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Dedicated to professor John Labute on the occasion of his retirement.

RÉSUMÉ. Sous l’hypothèse que la conjecture principale 2-adique d’Iwasawa est
vraie, nous exhibons tous les corps CM possédant un nombre de classes supérieur au
plus égal à 16. Il y en a au moins 31 et au plus 34 tels corps, et au plus l’un de ceux-ci
est non abélien.

ABSTRACT. Assuming the 2-adic Iwasawa main conjecture, we find all CM fields
with higher relative class number at most 16: there are at least 31 and at most 34 such
fields, and at most one is nonabelian.

The problem of determining all imaginary quadratic fields K = Q(
√
d) of small

class number h(K) was first posed in Article 303 of Gauss’ Disquisitiones Arithmeti-
cae. It would take almost 150 years of work, culminating in the results of Stark [19] and
Baker [1], to determine those fields with class number at most two: there are exactly
27, the last having discriminant d = −427. (See Goldfeld [6] or Stark [21] for a history
of this problem.) Significant further progress has been made recently by Watkins [24],
who enumerated all such fields K with class number h(K) ≤ 100.

One interesting generalization of the Gauss class number problem is to replace Q
by a totally real field F . Let K/F be a CM extension, i.e., K is a totally imaginary
quadratic extension of a totally real field F , and let [F : Q] = n. We have the di-
visibility relation h(F ) | h(K), and we denote by h−(K) = h(K)/h(F ) the relative
class number. It is known that there are only finitely many CM fields with fixed re-
lative class number [20]. The complete list of CM fields of relative class number one
is still unknown; see Lee-Kwon [12] for an overview. However, many partial results
are known: for example, there are exactly 302 imaginary abelian number fields K with
relative class number one [3], each having degree [K : Q] ≤ 24.

The integer h−(K) can be determined by the analytic relative class number for-
mula, as follows. Let χ : Gal(K/F ) → {±1} denote the nontrivial character associ-
ated to the extension K/F and let L(χ, s) denote the Artin L-function associated to χ.
Then

L(χ, 0) =
2n

Q(K)
· h
−(K)
w(K)

,
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where w(K) = #µ(K) is the number of roots of unity in the field K and Q(K) is the
Hasse Q-unit index [Z∗K : Z∗F µ(K)] ∈ {1, 2}.

In this article, we consider the further generalization of the Gauss problem to higher
relative class numbers of CM fields. Let E be a number field with ring of integers ZE
and let m ∈ Z≥3 be an odd integer. We define the higher class group of E by

H2(Spec ZE ,Z(m)) =
∏
p

H2
ét(Spec ZE [1/p],Zp(m)).

The group H2(Spec ZE ,Z(m)) is finite, and we let hm(E) denote its order. For
p 6= 2, the Quillen-Lichtenbaum conjecture (which appears to have been proven by
Voevodsky-Rust-Suslin-Weibel) implies that the étale `-adic Chern character

K2m−2(ZE)⊗ Zp
∼−→ H2

ét(Spec ZE [1/p],Zp(m))

is an isomorphism, thus hm(E) and #K2m−2 agree up to a power of two; see Section 1
for more details.

For the CM extension K/F , we define the higher relative class number to be

h−m(K) =
hm(K)
hm(F )

∈ Z.

In analogy with the usual class number, an analytic higher relative class number formula
holds: up to a power of 2, we have the equality

(1) L(χ, 1−m) = (−1)n(
m−1

2 ) 2n+1

Qm(K)
· h
−
m(K)
wm(K)

,

where wm(K) ∈ Z>0 andQm(K) ∈ {1, 2} are the number of higher roots of unity and
the higher Q-index, respectively. Assuming the Iwasawa main conjecture for p = 2,
the formula (1) holds exactly; see Kolster [10] and the discussion below.

Our main result is as follows.

Theorem A. Suppose that the Iwasawa main conjecture holds for p = 2. Then
there are at least 31 and at most 34 pairs (K/F,m) where h−m(K) ≤ 16.

The extensions are listed in Tables 4.1–4.2 in Section 4, and explains the calcula-
tions of Henderson (h−m(K) = 1 and F = Q) reported in Kolster [10, Section 3].

