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THE GAUSS HIGHER RELATIVE CLASS
NUMBER PROBLEM

JOHN VOIGHT

Dedicated to professor John Labute on the occasion of his retirement.

RESUME. Sous I’hypothese que la conjecture principale 2-adique d’Iwasawa est
vraie, nous exhibons tous les corps CM possédant un nombre de classes supérieur au
plus égal a 16. Il y en a au moins 31 et au plus 34 tels corps, et au plus I'un de ceux-ci
est non abélien.

ABSTRACT. Assuming the 2-adic Iwasawa main conjecture, we find all CM fields
with higher relative class number at most 16: there are at least 31 and at most 34 such
fields, and at most one is nonabelian.

The problem of determining all imaginary quadratic fields K = Q(\/E) of small
class number h(K') was first posed in Article 303 of Gauss’ Disquisitiones Arithmeti-
cae. It would take almost 150 years of work, culminating in the results of Stark [19] and
Baker [1], to determine those fields with class number at most two: there are exactly
27, the last having discriminant d = —427. (See Goldfeld [6] or Stark [21] for a history
of this problem.) Significant further progress has been made recently by Watkins [24],
who enumerated all such fields K with class number A(K) < 100.

One interesting generalization of the Gauss class number problem is to replace Q
by a totally real field F'. Let K/F be a CM extension, i.e., K is a totally imaginary
quadratic extension of a totally real field F, and let [F' : Q] = n. We have the di-
visibility relation A(F") | h(K), and we denote by h™ (K) = h(K)/h(F) the relative
class number. It is known that there are only finitely many CM fields with fixed re-
lative class number [20]. The complete list of CM fields of relative class number one
is still unknown; see Lee-Kwon [12] for an overview. However, many partial results
are known: for example, there are exactly 302 imaginary abelian number fields K with
relative class number one [3], each having degree [K : Q] < 24.

The integer h~(K') can be determined by the analytic relative class number for-
mula, as follows. Let x : Gal(K/F) — {£1} denote the nontrivial character associ-
ated to the extension K/ F and let L(, s) denote the Artin L-function associated to x.
Then

L(Xa 0) =

Recu le 29 mai 2008 et, sous forme définitive, le 29 décembre 2008.
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where w(K) = #u(K) is the number of roots of unity in the field K and Q(K) is the
Hasse QQ-unit index [Z}, : Z}, u(K)] € {1, 2}.

In this article, we consider the further generalization of the Gauss problem to higher
relative class numbers of CM fields. Let F be a number field with ring of integers Zg,
and let m € Z>3 be an odd integer. We define the higher class group of E by

H?*(SpecZg,Z HH (Spec Zg[1/p], Zy(m)).

The group H?(SpecZg,Z(m)) is ﬁmte, and we let h,,(E) denote its order. For
p # 2, the Quillen-Lichtenbaum conjecture (which appears to have been proven by
Voevodsky-Rust-Suslin-Weibel) implies that the étale ¢-adic Chern character

Kom—2(Zg) ® Z, = Hg(Spec Zg[1/p], Zy(m))

is an isomorphism, thus h,,(E) and # Ko,,_2 agree up to a power of two; see Section 1
for more details.

For the CM extension K/ F, we define the higher relative class number to be
han (K)
han (F)
In analogy with the usual class number, an analytic higher relative class number formula
holds: up to a power of 2, we have the equality

m-1y 2"t ho(K)
(1) Lix,1 —m) = (=1)"("5%) lma)
ot =m =000 ) ()
where wy, (K) € Zso and Q,,,(K) € {1, 2} are the number of higher roots of unity and
the higher -index, respectively. Assuming the Iwasawa main conjecture for p = 2,
the formula (1) holds exactly; see Kolster [10] and the discussion below.

hn

€ Z.

(K) =

Our main result is as follows.

Theorem A. Suppose that the Iwasawa main conjecture holds for p = 2. Then
there are at least 31 and at most 34 pairs (K /F, m) where h.,(K) < 16.

The extensions are listed in Tables 4.1-4.2 in Section 4, and explains the calcula-
tions of Henderson (h,,(K) = 1 and F' = Q) reported in Kolster [10, Section 3].

