FABULOUS PRO- p-GROUPS

John LABUTE

To John Tate and Jean-Pierre Serre for their direction and inspiration.

Abstract

RÉSumé. Soit p un premier impair. Un pro- p-groupe G est dit fabuleux si, en plus d'être un pro- p-groupe quadratique, G est aussi doux et fab. Les seuls exemples connus sont des groupes de Galois de corps de nombres qui sont des p-extensions non ramifiées en dehors d'un ensemble fini S de premiers de caractéristiques résiduelles différentes de p. Nous ne connaissons pas un seul exemple d'un pro- p-groupe fabuleux ayant une présentation explicite. Cet article se veut une tentative pour trouver de tels exemples.

Abstract

Let p be an odd prime. A pro- p-group G is said to be fabulous if it is a mild quadratic pro- p-group that is also fab. The only known examples appear as Galois groups of maximal p-extensions number fields unramified outside a finite set S of primes with residual characteristics different from p. We do not have a single example of a fabulous pro- p-group having an explicit presentation. This paper is an attempt to find such examples.

1. Introduction

Let p be an odd prime. We call a quadratic pro- p-group fabulous if it is fab and mild. These groups appear often as the Galois group $G_{S}(p)$ of the maximal p-extension of a number field K that is unramified outside a finite set S of primes with residual characteristics different from p (the tame case); cf. [6], [14], [9], [10], [12]. They also appear in the case of restricted ramification and prescribed decomposition in the mixed case; cf. [16], [15], [11], even for function fields in [8], [12].

In view of the importance of these groups for the Fontaine-Mazur Conjecture, cf. [2], it would be desirable to have some kind of classification of these groups. However, up to now, we do not even have an explicit presentation for a single fabulous group.

2. Definitions

Definition 1. A pro- p-group G is said to be $f a b$ if $H^{a b}=H /[H, H]$ is finite for every closed subgroup H of G of finite index or, equivalently, the factors of the derived series of G are all finite.

Reçu le 30 avril 2008 et, sous forme définitive, le 17 octobre 2008.

Examples of fab pro- p-groups are finite p-groups or pro- p-groups G that are p-adic analytic with $\operatorname{Lie}(G)=[\operatorname{Lie}(G), \operatorname{Lie}(G)]$; for example, an open pro- p-subgroup of $S L_{n}\left(\mathbb{Z}_{p}\right)$. The groups $G_{S}(p)$ are fab for a number field K in the tame case since the ramification is tame at the primes of S. We do not have a single example of an infinite non-analytic fab pro- p-group having an explicit presentation.

A fab pro- p-group G is a finitely generated group with minimal number of generators $d=\operatorname{dim}_{\mathbb{F}_{p}} G / G^{p}[G, G]$ and minimal number of relators $r \geq d$. We have

$$
d=d(G)=\operatorname{dim} H^{1}(G) \quad \text { and } \quad r=r(G)=\operatorname{dim} H^{2}(G),
$$

where $H^{i}(G)=H^{i}(G, \mathbb{Z} / p / Z)$. Since $p \neq 2$, the cup product

$$
H^{1}(G) \otimes H^{1}(G) \rightarrow H^{2}(G)
$$

yields a linear map

$$
\phi: \bigwedge^{2} H^{1}(G) \rightarrow H^{2}(G)
$$

Definition 2. A finitely generated pro- p-group G is said to be quadratic if the linear map ϕ defined above is surjective.

The group G is quadratic if and only if the dual map

$$
\phi^{*}: H^{2}(G)^{*} \rightarrow\left(\bigwedge^{2} H^{1}(G)\right)^{*}=\bigwedge^{2} H^{1}(G)^{*}
$$

is injective. Let $V=H^{1}(G)^{*}$ and let L be the Lie algebra which is universal for linear mappings of V into Lie algebras over \mathbb{F}_{p}. If $\left\{\xi_{1}, \ldots, \xi_{d}\right\}$ is a basis for V, then L is the free Lie algebra over \mathbb{F}_{p} on ξ_{1}, \ldots, ξ_{d}. Then $\bigwedge^{2} H^{1}(G)^{*}$ can be identified with L_{2}, the degree 2 component of the graded Lie algebra L.

