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GROUP OF NORMALIZED UNITS OF COMMUTATIVE
MODULAR GROUP RINGS

ToporR ZH. MOLLOV AND NAKO A. NACHEV

RESUME. Soit R un anneau commutatif avec identité de caractéristique p, avec
p un nombre premier, et soit G un groupe abélien. Soit V(RG) le groupe des uni-
tés normalisées de I’anneau de groupe RG, i.e. les unités d’augmentation 1, et soit
S(RG) le p-sous-groupe de Sylow du groupe V (RG), i.e. la p-composante du groupe
V(RG). Dans le présent article, nous donnons quatre conditions et nous démontrons
que V(RG) = GS(RG) si et seulement si I’une de ces conditions est satisfaite.

ABSTRACT. Let R be a commutative ring with identity of prime characteristic
p and let G be an abelian group. Let V(RG) be the group of normalized units of
the group ring RG, i.e., the units of augmentation 1, and let S(RG) be the Sylow
p-subgroup of the group V(RG), i.e., the p-component of the group V(RG). In the
present paper, we give four conditions and prove that V(RG) = GS(RG) if and only
if any one of them is fulfilled.

1. Introduction

Let RG be the group ring of an abelian group GG over a commutative ring R with
identity of prime characteristic p and let S(RG) be the p-component of the group
V(RG) of normalized units of RG. The investigation of the group S(RG) has begun in
1967 with the fundamental papers of Berman [1, 2] in which a complete description of
S(RG) (up to isomorphism) was given, when G is a countable abelian p-group and R
is a countable perfect field. Further, in 1977 and 1981, Mollov [8, 9] has calculated the
Ulm-Kaplansky invariants f,(.S) of the group S(RG) when G is an arbitrary abelian
group and R is a field. In 1988, it was proved by May [7] that if G is an abelian p-group
and R is a perfect field of prime characteristic p, then S(RG) is simply presented if and
only if GG is simply presented. Hence, when G is a totally projective abelian p-group
and the field R is perfect, the above mentioned Ulm-Kaplansky invariants f,(S) give
a full system of invariants of the group S(RG). Besides, when the ring R is arbitrary,
Mollov and Nachev [10] have calculated in 1980 the invariants f,,(.S) under the restric-
tion that (7 is an abelian p-group, and Nachev [12] has calculated in 1995 the invariants
fa(S) without restrictions on the group G and the ring R.

When G = G, the equality V(RG) = S(RG) holds, while when G # G), the
investigation of the group V(RG) is difficult and a full description of V(RG) has
not been obtained until now. In this latter situation, a very important problem is the
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following: find necessary and sufficient conditions under which V(RG) = GS(RG).
In 2005, Danchev [3, Proposition 5] has provided a partial answer to this question
when the ring R has no zero divisors and the group GG contains an element of infinite
order, and in 2006 Mollov and Nachev [11] have given an answer to this question
when the ring R is arbitrary and the torsion subgroup ¢tG of G coincides with G,,. In
Theorem 1 of [4] Danchev gives necessary and suffcient conditions for the equality
V(RG) = GS(RG) to hold for an arbitrary ring R of prime characteristic p and a
group G, but there are imperfections in the proof. In the present paper (see Theorem
4), we provide a transparent complete proof using a more direct approach.

2. Main result

Denote by G the p-component of G and by R, the p-component of the unit group
R* of the ring R. Let tG be the torsion subgroup of the group G and let (g) be the
cyclic subgroup of GG generated by g € G.

For our first preliminary result we also denote by (m, n) the greatest common divi-
sor of m and n, for m,n € N. We shall multiplicatively write the abelian groups. The
abelian group terminology is in agreement with Fuchs [5, 6].

Lemma 1. Let R be a commutative ring with identity and A = (a) be a cyclic
group of order q such that (q,6) = 1. Then the elementz = 1 —a+a? € V(RA), ie.,
x is a normalized invertible element in the group ring RA.