We begin in Section 1 by giving the necessary background. In Section 2, we es-
timate the size of the higher relative class number using the analytic formula in an
elementary way, and prove a statement in the spirit of the Brauer-Siegel theorem. In
Section 3, we combine these estimates with the Odlyzko bounds to reduce the problem
to a finite computation and then carry it out to prove our main result. We conclude in
Section 4 by tabulating the fields.

1. Background

In this section, we state in detail the higher relative class number formula, which
determines analytically the order of the higher relative class number of a CM extension
of number fields.
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We begin by introducing the L-function and its functional equation; see Lang [11,
Chapter XIII] or Neukirch [15, Chapter VII] for a reference. Let E be a number field
with ring of integers ZE , absolute discriminant dE , and degree [E : Q] = r1+2r2 = n,
where r1 and r2 denote the number of real and pairs of complex places of E. Let ζE(s)
be the Dedekind zeta function of E, defined by

ζE(s) =
∑

a⊂ZE

1
(Na)s

=
∏

p⊂ZE

(
1− 1

(Np)s

)−1

for s ∈ C with Re s > 1. Then ζE(s) has an analytic continuation to C \ {1} with a
simple pole at s = 1. Define the completed zeta function of E by

ξE(s) =
(

dE
4r2πn

)s/2
Γ(s/2)r1Γ(s)r2ζE(s).

Then ξE satisfies the functional equation ξE(1− s) = ξE(s), and it follows that

(2) ζE(1− s) = ζE(s)
(

dE
4r2πn

)s−1/2 Γ(s/2)r1Γ(s)r2

Γ((1− s)/2)r1Γ(1− s)r2
·

Now let K/F be a CM extension of number fields with [F : Q] = n and let χ
denote the nontrivial character of Gal(K/F ). Then the Artin L-function

(3) L(χ, s) =
ζK(s)
ζF (s)

has an analytic continuation to C, and for s ∈ C with Re s > 1 we have

(4) L(χ, s) =
∑

a⊂ZF

χ(a)
(Na)s

=
∏

p⊂ZF

(
1− χ(p)

(Np)s

)−1

·

Applying equation (2) to (3) we obtain after simplification that

(5) L(χ, 1− s) = L(χ, s)
(

1
(4π)n

dK
dF

)s−1/2(Γ(s)Γ((1− s)/2)
Γ(s/2)Γ(1− s)

)n
·

We now define the higher relative class group, a group whose order is determined
by values of L(χ, s) at negative even integers; see Kolster [9, 10] for a more complete
treatment. Let m ∈ Z≥3 be odd. For a prime p, we denote by H i

ét(ZE [1/p],Zp(m))
the i-th étale cohomology group of Spec ZE [1/p] with m-fold twisted Zp-coefficients.
Define the (m-th) higher class group of E by

H2(ZE ,Z(m)) =
∏
p

H2
ét(ZE [1/p],Zp(m)).

There exists a homomorphism K2m−2(ZE) → H2(ZE ,Z(m)) with finite cokernel
[5, 18] (in fact, supported at 2), and it follows that H2(ZE ,Z(m)) is finite, since
K2m−2(ZE) is finite (a result of Borel [2] and Quillen [17]). We let

hm(E) = #H2(ZE ,Z(m))
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denote the (m-th) higher class number of E. We again have hm(F ) | hm(K), and we
define the higher relative class number of the CM extension K/F to be the quotient

h−m(K) =
hm(K)
hm(F )

∈ Z.

Two other quantities appear in the higher class number formula. First, let

H0(E,Q/Z(m)) =
∏
p

H0(E,Qp/Zp(m))

be the group of higher roots of unity, given in terms of Galois cohomology (invariants),
and let wm(E) = #H0(E,Q/Z(m)) denote its order. By definition, wm(E) is the
largest integer q such that G = Gal(E(ζq)/E) has exponent dividing m, where ζq
denotes a primitive q-th root of unity.

We have the following lemma that characterizes wm(E). If q is the power of a
prime, let Q(ζq)(m) denote the subfield of Q(ζq) of index gcd(φ(q),m).

