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ON THE DECOMPOSITION AND LOCAL DEGREE OF
MULTIPLE SADDLES

SARA DERIVIERE, ToMASZ KACZYNSKI
AND PIERRE-OLIVIER VALLERAND-BEAUDRY

RESUME. L'analyse topologique des images numériques nous moéke kana-
lyse de la formule d’Euler-Maxwell en I'absence des condiside non dégénérescence
et d’isolation. Dans cet article, nous étudions le degralldesk-selles des champs de
gradients et généralisons la formule aux points critiquggdérés.

ABSTRACT. Topological analysis of digital images motivates expigrihe Euler-
Maxwell formula in the absence of non-degeneracy and isolabnditions. We study
the local degree of gradient fields at#old saddle, and provide a generalization of
the formula for degenerate critical points.

1. Introduction

This paper is the first step towards the answer to questions posed in ¢bn2er-
ning the Euler-Maxwell formula in the context of topological analysis of digitages.
In those papers, the object studied is a scalar fungtiodt — R on a discrete multi-
dimensional data set. In the planar case studied in [1],is geometrically interpreted
as a height field. The features of interest are critical point§ tifiat is, peaks, pits, and
saddles. Once the critical points are identified, various techniques ede¢aanalyze
relationships between them and to trace structures such as ridge lines,lna@gand
isolines. In the case of data of higher dimensions studied in [2], the georimd&ie
pretation of critical points is more complex but those points play equally impaént
in further study, such as the construction of the level sets givelfi by ¢. A good
understanding of the nature of saddles is especially important becasseatieepoints
where level sets intersect.

The smooth Morse theory [12] has inspired researchers in imaging scidooe
ever, in its rigorous applications such as [5], one spends a lot oft effoforcing, by
local deformation of data, the main hypothesis of the Morse theory statingrttieal
points of f must be isolated and non-degenerate to hold. By this way, one adjusts the
finite input to the theory, with the aim at validating practical implementations. There
is a discrete Morse index theory due to Forman [6], but it also deformsatseanhd,
moreover, its goals are different than those in the image analysis. In,[an&ffort
is made to establish a discrete analogy of the Morse theory for a funttfined on
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pixels (mathematically speaking, elementary cubes) while keeping the origioaley
try, that is, without forcing the isolation and non-degeneracy of criticéhts. The
main results obtained there are the algorithms detecting and classifying cegjaaths,
and constructing the so-called Morse connections graph, whose acdestical com-
ponents and edges display the existence of trajectories connecting theompAiter
experimentation is done in [1] on planar images.

Among questions addressed in [1, 2], one is related to extensions of theléor
1) f pits — f passest f peaks= 2

for a height function defined on the surface of the globe, that is, thedtmensional
sphereS?. This formula is essentially due to Maxwell [13] but is often calader for-
muladue to its similarity to the Euler characteristic of the sphere. Inimaging science, it
is used (often reinforced) as a criterion of correctness of progratrecéing informa-

tion on critical points from discrete data. A generalization of this formula tdrarly
dimensions and to Morse functiorfs: M — R on compact smooth manifolds is the
Morse formula

n

) D (1)) = x (M),

i=1

where thep, are the non-degenerate critical pointsfoénd, for each, \(p;) is the
Morse index ofp; defined as the sign of the Hessian jofat p;. Finally, x(M) is
the Euler-Poincaré characteristic of. The terminology related to Morse functions is
recalled in Section 2.

In applications to digitaD image analysis, the functions are neither defined on
manifolds, nor on the sphef®?, but on some rectangular regiofsC R?. One makes
use of the formula (2) by assuming thatis “surrounded by a depression”, so that we
may compactify the planB? to the spheres? with a point at infinity wheref assumes
an absolute minimum. The same argument is used in an arbitrary dimension fara fu
tion on a bounded rectangular dom#@nc R?. In mathematical terms, the assumption
on a surrounding depression can be formulated by sayingfttgatiecreasing through
0D towards the exterior ab, or thatV f points inward oroD. For thed-dimensional
sphereS?, we havey (5¢) = 1+ (—1)%. Thus, by removing the added minimum point
at infinity, we should obtain the formula

n

3 D (=DM = (=1

=1
for a functionf : D — R whose gradient points inward @iD.

An observation which motivated the direction chosen in this paper is that ¢hef us
the passage through a theory of compact manifolds is somewhat artificiarigfiveal
function is defined oD ¢ R? and we end up formulating the result for such functions.
Thus, we want a more elementary and direct proof confined within the Warkeof
functions on bounded domainsIif.

There is such a theory at our disposal. It is the Brouwer degree, allsal ¢opo-
logical degree theory of vector fields which we may apply here to the gradfef.
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Moreover, the degree theory remains valid for gradients of functiorishatrave de-
generate critical points, such as monkey saddles. Furthermore, it is oakdditrary
continuous vector fields.

