogonal idempotents e1 and
e2 of R such that e1 + e2 = 1. We form the element x = ge1 + e2, with g ∈ G\Gp.
Since x ∈ V (RG) = GS(RG), we have x = g1s, with g1 ∈ G and s ∈ S(RG).
Consequently, there is k ∈ N, such that

gp
k
e1 + e2 = xp

k
= gp

k

1 ,

which is a contradiction, since gp
k
e1 + e2 is an element of RG in a canonical form

and this element does not belong to G. Hence R is an indecomposable ring and the
conditions of case (2) hold.

(b) Let tG 6= Gp.

(b1) We shall prove that G = tG and

(3) G = A×Gp, where A 6= 1.

Since tG 6= Gp and charR = p, there exists an element a ∈ tG\Gp whose order is
q ≥ 2, with (q, p) = 1, and idempotents

(4) e1 = (1/q)(1 + a+ · · ·+ aq−1) and e2 = 1− e1.
Suppose that G 6= tG. Let g ∈ G be an element of infinite order. Then the element
x = ge1 + e2 belongs to V (RG) = GS(RG) and xp

k ∈ G for some k ∈ N. This is a
contradiction, since formula (4) for the idempotents e1 and e2 implies that xp

k
contains

at least two non-zero summands in its canonical form. Therefore, G = tG and equality
(3) holds.

(b2) We shall prove that

(5) R∗ = 〈−1〉 ×R∗p.

Suppose the contrary, and let λ ∈ R∗ be such that λ /∈ 〈−1〉×R∗p. We form the element
y = e1+λe2 which belongs to V (RG) = GS(RG). Consequently, y = gswith g ∈ G
and s ∈ S(RG). Since, by equality (3), g = hgp, with h ∈ A and gp ∈ Gp, there exists
t ∈ N such that

e1 + λp
t
e2 = yp

t
= hp

t
.

Hence yp
t ∈ A and, by formula (4),

(6) e1 + λp
t
e2 = (1/q)[(1 + (q − 1)λp

t
) + (1− λpt

)a+ · · ·+ (1− λpt
)aq−1],

where a and q are chosen as in case (b1). Since λp
t 6= 1, the summand (1 − λpt

)a in
this equality is different from 0. If q > 2, then there is at least one non-zero summand
in (6) after (1 − λpt

)a which is a contradiction, since the right-hand side of (6) is in
a canonical form and belongs to A. Consequently, q = 2. Then the first summand in
the right-hand side of (6) has the form (1/2)(1 + λp

t
) and must be equal to 0, since
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the second summand (1/2)(1 − λpt
)a is different from 0 . Hence λp

t
= −1, which

contradicts the choice of λ. Therefore, (5) holds.

(b3) We shall prove that the prime p can take only the values 2 or 3, i.e., either
p = 2 or p = 3. Suppose that p ≥ 5. Since Zp∗ ⊆ R∗ and |Zp∗| = p − 1, there are
elements in Zp∗ which, by (5), do not belong to 〈−1〉×R∗p = R∗. This contradicts (5).
Consequently, either p = 2 or p = 3.

(b4) We shall prove that in equality (3) A is a cyclic group either of order 2 or
of order 3. Namely, we consider V (ZpA) ≤ V (RA) ≤ V (RG) = GS(RG), i.e.,
V (ZpA) ≤ GS(RG). However, V (ZpA) does not contain p-elements. Therefore,
V (ZpA) ⊆ G and V (ZpA)

⋂
G = A, i.e., V (ZpA) = A. Then Lemma 2 implies that

A is a cyclic group either of order 2 or of order 3 and, by case (b3), either p = 2 or
p = 3. Consequently, by equality (3), if p = 3, then A is a cyclic group of order 2 and
if p = 2, then A is a cyclic group of order 3. These results show that the conditions of
case (3) and of case (4), eventually without the last condition of case (4), are fulfilled.

(b5) Let p = 2. We shall prove that the last condition of case (4) holds, i.e., that
equality (2) has only the trivial solutions in R/N(R). Since p = 2, it follows from
equality (3) that G = A×G2, with |A| = 3. Let A = 〈a〉 and let

(7) (λ, µ), with λ, µ ∈ R,

be a solution of equation (2) in R/N(R). Substituting λ and µ in equation (2) gives

(8) λ2 + λµ+ µ2 = 1 + r,

where r ∈ N(R). We consider the element

(9) x = 1 + µ+ (1 + λ)a+ (1 + λ+ µ)a2.

Obviously, n(x) = 1. We shall prove that x ∈ V (RG). Namely, we consider the
element

y = 1 + µ+ (1 + λ+ µ)a+ (1 + λ)a2.

