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ANNIHILATION OF THE TAME KERNEL FOR A
FAMILY OF CYCLIC CUBIC EXTENSIONS

LLOYD D. SIMONS

Dedicated to John Labute on the occasion of his retirement.

RÉSUMÉ. Soit E/k une extension galoisienne de corps de nombres totalement
réels avec Gal(E/k) = S3, et soit F/k la sous-extension quadratique intermédiaire.
Pour tout nombre premier l 6= 2, 3, nous montrons que l’élément de Stickelberger
(sous sa version intégrale)w2(E)θE/F (−1) annule la `-partie de K2(OE), ce qui four-
nit une évidence supplémentaire en faveur de la véracité de la conjecture généralisée
de Coates-Sinnott.

ABSTRACT. Let E/k be any S3-extension of totally real number fields, and let
F/k be the quadratic subextension. For any prime ` 6= 2, 3, we show that the in-
tegralized Stickelberger element w2(E) θE/F (−1) annihilates the `-part of K2(OE),
providing evidence for the generalized Coates-Sinnott Conjecture.

1. Introduction

Let E/F be a finite abelian extension of number fields with Galois group G. For
each character χ ∈ Ĝ, let LE/F (s, χ) be the Artin L-function associated to χ, and
define the generalized Stickelberger element to be

θE/F (s) =
∑
χ∈Ĝ

LE/F (s, χ)eχ̄.

Here, eχ̄ denotes the group ring idempotent

eχ̄ =
1
|G |

∑
g∈G

χ̄(g)g.

The values θE/F (s) are generically in the complex group ring C[G], but it was shown
by Klingen and Siegel that when n is a non-negative integer, the values LE/F (−n, χ)
are rational numbers, so that θE/F (−n) ∈ Q[G]. Moreover, as a consequence of a
theorem of Deligne and Ribet, one has a bound on the denominators of these values.
Indeed, let G be the absolute Galois group of E, and let µ∞ be the group of all roots of
unity. For m a positive integer, denote by µ⊗m∞ the tensor product of m copies of the
G-module µ∞, with diagonal action by G. The G-fixed points under this action form
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a finite cyclic group of order wm(E), and Deligne-Ribet (and independently Cassou-
Nougès) proved that wn+1(E)θE/F (−n) ∈ Z[G]. For the purposes of this paper, we
set n = 1 and we can interpret w2(E) as the number of roots of unity which lie in the
compositum of all quadratic extensions of E. In particular, w2(Q) = 24.

Arithmetic interest in these integralized Stickelberger elements (and more gener-
ally, in the n-th Stickelberger ideal (θE/F (−n)Z[G]) ∩ Z[G]) began at the end of the
nineteenth century when Stickelberger showed that, for n = 0, these elements anni-
hilate the class groups of cyclotomic extensions of Q (see [12], chapter 6). Brumer
conjectured that a similar statement should be true for abelian CM-extensions of totally
real number fields. Now, ifOE denotes the ring of integers of a number field E, then the
class group ofE is the torsion subgroup of the algebraicK-groupK0OE . One can thus
rephrase Stickelberger’s Theorem (and Brumer’s Conjecture) as the annihilation of this
K-group. In light of conjectured connections between values of ζ-functions and orders
of algebraic K-groups, Coates and Sinnott [1] conjectured that for E/Q abelian, the
algebraic K-group K2nOE should be annihilated by suitably integralized higher Stick-
elberger elements βθE/Q(−n) (Coates and Sinnott proved their conjecture for n = 1).
The reader is referred to [3], [5], or [8] for recent generalizations. The main result of
this paper, which we now state, gives a large family of examples of this “Stickelberger
phenomenon”.

Theorem 1.1. Let E/k be any S3-extension of totally real number fields, and let
F be the fixed field of the subgroup of order 3. Then for any prime ` 6= 2, 3, the
integralized Stickelberger element w2(E)θE/F (−1) annihilates the Sylow `-subgroup
of the “tame kernel” K2(OE).

2. A decomposition lemma

Let E be a cyclic extension of the number field F with Galois group G = 〈σ〉 of
prime order p. For M a finite Z[G]-module and ` a prime different from p, denote by
M(`) the `-Sylow subgroup of M . As usual, MG is the subset of M of all elements
which are fixed by the action of G. Denote by

fE/F ∗ : K2(OF )→ K2(OE)

(or just f∗ if it causes no confusion) the map induced by the inclusion F ⊂ E. Finally,
denote by

f∗E/F : K2(OE)→ K2(OF )

(or just f∗ when there is no risk of confusion) the transfer map. The following lemma
captures most of the algebraic K-theory that we will need for the proof of the theorem.
For more details on the definitions and basic properties from algebraic K-theory, the
reader is referred to [6].