Let \mathfrak{r} be the ideal of L generated by the image W of ϕ^{*}. Then $\mathfrak{r} /[\mathfrak{r}, \mathfrak{r}]$ is a module over $\mathfrak{g}=L / \mathfrak{r}$ via the adjoint representation. The Lie algebra $\mathfrak{g}=L / \mathfrak{r}$ is called the holonomy Lie algebra of G; it is an invariant of G. If U is the enveloping algebra of \mathfrak{g}, then $M=\mathfrak{r} /[\mathfrak{r}, \mathfrak{r}]$ is a finitely generated U-module. If M is a free U-module on the image of one (and hence any) basis $\left\{\rho_{1}, \ldots, \rho_{m}\right\}$ for W, then the Lie algebra \mathfrak{g} is said to be mild, in which case the sequence $\rho_{1}, \ldots, \rho_{m}$ is said to be strongly free. If $c_{n}=\operatorname{dim}_{\mathbb{F}_{p}} \mathfrak{g}$, the formal power series

$$
P(t)=\sum_{n \geq 0} c_{n} t^{n}
$$

is called the Poincaré series of the graded algebra \mathfrak{g}. This Lie algebra is mild if and only if $1 / P(t)=1-d t+m t^{2}$ (cf. [6, Prop 3.2]), in which case $m \leq d^{2} / 4$ since the radius of convergence of $P(t)$ is greater than 0 and less than or equal to 1 .

Definition 3. A quadratic pro-p-group G is said to be mild if its holonomy Lie algebra is mild.

Conversely, let $\rho_{1}, \ldots, \rho_{m}$ be a sequence of homogeneous elements of degree 2 in the free \mathbb{F}_{p}-Lie algebra L on ξ_{1}, \ldots, ξ_{d} and let \mathfrak{r} be the ideal of L generated by
$\rho_{1}, \ldots, \rho_{m}$. In order to construct a quadratic group G whose holonomy Lie algebra is \mathfrak{g}, let

$$
\rho_{k}=\sum_{i<j} \bar{a}_{i j k}\left[\xi_{i}, \xi_{j}\right]
$$

with $\bar{a}_{i j k} \in \mathbb{F}_{p}$. Let F be the free pro-p-group on x_{1}, \ldots, x_{d} and let R be the normal subgroup of F generated by r_{1}, \ldots, r_{m} where

$$
r_{k}=\prod_{j=1}^{d} x_{j}^{p a_{k j}} \prod_{i<j}\left[x_{i}, x_{j}\right]^{a_{i j k}} u_{k}
$$

with $a_{k j} \in \mathbb{Z}_{p}, a_{i j k} \in \mathbb{Z}_{p}$ a lift of $\bar{a}_{i j k}$ to \mathbb{Z}_{p} and $u_{k} \in \mathbb{F}_{3}$, the third term of the lower p-central series $\left(F_{n}\right)$ of F defined by $F_{1}=F, F_{n+1}=F_{n}^{p}\left[F, F_{n}\right]$. Let $\mathfrak{L}(F)$ be the graded Lie algebra associated to the lower p-central series of F. It is a Lie algebra over $\mathbb{F}_{p}[\pi]$ where the action of the variable π is induced by the p-th power map in F and the Lie bracket is induced by the commutator operation. Note that the n-th homogeneous component $\mathfrak{L}_{n}(F)=F_{n} / F_{n+1}$ is denoted additively.

Since $\mathfrak{L}(F)$ is the free Lie algebra over $\mathbb{F}_{p}[\pi]$ on ξ_{1}, \ldots, ξ_{d}, where ξ_{i} is the image of x_{i} in $V=\mathfrak{L}_{1}=F / F^{p}[F, F]$, we can identify the \mathbb{F}_{p}-Lie subalgebra of $\mathfrak{L}(F)$ generated by ξ_{1}, \ldots, ξ_{d} with the free lie algebra L over \mathbb{F}_{p} on these elements. We also have $\mathfrak{L}(F) / \pi \mathfrak{L}(F)=L$.