Then xy = 1+ra+ra2, where, by (8), r = λ2 +λµ+µ2 +1 and r ∈ N(R). Thus, xy
is an invertible element. Hence x is an invertible element and x ∈ V (RG) = GS(RG).
Consequently, we can represent x in the form x = akh, where a ∈ A, h ∈ S(RG) and
x2n ∈ A for some n ∈ N. Using (9) we get

(10) x2n
= 1 + µ2n

+ (1 + λ2n
)a2n

+ (1 + λ2n
+ µ2n

)a2n+1
.

We note that a2n
= a if n is even and a2n

= a2 if n is odd. We consider the following
cases:

(i) Suppose that x2n
= 1. Then equality (10) implies that µ2n

= 0 and λ2n
= 1,

i.e., µ ∈ N(R) and λ ∈ (1 +N(R). Therefore, solution (7), namely (λ, µ), coincides
with the trivial solution (1, 0) of equation (2).

(ii) Suppose that x2n
= a or x2n

= a2. Then µ2n
= 1, i.e., µ ∈ (1 +N(R)) and

either 1+λ2n
= 1 or λ2n

= 1, i.e., either λ ∈ N(R) or λ ∈ (1+N(R)). Consequently,
solution (7), namely (λ, µ), is a trivial solution of equation (2), i.e., equation (2) has
only the trivial solutions in R/N(R).



88 GROUP OF NORMALIZED UNITS OF COMMUTATIVE MODULAR GROUP RINGS

This proves the necessity.

(Sufficiency) Suppose that the condition of case (1) holds. Then G = Gp and
consequently V (RG) = S(RG) ⊆ GS(RG). Hence, V (RG) = GS(RG).

If the condition of case (2) holds, then G 6= Gp, tG = Gp and the ring R is
indecomposable. Then, by Mollov and Nachev [11], V (RG) = GS(RG).

If the condition of case (3) holds, let A = 〈a〉. We form the idempotents e1 =
(1/2)(1 + a) and e2 = (1/2)(1 − a) of RG, i.e., e1 = −1 − a and e2 = −1 + a.
Therefore, ae1 = e1 and ae2 = −e2. Then

RG = RGe1 ⊕RGe2 = RG3e1 ⊕RG3e2.

If x ∈ V (RG), then x = λe1 + µe2, where λ, µ ∈ RG3 are such that λ and µ are
invertible elements. Consequently, n(x) = n(λ) = 1. Hence λ ∈ S(RG3). Since µ is
an invertible element of RG3, we have n(µ) ∈ R∗ = 〈−1〉 ×R∗3, i.e.,

n(µ) = ±α,
with α ∈ R∗3. On the one hand, if n(µ) = α, then x ∈ S(RG) ⊆ GS(RG). On the
other hand, if n(µ) = −α, then

x = λe1 + µe2 = λae1 − µae2 = a(λe1 − µe2) ∈ GS(RG).

Then both cases imply V (RG) ⊆ GS(RG), i.e., V (RG) = GS(RG).

Finally, assume that the condition of case (4) holds and letA = 〈a〉. We shall prove
that V (RG) = GS(RG). It is easy to see that the system

{1, a, a2, g − 1, a(g − 1), a2(g − 1) | g ∈ G2\{1}}
is a basis of the R-algebra RG. Hence, if x ∈ V (RG), then x can be written as

x = x0 + x1,

where

(11)


x0 = α0 + α1a+ α2a

2, with αi ∈ R,

x1 =
2∑
i=0

∑
g∈G2\{1}

xaiga
i(g − 1), with xaig ∈ R.

Since x1 is a nilpotent element, there is n such that x2n
= x2n

0 . Therefore, x0 is
an invertible element. In view of the fact that n(x) = 1 and n(x1) = 0, we have
n(x0) = 1. Consequently, x0 ∈ V (RA). Then

x = x0(1 + x0
−1x1),

where (1 + x0
−1x1) ∈ S(RG).

We shall prove that x0 ∈ AS(RG). Hence it will follow that x ∈ GS(RG),
i.e., V (RG) = GS(RG). For this sake we let λ = 1 + α1 and µ = 1 + α0, i.e.,
α0 = 1 + µ, α1 = 1 + λ. Since α0 + α1 + α2 = 1, we have α2 = 1 + λ + µ. If we
substitute α0, α1 and α2 in equality (11) we get

(12) x0 = 1 + µ+ (1 + λ)a+ (1 + λ+ µ)a2.