In the introductory Section 2, the basics of the degree theory are reaaltedsed
to give an alternative proof of the formula (3) in the non-degenerate cas

In Section 3, we discuss a known model for the monkey saddle and usevieta g
general definition ok-fold saddle using the terminology of stable and unstable mani-
folds from the theory of dynamical systems. We next give a combinataidaeplure
for decomposing &-fold saddle ta: simple saddles.

Section 4 is concerned with any isolated, but possibly degenerated,|qrdings in
R2. We first state a version of Wilson and Yorke’s isolating block, adaptedit@on-
text. We prove Theorem 4.7 stating that any isolated critical point is either a ntimimu
a maximum, or &-fold saddle, whose local degreelis the first two cases andk in
the last one. We next use the additivity property of degree to provideerglzation
of (3) in the presence df-fold saddles.

As we said, the topological degree is valid for any continuous vector field o
domain inR¢ and any upper semi-continuous multivalued vector field with compact
convex values (more generally, contractible or aspherical values) sratditive with
respect to unions of regions. Thus, it should suit better the applicatialisaeete data
and critical regions in the context of [1, 2]. This is the project for the reitwork
discussed in Section 5.

We finish this introduction with a little disclaimer. The study of dynamical sys-
tems in arbitrary dimensions is very extensive, and many statements prewetitisd
paper can be derived from more general and abstract theoremdditethoften in the
language of algebraic topology. In particular:

(a) The most general and concise formulations of the local degree op @raan
terms of the homomorphism induced in homology or cohomology groups ofesphe

(b) The differential equatios = (k+1)z" related to the model (8) df-fold saddle
studied in Section 3 is well known, and it is a special case of differentiahtimns
studied in [15].

(c) Some conclusions in the proof of Theorem 4.7 can be derived faramo-
logical statements in [7].

However, the generality of a theory is often an obstruction to geometriclizaua
tion and accessibility to the applied mathematics, computer science, and eimgjneer
communities. We wish to emphasize that our goal is not to achieve the greasest p
sible generality but to give a presentation of the issue as elementary, asIsatied,
and as visual as possible within the framework of a mathematical paper. yeet et
the understanding of geometric aspects of both analytical and homologitsaiidl be
helpful in designing adequate models in digital imaging.
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2. Degree of a generic gradient field

The concept of topological degree goes back to Brouwer [3, 1Qit2}b use here
a more recent analytic viewpoint on the degree due to Nagumo [14, 195¢hs a
common choice in reference texts such as [10]. The degree is a toolvéstigating
the equationf'(z) = ¢, whereF : D — R is a continuous map of the closure of
a bounded open subs&t of R? andq € RY. If F is admissible, that isF'(z) # ¢
for z € 0D, then one defines thepological degree of’ on D with respect tog,
which is an integer (denoted hieg(F, D, q)) satisfying the additivity, homotopy and
normalization axioms.

The analytic construction of the degree given, for example, in [10] gossveral
steps of approximation. First, one assumes fhat generig that is, it is of clasg>!
and theJacobianof F' atp, defined by.Jr(p) = det DF'(p), is non-zero at any such
that F'(p) = ¢. One proves that, in this case, the zerod'oére isolated and hence,
sinceD is compact, there are finitely many of them. &t!(q) = {p1,p2,...,pn}-
Then the degree is defined by the formula

4) deg(F,D,q) = sgnJp(pi).
=1

In particular, if D is a bounded neighborhood of the origin of coordinatesidnid the
identity map, we instantly get thermalization axiomleg(id , D, 0) = 1.

One next proves thateg(F, D, q) is locally constant in the class of admissible
genericC'' maps with respect to the supremum norm. Finally, one proves that any ad-
missible continuous map' is suitably approximated by an admissible generic frap
Hence, since the degree is locally constant, we maylggtF, D, q) := deg(G, D, q).

Letnow f : D — R be a function of clas€’?. A pointp € D is calledcritical

if the gradientF” = V f vanishes ap and it is calledregular otherwise. Hence, the
critical points of f correspond to the zeros @f. The functionf is called aMorse
functionif all of its critical pointsp are non-degeneratethat is, if theHessianof f
defined byH ; = det D?f does not vanish at. Note that the Hessian gfis precisely
the Jacobian of' = V f. Thus, f is a Morse function if and only if its gradieri is
generic for degree computation @t= 0. From now on, we assume that= 0 and
denote the degree @f on D with respect td) by deg(F, D) instead ofdeg(F, D, 0).

Given a Morse functiorf, the index of any critical poing, denoted by\(p), is the
number of negative eigenvaluesiof f(p). ThussgnJF(p) = (—1)*®) and hence, the
left-hand sides of the formulas (3) and (4) coincide. Here is a more vigaametric
way of introducing the Morse index. The Morse Lemma [12] says that #rdselocal
C? coordinates originating at such that, in those coordinatgspecomes a quadratic
polynomial

d
(5) fl@)=c+> Nag,
i=1

where); € {—1,1}. Then\(p) is the number of indicessuch that we have; = —1.
If A(p) = 0, pis a local minimum and if\(p) = d, p is a local maximum. The
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intermediate values of(p) correspond to simple (non-degenerate) saddles dthe
formula (4) instantly gives the following.