Lemma 2.1. For each ` 6= p, we have

f∗K2(OF )(`) = K2(OE)(`)G =

(
p−1∑
i=0

σi

)
K2(OE)(`),
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and the decomposition

K2(OE)(`) = (1− σ)K2(OE)(`)⊕ f∗K2(OF )(`)

as Z[G]-modules.

Proof. The composition

f∗ ◦ f∗ : K2(OF )(`)→ K2(OF )(`)

is multiplication by p, which is an isomorphism on the `-parts (and we call the inverse
map 1/p). It follows that f∗ is injective and f∗ is surjective. Furthermore,

f∗ ◦ f∗ : K2(OE)(`)→ K2(OE)(`)

is multiplication by the group ring norm element
p−1∑
i=0

σi.

If x ∈ K2(OE)(`)G, then
∑p−1

i=0 σ
ix = px, so that

∑p−1
i=0 σ

i(1/p)x = x. Thus, f∗ maps
K2(OF )(`) isomorphically onto K2(OE)(`)G. It also shows that the Tate cohomology
group Ĥ

0
(G,K2(OE)(`)) is trivial, so

Ĥ
1
(G,K2(OE)(`)) = Im(σ − 1)

/
ker

(
p−1∑
i=0

σi

)
is also trivial. Now,

ker

(
p−1∑
i=0

σi

)
= ker(f∗ ◦ f∗) = ker(f∗),

which shows that the sequence

1 −→ (1− σ)K2(OE)(`) −→ K2(OE)(`)
f∗−→K2(OF )(`) −→ 1

is exact, and is split by f∗ ◦ (1/p). �

3. Rewriting θE/F (s)

The main result of [7] shows that if E/F is a multiquadratic extension of totally
real number fields (and if the Birch-Tate conjecture is true), then w2(E)θE/F (−1) an-
nihilates K2(OE) except possibly for some rare exceptions. Critical to the proof of this
theorem is the simple fact that the Artin L-function, for the non-principal character of
a quadratic extension, is just the ratio of two Dedekind zeta functions, and thus (using
Birch-Tate) can be directly related to orders ofK-groups. In this section and in the next
section, we rewrite the Stickelberger element with a similar goal in mind.

Let E/F be a cyclic extension of order a prime p, and let G be its Galois group.
Fix a generator σ of G, and let ξ be a primitive p-th root of unity. Define the character
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χ ∈ Ĝ by χ(σ) = ξ. Then χ generates the dual group Ĝ and we can write

θE/F (s) =
p−1∑
i=0

LE/F (s, χi)eχ̄i =
1
p

p−1∑
i=0

p−1∑
j=0

LE/F (s, χi)χ̄i(σ−j)σj

=
1
p

p−1∑
i=0

p−1∑
j=0

LE/F (s, χi)ξijσj

= ζF (s)
1
p

p−1∑
j=0

σj +
1
p

p−1∑
i=1

p−1∑
j=0

LE/F (s, χi)ξijσj

= ζF (s)
1
p

p−1∑
j=0

σj +
1
p

p−1∑
j=0

p−1∑
i=1

LE/F (s, χi)ξjiσj .

Let K = Q(ξ) and let ∆ be the Galois group of K/Q. If m is a negative integer
and g ∈ G, Deligne and Ribet showed that the partial zeta functions ζE/F (m, g) are
rational. It follows that

LE/F (m,χ) =
∑
g∈G

ζE/F (m, g)χ(g)

is in K. If the action of δi ∈ ∆ on K is determined by ξδi = ξi, for i = 1, 2, . . . , p− 1,
then LE/F (m,χ)δi = LE/F (m,χi). As a consequence, one has

p−1∑
i=1

LE/F (s, χi)ξji =
p−1∑
i=1

(LE/F (m,χ)ξj)δi = TrK/Q(LE/F (m,χ)ξj).

We finally arrive at the formula

θE/F (m) = ζF (m)
1
p

p−1∑
j=0

σj +
1
p

p−1∑
j=0

TrK/Q(LE/F (m,χ)ξj)σj .

Remark 3.1. The sum
p−1∑
j=0

TrK/Q(LE/F (m,χ)ξj)σj

is in the augmentation ideal of Q[G] since (upon setting σ = 1) we have

p−1∑
j=0

TrK/Q
(
LE/F (m,χ)ξj

)
= TrK/Q

LE/F (m,χ)
p−1∑
j=0

ξj

 = 0.

Remark 3.2. If LE/F (m,χ) ∈ Q, then we have

p−1∑
j=0

TrK/Q
(
LE/F (m,χ)ξj

)
σj = LE/F (m,χ)

p−1∑
j=0

TrK/Q(ξj)σj .
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It follows that

(1) θE/F (m) = ζF (m)
1
p

p−1∑
j=0

σj + LE/F (m,χ)

1− 1
p

p−1∑
j=0

σj

 .

