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ON THE DECOMPOSITION AND LOCAL DEGREE OF
MULTIPLE SADDLES

SARA DERIVIÈRE, TOMASZ KACZYNSKI
AND PIERRE-OLIVIER VALLERAND-BEAUDRY

RÉSUMÉ. L’analyse topologique des images numériques nous motive vers l’ana-
lyse de la formule d’Euler-Maxwell en l’absence des conditions de non dégénérescence
et d’isolation. Dans cet article, nous étudions le degré local desk-selles des champs de
gradients et généralisons la formule aux points critiques dégénérés.

ABSTRACT. Topological analysis of digital images motivates exploring the Euler-
Maxwell formula in the absence of non-degeneracy and isolation conditions. We study
the local degree of gradient fields at ak-fold saddle, and provide a generalization of
the formula for degenerate critical points.

1. Introduction

This paper is the first step towards the answer to questions posed in [1, 2], concer-
ning the Euler-Maxwell formula in the context of topological analysis of digital images.
In those papers, the object studied is a scalar functionf : X → R on a discrete multi-
dimensional data setX . In the planar case studied in [1],f is geometrically interpreted
as a height field. The features of interest are critical points off , that is, peaks, pits, and
saddles. Once the critical points are identified, various techniques are used to analyze
relationships between them and to trace structures such as ridge lines, ravine lines and
isolines. In the case of data of higher dimensions studied in [2], the geometricinter-
pretation of critical points is more complex but those points play equally importantrole
in further study, such as the construction of the level sets given byf = c. A good
understanding of the nature of saddles is especially important because these are points
where level sets intersect.

The smooth Morse theory [12] has inspired researchers in imaging science. How-
ever, in its rigorous applications such as [5], one spends a lot of effort on forcing, by
local deformation of data, the main hypothesis of the Morse theory stating thatcritical
points off must be isolated and non-degenerate to hold. By this way, one adjusts the
finite input to the theory, with the aim at validating practical implementations. There
is a discrete Morse index theory due to Forman [6], but it also deforms the data and,
moreover, its goals are different than those in the image analysis. In [1, 2], an effort
is made to establish a discrete analogy of the Morse theory for a functionf defined on
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pixels (mathematically speaking, elementary cubes) while keeping the original geome-
try, that is, without forcing the isolation and non-degeneracy of critical points. The
main results obtained there are the algorithms detecting and classifying critical regions,
and constructing the so-called Morse connections graph, whose nodesare critical com-
ponents and edges display the existence of trajectories connecting them. A computer
experimentation is done in [1] on planar images.

Among questions addressed in [1, 2], one is related to extensions of the formula

(1) ♯ pits− ♯ passes+ ♯ peaks= 2

for a height function defined on the surface of the globe, that is, the two-dimensional
sphereS2. This formula is essentially due to Maxwell [13] but is often calledEuler for-
muladue to its similarity to the Euler characteristic of the sphere. In imaging science, it
is used (often reinforced) as a criterion of correctness of programs extracting informa-
tion on critical points from discrete data. A generalization of this formula to arbitrary
dimensions and to Morse functionsf : M → R on compact smooth manifolds is the
Morse formula

(2)
n

∑

i=1

(−1)λ(pi) = χ(M),

where thepi are the non-degenerate critical points off and, for eachi, λ(pi) is the
Morse index ofpi defined as the sign of the Hessian off at pi. Finally, χ(M) is
the Euler-Poincaré characteristic ofM . The terminology related to Morse functions is
recalled in Section 2.

In applications to digital2D image analysis, the functions are neither defined on
manifolds, nor on the sphereS2, but on some rectangular regionsD ⊂ R

2. One makes
use of the formula (2) by assuming thatD is “surrounded by a depression”, so that we
may compactify the planeR2 to the sphereS2 with a point at infinity wheref assumes
an absolute minimum. The same argument is used in an arbitrary dimension for a func-
tion on a bounded rectangular domainD ⊂ Rd. In mathematical terms, the assumption
on a surrounding depression can be formulated by saying thatf is decreasing through
∂D towards the exterior ofD, or that∇f points inward on∂D. For thed-dimensional
sphereSd, we haveχ(Sd) = 1 + (−1)d. Thus, by removing the added minimum point
at infinity, we should obtain the formula

(3)
n

∑

i=1

(−1)λ(pi) = (−1)d

for a functionf : D → R whose gradient points inward on∂D.

An observation which motivated the direction chosen in this paper is that the use of
the passage through a theory of compact manifolds is somewhat artificial: theoriginal
function is defined onD ⊂ Rd and we end up formulating the result for such functions.
Thus, we want a more elementary and direct proof confined within the framework of
functions on bounded domains inRd.

There is such a theory at our disposal. It is the Brouwer degree, also called topo-
logical degree theory of vector fields which we may apply here to the gradient of f .
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Moreover, the degree theory remains valid for gradients of functions which have de-
generate critical points, such as monkey saddles. Furthermore, it is valid for arbitrary
continuous vector fields.

In the introductory Section 2, the basics of the degree theory are recalledand used
to give an alternative proof of the formula (3) in the non-degenerate case.

In Section 3, we discuss a known model for the monkey saddle and use it to give a
general definition ofk-fold saddle using the terminology of stable and unstable mani-
folds from the theory of dynamical systems. We next give a combinatorial procedure
for decomposing ak-fold saddle tok simple saddles.

Section 4 is concerned with any isolated, but possibly degenerated, critical points in
R

2. We first state a version of Wilson and Yorke’s isolating block, adapted to our con-
text. We prove Theorem 4.7 stating that any isolated critical point is either a minimum,
a maximum, or ak-fold saddle, whose local degree is1 in the first two cases and−k in
the last one. We next use the additivity property of degree to provide a generalization
of (3) in the presence ofk-fold saddles.