Proposition 2.1. Let FF = V f wheref is the quadratic function iff5) and let
D = B¢ be the unit ball irR¢. Then

deg(F, D) = )\1)\2 ce )\d.

In particular, inR?, deg(F, D) = 1 whenO is a local extremum (minimum or maxi-
mum), andleg(F, D) = —1 when0 is a saddle.

We may also deduce the formula (3) from the properties of degree in thewtesn
D = B%is the open unit ball ilR¢. The condition thaF" = V f points inwardon 6D
can be formulated in terms of the scalar producf@s) - n(x) < 0 forall x € 9D,
wheren : 9D — R% is the outward normal vector field. Whéh = B¢, 9B¢ = §9-1
is the unit spherey(z) = 2 and we get the conditiof'(x) - = < 0. Similarly, F' points
outwardondD if F(z)-n(z) > 0forallx € 9D, so if D = B¢, we get the condition
F(z) -z > 0. Thus, we want to prove the following result.

Theorem 2.2. Let f : B® — R be a Morse function satisfying the condition
(6) z-Vf(z)<O0forallz e STt

Let{p1,p2,...,pn} be the set of all critical points gfin B. Then the Euler-Maxwell-
Morse formula(3) holds inR¢.

Proof. We calculate the degree 6f = V f on D with respect ta; = 0. By (6),
F(z) # 0 for z € S9! and henceF is admissible. Sincg is a Morse functionf is
generic, saleg(F, D) is given by (4). Now, the degree of the linear majal given by
—id (z) = —z on B%is (—1)%. Hence, it remains to prove that

deg(F, D) = deg(—id, D).

For this, we will use the homotopy property of degree. Defihe B? x [0,1] — R?
by

H(xz,t)=(1—1t)F(x)— tx.
ThenH(x,0) = F(z) andH(z,1) = —x. It remains to show thal/ is admissible.
Suppose, on the contrary, that there exists [0, 1] andz € S9~! such that we have
H(x,t) = 0. SinceF and—id are admissible, this is impossible that 0,1 and we
may assume th&t < ¢ < 1. By (6), we get

O=z-H(z,t)=(1—t)x-F(z) -tz -z <0,

a contradiction. O

We wish to know if Proposition 2.1 remains true in original coordinates andgbTh
rem 2.2 can be extended to domains diffeomorphiBfo The Morse Lemma suggests
that this is true but we need the following property of invariance of degf&&f under
the change of coordinates in the domairyotts proof relies on lengthy but elementary
vector calculus arguments. By a diffeomorphism between closed bouadis of
R?, we mean a homeomorphism extending to a diffeomorphism of their neighisho



50 DEGREE OF MULTIPLE SADDLES

Lemma 2.3. Let D be a bounded domain R with a C? boundarydoD and let
alsof : D — R be aC' function. Suppose that there exist€a diffeomorphism

&:B* - D and putyg = f o . Then we have the following:
(@) F := Vf is admissible irD if and only if G := Vg is admissible in3¢,
(b) If F' is admissible, thedeg(F, D) = deg(G, BY),

(c) Moreover,F is inward (outward, respectively) &(x) € 0D if and only if G
is inward (outward, respectively) atc S,

Theorem 2.2 and Lemma 2.3 instantly imply the following.

Corollary 2.4. Let D be a regiorC?-diffeomorphic to a unit ball and : D — R
be a Morse function whose gradient is inwardadn. Let{pi,pa,...,pn} be the set
of all critical points off in B%. Then the formuld3) holds inR<.

The classical result of the Morse theory can now be deduced as prc@ase-
quence of the previous statements.

Corollary 2.5. Let f : S* — R be a Morse function and Iéb, p1, ps, - - ., pn}
be the set of all its critical points. Then the Euler-Maxwell-Morse formula
(7) ST =1 4 (—1)¢
i=0
holds forS<.

Proof. SinceS? is compact,f assumes its minimum at some point. Let itjpe
Let U be an open ball ir5® centered apy, isolating it from other critical points, to
which the Morse Lemma applies. The stereographic projection is a diffedisonpof
S9N\ {po} ontoR? which takesS? \ U to some closed balD c R? centered at the
origin. Since the Morse index of a minimum pointlisit is enough to show that

Z(_l)A(m) = (-1)%

=1
This can be deduced from Corollary 2.4 applied for the composition of therdav
stereographic projection with the restrictionfofo S¢ \ {po}. O

3. Local degree at ak-fold saddle

In this section, we study functionsin the planeR? whose critical points are iso-
lated but possibly degenerate.

3.1. A model of ak-fold saddle
The most commonly seen case of an isolated degenerate critical point is aymonk
saddle. First, if
filz,y) = 2% — o,
then the origin of coordinates is a simple saddlefof The two vectorg1,0) and
(—1,0) define twoascending directionsr, in terms of the topography of the surface
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h = f(x,y), two ridge linesemanating from the origin. Similarly, the vectdis 1)
and (0, —1) define twodescending directionsr two ravine lines Themonkey saddle
is, roughly speaking, a critical point which is the origin of three ridge lirgmsated by
three ravine lines. By the Morse Lemma, this is of course impossililg {0, 0) # 0.
A simple model for the monkey saddle, illustrated by Figure 1, is given by

3 2

folz,y) = x° — 3xy”.