We form the idempotents e1 = 1 + a+ a2 and e2 = a+ a2. Therefore,

(13) a2e2 + ae2 = e2.
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It is easy to see, using (11), that x0 = e1 + (λ + µa)e2. Consequently, (λ + µa)e2 is
an invertible element in RAe2. Since the map a→ a2 is an automorphism of the group
A, the extension of this map gives an automorphism of RAe2. Therefore, λe2 + µa2e2
is an invertible element of RAe2. Hence the product

(λe2 + µae2)(λe2 + µa2e2) = (λ2 + λµ+ µ2)e2

is an invertible element of Re2, where, to obtain of this equality, we used equality
(13). Hence (λ2 + λµ + µ2) ∈ R∗ = R∗2 = {1} + N(R). This equality implies that
λ

2 + λµ + µ2 = 1, i.e., (λ, µ) is a solution of equation (2). Consequently, (λ, µ) is a
trivial solution of equation (2), i.e., one of the following conditions holds:

(i) λ = 1 and µ = 0,

(ii) λ = 0 and µ = 1,

(iii) λ = 1 and µ = 1.

Now, in case (i), we have λ = 1 + r1 and µ = r2, with r1, r2 ∈ N(R), and (12)
implies that x0 = 1+ r2 + r1a+(r1 + r2)a2. Hence x0 ∈ S(RA) ⊆ AS(RG). In case
(ii), we have λ = r1 and µ = 1 + r2, with r1, r2 ∈ N(R), and equality (12) implies
that x0 = a[1+r1 +(r1 +r2)a+r2a2]. Hence x0 ∈ AS(RA). Finally, in the case (iii),
we have λ = 1+ r1 and µ = 1+ r2, with r1, r2 ∈ N(R), and equality (12) implies that
x0 = a2(1+ r1 + r2 + r2a+ r1a

2). Hence x0 ∈ AS(RA). The theorem is proved. �

In order to characterize the property V (RG) = GS(RG), Danchev mentions in
Theorem 1 of [4] the contradictory condition (2.2):

R = L+N(R), 1R ∈ L ≤ R, |L| = 2, G = Gp × C,C ≤ G, and |C| = 2.

As a matter of fact, since L is a subring of R and 1R ∈ L, L contains the elements
0, 1R, . . . , (p − 1)1R. Then |L| = 2 implies p = 2. Therefore, G = G2 × C is a
2-group which contradicts the condition of case (2) G 6= Gp in Theorem 1 of [4].

In the following proposition we prove that if case (3) of Theorem 4 holds, then the
ring R is indecomposable.

Proposition 5. If p = 3 and R∗ = 〈−1〉 ×R∗3, then the ring R is indecomposable.

Proof. Assume that the ring R is decomposable. Therefore, there exist two non-
trivial orthogonal idempotents e1 and e2 such that e1 + e2 = 1. Then e1 − e2 ∈ 〈−1〉
since (e1 − e2)2 = e1 + e2 = 1. There are two possible cases to consider:

(i) If e1 − e2 = 1, then e1 + e2 = 1 implies 2e2 = 0 which is a contradiction.

(ii) If e1−e2 = −1, then e1+e2 = 1 implies 2e1 = 0 which is also a contradiction.

Therefore, the ring R is indecomposable. �

Let Z2[x] be a polynomial ring of x with coefficients from Z2 and let (f(x), g(x))
be the greatest common divisor of f(x) and g(x) in Z2[x]. In connection with the
condition of case (4) of Theorem 4 and Lemma 3 we give an example, formulated as
a proposition, which shows that there is an indecomposable ring R, of characteristic 2,
satisfying R∗ = R∗2 and such that equation (2) has a non-trivial solution in R/N(R).
Consequently, the condition in case (4) of Theorem 4 for the solutions of equation (2)
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is essential. Besides, for this ring R of characteristic 2 the converse of Lemma 3 is not
true.

Proposition 6. Let A = Z2[x] and y be a root of the equation

(14) y2 + xy + (x2 + 1) = 0.

Then R = A[y] is an indecomposable ring of characteristic 2, R∗ = R∗2 and equation
(2) has more than three solutions in R/N(R).

Proof. Obviously, A and R are rings of characteristic 2 and A∗ = 1. It is not hard
to see that the left-hand side of equation (14) is an indecomposable polynomial over
A = Z2[x], and the A-algebra R = A[y] has {1, y} as an A-basis. We divide the proof
in several steps.

(a) We shall prove that N(R) = 0. Suppose the contrary. Then there exists an
element v ∈ N(R), with v 6= 0, such that v2 = 0. The element v has the form
v = a(x) + b(x)y, with a(x), b(x) ∈ Z2[x]. The equality

v2 = a2(x) + b2(x)y2 = a2(x) + b2(x)(xy + x2 + 1) = 0

implies that b2(x)x = 0 and, since the ring Z2[x] does not have zero divisors, we have
b2(x) = 0. Therefore, b(x) = 0 and a(x) = 0. Consequently, v = a(x) + b(x)y = 0
which is a contradiction. Therefore N(R) = 0.