Proof. Let k be the least positive solution of the congruence 6k = 1 (mod ¢). It
is easy to see that

(1) (a3n—2 + a3n—1)x — a3n—2 + a3n+1

forn =1,2,...,2k. Multiplying the equalities of (1) with an even n by —1 and adding
all equalities of (1) we obtain

a6k+1 2

Yyr = a — =a—a"=1—uzx,

where y is a polynomial of a with integral coefficients. Thus,y € RAand z(y+1) = 1,
i.e., x is an invertible element of RA. (|

Lemma 2. Let R be a commutative ring with identity of prime characteristic p and
A be a torsion abelian group. If A, = 1 and V(RA) = A, then A is a cyclic group
either of order 2 or of order 3.

Proof. Suppose that there is a non-trivial finite subgroup F' of A which is different
from A. Since (|F|,p) = 1 and charR = p, where | F'| is the cardinality of F, |F'| is an
invertible element in 2. Consequently, there are idempotents

1
61:72]0 and ey =1 —e¢;.
1l

Leta € A\F. We form the element x = aej +e3. Obviously, x is an invertible element
and its inverse is a~tej + eg. Thus, x € V(RF) C V(RA) = A, i,z € A. Thisisa
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contradiction since e; # 0 and e; # 1. Therefore, A is a cyclic group and the order of
A is a prime number q.

We shall prove that either ¢ = 2 or ¢ = 3. If we suppose that ¢ > 5, then (¢,6) = 1
and, by Lemma 1, the element z = (1 — a + a*) € V(RA) = A, where a € A. This is
a contradiction. Consequently, either ¢ = 2 or ¢ = 3, i.e., A is a cyclic group either of
order 2 or of order 3. O

We recall some well-known definitions. A ring R is called indecomposable if it
cannot be decomposed into a direct sum of two or more non-trivial ideals of R, or
equivalently, if R does not have non-trivial idempotents (i.e., different from 0 and 1).

Let R be a commutative ring with identity of characteristic 2 and let N (R) be the
nilradical of R. Further we shall consider the equation

2) X2+ XY +Y?2=1+N(R)

in the quotient ring R/N(R). Clearly, equation (2) has three solutions in R/N(R),
namely (1,0), (0,1), (1,1), where A = A+ N(R), with A € R. We call these solutions
trivial.

Lemma 3. If R is a commutative ring with identity of characteristic 2 and equation
(2) has only the trivial solutions in R/N (R), then R is an indecomposable ring.

Proof. Suppose that R = I @ J is a direct sum of non-trivial ideals I and J and
1 = e; + ey, where e; € [ and e3 € J. Obviously, equation (2) has a solution
(e1 + N(R),e2 + N(R)), which is different from the trivial solutions. Namely, if we
suppose that either e; + N(R) = 1+ N(R) or e; + N(R) = N(R), then we obtain
that e; is either invertible or nilpotent. This is a contradiction. U

Further, if
n
xr = Z @;4gi,
i=1

with o; € R and g; € G, then we let

n
n(x) = Z Q.
i=1
We denote by Z,, the prime field of positive characteristic p.

In the next theorem we shall give necessary and sufficient conditions for the equa-
lity V(RG) = GS(RG) to hold. This equality is very useful in the investigation of
V(RG). As we shall see, in this result the solutions of equation (2) in the quotient ring
R/N(R) will play an important role.

Theorem 4. Let R be a commutative ring with identity of prime characteristic p
and G be an abelian group. Then V(RG) = GS(RQ) if and only if at least one of the
following conditions is fulfilled:

(1) G =Gy;
(2) G # G,,tG = G, and the ring R is indecomposable;
3) p=3,R*=(—-1) X R;,G=AXG3,|A| =2;
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4) p=2,R" = R5,G = A x G2, |A| = 3 and equation (2) has only the trivial
solutions in R/N(R).

Proof. (Necessity) Assume that V(RG) = GS(RG). Obviously, either G = G,
or G # G,. Suppose first that G # G,. We consider the following two subcases:
tG = Gp and tG # Gy,

(a) Let tG = G,. We shall prove that R is an indecomposable ring. Suppose to the
contrary that R is decomposable. Therefore, there are orthogonal idempotents e; and
ez of R such that e; + e2 = 1. We form the element z = ge; + ez, with g € G\G).
Since z € V(RG) = GS(RG), we have © = ¢1s, with g1 € G and s € S(RG).
Consequently, there is £ € N, such that

e te=a" =4
which is a contradiction, since gpkel + e5 is an element of RG in a canonical form
and this element does not belong to G. Hence R is an indecomposable ring and the
conditions of case (2) hold.