Lemma 1.1. If q is a power of a prime, then q | wm(E) if and only if E contains
Q(ζq)(m).

Proof. Note that since Q(ζq) is Galois, we have

G = Gal(E(ζq)/E) ∼= Gal(Q(ζq)/(E ∩Q(ζq))) ⊂ Gal(Q(ζq)/Q) ∼= (Z/qZ)×.

Since m ≥ 3 is odd, if q is even, we have q | wm(E) if and only if Q(ζq) ⊂ E, as
claimed. If q is odd, since Gal(Q(ζq)/Q) is cyclic, we have q | wm(E) if and only if
G has order dividing m if and only if Q(ζq)(m) ⊂ E. �

Finally, we define the higher Q-unit index of the CM extension K/F by

Qm(K) = [H1
ét(K,Z2(m)) : H1

ét(F,Z2(m))H0(K,Q2/Z2(m))].

Collecting results of Kolster [10, Section 3], we know the following facts about Qm.

Proposition 1.2. We have:

(a) Qm ∈ {1, 2}.
(b) Qm = 2 if and only if H1(K/F,H1

ét(K,Z2(m))) = 0.

(c) If an odd prime of F ramifies in K, then Qm = 1.

(d) If no odd prime of F ramifies in K, the field F has only one prime lying above
2, and h(F ) is odd, then Qm = 2.

With these definitions, we now state the higher relative class number formula.

Proposition 1.3. (Kolster, [10]) We have

(6) L(χ, 1−m) = (−1)n(
m−1

2 ) 2n+1

Qm(K)
· h
−
m(K)
wm(K)

up to a power of 2. If the 2-adic Iwasawa main conjecture holds, then (6) holds.

The proof of the Iwasawa main conjecture for p odd by Wiles [25] implies that
the formula (6) holds up to a power of 2, and a proof of the 2-adic main conjecture
would imply it exactly. Indeed, Kolster [10] has proven that (6) holds in the case that
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K is abelian over Q by applying Wiles’s proof of the 2-adic main conjecture when K
is abelian.

2. Estimates

In this section, we estimate the size of the relative class number. Throughout, we
assume the truth of the higher relative class number formula (Proposition 1.3). We re-
tain the notation from the previous section, suppressing the dependence onK whenever
possible; in particular, we recall that m ∈ Z≥3 is odd.

We begin by substituting s = m into (5). From standard Γ-function identities,
letting m = 2k − 1, we have

Γ(m/2) =
(2k)!
4kk!

√
π

and
Γ((1−m)/2)

Γ(1−m)
=

Γ(−k)
Γ(−2k)

= (−1)k
(2k)!
k!
·

Putting these together, we obtain
Γ(m)Γ((1−m)/2)
Γ(m/2)Γ(1−m)

= (−1)(m−1)/2 2m(m− 1)!√
π

,

hence

(7) L(χ, 1−m) = (−1)n(
m−1

2 )L(χ,m)
(
dK
dF

)m−1/2(2(m− 1)!
(2π)m

)n
·

Now, by the higher relative class number formula, we have

(8) h−m = |L(χ, 1−m)|wmQm
2n+1

≥ |L(χ, 1−m)|
2n+1

since Qm, wm ∈ Z≥1. From (7) and (8) we obtain

(9) h−m ≥
1
2
L(χ,m)

(
dK
dF

)m−1/2((m− 1)!
(2π)m

)n
·

We now estimate the value of L(χ,m).

Lemma 2.1. We have γ(m)n ≤ L(χ,m) ≤ ζ(m)n, where

γ(m) =
∏
p

(
1 +

1
pm

)−1

.

Proof. From (4) we obtain

L(χ,m) =
∏
p

(
1− χ(p)

(Np)m

)−1

.

