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THE GALOIS RELATIONS x1 = x2 + x3 AND x1 = x2 x3
FOR CERTAIN SOLVABLE GROUPS

KURT GIRSTMAIR

Dedicated to professor John Labute on the occasion of his 70th birthday.

RÉSUMÉ. Soit G un groupe fini, réalisé comme groupe de Galois sur un corps
de nombres K. Il a été conjecturé qu’il existe un polynôme irréductible f ∈ K[X],
de groupe de Galois G et dont les racines vérifient la relation x1 = x2 + x3 (ou
x1 = x2x3), avec une numérotation appropriée des racines, dès que |G| ≡ 0 (mod 6).
Nous prouvons le résultat suivant qui va dans le sens de cette conjecture : s’il existe un
sous-groupe résolubleH deG tel que |H| ≡ 0 (mod 6), ces relations ont lieu pour un
certain polynôme f de groupe de Galois G, dont l’action est regulière sur les racines
de f .

ABSTRACT. LetG be a finite group that occurs as a Galois group over an algebraic
number field K. It has been conjectured that there exists an irreducible polynomial
f ∈ K[X] with Galois group G that permits the relation x1 = x2 +x3 (or x1 = x2x3)
between its (suitably numbered) roots, whenever |G| ≡ 0 (mod 6). Here we support
this conjecture by the following result: If G has a solvable subgroup H , with |H| ≡ 0
(mod 6), these relations are possible for a polynomial f with Galois group G, where
G acts regularly on the roots of f .

1. Introduction and main result

In what follows, let K be a field of characteristic 0. The question whether an
irreducible polynomial f ∈ K[X] (in one indeterminate) may afford a relation like
x1 = x2 +x3 or x1 = x2 x3 reportedly goes back to J. Browkin and A. Schinzel. Since
the mid-nineties it was studied in a number of papers; see [2], [1], [3], [4] and [7] (in
chronological order). This question is closely connected with the Galois group G of f ,
more precisely, with the action of G on the roots x1, . . . , xn of f . The most hopeful
setting for the existence of relations of this kind is given when G acts regularly on
these roots (so each root is fixed only by 1 ∈ G, which is the same as saying n = |G|).
Indeed, for no other kind of action it is possible to have as many relations as for the
regular one. Hence this will be our main case here.

In [3] it was shown that x1 = x2 + x3 is possible for abelian groups G if, and
only if, |G| ≡ 0 (mod 6) (note that G acts faithfully on x1, . . . , xn, and so “abelian”
automatically implies “regular”). It was also shown in [3] that the theories of additive
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and multiplicative relations are basically identical. This means that x1 = x2 + x3 is
always possible (more or less) when x1 = x2 x3 is possible, and conversely. However,
the case of this multiplicative relation (for abelian groups G) had been settled earlier;
see [2].

In [5] we proved that both relations are possible for regular actions of arbitrary
simple nonabelian groups G. Of these groups, only the Suzuki groups have an order
not divisible by 6. Since abelian and simple nonabelian groups represent, in some sense,
the extreme cases, one is lead to the conjecture that these relations may occur whenever
G acts regularly and |G| ≡ 0 (mod 6) (a conjecture raised by F. Lalande and others).

In this note we prove another result that supports this conjecture. In contrast to the
theorems of [5], its proof makes no use of the classification of finite simple groups but
only of classical methods of group theory.

Theorem 1. In the above setting, let G be a finite group that contains a solvable
subgroup H with |H| ≡ 0 (mod 6). Suppose, further, that G occurs as a Galois group
over K.

(a) There is an irreducible polynomial f ∈ K[X] with Galois group G such that
G acts regularly on the roots x1, . . . , xn of f and x1 = x2 + x3 (when the roots are
suitably numbered).

(b) Assume, in addition, that there is a place p of K that splits completely in a
Galois extension L ofK withG = Gal(L/K). Then there is an irreducible polynomial
f ∈ K[X] with splitting field L such that G acts regularly on the roots x1, . . . , xn of f
and x1 = x2 x3 (suitably numbered, again).