(b) Let tG # G,
(b1) We shall prove that G = tG and
3) G=AxG,, whereA#1.

Since tG' # G, and charR = p, there exists an element a € tG\G), whose order is
q > 2, with (¢, p) = 1, and idempotents

4) e1=(1/¢)(1+a+---+a?!) and ey=1—¢;.

Suppose that G # tG. Let g € G be an element of infinite order. Then the element
x = gey + ez belongs to V(RG) = GS(RG) and 2?" € @ for some k € N. This is a
contradiction, since formula (4) for the idempotents e; and e implies that 2P contains

at least two non-zero summands in its canonical form. Therefore, G = tG and equality
(3) holds.

(b2) We shall prove that
(5) R* = (~1) x R,
Suppose the contrary, and let A € R* be such that A ¢ (—1) x R;. We form the element
y = e1+ ez which belongs to V(RG) = GS(RG). Consequently, y = gs withg € G
and s € S(RG). Since, by equality (3), g = hg,, with h € A and g, € G, there exists
t € N such that

e1 + )\pteg = ypt — '

Hence ypt € A and, by formula (4),
6) e1+Ney=(1/Q)[(1+ (g —DN)+ (1 =N Va+--+ (1 — I )a?7!,

where a and ¢ are chosen as in case (b1). Since A* # 1, the summand (1— /\pt)a in
this equality is different from 0. If ¢ > 2, then there is at least one non-zero summand
in (6) after (1 — )\pt)a which is a contradiction, since the right-hand side of (6) is in
a canonical form and belongs to A. Consequently, ¢ = 2. Then the first summand in
the right-hand side of (6) has the form (1/2)(1 + A*") and must be equal to 0, since
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the second summand (1/2)(1 — A?")a is different from 0 . Hence A*' = —1, which
contradicts the choice of A. Therefore, (5) holds.

(b3) We shall prove that the prime p can take only the values 2 or 3, i.e., either
p = 2or p = 3. Suppose that p > 5. Since Z,* C R* and |Z,*| = p — 1, there are
elements in Z,* which, by (5), do not belong to (—1) x R} = R*. This contradicts (5).
Consequently, either p = 2 or p = 3.

(b4) We shall prove that in equality (3) A is a cyclic group either of order 2 or
of order 3. Namely, we consider V(Z,4) < V(RA) < V(RG) = GS(RG), i.e.,
V(Z,A) < GS(RG). However, V(Z,A) does not contain p-elements. Therefore,
V(Z,A) C Gand V(Z,A)G = A, ie, V(Z,A) = A. Then Lemma 2 implies that
A is a cyclic group either of order 2 or of order 3 and, by case (b3), either p = 2 or
p = 3. Consequently, by equality (3), if p = 3, then A is a cyclic group of order 2 and
if p = 2, then A is a cyclic group of order 3. These results show that the conditions of
case (3) and of case (4), eventually without the last condition of case (4), are fulfilled.

(b5) Let p = 2. We shall prove that the last condition of case (4) holds, i.e., that
equality (2) has only the trivial solutions in R/N(R). Since p = 2, it follows from
equality (3) that G = A x G, with |A| = 3. Let A = (a) and let

(7) (\ ), with\ € R,
be a solution of equation (2) in R/N(R). Substituting X and 7 in equation (2) gives
(8) N A+ p? =1+,
where r € N(R). We consider the element
9) ct=1+p+ 14+ Na+ 1+ X+ p)d’.
Obviously, n(z) = 1. We shall prove that = € V(RG). Namely, we consider the
element
y=1+p+ 1 +X+pa+(1+Nd>
Then zy = 1+ra+ra?, where, by (8), 7 = A2+ Au+pu?+1andr € N(R). Thus, zy

is an invertible element. Hence x is an invertible element and z € V(RG) = GS(RG).