Organizing the product by primes p, we have(
1 +

1
pm

)−n
≤
∏
p

(
1− χ(p)

(Np)m

)−1

≤
(

1− 1
pm

)−n
,
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hence
γ(m)n ≤ L(χ,m) ≤ ζ(m)n

as claimed. �

We compute easily that γ(3) ≥ 0.8463, γ(5) ≥ 0.9653, and γ(m) ≥ 0.9917 if
m ≥ 7; clearly γ(m)→ 1 as m→∞. Applying Lemma 2.1 to (9), we obtain

(10) h−m ≥
1
2

(
dK
dF

)m−1/2(
γ(m)

(m− 1)!
(2π)m

)n
·

We pause to prove the following proposition, which is in the spirit of the Brauer-
Siegel theorem. We have dK/dF = dFNdK/F ≥ dF , where dK/F ⊂ ZF denotes the
relative discriminant of K/F .

Proposition 2.2. Let {Ki/Fi}i be a sequence of CM extensions with

[Fi : Q] = o (log(dKi/dFi)) .

Then
log h−m(Ki) ∼ (m− 1/2) log(dKi/dFi)

as i→∞.

Proof. Let K/F be a CM extension with [F : Q] = n. On the one hand, from (10)
we have

(11) log h−m ≥ (m− 1/2) log(dK/dF ) + nc(m)

where c(m) is a constant depending only on m. On the other hand, by Lemma 2.1 we
have L(χ,m) ≤ ζ(m)n. Then applying equations (7) and (8) with this estimate we
obtain

(12) log h−m ≤ logwm + (m− 1/2) log(dK/dF ) + n log ζ(m).

Putting together (11) and (12), since [Fi : Q] = o(log(dKi/dFi)) as i → ∞, the result
follows if we show that

(13) logwm(Ki) = o(log(dKi/dFi)).

To prove (13), we compare wm(K) and dK/dF for a CM extension K/F . Let
q = pr be a power of a prime and suppose that q | wm. By Lemma 1.1, the field
K must contain Q(ζq)(m). Suppose first that q is odd. It follows that F must contain
the field Q(ζq)(2m); since dQ(ζq)(2m) | dF , by the conductor-discriminant formula [23,
Theorem 3.11] we have

pφ(q)/(2m)−1 | dQ(ζq)(2m) .

If q is even, then F must contain the totally real subfield Q(ζq)+ of Q(ζq), and we
similarly conclude that pφ(q)/2−1 | dF . Define the multiplicative function f with the
value f(pr) = pφ(pr)/(2m)−1 for a prime power pr.

Now let Ki/Fi be a subsequence with wm(Ki) → ∞; if no such subsequence
exists, then we are done. We now show that for any sequence of positive integers
ni →∞, we have log ni = o(log f(ni)). The result then follows as

logwmi = o(log f(wmi)) = o(log dFi) = o(log(dKi/dFi))

as desired.
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So let ε > 0. We prove that

r < ε

(
φ(pr)
2m

− 1
)

for all sufficiently large prime powers pr, or also it is sufficient to show that

(14)
φ(pr)
4rm

>
1
ε
·

For r = 1, clearly the inequality (14) will be satisfied for p sufficiently large; but then
for the finitely many remaining primes p, the inequality holds for a sufficiently large
power r. Therefore it holds for any sufficiently large prime power pr, as claimed. �

Corollary 2.3. Let F be a totally real field and m ∈ Z≥3 be odd. Then, for any
h ∈ Z≥1, there are only finitely many CM extensions K/F with h−m(K) ≤ h.

We return to estimating h−m from below. Rewriting (10) we obtain

(15) dF ≤
dK
dF
≤ (2h−m)1/(m−1/2)C(m)n,

where

C(m) =
(

(2π)m

γ(m)(m− 1)!

)1/(m−1/2)

depends only on m. We compute that

C(3) ≤ 7.3517, C(5) ≤ 3.8332, C(7) ≤ 2.6336, and C(9) ≤ 2.011.

It follows from Stirling’s approximation and the fact that γ(m) is increasing to 1 that
C(m) is decreasing to 0.

Let δF = d
1/n
F denote the root discriminant of F . Taking n-th roots we obtain from

(15) that

(16) δF ≤ (2h−m)2/((2m−1)n)C(m).

3. Enumerating the list of extensions

We now apply the results of Section 2 to enumerate CM extensions with small
higher relative class number.

We list those extensions with h−m ≤ 16; we have chosen this bound to capture the
smallest higher relative class number of a nonabelian field, and we note that this bound
can easily be increased, if desired. Let NFm(n) denote the set of totally real fields F
of degree n that satisfy the bound (16) with h−m = 16, and let NFm =

⋃
nNFm(n).