4. Character relations

For the remainder of this paper, E is a totally real extension of a field k with Galois
groupA isomorphic to S3. Let G be the normal subgroup of order 3 and fix a generator
σ of G. Let τ be any element of order 2 in A and let H be the subgroup generated
by τ . Denote by F and k1, the fields fixed by G and H , respectively. There are three
irreducible characters of A:

(1) The principal character ψ0;
(2) The non-trivial, one dimensional character ψ1;
(3) The character ψ2 of an irreducible two-dimensional representation.

From the basic theory of Artin L-functions (see [10]), one has

(2) ζE(s) = ζk(s)LE/k(s, ψ1)LE/k(s, ψ2)2 = ζF (s)LE/k(s, ψ2)2.

Let ξ be a primitive third root of unity, and let χ ∈ Ĝ be the character defined by
χ(σ) = ξ. One can check that

IndAGχ = IndAGχ̄ = ψ2,

so that
LE/k(s, ψ2) = LE/F (s, χ) = LE/F (s, χ̄).

Similarly, with χ1 the non-trivial character of H , one can show that

IndAHχ1 = ψ1 + ψ2,

so that

(3) LE/k1(s, χ1) = LE/k(s, ψ1)LE/k(s, ψ2) =
ζF (s)
ζk(s)

LE/F (s, χ).

Replacing LE/k1(s, χ1) by ζE(s)/ζk1(s), using equations (2) and (3), and rearranging
gives

(4) LE/F (s, χ) =
ζk1(s)
ζk(s)

·

In particular, the values of LE/F (s, χ) at negative integers m are rational numbers.
Letting λ = (1/3)(1 +σ+σ2), we can apply equation (1) to get an explicit expression
for θE/F (m) in terms of Dedekind ζ-functions, namely,

(5) θE/F (m) = ζF (m)λ+
ζk1(m)
ζk(m)

(1− λ).

In 1970, Birch and Tate (see [9]) conjectured that if F is a totally real number field,
then

ζF (−1) = (−1)[F :Q] |K2(OF ) |
w2(F )

·
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This formula is now known to be true (as a consequence of the Main Conjecture in
Iwasawa Theory) for F abelian over Q, and for arbitrary totally real number fields F
up to a power of 2. Settingm = −1 in (5) and using Birch-Tate, we obtain the following
expression for the integralized Stickelberger element:

w2(E)θE/F (−1) =
w2(E)|K2(OF ) |

w2(F )
λ+ w2(E)

|K2(Ok1) |w2(k)
|K2(Ok) |w2(k1)

(1− λ).

Lemma 4.1. We have w2(k1) = w2(k) and w2(E) = w2(F ).

Proof. Both extensionsE/F and k1/k are of degree 3 and are clearly disjoint from
the cyclotomic Z3-extensions of F and k, respectively. �

In light of Lemma 4.1, we may simplify our expression for w2(E)θE/F (−1):

(6) w2(E)θE/F (−1) = |K2(OF ) |λ+ w2(E)
|K2(Ok1) |
|K2(Ok) |

(1− λ).

5. Proof of the theorem

We will show that each of the two pieces of w2(E)θE/F (−1) on the right hand side
of (6) annihilates K2(OE)(`). These pieces are not in fact in Z[G], but are in Z`[G].
Thus, we understand this statement in the following sense: if M is a finite `-power
torsion Z[G]- module, we can identify it with its image in the Z`[G]- module M ⊗ Z`.
We have that θ ∈ Z[G] annilhilates M if and only if

θ ⊗ 1 ∈ Z[G]⊗ Z` ∼= Z`[G]

annilhilates M ⊗ Z`. If now θ ⊗ 1 = α + β with α, β ∈ Z`[G], and if both α and β
individually annihilate M ⊗ Z`, then θ annihilates M .

We now proceed with the proof of the theorem. Let x ∈ K2(OE)(`) and use
Lemma 2.1 to find a y ∈ K2(OE)(`) and a z ∈ K2(OF )(`) so that x = (1−σ)y+f∗(z).
Then λ(1− σ) = 0 and |K2(OF ) |z = 0, so |K2(OF ) |λx = 0. Furthermore,

f∗(z) ∈ (K2(OE)(`))G = λK2(OE)(`),

and is thus annihilated by (1− λ). All that remains to be shown is that

w2(E)
|K2(Ok1) |
|K2(Ok) |

annihilates (1− σ)K2(OE)(`). This we accomplish with a pair of lemmas.