Consequently, we can represent z in the form 2 = a*h, where a € A, h € S(RG) and

22" € A for some n € N. Using (9) we get

(10) 2 =1+ + 1+ A7) + 1+ 27 4+ 22

We note that a®" = a if n is even and a®" = a? if n is odd. We consider the following
cases:

(i) Suppose that 22" = 1. Then equality (10) implies that ;2" = 0 and A" =1,

0
ie, € N(R)and A € (14 N(R). Therefore, solution (7), namely (A, ), coincides
with the trivial solution (1, 0) of equation (2).

(ii) Suppose that 22" = a or 22" = a2. Then p?" = 1, i.e, u € (1 + N(R)) and
either 142" = 1or A\2" = 1, i.e., either A\ € N(R) or A € (1+N(R)). Consequently,
solution (7), namely (X, i), is a trivial solution of equation (2), i.e., equation (2) has
only the trivial solutions in R/N(R).
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This proves the necessity.

(Sufficiency) Suppose that the condition of case (1) holds. Then G = G, and
consequently V(RG) = S(RG) C GS(RG). Hence, V(RG) = GS(RG).

If the condition of case (2) holds, then G # G), tG = G, and the ring R is
indecomposable. Then, by Mollov and Nachev [11], V(RG) = GS(RG).

If the condition of case (3) holds, let A = (a). We form the idempotents e; =
(1/2)(1 + a) and eo = (1/2)(1 — a) of RG, ie,e; = —1 —aand ey = —1 + a.
Therefore, ae; = e; and aes = —es. Then

RG = RGe; & RGeg = RG3e1 ® RG3es.

If x € V(RG), then © = Aej + pey, where A\, u € RG3 are such that A and p are
invertible elements. Consequently, n(x) = n(A) = 1. Hence A € S(RG3). Since p is
an invertible element of RG3, we have n(u) € R* = (—1) x Rj, i.e.,

n(p) = £,

with @ € Rj. On the one hand, if n(y) = «, then z € S(RG) C GS(RG). On the
other hand, if n(u) = —a, then

x = Xey + pey = Aae; — paey = a(Aep — pes) € GS(RQG).
Then both cases imply V (RG) C GS(RG), i.e., V(RG) = GS(RG).

Finally, assume that the condition of case (4) holds and let A = (a). We shall prove
that V(RG) = GS(RG). It is easy to see that the system

{1,a,0%, g —1,a(g —1),a*(g = 1) | g € G2\{1}}
is a basis of the R-algebra RG. Hence, if x € V(RG), then x can be written as

xr =x9+ 21,

where

To = ap + a1a + aza?, witha; € R,

2

(11) | |

r] = Z Z Tgiga'(g —1), withz,ig € R.

i=0 geGo\{1}

Since x; is a nilpotent element, there is n such that 22" = 22". Therefore, g is
an invertible element. In view of the fact that n(z) = 1 and n(x;) = 0, we have

n(xo) = 1. Consequently, o € V(RA). Then
x = 20(1 + 20 t11),
where (1 + 29~ 171) € S(RG).

We shall prove that o € AS(RG). Hence it will follow that x € GS(RG),
ie., V(RG) = GS(RG). For this sake we let A = 1 + oy and p = 1 + ay, i.e.,
ag =1+ p,a; =14+ X Since ag + a1 + a2 = 1, we have g = 1 + A + p. If we
substitute a, a1 and o in equality (11) we get
(12) zo=1+p+ 1 +Na+ (1+N+p)d?