We briefly discuss some natural questions connected with Theorem 1. The con-
dition |H| ≡ 0 (mod 6) is not necessary for our relations to hold, as the example
G = ASL(1, 11), |G| = 55, shows. Here both relations are possible by Theorem 1
of [4], since 1 ≡ 32 + 62 (mod 11). On the other hand, none of |H| ≡ 0 (mod 2)
and |H| ≡ 0 (mod 3) is sufficient because these relations are impossible for abelian
groups G with |G| 6≡ 0 (mod 6).

What about the case when G does not act regularly? For a necessary condition that
covers certain cases, see [1]. Conversely, the Corollary to Proposition 10 in [3] says
that both relations are possible if G = FJ , where F is a cyclic normal subgroup of G,
|F | ≡ 0 (mod 6), J is an arbitrary group with F ∩J = 1, andG acts faithfully onG/J
(here the group J will be the stabilizer of one of the roots of the polynomial f ∈ K[X]).
An example of this kind is the dihedral group G of order 12, with F = C6 and J = C2

(cyclic groups of respective order). In this example, however, G acts imprimitively on
the roots of f , as in all other examples known to us. It would be interesting to know
whether there is a Galois group G acting primitively on x1, . . . , xn and admitting a
three-term relation like x1 = x2 +x3 or x1 +x2 +x3 = 0 (n > 3 in the last-mentioned
case).
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2. Proof of the main result

By Proposition 1 of [4], it suffices to show that there is a subgroup H ′ of H and
elements s, t ∈ H ′ \ {1}, with s 6= t, such that α = 1 − s − t is an admissible
element of the rational group ring Q[H ′]; here admissible means that α annihilates an
element τ ∈ Q[H ′] whose stabilizer H ′

τ = {u ∈ H ′ : uτ = τ} equals {1} (for the
multiplicative case (b), see also Propositions 4 and 5 of [3]). A possible choice for H ′

is the cyclic group C6, the symmetric group S3, or the alternating group A4. For these
three groups admissible elements of the desired shape do exist; see [4], Corollary to
Proposition 1, and references. So our proof comes down to showing that each solvable
group H with |H| ≡ 0 (mod 6) contains one of these groups (up to isomorphy, of
course).

SinceH is solvable, it contains a (2, 3)-Hall group H1; see [6], Kap. VI, Hauptsatz
1.8. In particular, |H1| is divisible only by 2 and 3, and |H1| ≡ 0 (mod 6). Let F be
a minimal normal subgroup of H1. Since H1 is solvable, F is an elementary abelian
p-group; see [6], Kap. I, Satz 9.13. But this requires either F ∼= Fm2 or F ∼= Fm3 , where
Fp is the field of p elements, and m ≥ 1. We write F = Fmp henceforth.

Case 1. Suppose F = Fm2 . Put T = 〈t〉, where t ∈ H1 has order 3. As F is
a normal subgroup of H1, the group T acts on F by conjugation, in particular, as an
automorphism group of F . Since the automorphism group of F = Fm2 is the linear
group GL(Fm2 ), we obtain a representation

ρ : T → GL(Fm2 ).

By means of ρ, the F2-vector space Fm2 becomes a module over the (commutative)
group ring F2[T ]. Because the characteristic of F2 does not divide the group order
|T | = 3, this module is semisimple. Hence it must contain a simple F2[T ]-submodule
V . However, all possible simple F2[T ]-modules can be read from the decomposition

F2[T ] = V0 ⊕ V1,

where

V0 = F2(1 + t+ t2)

is the trivial submodule of F2[T ] and

V1 = F2(1 + t) + F2(1 + t2)

has F2-dimension 2 (note that t + t2 = (1 + t) + (1 + t2); further, 1 + t and 1 + t2

annihilate V0). If V is isomorphic to V0, T acts trivially on the subgroup V of order 2
of F , hence V T is isomorphic to C6. If V is isomorphic to V1, the cyclic group T acts
on the subgroup V ∼= F2

2 of F in a nontrivial way, hence V T = TV is isomorphic to
A4.

Case 2. Suppose F = Fm3 . Here we take an element s ∈ H1 of order 2 and put
S = 〈s〉. Then Fm3 becomes a semisimple F3[S]-module by the argument of Case 1.
Let W be a simple submodule of Fm3 . If W is trivial (that is, isomorphic to F3(1 + s)),
the group WS is isomorphic to C6. In the remaining case we have W ∼= F3(1− s), so
S acts on the group W of three elements nontrivially, and WS = SW ∼= S3. �
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