(b) Equation (2) has a solution X = x and Y = y, where x, y ∈ R = A[y], i.e.,
equation (2) has a non-trivial solution in R/N(R).

(c) Now we shall prove that R∗ = 1 = R∗2 by the using N(R) = 0. Suppose to
the contrary that there exists (a(x) + b(x)y) ∈ R∗, with a(x), b(x) ∈ Z2[x], such that
a(x) + b(x)y 6= 1, i.e., the following condition holds:

(∗) either a(x) 6= 1 or b(x) 6= 0.

Then there exists (a1(x) + b1(x)y) ∈ R∗, with a1(x), b1(x) ∈ Z2[x], such that

(15) (a(x) + b(x)y)(a1(x) + b1(x)y) = 1,

i.e.,

a(x)a1(x) + (a(x)b1(x) + a1(x)b(x))y + b(x)b1(x)(x2 + xy + 1) = 1.

Since {1, y} is a basis of R = A[y],

(16)

{
a(x)a1(x) + (x2 + 1)b(x)b1(x) = 1,

a(x)b1(x) + a1(x)b(x) + b(x)b1(x)x = 0.

If b(x) = 0, then (16) implies that a(x) = a1(x) = 1, which contradicts the condition
(∗). If b1(x) = 0, then again (16) implies that a(x) = a1(x) = 1 and from the second
equation of (16) we get b(x) = 0, which, together with a(x) = 1, contradicts the
condition (∗). Consequently, b(x) 6= 0 and b1(x) 6= 0. Now we write the second
equation of (16) in the form

(17) b(x)a1(x) = (a(x) + b(x)x)b1(x).

Since the greatest common divisor (b(x), a(x) + b(x)x) = (b(x), a(x)) = 1, where
the second equality follows from (15), equation (17) implies that b(x) divides b1(x).
In an analogous manner, (15) implies that (a1(x), b1(x)) = 1. Therefore, we get from
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(17) that b1(x) divides b(x). Since b1(x) and b(x) are monic polynomials, we have
b1(x) = b(x). Hence b1(x) = b(x) 6= 0 and (17) implies that a1(x) = a(x) + b(x)x.
We substitute a1(x) and b1(x) in the first equation of (16) with a(x) + b(x)x and b(x),
respectively, and obtain

(18) a2(x) + a(x)b(x)x+ (x2 + 1)b2(x) = 1.

If deg(a(x)) = −∞, i.e., a(x) = 0, then the left and the right-hand sides of (18)
have degrees at least 2 and 0, respectively, which is a contradiction. If deg(a(x)) = 0,
then a(x) = 1 and by comparing the degrees of the left and the right-hand sides of
(18) we get a contradiction. Let n = deg(a(x)) ≥ 1. Then, in the left-hand side of
(18), there are two of the first three summands whose degrees are equal. Consequently,
letting deg(b(x)) = k, we have three cases:

(i) The first two summands in the left-hand side of (18) have equal degrees, i.e.,
2n = n+ k + 1.

(ii) The first and the third summands in the left-hand side of (18) have equal de-
grees, i.e., 2n = 2k + 2.

(iii) The second and the third summands in the left-hand side of (18) have equal
degrees, i.e., n+ k + 1 = 2k + 2.

For all these cases, we obtain k = n− 1. Let

a(x) = c0x
n + c1x

n−1 + · · ·+ cn and b(x) = d0x
k + d1x

k−1 + · · ·+ dk,

with ci, dj ∈ Z2 and c0 = d0 = 1. Then, on the one hand, the summand in the left-hand
side of (18) of degree 2n has coefficient c20 + c0d0 +d2

0 = 1 and, on the other hand, this
coefficient c20 + c0d0 + d2

0 must be equal to 0. This is a contradiction.

(d) We shall prove that the ring R = A[y] is indecomposable. Suppose the con-
trary. ThenR has a non-trivial idempotent e = a(x)+b(x)y, where a(x), b(x) ∈ Z2[x]
(i.e., different from 0 and 1). If b(x) = 0, then we get that either e = a(x) = 0 or
e = a(x) = 1, which is a contradiction. Therefore, b(x) 6= 0 and e2 = e implies that
a2(x) + b2(x)y2 = a(x) + b(x)y, i.e.,

a2(x) + b2(x)xy + b2(x)x2 + b2(x) = a(x) + b(x)y.

Hence b2(x)x = b(x), i.e., b(x)x = 1, which is a contradiction, since b(x) ∈ Z2[x] is
a non-zero polynomial of x. This completes the proof. �
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