We begin in Section 1 by giving the necessary background. In Section 2, we es-
timate the size of the higher relative class number using the analytic formula in an
elementary way, and prove a statement in the spirit of the Brauer-Siegel theorem. In
Section 3, we combine these estimates with the Odlyzko bounds to reduce the problem
to a finite computation and then carry it out to prove our main result. We conclude in
Section 4 by tabulating the fields.

1. Background

In this section, we state in detail the higher relative class number formula, which
determines analytically the order of the higher relative class number of a CM extension
of number fields.
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We begin by introducing the L-function and its functional equation; see Lang [11,
Chapter XIII] or Neukirch [15, Chapter VII] for a reference. Let EX be a number field
with ring of integers Z g, absolute discriminant d g, and degree [E : Q] = r1+2ry = n,
where 71 and ry denote the number of real and pairs of complex places of E. Let (g (s)
be the Dedekind zeta function of E, defined by

1 1 \!
o= 3 g = I (1= 7)

for s € C with Res > 1. Then (g(s) has an analytic continuation to C \ {1} with a
simple pole at s = 1. Define the completed zeta function of E by

dp

4raqn

s/2
5E<s>=< ) D(s/2)"1T(s) i ()

Then g satisfies the functional equation {g(1 — s) = {g(s), and it follows that

dg )5_1/2 I'(s/2)"T(s)"™
4ragn L((1—s)/2)1T(1—s)r2

(2) Ce(1—s)=C(r(s) (

Now let K/F be a CM extension of number fields with [F' : Q] = n and let x
denote the nontrivial character of Gal(//F'). Then the Artin L-function

Cx ()
3) L(x,s) =
has an analytic continuation to C, and for s € C with Re s > 1 we have
x(a) x(p) >1
) L(x,s) = - (1 - .
o) = 2 ivay = L (1= Gy
F pCZp

Applying equation (2) to (3) we obtain after simplification that

1 di\* 2 (D)1 - 5)/2)\"
(4m)m dp) < I(s/2)T(1 - s) >

We now define the higher relative class group, a group whose order is determined
by values of L(, s) at negative even integers; see Kolster [9, 10] for a more complete
treatment. Let m € Z>3 be odd. For a prime p, we denote by H' (Zg[1/p], Zy(m))
the i-th étale cohomology group of Spec Zg[1/p] with m-fold twisted Z,-coefficients.
Define the (m-th) higher class group of E by

H(Zp,Z HH (Zp(1/p], Zp(m)).

(5) L(X,l—S) :L(X,S) <

There exists a homomorphism Ko, 2(Zg) — H*(Zg,Z(m)) with finite cokernel
[5, 18] (in fact, supported at 2), and it follows that H?(Zg,Z(m)) is finite, since
Koy—2(ZE) is finite (a result of Borel [2] and Quillen [17]). We let

him(E) = #H*(Zg, Z(m))
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denote the (m-th) higher class number of E. We again have h,,(F) | hy,(K), and we
define the higher relative class number of the CM extension K/ F' to be the quotient
hom (K)

(K) = o (F) € Z.

Two other quantities appear in the higher class number formula. First, let

H(B,Q/Z(m)) = [ [ H(E,Qp/Zy(m))
p

be the group of higher roots of unity, given in terms of Galois cohomology (invariants),
and let w,,(E) = #H°(E,Q/Z(m)) denote its order. By definition, w,,(E) is the
largest integer ¢ such that G = Gal(E((,)/E) has exponent dividing m, where (,
denotes a primitive g-th root of unity.

We have the following lemma that characterizes wy,(F). If ¢ is the power of a
prime, let Q(¢,)(™) denote the subfield of Q((,) of index ged(¢(q), m).