For m = 3, the estimate (16) then reads

(17) δF ≤ 322/(5n)C(3) ≤ 7.3517 · 41/n.

By the (unconditional) Odlyzko bounds [14], if n ≥ 7 we have δF ≥ 9.301, but by
(17) we have δF ≤ 8.962, a contradiction. In Table 3.1, for each degree n ≥ 2 we list
the upper bound on the root discriminant δF , the corresponding Odlyzko bound BO,
the corresponding upper bound on the discriminant dF , and the size of NF3(n).
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n 2 3 4 5 6 ≥ 7

δF ≤ 14.703 11.670 10.397 9.701 9.263 8.962
BO > 2.223 3.610 5.067 6.523 7.941 9.301

dF ≤ 216 1589 11684 85899 631505 −
#NF3(n) 65 48 64 8 6 0

Table 3.1. Degree and root discriminant bounds

The fields NF3(n) of such small discriminants are well-known [16].

For m = 5, arguing in a similar way we have

δF ≤ 322/(9n)C(5) ≤ 3.8332 · 2.16021/n,

which already for n ≥ 4 gives δF ≤ 4.5273, a contradiction to the Odlyzko bound
δF > 5.067. In fact, we have dF ≤ 28 for n = 2 and dF ≤ 109 for n = 3, so that
#NF5(2) = 8 and #NF5(3) = 2. Proceeding in this way, we find:

NFm =



{
Q,Q

(√
5
)
,Q
(√

8
)}

if m = 7,{
Q,Q

(√
5
)}

if m = 9,

{Q} if 11 ≤ m ≤ 19,

∅ if m ≥ 21.

Now for each such field F and m, we have from (15) that

(18) dK ≤
⌊
322/(2m−1)C(m)n

⌋
dF ,

leaving only finitely many possibilities for the CM extension K/F . We can find these
relative quadratic extensions explicitly by using a relative version of Hunter’s theorem
due to Martinet; see Cohen [4, Sections 9.2–9.3] for more details. We obtain in this
way 90, 9, 2, 1 extensions K/F for m = 3, 5, 7, 9 respectively, and none for m ≥ 11.

Next, using (7) and the higher relative class number formula (Proposition 1.3) we
numerically compute the value h−m/(wmQm) ∈ R. In order to recover this value exac-
tly, it suffices to bound the size of the denominator. We have Qm ∈ {1, 2}.

To determine wm, we apply Lemma 1.1. If q is the power of a prime and q | m,
then q is odd and K contains the unique subfield of index m of Q(ζq). In particular,
this implies that (φ(q)/m) | 2n = [K : Q], which already gives a bound on wm. To
reduce the size of this bound further, we note that we also have dQ(ζq)(m) | dK , so in
particular q | dK whenever φ(q) > m; furthermore, for any prime p of K that is prime
to qdK , it is easy to see that the order ofNp ∈ (Z/qZ)∗ must dividem. A prime power
q that passes these tests, the latter for sufficiently many primes p, is very likely to divide
wm. To compute wm exactly and verify that indeed q | wm, we simply check if the q-th
cyclotomic polynomial over K factors into polynomials of degree at most m.
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In this way, we compute h−m/Qm ∈ 1
2Z. If this value is not an integer, then we

immediately know that Qm = 2. Otherwise, we may apply the tests of Proposition 1.2
to determine the value Qm in almost all cases. We are lucky that in many cases where
we cannot determine the value of Qm, we nevertheless have h−m ≥ h−m/Qm > 16. We
have 6 remaining cases. One of which we can resolve as follows: for F = Q

(√
30
)

and K = Q
(√
−15,

√
−2
)

with h−3 /Q3 = 12, we apply the divisibility result

8 = h−3
(
Q
(√
−15

))
| h−3 (K)

(see [10, Corollary 3.6]), which implies Q3 = 2, and hence h−3 = 24. We were unable
to resolve and we leave it as an open problem to compute the higher Q-index Qm in
the other 5 cases. We expect the problem to be nontrivial for the reason that already
characterizing Hasse’s Q-index is quite intricate; see Hasse [8].