Then $G=F / R$ has holonomy Lie algebra \mathfrak{g}. To see this, we use the fact that under the identification of $H^{2}(G)^{*}$ with $R / R^{p}[R, F]$ via the transpose of the transgression map associated to the exact sequence

$$
1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1
$$

the image of r_{k} under ϕ is ρ_{k}; cf. [5, Prop. 3]. This map is bijective since $R \subseteq F_{2}$ implies that the inflation map $H^{1}(G) \rightarrow H^{1}(F)$ is bijective. Note that G is quadratic if and only if the sequence $\rho_{1}, \ldots, \rho_{m}$ is linearly independent, in which case $m=r(G)$. Note also that the group G depends on the parameters u_{1}, \ldots, u_{m} but that the holonomy Lie algebra is the same for all choices of these parameter. We call these groups twists of the group corresponding to the choice $u_{1}=\cdots=u_{m}=1$.

Proposition 4. If G is mild (in which case G is quadratic), then G is of cohomological dimension 2 and

$$
\mathfrak{L}(G)=\left\langle\xi_{1}, \ldots, \xi_{d} \mid \sigma_{1}, \ldots, \sigma_{m}\right\rangle
$$

with $\sigma_{k}=\sum_{j} a_{k j} \pi+\rho_{k}$. Moreover, G is not p-adic analytic if $d>2$ since $m \leq d^{2} / 4$.
For the first statement, cf. [6, Theorem 4.1], and cf. [13, p. 68, Exercise (c)], for the second.

There is no general algorithm for determining whether the above finitely presented pro- p-group G is mild or not. However, we do have sufficient conditions which yield a rich supply of mild groups; cf. [6, Theorem 3.3]. The following invariant formulation of these conditions for quadratic groups is due to Alexander Schmidt; cf. [12, Theorem 6.2].

Proposition 5. If $H^{2}(G) \neq 0$ and $H^{1}(G)=U_{1} \oplus U_{2}$ with the cup-product ϕ trivial on $U_{2} \wedge U_{2}$ and $\phi\left(U_{1} \wedge U_{2}\right)=H^{2}(G)$, then G is mild.

This is equivalent to saying that $m>1$ and that the presentation can be chosen so that the generating set for F can be divided into two disjoint sets by a partition A, B of $\{1, \ldots, m\}$ with the associated holonomy relators $\rho_{1}, \ldots, \rho_{m}$ satisfying

$$
\rho_{k}=\sum_{i \in A} a_{i j k}\left[\xi_{i}, \xi_{j}\right]
$$

and, setting

$$
\rho_{k}^{\prime}=\sum_{i \in A, j \in B} a_{i j k}\left[\xi_{i}, \xi_{j}\right],
$$

we have that $\rho_{1}^{\prime}, \ldots, \rho_{m}^{\prime}$ is a linearly independent sequence. For example, the pro- p group

$$
G=\left\langle x_{1}^{p}\left[x_{1}, x_{2}\right], x_{2}^{p}\left[x_{2}, x_{3}\right], x_{3}^{p}\left[x_{3}, x_{4}\right], x_{4}^{p}\left[x_{4}, x_{1}\right]\right\rangle
$$

is a mild quadratic non-analytic pro-p-group with $d(G)=r(G)=4$ since the associated holonomy relators

$$
\left[\xi_{1}, \xi_{2}\right],\left[\xi_{2}, \xi_{3}\right],\left[\xi_{3}, \xi_{4}\right],\left[\xi_{4}, \xi_{1}\right]
$$

satisfy this with $A=\{1,3\}, B=\{2,4\}$; here $\rho_{k}^{\prime}=\rho_{k}$.
However, an algorithm for mildness exists when $d=m=4$; cf. [3]. To state this algorithm here we will use the quadratic form $u \mapsto u \wedge u$ on $\wedge^{2} V$ when V is 4dimensional so that $\wedge^{4} V=\mathbb{F}_{p}$ (setting $\xi_{1} \wedge \xi_{2} \wedge \xi_{3} \wedge \xi_{4}=1$). The associated bilinear form is $b(u, v)=u \wedge v$. If ξ_{1}, \ldots, ξ_{4} is a basis of V, then the elements $\xi_{i} \wedge \xi_{j}$, with $i<j$, ordered lexicographically form a basis for $\bigwedge^{2} V$ and the matrix of b with respect to this basis is