As we said, the topological degree is valid for any continuous vector field on a
domain inR

d and any upper semi-continuous multivalued vector field with compact
convex values (more generally, contractible or aspherical values) andit is additive with
respect to unions of regions. Thus, it should suit better the applications todiscrete data
and critical regions in the context of [1, 2]. This is the project for the future work
discussed in Section 5.

We finish this introduction with a little disclaimer. The study of dynamical sys-
tems in arbitrary dimensions is very extensive, and many statements presentedin this
paper can be derived from more general and abstract theorems formulated often in the
language of algebraic topology. In particular:

(a) The most general and concise formulations of the local degree of a map are in
terms of the homomorphism induced in homology or cohomology groups of spheres.

(b) The differential equatioṅz = (k+1)z̄k related to the model (8) ofk-fold saddle
studied in Section 3 is well known, and it is a special case of differential equations
studied in [15].

(c) Some conclusions in the proof of Theorem 4.7 can be derived from cohomo-
logical statements in [7].

However, the generality of a theory is often an obstruction to geometric visualiza-
tion and accessibility to the applied mathematics, computer science, and engineering
communities. We wish to emphasize that our goal is not to achieve the greatest pos-
sible generality but to give a presentation of the issue as elementary, as selfconfined,
and as visual as possible within the framework of a mathematical paper. We hope that
the understanding of geometric aspects of both analytical and homological tools will be
helpful in designing adequate models in digital imaging.
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2. Degree of a generic gradient field

The concept of topological degree goes back to Brouwer [3, 1912] but we use here
a more recent analytic viewpoint on the degree due to Nagumo [14, 1951] which is a
common choice in reference texts such as [10]. The degree is a tool for investigating
the equationF (x) = q, whereF : D → R

d is a continuous map of the closure of
a bounded open subsetD of R

d andq ∈ R
d. If F is admissible, that is,F (x) 6= q

for x ∈ ∂D, then one defines thetopological degree ofF on D with respect toq,
which is an integer (denoted bydeg(F, D, q)) satisfying the additivity, homotopy and
normalization axioms.

The analytic construction of the degree given, for example, in [10] goesin several
steps of approximation. First, one assumes thatF is generic, that is, it is of classC1

and theJacobianof F at p, defined byJF (p) = detDF (p), is non-zero at anyp such
that F (p) = q. One proves that, in this case, the zeros ofF are isolated and hence,
sinceD is compact, there are finitely many of them. LetF−1(q) = {p1, p2, . . . , pn}.
Then the degree is defined by the formula

(4) deg(F, D, q) =
n

∑

i=1

sgnJF (pi).

In particular, ifD is a bounded neighborhood of the origin of coordinates andid is the
identity map, we instantly get thenormalization axiomdeg(id , D, 0) = 1.

One next proves thatdeg(F, D, q) is locally constant in the class of admissible
genericC1 maps with respect to the supremum norm. Finally, one proves that any ad-
missible continuous mapF is suitably approximated by an admissible generic mapG.
Hence, since the degree is locally constant, we may putdeg(F, D, q) := deg(G, D, q).

Let nowf : D → R be a function of classC2. A point p ∈ D is calledcritical
if the gradientF = ∇f vanishes atp and it is calledregular otherwise. Hence, the
critical points off correspond to the zeros ofF . The functionf is called aMorse
function if all of its critical pointsp arenon-degenerate, that is, if theHessianof f
defined byHf = detD2f does not vanish atp. Note that the Hessian off is precisely
the Jacobian ofF = ∇f . Thus,f is a Morse function if and only if its gradientF is
generic for degree computation atq = 0. From now on, we assume thatq = 0 and
denote the degree ofF onD with respect to0 by deg(F, D) instead ofdeg(F, D, 0).

Given a Morse functionf , the index of any critical pointp, denoted byλ(p), is the
number of negative eigenvalues ofD2f(p). Thus sgnJF(p) = (−1)λ(p) and hence, the
left-hand sides of the formulas (3) and (4) coincide. Here is a more visual,geometric
way of introducing the Morse index. The Morse Lemma [12] says that thereexist local
C2 coordinates originating atp such that, in those coordinates,f becomes a quadratic
polynomial

(5) f(x) = c +
d

∑

i=1

λix
2
i ,

whereλi ∈ {−1, 1}. Thenλ(p) is the number of indicesi such that we haveλi = −1.
If λ(p) = 0, p is a local minimum and ifλ(p) = d, p is a local maximum. The
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intermediate values ofλ(p) correspond to simple (non-degenerate) saddles atp. The
formula (4) instantly gives the following.

Proposition 2.1. Let F = ∇f wheref is the quadratic function in(5) and let
D = Bd be the unit ball inRd. Then

deg(F, D) = λ1λ2 · · ·λd.

In particular, inR
2, deg(F, D) = 1 when0 is a local extremum (minimum or maxi-

mum), anddeg(F, D) = −1 when0 is a saddle.

We may also deduce the formula (3) from the properties of degree in the case when
D = Bd is the open unit ball inRd. The condition thatF = ∇f points inwardon∂D
can be formulated in terms of the scalar product asF (x) · n(x) < 0 for all x ∈ ∂D,
wheren : ∂D → R

d is the outward normal vector field. WhenD = Bd, ∂Bd = Sd−1

is the unit sphere,n(x) = x and we get the conditionF (x) ·x < 0. Similarly,F points
outwardon∂D if F (x) · n(x) > 0 for all x ∈ ∂D, so if D = Bd, we get the condition
F (x) · x > 0. Thus, we want to prove the following result.

Theorem 2.2. Let f : B
d
→ R be a Morse function satisfying the condition

(6) x · ∇f(x) < 0 for all x ∈ Sd−1.