More generally, &-fold saddleis a critical point originatingk + 1) ridge lines sepa-
rated by(k + 1) ravine lines. A simple saddle islafold saddle and a monkey saddle
is a2-fold saddle.

B i -
~0.12] 41 i !
P O R P \\, ‘,”/
: B : |
ERCT . H

FIGURE 1. Left: Level lines and the gradient field for the monkey
saddle. Right: trajectories, ridge lines and ravine lines. The displayed
vector field permits tracing the winding @t asq moves on counter-
clockwise on a circle described in Remark 3.2.

The most transparent formula for a function giving rise tefald saddle is in terms
of complex numbers. We identif§? with the complex plan€ and we use the variable
z=x+iy = (x,y)’. Then,

22 = (m2 — yQ) + 2izy
and
23 = (:c3 - 3:cy2) +1 (3952y — y3) ,
thatis, fi = Re (%) and f, = Re (2*). Consider the function

(8) f(z) = Re <zk+1) )

Note thatf is positively homogeneous in the sense tfiettr, ty) = t*+'(z,y) for

all t > 0, so the ascending and descending directions are determined by the values
of f on the circleS! given by |z| = 1. The maximum off is 1, assumed at the
roots of z¥t1 = 1 and the minimum is-1, assumed at the roots of ! = —1. In

polar coordinates, the ridge lines are the rays emanating from the origia ahtiies

0; = 2% and the ravine lines are rays at the angles- ;7.
Theorem 3.1. Let F' = V f, wheref is given by(8). Then,

deg(F, B*) = —k.
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Proof. Consider the functiog : C — C, given byg(z) = 2**1. Letu(z,y) and
v(z,y) be the real and imaginary parts @frespectively, so that(z) = u(z,y). Then
Vf = (ug,uy)! whereu, andu, denote the partial derivatives afwith respect tar
andy, respectively. On one hand, using the Cauchy-Riemann equationgtwe g

9(z) = ua(2)+ive(2)
= ug(2) —iuy(z)
(U, —uy)T.
On the other handy’(z) = (k + 1)2*, soVf = (k + 1)z*, wherez stands for the
complex conjugate ot. It is known that the topological degree of a holomorphic

function’ : B — C which has no roots o' is the number of roots of in B2
counting their multiplicity (see [10, Sec. 1.4]). In our cakes ¢’ and this number is
k.

~

Next, consideG : R? — R? with G(z) = (z, —y) = z. Then,F = G o F. Since
G is a linear isomorphism taking? to itself, the multiplication Theorem [10, Sec. 2.3]
implies that

deg(F,B* = deg(GoF,B?0)
= deg(G, B%,0) deg(F, B%,0).

By definition,
deg(G, B?,0) = sgndet VG = —1,
o)
k = deg(F, B?) = —deg(F, B%,0). O

Remark 3.2. Here is a geometric interpretation of the analytic proof provided
above, based on the interpretation of degree as the winding numberf and as
the vector pointing the direction of the steepest ascent of a height funttidfe refer
to Figure 1. We register the angle traced by the veétor V f(q) attached to the
origin 0, as the pointy = (x,y) moves counterclockwise on the unit circle. When
q = (1,0) is on the first ridge line afy = 0, F' points in the same direction ag.
Wheng moves counterclockwise towards the isoline at the ag&l%), f decreases,
SO F' rotates clockwise towards the left ridge line. Whereaches the first ravine line

at the angle, I points in the opposite direction of the angfe; — 7, and when the

point is at the next ridge liné, = k% F points again the same direction(@s Thus,

the angle traced by’ between the first two ridge lines is = f—fl — 2m. The same

scenario repeats between any two consecutive ridge lines, sogidback at) = 2,
the angle traced by’ is (k 4+ 1) « = —2k=. Thus, the winding number df around0
is —k.

3.2. Stable and unstable manifolds

In order to generalize Theorem 3.1, we need to give a more preciséidafif a
k-fold saddle of some functiofi. One possible way is to define it in similar terms as
the Corollary 2.4, by requiring that there exists a diffeomorphismB2 — D with
©(0) = pandf o ¢ = f, wheref is the model function given in (8). Then Lemma 2.3
can be used to conclude that the degre¢ &f —k. However, such a condition is hard
to verify in practice.
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In order to define thé-fold saddle for anyC? function, we should first state what
is meant by ridge lines and ravine lines in the discussion opening Sectiont8sican
be done in terms of the flow(¢, z) generated by the differential equation= F'(z),
whereF’ = V f. SinceF'(z) shows the direction of the fastest ascent, the ridge lines are
formed by trajectories op “climbing up” from p as time increases, that is, converging
top ast — —oo. The points on those trajectories belong to tinstable manifolabf p
defined by

W(p) = {z eM

tlilln ot z) = p} .