$$
\left[\begin{array}{rrrrrr}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Proposition 6. Let V be a 4-dimensional vector space over \mathbb{F}_{p} and let W be a four dimensional subspace of $\bigwedge^{2} V$ spanned by $\rho_{1}, \ldots, \rho_{4}$. Then the sequence $\rho_{1}, \ldots, \rho_{4}$ is strongly free if and only if $W^{\perp} \cap W=0$.

This result follows directly from the main result of [3]. Identifying $\bigwedge^{2} V$ with L_{2} (so that $\xi_{i} \wedge \xi_{j}=\left[\xi_{i}, \xi_{j}\right]$), we obtain for example that

$$
\left\{\begin{aligned}
\rho_{1} & =\left[\xi_{1}, \xi_{2}\right]+2\left[\xi_{1}, \xi_{3}\right]+\left[\xi_{1}, \xi_{4}\right] \\
\rho_{2} & =\left[\xi_{2}, \xi_{3}\right]+\left[\xi_{2}, \xi_{4}\right] \\
\rho_{3} & =2\left[\xi_{3}, \xi_{1}\right]+2\left[\xi_{3}, \xi_{4}\right] \\
\rho_{4} & =\left[\xi_{4}, \xi_{2}\right]+2\left[\xi_{4}, \xi_{3}\right]
\end{aligned}\right.
$$

form a strongly free sequence. In [3] it is shown that a mild quadratic algebra

$$
\mathfrak{g}=\left\langle\xi_{1}, \ldots, \xi_{4} \mid \rho_{1}, \ldots, \rho_{4}\right\rangle
$$

isomorphic to precisely one of the two mild quadratic algebras

$$
\begin{aligned}
\mathfrak{g}_{1} & =\left\langle\xi_{1}, \ldots, \xi_{4} \mid\left[\xi_{1}, \xi_{2}\right],\left[\xi_{2}, \xi_{3}\right],\left[\xi_{3}, \xi_{4}\right],\left[\xi_{4}, \xi_{1}\right]\right\rangle, \text { and } \\
\mathfrak{g}_{2} & =\left\langle\xi_{1}, \ldots, \xi_{4} \mid\left[\xi_{1}, \xi_{2}\right],\left[\xi_{2}, \xi_{3}\right]+\left[\xi_{4}, \xi_{1}\right],\left[\xi_{3}, \xi_{4}\right],\left[\xi_{4}, \xi_{2}\right]+g\left[\xi_{1}, \xi_{3}\right]\right\rangle
\end{aligned}
$$

with g a non-square. It is said to be of type I (resp. type II) if it is isomorphic to \mathfrak{g}_{1} (resp. \mathfrak{g}_{2}). It is of type I if and only if the quotient $\mathfrak{g} /[\mathfrak{g},[\mathfrak{g}, \mathfrak{g}]]$ has an element whose centralizer is of dimension 5 . The relators in our example above are of type I.

Definition 7. A pro- p-group G is said to be fabulous if it is quadratic, mild and fab.
The only known examples of non-analytic fabulous pro- p-groups are the tame Galois groups $G_{S}(p)$. When $K=\mathbb{Q}$ and $S=\left\{q_{1}, \ldots, q_{d}\right\}$, with $q_{i} \equiv 1(\bmod p)$, we have the following presentation of $G_{S}(p)$ due to Koch; cf. [4, Example 11.11]:

$$
G_{S}(p)=\left\langle x_{1}, \ldots, x_{d} \mid r_{1}, \ldots, r_{d}\right\rangle
$$