Let{p1, p2, . . . , pn} be the set of all critical points off in Bd. Then the Euler-Maxwell-
Morse formula(3) holds inR

d.

Proof. We calculate the degree ofF = ∇f on D with respect toq = 0. By (6),
F (x) 6= 0 for x ∈ Sd−1 and hence,F is admissible. Sincef is a Morse function,F is
generic, sodeg(F, D) is given by (4). Now, the degree of the linear map−id given by
−id (x) = −x onBd is (−1)d. Hence, it remains to prove that

deg(F, D) = deg(−id , D).

For this, we will use the homotopy property of degree. DefineH : Bd × [0, 1] → R
d

by
H(x, t) = (1 − t)F (x) − tx.

ThenH(x, 0) = F (x) andH(x, 1) = −x. It remains to show thatH is admissible.
Suppose, on the contrary, that there existst ∈ [0, 1] andx ∈ Sd−1 such that we have
H(x, t) = 0. SinceF and−id are admissible, this is impossible thatt = 0, 1 and we
may assume that0 < t < 1. By (6), we get

0 = x · H(x, t) = (1 − t)x · F (x) − tx · x < 0,

a contradiction. �

We wish to know if Proposition 2.1 remains true in original coordinates and if Theo-
rem 2.2 can be extended to domains diffeomorphic toBd. The Morse Lemma suggests
that this is true but we need the following property of invariance of degreeof ∇f under
the change of coordinates in the domain off . Its proof relies on lengthy but elementary
vector calculus arguments. By a diffeomorphism between closed boundedregions of
R

d, we mean a homeomorphism extending to a diffeomorphism of their neighborhoods.
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Lemma 2.3. Let D be a bounded domain inRd with a C2 boundary∂D and let
alsof : D → R be aC1 function. Suppose that there exists aC2 diffeomorphism
Φ : B

d
→ D and putg = f ◦ Φ. Then we have the following:

(a) F := ∇f is admissible inD if and only if G := ∇g is admissible inBd,

(b) If F is admissible, thendeg(F, D) = deg(G, Bd),

(c) Moreover,F is inward (outward, respectively) atΦ(x) ∈ ∂D if and only if G
is inward (outward, respectively) atx ∈ Sd−1.

Theorem 2.2 and Lemma 2.3 instantly imply the following.

Corollary 2.4. Let D be a regionC2-diffeomorphic to a unit ball andf : D → R

be a Morse function whose gradient is inward on∂D. Let {p1, p2, . . . , pn} be the set
of all critical points off in Bd. Then the formula(3) holds inR

d.

The classical result of the Morse theory can now be deduced as an easy conse-
quence of the previous statements.

Corollary 2.5. Let f : Sd → R be a Morse function and let{p0, p1, p2, . . . , pn}
be the set of all its critical points. Then the Euler-Maxwell-Morse formula

(7)
n

∑

i=0

(−1)λ(pi) = 1 + (−1)d

holds forSd.

Proof. SinceSd is compact,f assumes its minimum at some point. Let it bep0.
Let U be an open ball inSd centered atp0, isolating it from other critical points, to
which the Morse Lemma applies. The stereographic projection is a diffeomorphism of
Sd \ {p0} onto R

d which takesSd \ U to some closed ballD ⊂ R
d centered at the

origin. Since the Morse index of a minimum point is1, it is enough to show that
n

∑

i=1

(−1)λ(pi) = (−1)d.

This can be deduced from Corollary 2.4 applied for the composition of the inverse
stereographic projection with the restriction off to Sd \ {p0}. �

3. Local degree at ak-fold saddle

In this section, we study functionsf in the planeR2 whose critical points are iso-
lated but possibly degenerate.

3.1. A model of ak-fold saddle
The most commonly seen case of an isolated degenerate critical point is a monkey

saddle. First, if
f1(x, y) = x2 − y2,

then the origin of coordinates is a simple saddle off . The two vectors(1, 0) and
(−1, 0) define twoascending directionsor, in terms of the topography of the surface
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h = f(x, y), two ridge linesemanating from the origin. Similarly, the vectors(0, 1)
and(0,−1) define twodescending directionsor two ravine lines. Themonkey saddle
is, roughly speaking, a critical point which is the origin of three ridge lines separated by
three ravine lines. By the Morse Lemma, this is of course impossible ifHf (0, 0) 6= 0.
A simple model for the monkey saddle, illustrated by Figure 1, is given by

f2(x, y) = x3 − 3xy2.

More generally, ak-fold saddleis a critical point originating(k + 1) ridge lines sepa-
rated by(k + 1) ravine lines. A simple saddle is a1-fold saddle and a monkey saddle
is a2-fold saddle.

FIGURE 1. Left: Level lines and the gradient field for the monkey
saddle. Right: trajectories, ridge lines and ravine lines. The displayed
vector field permits tracing the winding ofF asq moves on counter-
clockwise on a circle described in Remark 3.2.

The most transparent formula for a function giving rise to ak-fold saddle is in terms
of complex numbers. We identifyR2 with the complex planeC and we use the variable
z = x + iy = (x, y)T . Then,

z2 =
(

x2 − y2
)

+ 2ixy

and
z3 =

(

x3 − 3xy2
)

+ i
(

3x2y − y3
)

,

that is,f1 = ℜe
(

z2
)

andf2 = ℜe
(

z3
)

. Consider the function

(8) f(z) = ℜe
(

zk+1
)

.

Note thatf is positively homogeneous in the sense thatf(tx, ty) = tk+1(x, y) for
all t > 0, so the ascending and descending directions are determined by the values
of f on the circleS1 given by |z| = 1. The maximum off is 1, assumed at the
roots ofzk+1 = 1 and the minimum is−1, assumed at the roots ofzk+1 = −1. In
polar coordinates, the ridge lines are the rays emanating from the origin at the angles
θj = 2πj

k+1 and the ravine lines are rays at the anglesθj + π
k+1 .