Lemma 1.1. If g is a power of a prime, then q | w,,(E) if and only if E contains
Q)™
Proof. Note that since Q((,) is Galois, we have

G = Gal(E(¢,)/E) = Gal(Q(¢,)/ (BN Q) € Gal(Q(¢,)/Q) = (Z/qZ)"
Since m > 3 is odd, if ¢ is even, we have ¢ | wy,(F) if and only if Q(¢,) C FE, as
claimed. If ¢ is odd, since Gal(Q((,)/Q) is cyclic, we have ¢ | wy,(E) if and only if
G has order dividing m if and only if Q(g‘q)(m) CE. O

Finally, we define the higher Q-unit index of the CM extension K/ F by
Qu(K) = [Hy(K, Zo(m)) : Hy(F, ZLa(m)) HO(K, Q2/Z2(m))].
Collecting results of Kolster [10, Section 3], we know the following facts about ).
Proposition 1.2. We have:
@) Qm € {1,2}.
(b) Qm =2 ifandonly if HY(K/F, H} (K, Zs(m))) = 0.
(¢) If an odd prime of F ramifies in K, then Q},,, = 1.
(d) If no odd prime of F' ramifies in K, the field F' has only one prime lying above
2, and h(F) is odd, then @Q,, = 2.
With these definitions, we now state the higher relative class number formula.
Proposition 1.3. (Kolster, [10]) We have
m-1y 2"tL ho(K)
(6) Lix,1—m) = (—1)"("37) . Zm
bot=m) =0T 0 E) oK)
up to a power of 2. If the 2-adic Iwasawa main conjecture holds, then (6) holds.

The proof of the Iwasawa main conjecture for p odd by Wiles [25] implies that
the formula (6) holds up to a power of 2, and a proof of the 2-adic main conjecture
would imply it exactly. Indeed, Kolster [10] has proven that (6) holds in the case that
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K is abelian over QQ by applying Wiles’s proof of the 2-adic main conjecture when K
is abelian.

2. Estimates

In this section, we estimate the size of the relative class number. Throughout, we
assume the truth of the higher relative class number formula (Proposition 1.3). We re-
tain the notation from the previous section, suppressing the dependence on K whenever
possible; in particular, we recall that m € Z>3 is odd.

We begin by substituting s = m into (5). From standard I'-function identities,
letting m = 2k — 1, we have

Nm/2) = SRR 7
and
D(=m)/2) TR (2
T(l—m)  T(—2k) Rl

Putting these together, we obtain

I'(m)L((1 —m)/2) _ (—1)(m=1)/2 2" (m —1)!
T'(m/2)T'(1 —m) NZ

hence

Now, by the higher relative class number formula, we have
wQO > ‘L(X7 1- m)|

8) h,, = |L(x,1—m)| gl 2 TS
since @, Wy, € Z>1. From (7) and (8) we obtain
1 A \™ Y2 ((m - 1)N\"
h- > =L — — ) .
0 > L (%) ()

We now estimate the value of L(y, m).
Lemma 2.1. We have v(m)™ < L(x,m) < {(m)", where

v(m)=H<1+1n>_l-

» p
Proof. From (4) we obtain
_ Cox) 7!
L(x,m) = H 1 (Np)™ :
o p

Organizing the product by primes p, we have

(o2 <) <)
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hence
y(m)" < L(x,m) < ¢(m)"
as claimed. O

We compute easily that v(3) > 0.8463, v(5) > 0.9653, and y(m) > 0.9917 if
m > T, clearly y(m) — 1 as m — oo. Applying Lemma 2.1 to (9), we obtain

We pause to prove the following proposition, which is in the spirit of the Brauer-
Siegel theorem. We have dg /dp = dFNDK/F > dp, where O /p C Z r denotes the
relative discriminant of K /F.

Proposition 2.2. Let {K;/F;}; be a sequence of CM extensions with
[Fi : Q] = o (log(dk, /dF,)) -

Then
log hy,, (Kj) ~ (m —1/2)log(dk, /dF,)
asi — 0Q.
Proof. Let K/F be a CM extension with [F' : Q] = n. On the one hand, from (10)
we have
(11) logh,, > (m —1/2)log(dk /dr) + nc(m)

where ¢(m) is a constant depending only on m. On the other hand, by Lemma 2.1 we
have L(x,m) < {(m)™. Then applying equations (7) and (8) with this estimate we
obtain

(12) log h,, <logwp, + (m —1/2)log(di /dr) + nlog(m).
Putting together (11) and (12), since [F; : Q] = o(log(dk,/dF,)) as i — oo, the result
follows if we show that

(13) log wn, (K;) = o(log(dk, /dE,)).