with $r_{i}=x_{i}^{q_{i}-1}\left[x_{i}^{-1}, y_{i}^{-1}\right]$, where $y_{i} \equiv \prod_{j=1}^{d} x_{j}^{\ell_{i j}}\left(\bmod F_{p}[F, F]\right)$. This presentation is only partially known, but $\ell_{i j}$, for $i \neq j$, is the residue class modulo p of any integer satisfying

$$
q_{i}=g_{i}^{c_{i j}} \quad\left(\bmod q_{j}\right)
$$

with g_{i} a fixed primitive root $\bmod q_{j}$. We have

$$
r_{i}=x_{i}^{q_{i}-1} \prod_{j \neq i}\left[x_{i}, x_{j}\right]^{\ell_{i j}} u_{i}
$$

with $u_{i} \in F_{3}$. Thus the holonomy relators $\rho_{1}, \ldots, \rho_{d}$ are given by

$$
\rho_{i}=\sum_{j \neq i} \ell_{i j}\left[\xi_{i}, \xi_{j}\right] .
$$

The elements $\ell_{i j}$ are called the linking numbers of the Koch presentation for $G_{S}(p)$.
If $p=3$ and $S=\{7,13,31,43\}$, we find

$$
\left\{\begin{aligned}
\rho_{1} & =\left[\xi_{1}, \xi_{2}\right]+2\left[\xi_{1}, \xi_{3}\right]+\left[\xi_{1}, \xi_{4}\right], \\
\rho_{2} & =\left[\xi_{2}, \xi_{3}\right]+\left[\xi_{2}, \xi_{4}\right], \\
\rho_{3} & =2\left[\xi_{3}, \xi_{1}\right]+2\left[\xi_{3}, \xi_{4}\right], \\
\rho_{4} & =\left[\xi_{4}, \xi_{2}\right]+2\left[\xi_{4}, \xi_{3}\right] .
\end{aligned}\right.
$$

We have seen that these relators form a strongly free sequence of type I. Hence $G_{S}(3)$ is mild, fab and non-analytic. After the change of basis

$$
x_{1} \mapsto x_{1}, \quad x_{2} \mapsto x_{2}^{2}, \quad x_{3} \mapsto x_{3}, \quad x_{4} \mapsto x_{4}^{2}
$$

we find that the pro-3-group G with generators x_{1}, \ldots, x_{4} and relators

$$
\left\{\begin{array}{l}
x_{1}^{3}\left[x_{2}, x_{1}\right]\left[x_{1}, x_{3}\right]\left[x_{1}, x_{4}\right], \\
x_{2}^{3}\left[x_{2}, x_{3}\right]\left[x_{4}, x_{2}\right], \\
x_{3}^{3}\left[x_{3}, x_{1}\right]\left[x_{3}, x_{4}\right], \\
x_{4}^{3}\left[x_{2}, x_{4}\right]\left[x_{4}, x_{3}\right]
\end{array}\right.
$$

has $G_{S}(3)$ as a twist. However, while G is mild and non-analytic, it is not fab; MAGMA says that it has a subgroup of index 9 which has an infinite abelianization.

3. Constructing fabulous groups

Let $G^{(n)}$ be the n-th derived group of the group G; we have

$$
G^{(0)}=G \quad \text { and } \quad G^{(n+1)}=\left[G^{(n)}, G^{(n)}\right] .
$$

Proposition 8. Let G be a pro-p-group. The following statements are equivalent:
(a) The group G is a fab group;
(b) The factors of the derived series of G are finite;
(c) The quotient $G / G^{(n)}$ is finite for all n;
(d) Every solvable quotient of G is finite.

Proof. If (a) holds then H open in G implies that $[H, H]$ is in H. This implies (b) by induction. That (b),(c) and (d) are equivalent is immediate. To prove that (c) implies (a), let H be a closed subgroup of G of finite index. Then $G^{(n)} \subseteq H$ for some n which implies $G^{(n+1)} \subseteq[H, H]$ and hence the finiteness of $H /[H, H]$.