The ravine lines are formed by trajectoriesyofsliding down” from p or, more pre-
cisely, converging t@ ast — oo. The points on those trajectories belong to steble
manifoldof p defined by

WS(p)—{zeMl lim (¢, 2) = p}.

It is easy to check for the function in (8) that its unstable and stable manifo&ls
indeed the described rags andd; + 77, respectively.

Note that the terminology “manifold” fol*(p) andW?#(p) is only justified if f
is a Morse function. In this case, the dimensions of those manifolds aré teche
number of positive and negative eigenvalues of the hessidrats, respectively. Thus
dim W*(p) = A(p) is the Morse index (In the literature, one often considers the reverse
flow of the equationt = —V f, in order to make the potential of the gravitation field
increasing along the trajectories asmcreases. In this case, the roles of stable and
unstable manifolds are reversed);of In a degenerate case, one may encounter, for
example /' containing a cone of ridge lines ascending fromot separated by ravine
lines. In order to handle such cases, we introduce the following sets/NLlat an
isolating neighborhoodf p, that is, a closed neighborhood;oivhich does not contain
other critical points. We put

€) Np={z€ N |f(2)> f(p)}
(10) No={2€ N | f(z) < f(p)},
and

(11) N.={ze€ N\ {p}| f(2) = f(p)}.

In the case of an isolated minimu,, = N \ {p} andN,, = ). For an isolated
maximum, the roles ofV,, and N,, are exchanged. From the isolation condition and
the hypothesis thaf is of classC?, it follows that N, U {p} = N, N N,, and that it
consists of isolines. For our model (8) okesaddle, the connected components\pf
are cones given by

s
6 =65l < 2k +1)
and those ofV,, are given by
s m
=0 =357l < 2k +1)

The setN, is given byz*+! = 44 and consists of rays at the ang@&t k+1)
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Definition 3.3. A k-fold saddle of aC function f is a critical pointp of f whose
unstable and stable manifolds contéin+ 1) ridge linesSy, S1, ..., Sy and(k + 1)
ravine linesly, V1, ..., Vi which satisfy the following conditions:

(i) The setsS = {Sp, S1,...,S}andV = {V, Vi,..., Vi } areinterlacedin the
following sense. The seY \ ({p} US U V) has2(k + 1) connected components called
wedgesEach wedge is bounded ¥ \ {p} by one ridge line and one ravine line.

(i) Each connected component 8f, contains one ridge line frony and each
connected component of,, contains one ravine line from.

This definition allows ordering ridge lines and ravine lines as
(12) (S(),%,Sl,‘/i,..-7Sk,Vk)

in a circle around p}, so that the two consecutive elements in this sequence (v#ere
follows V},) bound a wedge.

3.3. Decomposition of &-fold saddle

The degree theory assures that a degenerate critical paah be replaced by
a number of non-degenerate ones by a small perturbation of the vedtbwfiech
does not change the global degree. More precisely, the vectorFfieddeplaced by a
shifted vector fieldf’'(z) — ¢ in a small regionD aroundp. The measure theoretical
arguments imply that there exist arbitrary small values &dr which the zeros of the
perturbed field are non-degenerated. This is illustrated in Figure 2. tvigwer not
always easy to explicitly determingand analytically calculate the local degrees at
the new critical points. The goal of this section is to establish a combinatoaphgr
theoretical procedure for the decompositionkefold saddles intds-simple saddles,
without relaying on the smoothness and transversality assumptions. The reain id
comes from Edelsbrunnet al, see [5]. We show that the decomposition preserves the
degree orD. The described procedure is useful for understanding and cotisgguhe
Morse connections graph described below.

We introduce first some terminology from [1] related\i@rse connections graph
This is a graph whose nodes are critical points of the flow (minimum, maximun or
fold saddle). Each node is connected to other nodes using orientesl @dhe graph.
To a pair of critical pointgp, ¢), we associate an edge calledastending directioiif
there is a trajectory converging toast — —oo and tog ast — oo, or equivalently, if
We(p)NnW(q) # (. Itis calleddescending directioifithere is a reverse trajectory. For
example, ifp is a minimum, then all the edges attacheg tare ascending directions.
Similarly, if p is a maximum, then all the edges attachegd &ve descending directions.
However, ifp is ak-fold saddle, there arg:+1) ascending directions which correspond
to ridge lines andk + 1) descending directions which correspond to ravine lines.

In practical applications to imaging, one doesn’t work in a compact manifdlthb
a bounded rectangular region of a plane, so ridge lines and ravine linessoape the
boundary picture. In this case, we assume fhigtdecreasing towards the boundary so
that the escaping lines can be regarded as lines connecting a giver potidato the
point compactifying the plane to the sphere, whgmssumes its global minimum.