Theorem 3.1. Let F = ∇f , wheref is given by(8). Then,

deg(F, B2) = −k.
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Proof. Consider the functiong : C → C, given byg(z) = zk+1. Let u(x, y) and
v(x, y) be the real and imaginary parts ofg, respectively, so thatf(z) = u(x, y). Then
∇f = (ux, uy)

T whereux anduy denote the partial derivatives ofu with respect tox
andy, respectively. On one hand, using the Cauchy-Riemann equations, we get

g′(z) = ux(z) + ivx(z)

= ux(z) − iuy(z)

∼= (ux,−uy)
T .

On the other hand,g′(z) = (k + 1)zk, so∇f = (k + 1)zk, wherez stands for the
complex conjugate ofz. It is known that the topological degree of a holomorphic
function h : B

2
→ C which has no roots onS1 is the number of roots ofh in B2

counting their multiplicity (see [10, Sec. 1.4]). In our case,h = g′ and this number is
k.

Next, considerG : R
2 → R

2 with G(z) = (x,−y) = z. Then,F = G ◦ F . Since
G is a linear isomorphism takingB2 to itself, the multiplication Theorem [10, Sec. 2.3]
implies that

deg(F , B2) = deg(G ◦ F, B2, 0)

= deg(G, B2, 0) deg(F, B2, 0).

By definition,
deg(G, B2, 0) = sgn det∇G = −1,

so
k = deg(F , B2) = −deg(F, B2, 0). �

Remark 3.2. Here is a geometric interpretation of the analytic proof provided
above, based on the interpretation of degree as the winding number, and of ∇f as
the vector pointing the direction of the steepest ascent of a height functionf . We refer
to Figure 1. We register the angle traced by the vectorF = ∇f(q) attached to the
origin 0, as the pointq = (x, y) moves counterclockwise on the unit circle. When
q = (1, 0) is on the first ridge line atθ0 = 0, F points in the same direction as~0q.
Whenq moves counterclockwise towards the isoline at the angleπ2(k+1) , f decreases,
soF rotates clockwise towards the left ridge line. Whenq reaches the first ravine line
at the angle π

k+1 , F points in the opposite direction of the angleπ
k+1 − π, and when the

point is at the next ridge lineθ1 = 2π
k+1 , F points again the same direction as~0q. Thus,

the angle traced byF between the first two ridge lines isα = 2π
k+1 − 2π. The same

scenario repeats between any two consecutive ridge lines, so whenq is back atθ = 2π,
the angle traced byF is (k + 1) α = −2kπ. Thus, the winding number ofF around0
is−k.

3.2. Stable and unstable manifolds
In order to generalize Theorem 3.1, we need to give a more precise definition of a

k-fold saddle of some functioñf . One possible way is to define it in similar terms as
the Corollary 2.4, by requiring that there exists a diffeomorphismϕ : B2 → D with
ϕ(0) = p andf̃ ◦ ϕ = f , wheref is the model function given in (8). Then Lemma 2.3
can be used to conclude that the degree off̃ is −k. However, such a condition is hard
to verify in practice.



S. Derivière, T. Kaczynski and P.-O. Vallerand-Beaudry 53

In order to define thek-fold saddle for anyC2 function, we should first state what
is meant by ridge lines and ravine lines in the discussion opening Section 3.1. This can
be done in terms of the flowϕ(t, z) generated by the differential equationż = F (z),
whereF = ∇f . SinceF (z) shows the direction of the fastest ascent, the ridge lines are
formed by trajectories ofϕ “climbing up” from p as time increases, that is, converging
to p ast → −∞. The points on those trajectories belong to theunstable manifoldof p
defined by

W u(p) =

{

z ∈ M

∣

∣

∣

∣

lim
t→−∞

ϕ(t, z) = p

}

.

The ravine lines are formed by trajectories ofϕ “sliding down” from p or, more pre-
cisely, converging top ast → ∞. The points on those trajectories belong to thestable
manifoldof p defined by

W s(p) =

{

z ∈ M

∣

∣

∣

∣

lim
t→∞

ϕ(t, z) = p

}

.

It is easy to check for the function in (8) that its unstable and stable manifoldsare
indeed the described raysθj andθj + π

k+1 , respectively.

Note that the terminology “manifold” forW u(p) andW s(p) is only justified iff
is a Morse function. In this case, the dimensions of those manifolds are equal to the
number of positive and negative eigenvalues of the hessian off atp, respectively. Thus
dimW s(p) = λ(p) is the Morse index (In the literature, one often considers the reverse
flow of the equatioṅx = −∇f , in order to make the potential of the gravitation field
increasing along the trajectories ast increases. In this case, the roles of stable and
unstable manifolds are reversed) ofp. In a degenerate case, one may encounter, for
example,W u containing a cone of ridge lines ascending fromp not separated by ravine
lines. In order to handle such cases, we introduce the following sets. LetN be an
isolating neighborhoodof p, that is, a closed neighborhood ofp which does not contain
other critical points. We put

(9) Np = {z ∈ N | f(z) > f(p)},

(10) Nn = {z ∈ N | f(z) < f(p)},

and

(11) Nz = {z ∈ N \ {p} | f(z) = f(p)}.