The n-th derived subalgebra of a Lie algebra L is defined inductively by

$$
L^{(0)}=L, \quad \text { and } \quad L^{(n+1)}=\left[L^{(n)}, L^{(n)}\right] .
$$

Definition 9. A Lie algebra L is said to be $f a b$ if $L / L^{(n)}$ is finite for all $n \geq 0$.
Let $\left(C_{n}\right)$ be a central series for G; by definition, we have

$$
C_{1}=G \quad \text { and } \quad\left[C_{m}, C_{n}\right] \subseteq C_{m+n} .
$$

Let $L(G)$ be the Lie algebra associated to this central series. Then $L(G)$ is a graded Lie algebra with n-homogeneous component $L_{n}(G)=C_{n} / C_{n+1}$ (denoted additively). If l_{n} is the canonical map of C_{n} onto $L_{n}(G)$, we have $l_{n}(x y)=l_{n}(x)+l_{n}(y)$; if $x \in C_{r}, y \in C_{s}$, we have $l_{r+s}([x, y])=\left[l_{r}(x), l_{r}(y)\right]$.

For any closed normal subgroup H of G, we have

$$
L(G / H)=L(G) / \tilde{L}(H),
$$

where $\tilde{L}(H)$ is the Lie algebra associated with the central series $\left(\tilde{H}_{n}\right)$ of H defined by $\tilde{H}_{n}=H \cap C_{n}$. If K is a closed normal subgroup of H, we also let $\tilde{L}(H / K)$ be the Lie algebra associated to the central series $\left(\tilde{H}_{n} K / K\right)$ of H / K. Then

$$
\tilde{L}(H / K)=\tilde{L}(H) / \tilde{L}(K) .
$$

Proposition 10. We have $L(G)^{(n)} \subseteq \tilde{L}\left(G^{(n)}\right)$.
Proof. By induction on n. This is immediate for $n=0$. Since $G^{(n+1)}$ is the kernel of the canonical map $G^{(n)} \rightarrow G^{(n)} / G^{(n+1)}$ it follows that $\tilde{L}\left(G^{(n+1)}\right)$ is the kernel of the induced homomorphism of $\tilde{L}\left(G^{(n)}\right)$ onto the abelian Lie algebra $\tilde{L}\left(G^{(n)} / G^{(n+1)}\right)$. Thus

$$
\left[\tilde{L}(G)^{(n)}, \tilde{L}(G)^{(n)}\right] \subseteq \tilde{L}\left(G^{(n+1)}\right)
$$

which implies the result since, by induction,

$$
L(G)^{(n+1)}=\left[L(G)^{(n)}, L(G)^{(n)}\right] \subseteq\left[\tilde{L}(G)^{(n)}, \tilde{L}(G)^{(n)}\right]
$$

Corollary 11. If $L(G)$ is fab, then G is fab.
Indeed, $L\left(G / G^{(n)}\right)=L(G) / \tilde{L}\left(G^{(n)}\right)$ is a quotient of $L(G) / L(G)^{(n)}$. However, as we shall see, the converse statement is not true.

A pro- p-group G is said to be of elementary type if $G /[G, G] \cong(\mathbb{Z} / p \mathbb{Z})^{d}$. If G is a mild quadratic group of elementary type then an explicit presentation for the Lie algebra associated to the lower central is known; cf. [1].

Proposition 12. If G is a mild quadratic group of elementary type, then $\mathfrak{L}(G)$ is fab if and only if $\mathfrak{g}=\mathfrak{L}(G) / \pi \mathfrak{L}(G)$ is fab.

Proof. Since $\pi \mathfrak{L}(G) \subseteq[\mathfrak{L}(G), \mathfrak{L}(G)]$ it follows that $\pi^{2 k} \mathfrak{L}(G)^{(k)} \subseteq \mathfrak{L}(G)^{(k+1)}$. If \mathfrak{g} is fab then $M_{k}=\mathfrak{L}(G)^{(k)} / \mathfrak{L}(G)^{(k+1)}$ is a finitely generated $\mathbb{F}_{p}[\pi]$-module since $M_{k} / \pi M_{k}=\mathfrak{h}^{(k)} / \mathfrak{h}^{(k+1)}$ is finite and hence M_{k} is finite since it is a torsion module. Conversely, if $\mathfrak{L}(G)$ is fab then \mathfrak{g} is fab since a quotient of a fab Lie algebra is fab.