Now, we consider &-fold saddlep, an isolating neighborhood of p, and a por-
tion of the Morse connections graph corresponding to ridge lines aiterves which
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FIGURE 2. Above: the3-fold saddle and its unfolding to two simple
saddles by a shift of' in the z-direction. Below: two different de-
compositions of the monkey saddle. In the phase portrait on the left, a
shift of F along ther-axis is applied. The ridge line of one saddle and
the ravine line of another produce a connecting trajectory between the
two, as described in Algorithm 3.5. On the right, a small shift in the
y-direction makes those two lines separate and escape outside of the
picture.

leave or enteV. Thus, this part of the graph consists of exa¢tly+ 1) ascending di-
rections or ridge linesS = {Sy, S1,...,S;}, and(k + 1) descending directions or
ravine linesy = {Vy, V1,...,Vi}. We order ascending and descending directions in
the abstract graph such @%, Vo, S1, V4, . . ., Sk, Vi) is the ordered set (12).

Definition 3.4. Let V; be a set ofi descending directions ans}; be a set ofj
ascending directions. Theyy andS; are said to benterlaced see Figure 3, if we
can alternate the elements3f with those ofS; such that the obtained sequence is a
subsequence of (12) consistingit¢ 1 consecutive elements, where we Bgt; = Vj
andSi1 = So. Note that, necessarilyi, — j| < 1.

We are now ready to present the procedure for the decompositiok+-fifld saddle
p, see Figure 4, into two saddlps p; of multiplicity 1 <4,j < kwithi+4 j = k.

Algorithm 3.5 (Decomposition procedure). Let p be ak—fold saddle andV be
an isolating neighborhood of
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FIGURE3. V3 = {V1,V2,V3} andS, = {51, 52,53, 5S4} are interlaced.

(a) Choose arbitrarily a s, of ¢ + 1 ascending directions and a Sétof ¢
descending directions originatingzasuch tha®; andS, ., are interlaced. At the end
of this step, we have the critical poiptS;1 andV;, see Figure 4(left part).

(b) Asthere aré + 1 ridge lines and ravine lines originating at, there exist two
ridge lines bounding the same wedge. Modify the flow inNnby creating a ravine
line inside this wedge, merging fropand ending at a new critical poipt € Int.V.
This new ravine line fop is a ridge line forp;, see Figure 4(middle part).

(c) Attach atp; the remainingt — i = j ascending directions and the— i + 1
(= j + 1) descending directions with the same ordering, see Figure 4(right pdrt). A
the end of this step is ai-fold saddle ang; is aj-fold saddle.

(d) Repeat the step (a) fpr andp; and re-initializek to, respectively; and;.
At the end of this process,/afold saddlep is decomposed intb simple saddles.

FIGURE 4. Left: isolatingi + 1 = 2 ascending directions andles-
cending directions originated at Middle: creating a ridge line from
p to p;. Right: completing the graphy is a1-fold saddle (a simple
saddle) ang; is a3-fold saddle.

The choices of edges to decompose in Algorithm 3.5 are not unique buathey
lead to the same result on the sum of the local degrees.
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Theorem 3.6. Letpy, po, ..., pr bek simple saddles itN produced from &-fold
saddlep by Algorithm 3.5. LetN; C N,i =1,...,k, be isolating neighborhoods for
p1,p2,- .., DK, respectively, for the modified floa?. Then

k
deg(F', N) = deg(F', N;).
i=1

Proof. By standard analytical arguments on smooth extensions of functions, it is
possible to modify the surface = f(z,y) inside N so that the flow lines are modi-
fied as described in the algorithm. This is done without modifying ibdh By the
homotopy axiom,

deg(F,N) = deg(G, N).
There are no new critical points created¥nother tharpy, ps, . .., px. Thus, the con-
clusion follows from the additivity axiom. O

We would like to use Proposition 2.1 and Theorem 3.6 to conclude that

k
(13)  deg(F,N) =) deg(G, N;) = (=1) + (=1) + -+ (=1) = —k.

=1
Unfortunately, a simple saddle may possibly have a null Hessian, so wetreaay
yet to make use of Proposition 2.1. The conclusion on (13) could only beede
after the classification of degenerate critical points, which is the main gaheafext
section.

Remark 3.7. The decomposition produced by Algorithm 3.5 creates an edge in
the Morse connections graph corresponding to a connection betweertwsaddles.
Those connections may not be desirable in the Morse theory. The twe pbésaits
in the bottom of Figure 2 show a possibility of modifying the algorithm to split that
connection.

4. Classification of critical points

4.1. Isolating blocks

We recall here a definition of an isolating block from [17] adapted to théexoof
our paper. The general Wilson and Yorke’s definition is given for atated invariant
set of a flow inR”, but we restrict it to an isolated critical poiptof a C? function f
in R2. The hypothesis that is C? could be relaxed by assuming that it and its
gradient is locally Lipschitz, so the associated flows well defined.

A manifold with cornersn R? is a closed bounded regiaN whose boundary
is either smoothi(e., of classC?) or it consists of a finite number of smooth arcs
connected at endpoints, calledrners where the smoothness fails.