We form the idempotents e; = 1 + a + a® and ea = a + a®. Therefore,

(13) a262 + aeg = eo.
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It is easy to see, using (11), that xg = e; + (A + pa)ez. Consequently, (A + pa)es is
an invertible element in RAes. Since the map a — a? is an automorphism of the group
A, the extension of this map gives an automorphism of RAey. Therefore, Aes + pa’es
is an invertible element of RAes. Hence the product

(Nez + paes)(Neg + paes) = (A2 + A+ p?)es

is an invertible element of Res, where, to obtain of this equality, we used equality
(13). Hence (A% + A\u + p?) € R* = Ry = {1} + N(R). This equality implies that
Xt i+ @2 =1, ie., (A7) is a solution of equation (2). Consequently, (), z) is a
trivial solution of equation (2), i.e., one of the following conditions holds:

Now, in case (i), we have A\ = 1+ 7y and u = ro, with 71,79 € N(R), and (12)
implies that xg = 1472 +71a+ (r1 +72)a®. Hence zg € S(RA) C AS(RG). In case
(ii), we have A = 71 and p = 1 + ro, with 1,72 € N(R), and equality (12) implies
that 29 = a[l+ 71+ (r1 +r2)a+7r2a?]. Hence 29 € AS(RA). Finally, in the case (iii),
we have A = 147y and p = 1+ 19, with 71,79 € N(R), and equality (12) implies that
w9 = a®>(1+ 71 + 79 +r2a+71a%). Hence xg € AS(RA). The theorem is proved. [J

In order to characterize the property V(RG) = GS(RG), Danchev mentions in
Theorem 1 of [4] the contradictory condition (2.2):

R=L+N(R),lre L<R,|L|=2,G=G,xC,C <G, and |C| = 2.
As a matter of fact, since L is a subring of R and 1 € L, L contains the elements
0,1g,...,(p — 1)1g. Then |L| = 2 implies p = 2. Therefore, G = G2 x C'is a
2-group which contradicts the condition of case (2) G # G, in Theorem 1 of [4].

In the following proposition we prove that if case (3) of Theorem 4 holds, then the
ring R is indecomposable.

Proposition 5. If p = 3 and R* = (—1) x Rj, then the ring R is indecomposable.

Proof. Assume that the ring R is decomposable. Therefore, there exist two non-
trivial orthogonal idempotents e; and ey such that e; + ea = 1. Then e; — e2 € (—1)
since (e1 — 62)2 = e1 + eo = 1. There are two possible cases to consider:

(i) Ife; — ez =1, then e; + ea = 1 implies 2e5 = 0 which is a contradiction.
(i) Ife;—eo = —1,thene;+es = 1implies 2e; = 0 which is also a contradiction.

Therefore, the ring R is indecomposable. g

Let Z5[x] be a polynomial ring of x with coefficients from Z5 and let (f(z), g(x))
be the greatest common divisor of f(z) and g(z) in Zs[z]. In connection with the
condition of case (4) of Theorem 4 and Lemma 3 we give an example, formulated as
a proposition, which shows that there is an indecomposable ring R, of characteristic 2,
satisfying R* = R and such that equation (2) has a non-trivial solution in R/N(R).
Consequently, the condition in case (4) of Theorem 4 for the solutions of equation (2)
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is essential. Besides, for this ring R of characteristic 2 the converse of Lemma 3 is not
true.

Proposition 6. Let A = Zs[x] and y be a root of the equation
(14) v+ zy+ (22 +1) =0.

Then R = Aly] is an indecomposable ring of characteristic 2, R* = R; and equation
(2) has more than three solutions in R/N (R).

Proof. Obviously, A and R are rings of characteristic 2 and A* = 1. It is not hard
to see that the left-hand side of equation (14) is an indecomposable polynomial over
A = Zsx], and the A-algebra R = A[y| has {1, y} as an A-basis. We divide the proof
in several steps.

(a) We shall prove that N(R) = 0. Suppose the contrary. Then there exists an
element v € N(R), with v # 0, such that v> = 0. The element v has the form
v =a(x) + b(x)y, with a(x),b(z) € Zs[z]. The equality

v = a2(x) + B(a)y? = aX(x) + b (@) oy + 22 + 1) = 0
implies that b?(z)x = 0 and, since the ring Z»[z] does not have zero divisors, we have
b%(z) = 0. Therefore, b(z) = 0 and a(x) = 0. Consequently, v = a(x) + b(z)y = 0
which is a contradiction. Therefore N(R) = 0.

(b) Equation (2) has a solution X = z and Y = y, where z,y € R = Aly|, i.e.,
equation (2) has a non-trivial solution in R/N (R).