If $G=G_{S}(p)$, with $K=\mathbb{Q}, p=3$ and $S=\{7,13,31,43\}$, its holonomy Lie algebra \mathfrak{g} is of type I and hence isomorphic to the Lie algebra

$$
\mathfrak{h}=\left\langle\xi_{1}, \ldots, \xi_{4} \mid\left[\xi_{1}, \xi_{2}\right],\left[\xi_{2}, \xi_{3}\right],\left[\xi_{3}, \xi_{4}\right],\left[\xi_{4}, \xi_{1}\right]\right\rangle .
$$

The quotient $\mathfrak{h} /\left(\xi_{2}, \xi_{4}\right)$ is a free Lie algebra on two generators and hence is not fab. It follows that \mathfrak{h}, and hence \mathfrak{g}, is not fab. Thus the Lie algebra $\mathfrak{L}(G)$ associated to the lower 3 -central series of the fab pro-3-group $G_{S}(3)$ is not fab. Since \mathfrak{g} is also a quotient of $\mathfrak{L}(G)$ it follows that $\mathfrak{L}(G)$ is not fab which confirms that G is not fab, as we saw using MAGMA.

More generally, if

$$
\mathfrak{k}=\left\langle\xi_{1}, \ldots, \xi_{4} \mid \rho_{1}, \ldots, \rho_{4}\right\rangle
$$

is a quadratic Lie algebra over \mathbb{F}_{p}, with $\rho_{1}, \ldots, \rho_{4}$ strongly free, then by [3] it is isomorphic to the Lie algebra \mathfrak{h} above after possibly a quadratic extension. It follows that the Lie algebra \mathfrak{k} is not fab.

The holonomy Lie algebra of the group $G=G_{S}(3)$, with $S=\{7,13,31,61\}$, has the presentation $\left\langle\xi_{1}, \ldots, \xi_{4} \mid \rho_{1}, \ldots, \rho_{4}\right\rangle$ with

$$
\left\{\begin{aligned}
\rho_{1} & =\left[\xi_{1}, \xi_{2}\right]+2\left[\xi_{1}, \xi_{3}\right]+2\left[\xi_{1}, \xi_{4}\right] \\
\rho_{2} & =\left[\xi_{2}, \xi_{3}\right]+2\left[\xi_{2}, \xi_{4}\right] \\
\rho_{3} & =2\left[\xi_{3}, \xi_{1}\right]+\left[\xi_{3}, \xi_{4}\right] \\
\rho_{4} & =\left[\xi_{4}, \xi_{1}\right]+\left[\xi_{4}, \xi_{2}\right]
\end{aligned}\right.
$$

This presentation defines a mild quadratic Lie algebra of type II. The pro-3-group \tilde{G}, with presentation $\left\langle x_{1}, \ldots, x_{4} \mid s_{1}, \ldots, s_{4}\right\rangle$, where

$$
\left\{\begin{aligned}
s_{1} & =x_{1}^{3}\left[x_{2}, x_{1}\right]\left[x_{1}, x_{3}\right]\left[x_{4}, x_{1}\right] \\
s_{2} & =x_{2}^{3}\left[x_{2}, x_{3}\right]\left[x_{2}, x_{4}\right] \\
s_{3} & =x_{3}^{3}\left[x_{3}, x_{1}\right]\left[x_{4}, x_{3}\right] \\
s_{4} & =x_{4}^{3}\left[x_{4}, x_{1}\right]\left[x_{2}, x_{4}\right],
\end{aligned}\right.
$$

has G as a twist. MAGMA reports that $\tilde{G} / \tilde{G}^{\prime \prime}$ is finite and that every subgroup of \tilde{G} of index 3,9 or 27 has a finite abelianization as well as all index 81 subgroups tested so far. We do not know if this group is fab or not. Boston [2] has found a similar example of a mild quadratic pro-2-group with 4 generators and 4 relators which is fab as far as MAGMA can tell.