To prove (13), we compare wy,(K) and di/dr for a CM extension K/F. Let
g = p" be a power of a prime and suppose that g | w,,. By Lemma 1.1, the field
K must contain Q(Cq)(m). Suppose first that g is odd. It follows that /' must contain
the field Q(Cq)@m); since d@((q)(2m> | dr, by the conductor-discriminant formula [23,
Theorem 3.11] we have
pa)/(2m)—1 ‘ diy(c,y@m-

If ¢ is even, then F must contain the totally real subfield Q(¢,)* of Q(,), and we
similarly conclude that p?(9)/2-1 | dp. Define the multiplicative function f with the
value f(p") = p?®")/m)~1 for a prime power p'.

Now let K;/F; be a subsequence with w,,(K;) — oo; if no such subsequence
exists, then we are done. We now show that for any sequence of positive integers
n; — oo, we have logn; = o(log f(n;)). The result then follows as

log Wm; = O(IOg f(wmz)) - 0(10g sz) - O(IOg(dKi/sz‘))

as desired.
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So let € > 0. We prove that
-
e <<z5(p ) 1)
2m
for all sufficiently large prime powers p”, or also it is sufficient to show that
" 1
(14) o) 1,
4rm €

For r = 1, clearly the inequality (14) will be satisfied for p sufficiently large; but then
for the finitely many remaining primes p, the inequality holds for a sufficiently large
power 7. Therefore it holds for any sufficiently large prime power p”, as claimed. O

Corollary 2.3. Let F' be a totally real field and m € Z>3 be odd. Then, for any
h € Z>1, there are only finitely many CM extensions K /F with h., (K) < h.

We return to estimating h, from below. Rewriting (10) we obtain
(15) dp < —— < (2h,)Y "D C(m)",

where T
2m)™m me
y(m)(m —1)!
depends only on m. We compute that
C(3) <17.3517, C(5)<3.8332, (C(7)<2.6336, and C(9)<2.011.

It follows from Stirling’s approximation and the fact that v(m) is increasing to 1 that
C(m) is decreasing to 0.

Letop = d;/n denote the root discriminant of F'. Taking n-th roots we obtain from
(15) that

(16) 5p < (2h )Y (Cm=Dn) ().

3. Enumerating the list of extensions

We now apply the results of Section 2 to enumerate CM extensions with small
higher relative class number.

We list those extensions with i, < 16; we have chosen this bound to capture the
smallest higher relative class number of a nonabelian field, and we note that this bound
can easily be increased, if desired. Let N F},,(n) denote the set of totally real fields F
of degree n that satisfy the bound (16) with h,, = 16, and let N F},, = |J,, N Fyn(n).

For m = 3, the estimate (16) then reads

(17) §p < 324/6MC(3) < 7.3517 - 417,

By the (unconditional) Odlyzko bounds [14], if n > 7 we have § > 9.301, but by
(17) we have 0p < 8.962, a contradiction. In Table 3.1, for each degree n > 2 we list
the upper bound on the root discriminant d, the corresponding Odlyzko bound B,
the corresponding upper bound on the discriminant d, and the size of N F3(n).
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n 2 3 4 5 6  >7
S < 14703 11.670 10.397 9.701 9.263 8.962
Bo >2223 3610 5067 6.523 7.941 9.301
dp <216 1589 11684 85899 631505 —

#NFy(n) 65 48 64 8 6 0

Table 3.1. Degree and root discriminant bounds

The fields N F3(n) of such small discriminants are well-known [16].
For m = 5, arguing in a similar way we have
op < 322/0M(C(5) < 3.8332-2.1602'/",

which already for n > 4 gives ép < 4.5273, a contradiction to the Odlyzko bound
dr > 5.067. In fact, we have dp < 28 forn = 2 and dp < 109 for n = 3, so that
#N F5(2) = 8 and #N F5(3) = 2. Proceeding in this way, we find:

({QQ(v5).Q(v8)} ifm=7,
(0.0(v5)) ifm = 9.

NF,, = .
{Q} if11 < m < 19,
0 if m > 21.

Now for each such field F' and m, we have from (15) that
(18) di < {322/(2m—1>0(m)”J dr,

leaving only finitely many possibilities for the CM extension K /F'. We can find these
relative quadratic extensions explicitly by using a relative version of Hunter’s theorem
due to Martinet; see Cohen [4, Sections 9.2-9.3] for more details. We obtain in this
way 90, 9, 2, 1 extensions K /F' for m = 3,5, 7,9 respectively, and none for m > 11.