Lemma 5.1. The Z[G]-module (1 − σ)K2(OE)(`) is stable under the action of

H = Gal(E/k1), and its order is the power of ` dividing
(
ζk1(−1)
ζk(−1)

)2

.

Proof. The idempotent 1 − λ factors as (1 − σ)(2 + σ)/3, where (2 + σ)/3 is a
unit of Z`[G]. Hence

(1− σ)K2(OE)(`) = (1− λ)K2(OE)(`).
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Since τ commutes with 1 − λ, the first claim of the lemma is true. Now on the one
hand, by Lemma 2.1, we have

| (1− σ)K2(OE)(`) | =
|K2(OE)(`) |
|K2(OF )(`) |

·

On the other hand, Birch-Tate and Lemma 4.1 give

|K2(OE) |
|K2(OF ) |

=
| ζE(−1) |
| ζF (−1) |

w2(F )
w2(E)

=
| ζE(−1) |
| ζF (−1) |

·

Now equations (2) and (4) give

| ζE(−1) |
| ζF (−1) |

=
(
| ζk1(−1) |
| ζk(−1) |

)2

,

and taking `-parts completes the proof of the lemma. �

Lemma 2.1 can be applied to the quadratic extension E/k1; in particular one can
conclude that the group of τ -fixed points of K2(OF )(`) is precisely the image of the
map

fE/k1∗ : K2(Ok1)(`) −→ K2(OE)(`).

Consider now the composition

γ = (1− λ) ◦ fE/k1∗ : K2(Ok1)(`) −→ (1− σ)K2(OE)(`).

Lemma 5.2. The image of the map γ is precisely the group of τ -fixed points in
(1− σ)K2(OE)(`), and the kernel of γ is fk1/k∗(K2(Ok)(`)).

Proof. Certainly the image of γ is fixed by τ . Conversely, if x ∈ (1−σ)K2(OE)(`)
is fixed by τ , then x = fE/k1∗(y) for some y ∈ K2(Ok1)(`). But (1−λ)x = x, proving
the surjectivity claim. Now given any z ∈ K2(Ok)(`), we have

fE/k1∗ ◦ fk1/k∗(z) = fE/F∗ ◦ fF/k∗(z) ∈ λK2(OE)(`),

which is killed by 1− λ, so fk1/k∗(z) ∈ ker(γ).

Conversely, if w ∈ ker(γ), then fE/k1∗(w) is killed by 1−σ and hence, must be of
the form fE/F∗(u) for some u ∈ K2(OF )(`). But umust be fixed by τ (since fE/F∗(u)
is fixed by τ and fE/F∗ is injective on `-parts). Another application of Lemma 2.1 (for
the extension F/k this time) shows that u = fF/k∗(v) for some v ∈ K2(Ok)(`) and
fk1/k∗(v) = w from the injectivity of fE/k1∗. �

We can now complete the proof of the theorem. The action of τ decomposes the
group (1 − σ)K2(OE)(`) into a direct sum of τ -fixed points (the plus part) and points
on which τ acts as −1 (the minus part). From Lemma 5.2 above, the order of the plus
part is

|K2(Ok1)(`) |
| fk1/k∗ (K2(Ok)(`)) |

=
|K2(Ok1)(`) |
|K2(Ok)(`) |

,

which, by Birch-Tate and Lemma 4.1, is the `-part of | ζk1(−1)/ζk(−1) |. By Lemma
5.1, the minus part must have the same order. In particular, | ζk1(−1)/ζk(−1) | annihi-
lates (1− σ)K2(OE)(`), and the theorem is proved.
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6. Closing comments

The version of the generalized Coates-Sinnott Conjecture presented in this paper is
rather simplified. More common is to specify S to be a finite set of primes containing
the primes of k which ramify in the extension E/k. One can replace the rings of
integers, the associated tame kernels, the zeta functions, and θE/F (m) itself by S-
versions. This allows the following more precise annihilation statement.

For a prime ideal ℘ 6∈ S, let σ℘ ∈ Gal(E/F ) be the Artin symbol. Then the
(integral, again by Deligne-Ribet) group ring element

(N℘2 − σ℘) θSE/F (−1)

(conjecturally) annihilates the K-group K2(OSE).

We have not carried out the details, but an S-version of our main theorem should
be true with essentially the same proof. Similarly, there should be no great problems
in extending the techniques involved in this paper to prove the annihilation of the `-
parts of K2n(OE) by integralized higher Stickelberger elements wn+1(E)θE/F (−n)
for ` 6= 2, 3. Our approach fails for the 2 and 3-parts because Lemmas 2.1 and 5.2 are
no longer valid, but there is hope that combining the techniques of this paper with the
methods of [7] may at least manage the 2-part.
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