In the case of an isolated minimum,Np = N \ {p} andNn = ∅. For an isolated
maximum, the roles ofNp andNn are exchanged. From the isolation condition and
the hypothesis thatf is of classC2, it follows thatNz ∪ {p} = Np ∩ Nn and that it
consists of isolines. For our model (8) of ak-saddle, the connected components ofNp

are cones given by

|θ − θj | <
π

2(k + 1)

and those ofNn are given by

|θ − θj −
π

k + 1
| <

π

2(k + 1)
·

The setNz is given byzk+1 = ±i and consists of rays at the anglesθj ±
π

2(k+1) ·
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Definition 3.3. A k-fold saddle of aC2 functionf is a critical pointp of f whose
unstable and stable manifolds contain(k + 1) ridge linesS0, S1, . . . , Sk and(k + 1)
ravine linesV0, V1, . . . , Vk which satisfy the following conditions:

(i) The setsS = {S0, S1, . . . , Sk} andV = {V0, V1, . . . , Vk} areinterlacedin the
following sense. The setN \ ({p} ∪ S ∪ V) has2(k +1) connected components called
wedges. Each wedge is bounded inN \ {p} by one ridge line and one ravine line.

(ii) Each connected component ofNp contains one ridge line fromS and each
connected component ofNn contains one ravine line fromV.

This definition allows ordering ridge lines and ravine lines as

(12) (S0, V0, S1, V1, . . . , Sk, Vk)

in a circle around{p}, so that the two consecutive elements in this sequence (whereS0

follows Vk) bound a wedge.

3.3. Decomposition of ak-fold saddle
The degree theory assures that a degenerate critical pointp can be replaced by

a number of non-degenerate ones by a small perturbation of the vector field which
does not change the global degree. More precisely, the vector fieldF is replaced by a
shifted vector fieldF (x) − q in a small regionD aroundp. The measure theoretical
arguments imply that there exist arbitrary small values ofq for which the zeros of the
perturbed field are non-degenerated. This is illustrated in Figure 2. It is however not
always easy to explicitly determineq and analytically calculate the local degrees at
the new critical points. The goal of this section is to establish a combinatorial graph-
theoretical procedure for the decomposition ofk-fold saddles intok-simple saddles,
without relaying on the smoothness and transversality assumptions. The main idea
comes from Edelsbrunneret al., see [5]. We show that the decomposition preserves the
degree onD. The described procedure is useful for understanding and constructing the
Morse connections graph described below.

We introduce first some terminology from [1] related toMorse connections graph.
This is a graph whose nodes are critical points of the flow (minimum, maximum ork-
fold saddle). Each node is connected to other nodes using oriented edges of the graph.
To a pair of critical points(p, q), we associate an edge called anascending directionif
there is a trajectory converging top ast → −∞ and toq ast → ∞, or equivalently, if
W s(p)∩W u(q) 6= ∅. It is calleddescending directionif there is a reverse trajectory. For
example, ifp is a minimum, then all the edges attached top are ascending directions.
Similarly, if p is a maximum, then all the edges attached top are descending directions.
However, ifp is ak-fold saddle, there are(k+1) ascending directions which correspond
to ridge lines and(k + 1) descending directions which correspond to ravine lines.

In practical applications to imaging, one doesn’t work in a compact manifold but in
a bounded rectangular region of a plane, so ridge lines and ravine lines may escape the
boundary picture. In this case, we assume thatf is decreasing towards the boundary so
that the escaping lines can be regarded as lines connecting a given critical point to the
point compactifying the plane to the sphere, wheref assumes its global minimum.

Now, we consider ak-fold saddlep, an isolating neighborhoodN of p, and a por-
tion of the Morse connections graph corresponding to ridge lines and ravine lines which
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FIGURE 2. Above: the3-fold saddle and its unfolding to two simple
saddles by a shift ofF in the x-direction. Below: two different de-
compositions of the monkey saddle. In the phase portrait on the left, a
shift of F along thex-axis is applied. The ridge line of one saddle and
the ravine line of another produce a connecting trajectory between the
two, as described in Algorithm 3.5. On the right, a small shift in the
y-direction makes those two lines separate and escape outside of the
picture.

leave or enterN . Thus, this part of the graph consists of exactly(k + 1) ascending di-
rections or ridge linesS = {S0, S1, . . . , Sk}, and(k + 1) descending directions or
ravine linesV = {V0, V1, . . . , Vk}. We order ascending and descending directions in
the abstract graph such as(S0, V0, S1, V1, . . . , Sk, Vk) is the ordered set (12).

Definition 3.4. Let Vi be a set ofi descending directions andSj be a set ofj
ascending directions. ThenVi andSj are said to beinterlaced, see Figure 3, if we
can alternate the elements ofVi with those ofSj such that the obtained sequence is a
subsequence of (12) consisting toi + 1 consecutive elements, where we setVk+1 = V0

andSk+1 = S0. Note that, necessarily,|i − j| ≤ 1.

We are now ready to present the procedure for the decomposition of ak-fold saddle
p, see Figure 4, into two saddlespi, pj of multiplicity 1 ≤ i, j ≤ k with i + j = k.

Algorithm 3.5 (Decomposition procedure). Let p be ak–fold saddle andN be
an isolating neighborhood ofp.
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FIGURE 3. V3 = {V 1, V 2, V 3} andS4 = {S1, S2, S3, S4} are interlaced.

(a) Choose arbitrarily a setSi+1 of i + 1 ascending directions and a setVi of i
descending directions originating atp such thatVi andSi+1 are interlaced. At the end
of this step, we have the critical pointp, Si+1 andVi, see Figure 4(left part).

(b) As there arei + 1 ridge lines andi ravine lines originating atp, there exist two
ridge lines bounding the same wedge. Modify the flow in IntN by creating a ravine
line inside this wedge, merging fromp and ending at a new critical pointpj ∈ Int N .
This new ravine line forp is a ridge line forpj , see Figure 4(middle part).

(c) Attach atpj the remainingk − i = j ascending directions and thek − i + 1
(= j + 1) descending directions with the same ordering, see Figure 4(right part). At
the end of this step,p is ai-fold saddle andpj is aj-fold saddle.

(d) Repeat the step (a) forpi andpj and re-initializek to, respectively,i andj.