If A is an open smooth arc on the boundary\ofthenn : A — R? denotes the
normal vector field o4 pointing outward ofN. We say that aC'' vector field F is
strongly inward(strongly outward respectively) oA if ' # 0 on A and there is a
constant > 0 such thatF'/||F||-n <6 <0 (F/||F||-n > d > 0, respectively).
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Definition 4.1. Letp be an isolated zero of a vector fighd An isolating neighbor-
hood V of p is called anisolating blockif it is a manifold with corners homeomorphic
to a closed unit disc ilR? and satisfy the following conditions:

(i) If AisasmootharcadN, thenF is either strongly inward or strongly outward
onA.

(ii) If =z € ON is a corner point, then the orbit of the flawof F' bounces off at:
in the sense that

e(R,z) NN = {z}.

The closed union of the arcs at whiéhis outward is called thexit setof N and is
denoted byV .

The purpose of using manifolds with corners rather than smooth manifotds fo
isolating blocks is that they are stable, in the sense that their inward andrdwavea
are stable under small perturbations of the vector fiéldHere is a standard example
from the Conley index theory.

Example 4.2. Considerf(x,y) = 2> — y2. Its gradient field is given by the equa-
tion F(x,y) = Vf(x,y) = 2(z, —y) and the flow trajectories are branches of hyper-
bolaszy = c. The squareV = [—1,1]? is an isolating block off". The vector field
is inward on the upper and lower open edges and outward on the closaddefight
edges. The absolute value of the angle betw€emd each edge, counted at points of
ON, takes the maximum /4 at the vertices of the square. Singg|| > 2 ondN, for
a sufficiently small perturbatio& of F' and anyg € ON, the angle betwee@'(z, y)
and F'(z,y) is less thanr/4 for all (x,y) € ON. Hence, the conditions (i) and (ii) in
Definition 4.1 remain valid fots.

Example 4.3. Consider the function given by (8) providing the model fot-fold
saddle. LetP be a closed convex equilateral polygon witk + 1) sides centered at
the origin and whose vertices are on the radys ﬁ + % j=0,...,2k+ 1.
ThenP is an isolating block of the origin.

As the above examples suggest, it is useful to state the following polyheisadn
of Lemma 2.3. Its proof is analogous.

Lemma 4.4. Let N be a manifold with corners iR? and letf : N — R be aC"
function. Suppose that there exist§'a diffeomorphism® : P — N, whereP is a
convex polyhedron and pyt= f o ®. Then we have:

() F :=Vfisadmissible innt N if and only ifG := Vg is admissible innt P,
(b) If F is admissible, thedeg(F,Int N) = deg(G, Int P),

(c) Moreover, F is strongly inward (strongly outward, respectively) on smooth
arcs ofoD if and only if G is strongly inward (strongly outward, respectively) on the
corresponding edges of.

Lemma 4.5. Suppose that tw@"' fields F andG share an isolating blocK and
the same inward and outward arc$0f. Thendeg(F,Int N) = deg(G, Int N).
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Proof. One instantly verifies that the homotopy
H(z,t)=(1—1t) F(x) +tG(x)

satisfies the same strong inward and outward conditio#s @asdG. This implies that
H(z,t) #0forallt € [0,1] and allz € ON. O

Lemma 4.6. Let N C R? be an isolating block fop and F = Vf. Ifits
exit setN~ is empty or if it is the whol&® N, thendeg(F,Int N) = 1. Otherwise,
N~ is disconnected. Lét + 1 be the number of its connected components. Then
deg(F,IntN) = —k.

Proof. Since an isolating block of a critical point is homeomorphic to the disc
it must be either diffeomorphic t& or to a closed convex polyhedrdh When either
N~ ={(or N~ = 0N, we getN which is diffeomorphic ta3.

In the first caseF is inward ondN. By Lemma 2.3, Lemma 4.5 and Proposition
2.1, we have

deg(F,Int N) = deg(—id, B) = 1.
By the same arguments, N~ = 0N, thenF' is outward oo N and we get

deg(F,IntN) = deg(id, B) = 1.

Suppose now thaV ~ is disconnected. The condition (ii) in Definition 4.1 and the
continuity of the flow imply that if two smooth arcs 6V meet at a corner point, then
F' is strongly inward on one of them and strongly outward on the other. Tdrere
the inward arcs are interlaced with outward arcs as the ridge lines and tagse
in Definition 3.3. Since the arcs complete a circle, the number of inward arcs is th
same as the number of outward arcs and is equ@t to 1). In particular, the convex
polyhedronP to which N is homeomorphic ha& k+1) edges. By Lemma 4.4, Lemma
4.5, Theorem 3.1 and Example 4.3,

deg(F,Int N) = deg(z*, P) = —k. O

We note that Lemma 4.5 provides a link between the local degreeaat the
Conley index [4] of the singletofip}, which is the pointed homotopy type of the pair
(N, N7). In the case wher&/ ~ is disconnected witlgk + 1) connected components,
(N, N7) has the homotopy type of the wedgekofircles.

4.2. Extension of the Euler-Maxwell formula
We are now ready to prove the main results of this section.

Theorem 4.7 (Classification of isolated critical points).Letp be an isolated cri-
tical point of aC? functionf : D — R.