(c) Now we shall prove that R* = 1 = Rj by the using N(R) = 0. Suppose to
the contrary that there exists (a(z) 4+ b(z)y) € R*, with a(x),b(x) € Za[z], such that
a(x) 4+ b(z)y # 1, i.e., the following condition holds:

(%) either a(x) # 1 or b(x) # 0.

Then there exists (ai(x) + bi(z)y) € R*, with a1 (x), b1 (x) € Zz]z], such that
(15) (a(x) + b(@)y) (a1 (2) + by (2)y) = 1,

ie.,

a(x)ay (x) + (a(z)by (z) 4+ ay(x)b(x))y + b(z)by (z) (2 + 2y + 1) = 1.
Since {1, y} is a basis of R = A[y],
16) a(z)ay(z) + (22 + 1)b(z)by(z) = 1,

a(x)bi(x) + a1 (x)b(z) 4 b(x)by (x)z = 0.

If b(x) = 0, then (16) implies that a(x) = a;1(x) = 1, which contradicts the condition
(*). If by (x) = 0, then again (16) implies that a(z) = a1(x) = 1 and from the second
equation of (16) we get b(z) = 0, which, together with a(z) = 1, contradicts the
condition (). Consequently, b(z) # 0 and b;(xz) # 0. Now we write the second
equation of (16) in the form

(17) b(z)ai(z) = (a(z) + b(x)x)bi ().

Since the greatest common divisor (b(x),a(z) + b(x)x) = (b(z),a(z)) = 1, where
the second equality follows from (15), equation (17) implies that b(z) divides by (z).
In an analogous manner, (15) implies that (a1 (z), b1 (z)) = 1. Therefore, we get from
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(17) that by (z) divides b(x). Since bi(x) and b(z) are monic polynomials, we have
bi(z) = b(z). Hence by (x) = b(z) # 0 and (17) implies that a;(z) = a(x) + b(z)z.
We substitute a1 () and by () in the first equation of (16) with a(x) + b(z)x and b(z),
respectively, and obtain

(18) a?(z) + a(z)b(z)r + (2* + 1)b?*(z) = 1.

If deg(a(z)) = —o0, ie., a(z) = 0, then the left and the right-hand sides of (18)
have degrees at least 2 and 0, respectively, which is a contradiction. If deg(a(z)) = 0,
then a(x) = 1 and by comparing the degrees of the left and the right-hand sides of
(18) we get a contradiction. Let n = deg(a(z)) > 1. Then, in the left-hand side of
(18), there are two of the first three summands whose degrees are equal. Consequently,
letting deg(b(x)) = k, we have three cases:

(i) The first two summands in the left-hand side of (18) have equal degrees, i.e.,
n=n+k+1

(i) The first and the third summands in the left-hand side of (18) have equal de-
grees, i.e., 2n = 2k + 2.

(iii)) The second and the third summands in the left-hand side of (18) have equal
degrees, i.e, n+k+ 1 =2k + 2.
For all these cases, we obtain k = n — 1. Let

a(x) =copz" + 1z L+ -4, and b(x) = dox® + dyat T+ 4 dy,

with ¢;,d; € Z3 and cg = dy = 1. Then, on the one hand, the summand in the left-hand
side of (18) of degree 2n has coefficient 0(2) ~+ codo + d% = 1 and, on the other hand, this
coefficient c3 + cody + d2 must be equal to 0. This is a contradiction.

(d) We shall prove that the ring R = Aly] is indecomposable. Suppose the con-
trary. Then R has a non-trivial idempotent e = a(x) +b(x)y, where a(x), b(z) € Zs[z]
(i.e., different from 0 and 1). If b(x) = 0, then we get that either e = a(xz) = 0 or
e = a(x) = 1, which is a contradiction. Therefore, b(x) # 0 and ¢ = e implies that
a’(z) + b (2)y? = a(x) + b(2)y, ie.,

a?(z) + b (z)xy + b*(x)2® 4+ b*(z) = a(z) + b(x)y.

Hence b?(z)z = b(x), i.e., b(x)xr = 1, which is a contradiction, since b(z) € Zs[x] is
a non-zero polynomial of x. This completes the proof. (]
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