At the end of this process, ak-fold saddlep is decomposed intok simple saddles.

FIGURE 4. Left: isolatingi + 1 = 2 ascending directions andi des-
cending directions originated atp. Middle: creating a ridge line from
p to pj . Right: completing the graph;p is a 1-fold saddle (a simple
saddle) andpj is a3-fold saddle.

The choices of edges to decompose in Algorithm 3.5 are not unique but theyall
lead to the same result on the sum of the local degrees.
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Theorem 3.6. Let p1, p2, . . . , pk bek simple saddles inN produced from ak-fold
saddlep by Algorithm 3.5. LetNi ⊂ N , i = 1, . . . , k, be isolating neighborhoods for
p1, p2, . . . , pk, respectively, for the modified flowG. Then

deg(F ′, N) =
k

∑

i=1

deg(F ′, Ni).

Proof. By standard analytical arguments on smooth extensions of functions, it is
possible to modify the surfaceu = f(x, y) insideN so that the flow lines are modi-
fied as described in the algorithm. This is done without modifying it on∂N . By the
homotopy axiom,

deg(F, N) = deg(G, N).

There are no new critical points created inN other thanp1, p2, . . . , pk. Thus, the con-
clusion follows from the additivity axiom. �

We would like to use Proposition 2.1 and Theorem 3.6 to conclude that

(13) deg(F, N) =
k

∑

i=1

deg(G, Ni) = (−1) + (−1) + · · · + (−1) = −k.

Unfortunately, a simple saddle may possibly have a null Hessian, so we are not ready
yet to make use of Proposition 2.1. The conclusion on (13) could only be derived
after the classification of degenerate critical points, which is the main goal ofthe next
section.

Remark 3.7. The decomposition produced by Algorithm 3.5 creates an edge in
the Morse connections graph corresponding to a connection between twonew saddles.
Those connections may not be desirable in the Morse theory. The two phase portraits
in the bottom of Figure 2 show a possibility of modifying the algorithm to split that
connection.

4. Classification of critical points

4.1. Isolating blocks
We recall here a definition of an isolating block from [17] adapted to the context of

our paper. The general Wilson and Yorke’s definition is given for an isolated invariant
set of a flow inR

n, but we restrict it to an isolated critical pointp of a C2 functionf
in R

2. The hypothesis thatf is C2 could be relaxed by assuming that it isC1 and its
gradient is locally Lipschitz, so the associated flowϕ is well defined.

A manifold with cornersin R
2 is a closed bounded regionN whose boundary

is either smooth (i.e., of classC2) or it consists of a finite number of smooth arcs
connected at endpoints, calledcorners, where the smoothness fails.

If A is an open smooth arc on the boundary ofN , thenn : A → R
2 denotes the

normal vector field onA pointing outward ofN . We say that aC1 vector fieldF is
strongly inward(strongly outward, respectively) onA if F 6= 0 on A and there is a
constantδ > 0 such thatF/||F || · n < δ < 0 (F/||F || · n > δ > 0, respectively).



58 DEGREE OF MULTIPLE SADDLES

Definition 4.1. Let p be an isolated zero of a vector fieldF . An isolating neighbor-
hoodN of p is called anisolating blockif it is a manifold with corners homeomorphic
to a closed unit disc inR2 and satisfy the following conditions:

(i) If A is a smooth arc of∂N , thenF is either strongly inward or strongly outward
onA.

(ii) If x ∈ ∂N is a corner point, then the orbit of the flowϕ of F bounces off atx
in the sense that

ϕ(R, x) ∩ N = {x}.

The closed union of the arcs at whichF is outward is called theexit setof N and is
denoted byN−.

The purpose of using manifolds with corners rather than smooth manifolds for
isolating blocks is that they are stable, in the sense that their inward and outward arcs
are stable under small perturbations of the vector fieldF . Here is a standard example
from the Conley index theory.

Example 4.2. Considerf(x, y) = x2 − y2. Its gradient field is given by the equa-
tion F (x, y) = ∇f(x, y) = 2(x,−y) and the flow trajectories are branches of hyper-
bolasxy = c. The squareN = [−1, 1]2 is an isolating block ofF . The vector field
is inward on the upper and lower open edges and outward on the closed left and right
edges. The absolute value of the angle betweenF and each edge, counted at points of
∂N , takes the maximumπ/4 at the vertices of the square. Since||F || ≥ 2 on ∂N , for
a sufficiently small perturbationG of F and anyq ∈ ∂N , the angle betweenG(x, y)
andF (x, y) is less thanπ/4 for all (x, y) ∈ ∂N . Hence, the conditions (i) and (ii) in
Definition 4.1 remain valid forG.

Example 4.3. Consider the function given by (8) providing the model for ak-fold
saddle. LetP be a closed convex equilateral polygon with2(k + 1) sides centered at
the origin and whose vertices are on the raysθ = π

2(k+1) + πj
k+1 , j = 0, . . . , 2k + 1.

ThenP is an isolating block of the origin.

As the above examples suggest, it is useful to state the following polyhedralversion
of Lemma 2.3. Its proof is analogous.

Lemma 4.4. Let N be a manifold with corners inR2 and letf : N → R be aC1

function. Suppose that there exists aC2 diffeomorphismΦ : P → N , whereP is a
convex polyhedron and putg = f ◦ Φ. Then we have:

(a) F := ∇f is admissible inInt N if and only if G := ∇g is admissible inInt P ,

(b) If F is admissible, thendeg(F, Int N) = deg(G, Int P ),

(c) Moreover,F is strongly inward (strongly outward, respectively) on smooth
arcs of∂D if and only if G is strongly inward (strongly outward, respectively) on the
corresponding edges ofP .