(i) Then any isolating neighborhood ptontains an isolating block of p,
(i) Moreoverp is either a maximum point, a minimum point okdold saddle,

(iii) Finally,deg(V f,Int N) is 1 in the first two cases andk in the last one.
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Proof. Since a gradient field has no periodic orbits, the singl¢ignis an isolated
invariant set in the sense of [17, Definition 1.1]. By [17, Theorem 28y, isolating
neighborhood op contains an isolating block in the sense of [17, Definition 1.2]. It
follows from the proof of [17, Theorem 2.5] and from [16, Corollarp[3hat one can
construct a Wilson and Yorke's isolating bloék which is deformable tdp}. Itis
known that a manifold homotopic to a disc is also homeomorphig,thence it is an
isolating block in the sense of Definition 4.1. One can also derive this coocltrom
[7, Remark 3.1]. This proves (i). Then (iii) follows from Lemma 4.6.

We now prove (ii). IfN~ is empty, therV f is inward ono N, so f must assume a
maximum in/N. Since there are no other critical points, that maximum is assumed at
If N= = 0N, thenV f is outward ordN so, by the same argumerfthas a minimum
onN atp.

Consider the remaining case whéfi is disconnected witlik + 1) connected
components. We already showed in the proof of Lemma 4.6 that the inwagGigc
interlaced with outward arcs and their numbers are both equalto1). Moreover, it
follows again from [17, Theorem 2.5] and from [16, Corollary 3.5] @y outward arc
deforms to its intersection with’*(p) and any inward arc deforms to its intersection
with W#(p). In particular, those intersections are non-empty. This means that each
outward arc contains at least one ridge line and each outward arc coatd@ast one
ravine line. This conclusion can also be derived from cohomologicairgi¢i®n of
isolating blocks in [7]. Thus, we proved thats exactly thek-fold saddle according to
Definition 3.3. O

Remark 4.8. In spaces of higher dimensions, namelyRf and R, the proof
of the fact that a Wilson and Yorke’s isolating block of an isolated criticahpis
homeomorphic to the unit ball relies on the famous Poincaré conjecturesdjost a
few years ago.

Theorem 4.9 (Maxwell formula for degenerate critical points). Let D be a re-
gion inR?, C?-diffeomorphic to the closed unit ball or to a closed convex polyhedron,
andf : D — R aC? function whose gradie¥ f is inward ondD. Suppose that all
critical points off are isolated. Then there are finitely many of them and they are local
minima, local maxima or extendédfold saddles. Moreover, we have the formula

fmin — X (k - §(k — saddley) + fmax = 1.

Proof. By the same arguments as those in the proof of Theorem 2.2 and Corollary
2.4,
deg(Vf,D) = deg(—id, B?) = (-1)* = 1.
SinceD is compact and the critical points gfare isolated, there are finitely many of
them. Let{p;};—1 2., be the corresponding set of critical points. By Theorem 4.7 (i),
each poinip; admits an isolating block;. By the additivity axiom,

1 =deg(F,D) = deg(F,Int ;).
=1
The conclusion follows from Theorem 4.7 parts (ii) and (iii). O

By the same arguments as in the proof of Corollary 2.5, we get the following.
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Corollary 4.10. Let f : S* — R be aC? function. Suppose that all critical points
are isolated. Then there are finitely many of them and they are local miniméa, loca
maxima or extendet-fold saddles. Moreover, we have the formula

fmin — X(k - § (k — saddle$) + f max = 2.

5. Conclusion

As we mentioned in the introduction, the main motivation for this paper is to im-
prove existing models for analysis of digital images, where functions ardefmed
on points inR? but pixels in a finite lattice. Our first numerical experiments showed
that we need to relax the hypothesis that critical points are isolated. Not tyyzital
example from mathematical analysis is a critical pimthich is a limit of a sequence
of other critical pointsp;. Such cases are not really of concern in the digital image
analysis, because the sets of pixels are finite. However, flat criticanegre com-
mon in digital images. In analysis of a height function in topography, formgte,
one cares about flat regions such as bottoms of lakes, flat mountairotogsicano
craters, which are extremum regions; and about long sand bars stigeg which are
saddle regions. An algorithm detecting and classifying critical regionsodyzed in
[1] but it requires improvements, especially with regard to the conceptpofidgical
boundary in the digital setting, and of identificationke$addle regions. Understanding
saddle regions is crucial for the construction of isolines, becausedheptaces where
smooth continuation techniques fail. Also the model of discrete multivaluedhigai
system used for the Morse connections graph Algorithm needs to beigéthio terms
of the degree theory for multivalued maps.

Another obvious direction for future studies is to provide an analogoalysia of
critical points and regions for dimensioBgnd higher. An initial work on this topic is
[2]. The analysis of saddle pixels and saddle regions is more difficult mdimgensions
because the numbers of connected components of inward and outwtohpof an
isolating block is not sufficient to distinguish between a saddle and an extreznu
between two different types of saddles. Thus, one has to search fer adganced
topological tools.
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