Question 1. Suppose that G is a quadratic pro- p-group of elementary type and suppose that its holonomy Lie algebra is a mild quadratic algebra with 4 generators and 4 relators which is of type II. Is G fab?

Question 2. Can one find a strongly free sequence over \mathbb{F}_{p} consisting of d quadratic Lie polynomials $\rho_{1}, \ldots, \rho_{d}$ in $d \leq m$ variables ξ_{1}, \ldots, ξ_{d} such that the Lie algebra

$$
\mathfrak{h}=\left\langle\xi_{1}, \ldots, \xi_{d} \mid \rho_{1}, \ldots, \rho_{d}\right\rangle
$$

is mild and fab?
If the answer to this question is yes, then one can produce an explicitly presented quadratic pro- p-group G whose holonomy Lie algebra is \mathfrak{h}. The classification of mild quadratic Lie algebras is not known when $m=d \geq 5$. In this case we do not know even if there is more than one isomorphism class over the algebraic closure of \mathbb{F}_{p}.

Question 3. If $G_{S}(p)$ is quadratic and mild, can one find an explicit twist G of $G_{S}(p)$ such that G is fab? This would be the case if G were isomorphic to $G_{S}(p)$.

If the answer to any of these questions is yes, the group G in question is then a fabulous group which is non-analytic since $d(G) \geq 4$.

Remark. The above results can be extended to the case $p=2$ when the cupproduct is alternating; cf. [6, p. 175]. If not, the situation is technically quite different since the map $x \mapsto x^{2}$ in a pro-2-group G does not induce a linear operator on $\mathfrak{L}(G)$. This case will be treated in [7].

References

[1] G. Abramov, Nilpotent class field theory, Ph.D. Thesis, Humboldt U., Berlin (1998).
[2] N. Boston, Reducing the Fontaine-Mazur conjecture to group theory, Progress in Galois theory, 39-50, Dev. Math., 12, Springer, New York, 2005.
[3] M. R. Bush and J. Labute, Mild pro-p-groups with 4 generators, J. Algebra 308 (2007), no. 2, 828-839.
[4] H. Koch, Galois theory of p-extensions, Translated from the 1970 German original by Franz Lemmermeyer, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002, xiv+190 pp.
[5] J. Labute, Classification of Demushkin groups, Canad. J. Math. 19 (1967), 106-132.
[6] J. Labute, Mild pro-p-groups and Galois groups of p-extensions of \mathbb{Q}, J. reine angew. Math. 596 (2006), 155-182.
[7] J. Labute and J. Mináč, Mild pro-2-groups and 2-extensions of \mathbb{Q} with restricted ramification, work in progress.
[8] L. Salle, Mild pro-p-groups as Galois groups over global fields, to appear in J. Number Theory.
[9] A. Schmidt, Circular sets of prime numbers and p-extensions of the rationals, J. reine angew. Math. 596 (2006), 115-130.
[10] A. Schmidt, Rings of integers of type $K(\pi, 1)$, Doc. Math. 12 (2007), 441-471 (electronic).
[11] A. Schmidt, On the $K(\pi, 1)$ property for rings of integers in the mixed case, preprint.
[12] A. Schmidt, Über Pro-p-Fundamentalgruppen markierter arithmetischer Kurven, to appear in J. reine angew. Math., Engl. Transl.: arXiv:0806.1863.
[13] J-P. Serre, Cohomologie galoisienne, (French) Fifth edition, Lecture Notes in Mathematics, 5, Springer-Verlag, Berlin, 1994, x+181 pp.
[14] D. Vogel, Circular sets of primes of imaginary quadratic number fields, preprint.
[15] D. Vogel, p-extensions with restricted ramification - the mixed case, in Preprints der Forschergruppe Lgebraische Zykel L-funktionen Regensberg/Freiberg Nr. 11, 2007: www.mathematik.uni-r.de/FGALgZyk.
[16] K. Wingberg, Arithmetical Koch groups, preprint.
J. Labute, Dept. of Mathematics and Statistics, McGill U., Burnside Hall, 805 Sherbrooke Street West, Montreal, QC, H3A 2K6, Canada
labute@math.mcgill.ca