Lemma 4.5. Suppose that twoC1 fieldsF andG share an isolating blockN and
the same inward and outward arcs of∂N . Thendeg(F, Int N) = deg(G, Int N).
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Proof. One instantly verifies that the homotopy

H(x, t) = (1 − t) F (x) + t G(x)

satisfies the same strong inward and outward conditions asF andG. This implies that
H(x, t) 6= 0 for all t ∈ [0, 1] and allx ∈ ∂N . �

Lemma 4.6. Let N ⊂ R
2 be an isolating block forp and F = ∇f . If its

exit setN− is empty or if it is the whole∂N , thendeg(F, Int N) = 1. Otherwise,
N− is disconnected. Letk + 1 be the number of its connected components. Then
deg(F, Int N) = −k.

Proof. Since an isolating block of a critical point is homeomorphic to the discB,
it must be either diffeomorphic toB or to a closed convex polyhedronP . When either
N− = ∅ or N− = ∂N , we getN which is diffeomorphic toB.

In the first case,F is inward on∂N . By Lemma 2.3, Lemma 4.5 and Proposition
2.1, we have

deg(F, Int N) = deg(−id , B) = 1.

By the same arguments, ifN− = ∂N , thenF is outward on∂N and we get

deg(F, Int N) = deg(id , B) = 1.

Suppose now thatN− is disconnected. The condition (ii) in Definition 4.1 and the
continuity of the flow imply that if two smooth arcs of∂N meet at a corner point, then
F is strongly inward on one of them and strongly outward on the other. Therefore,
the inward arcs are interlaced with outward arcs as the ridge lines and ravinelines
in Definition 3.3. Since the arcs complete a circle, the number of inward arcs is the
same as the number of outward arcs and is equal to(k + 1). In particular, the convex
polyhedronP to whichN is homeomorphic has2(k+1) edges. By Lemma 4.4, Lemma
4.5, Theorem 3.1 and Example 4.3,

deg(F, Int N) = deg(zk, P ) = −k. �

We note that Lemma 4.5 provides a link between the local degree atp and the
Conley index [4] of the singleton{p}, which is the pointed homotopy type of the pair
(N, N−). In the case whereN− is disconnected with(k + 1) connected components,
(N, N−) has the homotopy type of the wedge ofk circles.

4.2. Extension of the Euler-Maxwell formula
We are now ready to prove the main results of this section.

Theorem 4.7 (Classification of isolated critical points).Let p be an isolated cri-
tical point of aC2 functionf : D → R.

(i) Then any isolating neighborhood ofp contains an isolating blockN of p,

(ii) Moreover,p is either a maximum point, a minimum point or ak-fold saddle,

(iii) Finally, deg(∇f, Int N) is 1 in the first two cases and−k in the last one.
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Proof. Since a gradient field has no periodic orbits, the singleton{p} is an isolated
invariant set in the sense of [17, Definition 1.1]. By [17, Theorem 2.5],any isolating
neighborhood ofp contains an isolating block in the sense of [17, Definition 1.2]. It
follows from the proof of [17, Theorem 2.5] and from [16, Corollary 3.5] that one can
construct a Wilson and Yorke’s isolating blockN which is deformable to{p}. It is
known that a manifold homotopic to a disc is also homeomorphic toB, hence it is an
isolating block in the sense of Definition 4.1. One can also derive this conclusion from
[7, Remark 3.1]. This proves (i). Then (iii) follows from Lemma 4.6.

We now prove (ii). IfN− is empty, then∇f is inward on∂N , sof must assume a
maximum inN . Since there are no other critical points, that maximum is assumed atp.
If N− = ∂N , then∇f is outward on∂N so, by the same argument,f has a minimum
onN atp.

Consider the remaining case whenN− is disconnected with(k + 1) connected
components. We already showed in the proof of Lemma 4.6 that the inward arcs are
interlaced with outward arcs and their numbers are both equal to(k + 1). Moreover, it
follows again from [17, Theorem 2.5] and from [16, Corollary 3.5] thatany outward arc
deforms to its intersection withW u(p) and any inward arc deforms to its intersection
with W s(p). In particular, those intersections are non-empty. This means that each
outward arc contains at least one ridge line and each outward arc contains at least one
ravine line. This conclusion can also be derived from cohomological description of
isolating blocks in [7]. Thus, we proved thatp is exactly thek-fold saddle according to
Definition 3.3. �

Remark 4.8. In spaces of higher dimensions, namely inR
4 and R

5, the proof
of the fact that a Wilson and Yorke’s isolating block of an isolated critical point is
homeomorphic to the unit ball relies on the famous Poincaré conjecture, proved just a
few years ago.

Theorem 4.9 (Maxwell formula for degenerate critical points). Let D be a re-
gion inR

2, C2-diffeomorphic to the closed unit ball or to a closed convex polyhedron,
andf : D → R a C2 function whose gradient∇f is inward on∂D. Suppose that all
critical points off are isolated. Then there are finitely many of them and they are local
minima, local maxima or extendedk-fold saddles. Moreover, we have the formula

♯min − Σ(k · ♯(k − saddles)) + ♯max = 1.

Proof. By the same arguments as those in the proof of Theorem 2.2 and Corollary
2.4,

deg(∇f, D) = deg(−id , B2) = (−1)2 = 1.

SinceD is compact and the critical points off are isolated, there are finitely many of
them. Let{pi}i=1,2,...,n be the corresponding set of critical points. By Theorem 4.7 (i),
each pointpi admits an isolating blockNi. By the additivity axiom,

1 = deg(F, D) =

n
∑

i=1

deg(F, Int Ni).