Of the 90, 9, 2, 1 CM extensions corresponding to m = 3, 5, 7, 9, there are respec-
tively between 26 and 29, 4, 1, 0 of them which have h−m ≤ 16, and they are listed in
Tables 4.1–4.2.

4. Tables

In this section, we present the tables of CM extensions with higher relative class
number h−m ≤ 16. Below, we list the totally real field F and its discriminant dF , the
CM field K, its absolute discriminant dK and the norm of the relative discriminant
N(dK/F ), an element δ ∈ F such that K = F

(√
δ
)

, and the higher class number h−m.
As usual, we let ζk denote a primitive k-th root of unity, ω = ζ3 and i = ζ4, and we
define λk = ζk + 1/ζk, so that Q(λk) = Q(ζk)+.

The computations were performed in Magma [7] and Sage [22]; total computing
time was about 2 minutes.

It is interesting to note that there is no CM extension with higher relative class
number h−m = 2. Also, note that there is a misprint in the computation of h−m(ζ12) = 1
in Kolster [10].

dF F dK K N(dK/F ) δ h−5

1 Q 3 Q(ω) 3 −3 1

1 Q 4 Q(i) 4 −4 5
12 Q

(√
3
)

144 Q(ζ12) 1 −1 5

1 Q 7 Q
(√
−7
)

7 −7 16

dF F dK K N(dK/F ) δ h−7

1 Q 3 Q(ω) 3 −3 7

Table 4.1. CM extensions with higher relative class number h−m ≤ 16 for m ≥ 5.
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dF F dK K N(dK/F ) δ h−3

1 Q 3 Q(ω) 3 −3 1
1 Q 4 Q(i) 4 −1 1

5 Q
(√

5
)

125 Q(ζ5) 5
−
√

5(1+
√

5)
2 1

12 Q
(√

3
)

144 Q(ζ12) 1 −1 1

1 Q 8 Q
(√
−2
)

8 −2 3
1 Q 11 Q

(√
−11

)
11 −11 3

8 Q
(√

2
)

256 Q(ζ8) 4 −2 3
24 Q

(√
6
)

576 Q
(√
−2, ω

)
1 −2 3

44 Q
(√

11
)

1936 Q
(√
−11, i

)
1 −1 3

33 Q
(√

33
)

1089 Q
(√
−11, ω

)
1 −3 3 or 6

60 Q
(√

15
)

3600 Q
(√
−15, i

)
1 −1 4 or 8

1 Q 7 Q
(√
−7
)

7 −7 8
1 Q 15 Q

(√
−15

)
15 −15 8

5 Q
(√

5
)

225 Q
(√
−15, ω

)
9 −3 8

28 Q
(√

7
)

784 Q
(√
−7, i

)
1 −1 8

49 Q(λ7) 16807 Q(ζ7) 7 −7 8

88 Q
(√

22
)

7744 Q
(√
−11,

√
−2
)

16 −2 9

1 Q 19 Q
(√
−19

)
19 −19 11

57 Q
(√

57
)

3249 Q
(√
−19, ω

)
1 −3 11 or 22

76 Q
(√

19
)

5776 Q
(√
−19, i

)
1 −1 11

81 Q(λ9) 19683 Q(ζ9) 3 −3 13

1 Q 20 Q
(√
−5
)

20 −5 15
5 Q

(√
5
)

400 Q
(√
−5, i

)
16 −1 15

60 Q
(√

15
)

3600 Q
(√
−5, ω

)
1 −1 15 or 30

2000 Q(λ20) 4000000 Q(ζ20) 1 −1 15

21 Q
(√

21
)

441 Q
(√
−7, ω

)
1 −3 16

8 Q
(√

2
)

1088 Q
(√

2
√

2− 5
)

17 2
√

2− 5 16

17 Q
(√

17
)

2312 Q
(√

−(5+
√

17)
2

)
8

−(5+
√

17)
2 16 or 32

1125 Q(λ15) 1265625 Q(ζ15) 1 −15 16

Table 4.2. CM extensions with higher relative class number h−3 ≤ 16.
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