Next, using (7) and the higher relative class number formula (Proposition 1.3) we
numerically compute the value ., /(w,,Qm) € R. In order to recover this value exac-
tly, it suffices to bound the size of the denominator. We have @Q,, € {1,2}.

To determine w,,, we apply Lemma 1.1. If ¢ is the power of a prime and ¢ | m,
then ¢ is odd and K contains the unique subfield of index m of Q({,). In particular,
this implies that (¢(q)/m) | 2n = [K : Q], which already gives a bound on w,. To
reduce the size of this bound further, we note that we also have d@(gq)m) | di, soin
particular ¢ | dix whenever ¢(q) > m; furthermore, for any prime p of K that is prime
to qd, it is easy to see that the order of Np € (Z/qZ)* must divide m. A prime power
q that passes these tests, the latter for sufficiently many primes p, is very likely to divide
W, To compute wy,, exactly and verify that indeed ¢ | w,,, we simply check if the g-th
cyclotomic polynomial over K factors into polynomials of degree at most m.
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In this way, we compute A, /Q., € %Z. If this value is not an integer, then we
immediately know that @),,, = 2. Otherwise, we may apply the tests of Proposition 1.2
to determine the value (), in almost all cases. We are lucky that in many cases where
we cannot determine the value of @,,,, we nevertheless have h, > h- /Q,, > 16. We
have 6 remaining cases. One of which we can resolve as follows: for F' = Q (\/%)

and K = Q (\/ —15,+/ —2) with h3 /@3 = 12, we apply the divisibility result
8=hy (Q(V-15)) | hy (K)

(see [10, Corollary 3.6]), which implies ()3 = 2, and hence h; = 24. We were unable
to resolve and we leave it as an open problem to compute the higher Q-index @), in
the other 5 cases. We expect the problem to be nontrivial for the reason that already
characterizing Hasse’s (-index is quite intricate; see Hasse [8].

Of the 90,9, 2,1 CM extensions corresponding to m = 3,5, 7,9, there are respec-
tively between 26 and 29, 4, 1, 0 of them which have h,, < 16, and they are listed in
Tables 4.1-4.2.

4. Tables

In this section, we present the tables of CM extensions with higher relative class
number h,, < 16. Below, we list the totally real field I’ and its discriminant d, the
CM field K, its absolute discriminant dx and the norm of the relative discriminant
N0k ), an element 6 € F such that K = F' (\/3), and the higher class number A.,.

As usual, we let (; denote a primitive k-th root of unity, w = (3 and i = (4, and we
define A\, = G + 1/, so that Q(Ax) = Q(Cx) ™.

The computations were performed in Magma [7] and Sage [22]; total computing
time was about 2 minutes.

It is interesting to note that there is no CM extension with higher relative class
number h,, = 2. Also, note that there is a misprint in the computation of h,,((12) =1
in Kolster [10].

dp F |dg K NQ@g/r) 6 |hy
1 Q 3 Q) 3 -3| 1
1 Q 4 Q(3) 4 —4{ 5
12 Q(V3) | 144 Q(Go) 1 1|5
1 Q 7 Q(V-T) 7 —7| 16
dp F |dg K NQ@g/p) 0 | h7
1 Q 3 Q) 3 -3 7

Table 4.1. CM extensions with higher relative class number h,, < 16 for m > 5.
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3or6

4or8

11
11 or 22

11

13

15
15
15 or 30

15

16
16

16

NQ@g/r)

—11

11

-3

-1

—-15

15

7
16

—-19
-3

19

20
16

—1

2v/2 -5

17

—-15

dx

Q(¢)

Q (V-11,w)
Q (v=15,1)

1089

3600

Q (V-11,v-2)

16807
7744

19
3249

¢ (V)

(@( ——19,a0

Q (v=T19.1)

2776
19683

Q(o)

Q(¢20

4000000

1265625

dr

Q(v33)
Q (VI5)

33

60

(

(

(A7)
Q (v22)

49
88

Q (V57)

Q (VI9)

57
76
81

Qo)

Q(A20)

2000
21

Q(A15)

1125

< 16.

3

Table 4.2. CM extensions with higher relative class number h
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