The conclusion follows from Theorem 4.7 parts (ii) and (iii). �

By the same arguments as in the proof of Corollary 2.5, we get the following.
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Corollary 4.10. Let f : Sd → R be aC2 function. Suppose that all critical points
are isolated. Then there are finitely many of them and they are local minima, local
maxima or extendedk-fold saddles. Moreover, we have the formula

♯min − Σ(k · ♯ (k − saddles)) + ♯max = 2.

5. Conclusion

As we mentioned in the introduction, the main motivation for this paper is to im-
prove existing models for analysis of digital images, where functions are not defined
on points inR

2 but pixels in a finite lattice. Our first numerical experiments showed
that we need to relax the hypothesis that critical points are isolated. Note thata typical
example from mathematical analysis is a critical pointp which is a limit of a sequence
of other critical pointspi. Such cases are not really of concern in the digital image
analysis, because the sets of pixels are finite. However, flat critical regions are com-
mon in digital images. In analysis of a height function in topography, for example,
one cares about flat regions such as bottoms of lakes, flat mountain tops,or volcano
craters, which are extremum regions; and about long sand bars at seashore, which are
saddle regions. An algorithm detecting and classifying critical regions is produced in
[1] but it requires improvements, especially with regard to the concept of topological
boundary in the digital setting, and of identification ofk-saddle regions. Understanding
saddle regions is crucial for the construction of isolines, because theseare places where
smooth continuation techniques fail. Also the model of discrete multivalued dynamical
system used for the Morse connections graph Algorithm needs to be rethought in terms
of the degree theory for multivalued maps.

Another obvious direction for future studies is to provide an analogous analysis of
critical points and regions for dimensions3 and higher. An initial work on this topic is
[2]. The analysis of saddle pixels and saddle regions is more difficult in high dimensions
because the numbers of connected components of inward and outward portions of an
isolating block is not sufficient to distinguish between a saddle and an extremum or
between two different types of saddles. Thus, one has to search for more advanced
topological tools.

Acknowledgements.S. Derivière was supported by a Tomlinson Visiting Scholar-
ship of Bishop’s University, T. Kaczynski was supported by a NSERCDiscovery Grant
and P.-O. Vallerand was supported by a NSERC USRA.

REFERENCES

[1] M. Allili, D. Corriveau, S. Derivière, T. Kaczynski and A. Trahan,Discrete dynamical
system framework for construction of connections between critical regions in lattice height
data, J. Math. Imaging Vision28, 2007, no. 2, 99–111.

[2] M. Allili, D. Corriveau, S. Derivière and T. Kaczynski,Detecting critical regions in multi-
dimensional data sets, preprint.



62 DEGREE OF MULTIPLE SADDLES

[3] L.E.J. Brouwer,Über Abbildung von Mannigfaltigkeiten, Math. Ann.71, 1912, no. 4, 97–
115.

[4] C. Conley,Isolated invariant sets and the Morse index, CBMS Regional Conference Series
in Mathematics,38, AMS, Providence, 1978, iii+89 pp.

[5] H. Edelsbrunner, J. Harer and A. Zomorodian,Hierarchical Morse-Smale complexes for
piecewise linear 2-manifolds, 17th ACM Symposium on Computational Geometry, Med-
ford, MA, 2001.

[6] R. Forman,Morse theory for cell complexes, Adv. Math.134, 1998, no. 1, 90–145.

[7] A. Gierzkiewicz and K. Wójcik,On the cohomology of an isolating block and its invariant
part, Topol. Methods in Nonlinear Anal.32, 2008, 313–326.

[8] F.P. Greenleaf,Introduction to complex variables, W.B. Saunders Co., Philadelphia-
London-Toronto, Ont., 1972, xii+588 pp.

[9] J. Leray and J. Schauder,Topologie et équations fonctionnelles, Ann. Sci. Ecole Norm. Sup.
3, 1934, no. 51, 45–78.

[10] N. G. Lloyd,Degree theory, Cambridge Tracts in Mathematics,73, Cambridge University
Press, Great Britain, 1978, vi+172 pp.

[11] W.S. Massey,A basic course in algebraic topology, Graduate Texts in Mathematics,127,
Springer-Verlag, New-York, 1991, xvi+428 pp.

[12] Y. Matsumoto,An introduction to Morse theory, Translations of Mathematical Mono-
graphs,208, Iwanami Series in Modern Mathematics, AMS, Providence, 2002, xiv+219
pp.

[13] J.C. Maxwell,On hills and dales, The London, Edinburg and Dublin Philosophical Maga-
zine and Journal of Science,40, 1870, 421–425.

[14] M. Nagumo,A theory of degree of mappings based on infinitesimal analysis, Amer. J.
Math.73, 1951, 485–496.

[15] R. Srzednicki,On periodic solutions of planar polynomial differential equations with pe-
riodic coefficients, J. Differential Equations114, 1994, no. 1, 77–100.

[16] F.W. Wilson,The structure of the level surfaces of a Lyapunov function, J. Differential
Equations3, 1967, 323–329.

[17] F.W. Wilson and J.A. Yorke,Lyapunov functions and isolating blocks, J. Differential Equa-
tions13, 1973, 106–123.

S. DERIVIÈRE, DÉP. DE MATH ., U. DE SHERBROOKE, 2500BOUL. DE L’U NIVERSITÉ, SHERBROOKE,
QC, CANADA , J1K 2R1.
s.deriviere@usherbrooke.ca

T. KACZYNSKI , DÉP. DE MATH ., U. DE SHERBROOKE, 2500 BOUL. DE L’U NIVERSITÉ, SHER-
BROOKE, QC, CANADA , J1K 2R1.
t.kaczynski@usherbrooke.ca

P.-O. VALLERAND -BEAUDRY, DÉP. DE MATH ., U. DE SHERBROOKE, 2500BOUL. DE L’U NIVERSITÉ,
SHERBROOKE, QC, CANADA , J1K 2R1.
p-o.vallerand@usherbrooke.ca


