THE GALOIS RELATIONS $x_{1}=x_{2}+x_{3}$ AND $x_{1}=x_{2} x_{3}$ FOR CERTAIN SOLVABLE GROUPS

Kurt GIRSTMAIR
Dedicated to professor John Labute on the occasion of his 70th birthday.

Abstract

RÉSUMÉ. Soit G un groupe fini, réalisé comme groupe de Galois sur un corps de nombres K. Il a été conjecturé qu'il existe un polynôme irréductible $f \in K[X]$, de groupe de Galois G et dont les racines vérifient la relation $x_{1}=x_{2}+x_{3}$ (ou $\left.x_{1}=x_{2} x_{3}\right)$, avec une numérotation appropriée des racines, dès que $|G| \equiv 0(\bmod 6)$. Nous prouvons le résultat suivant qui va dans le sens de cette conjecture : s'il existe un sous-groupe résoluble H de G tel que $|H| \equiv 0(\bmod 6)$, ces relations ont lieu pour un certain polynôme f de groupe de Galois G, dont l'action est regulière sur les racines de f.

Abstract

Let G be a finite group that occurs as a Galois group over an algebraic number field K. It has been conjectured that there exists an irreducible polynomial $f \in K[X]$ with Galois group G that permits the relation $x_{1}=x_{2}+x_{3}$ (or $x_{1}=x_{2} x_{3}$) between its (suitably numbered) roots, whenever $|G| \equiv 0(\bmod 6)$. Here we support this conjecture by the following result: If G has a solvable subgroup H, with $|H| \equiv 0$ $(\bmod 6)$, these relations are possible for a polynomial f with Galois group G, where G acts regularly on the roots of f.

1. Introduction and main result

In what follows, let K be a field of characteristic 0 . The question whether an irreducible polynomial $f \in K[X]$ (in one indeterminate) may afford a relation like $x_{1}=x_{2}+x_{3}$ or $x_{1}=x_{2} x_{3}$ reportedly goes back to J. Browkin and A. Schinzel. Since the mid-nineties it was studied in a number of papers; see [2], [1], [3], [4] and [7] (in chronological order). This question is closely connected with the Galois group G of f, more precisely, with the action of G on the roots x_{1}, \ldots, x_{n} of f. The most hopeful setting for the existence of relations of this kind is given when G acts regularly on these roots (so each root is fixed only by $1 \in G$, which is the same as saying $n=|G|$). Indeed, for no other kind of action it is possible to have as many relations as for the regular one. Hence this will be our main case here.

In [3] it was shown that $x_{1}=x_{2}+x_{3}$ is possible for abelian groups G if, and only if, $|G| \equiv 0(\bmod 6)\left(\right.$ note that G acts faithfully on x_{1}, \ldots, x_{n}, and so "abelian" automatically implies "regular"). It was also shown in [3] that the theories of additive
and multiplicative relations are basically identical. This means that $x_{1}=x_{2}+x_{3}$ is always possible (more or less) when $x_{1}=x_{2} x_{3}$ is possible, and conversely. However, the case of this multiplicative relation (for abelian groups G) had been settled earlier; see [2].

In [5] we proved that both relations are possible for regular actions of arbitrary simple nonabelian groups G. Of these groups, only the Suzuki groups have an order not divisible by 6 . Since abelian and simple nonabelian groups represent, in some sense, the extreme cases, one is lead to the conjecture that these relations may occur whenever G acts regularly and $|G| \equiv 0(\bmod 6)($ a conjecture raised by F. Lalande and others).

In this note we prove another result that supports this conjecture. In contrast to the theorems of [5], its proof makes no use of the classification of finite simple groups but only of classical methods of group theory.

Theorem 1. In the above setting, let G be a finite group that contains a solvable subgroup H with $|H| \equiv 0(\bmod 6)$. Suppose, further, that G occurs as a Galois group over K.
(a) There is an irreducible polynomial $f \in K[X]$ with Galois group G such that G acts regularly on the roots x_{1}, \ldots, x_{n} of f and $x_{1}=x_{2}+x_{3}$ (when the roots are suitably numbered).
(b) Assume, in addition, that there is a place \mathfrak{p} of K that splits completely in a Galois extension L of K with $G=\operatorname{Gal}(L / K)$. Then there is an irreducible polynomial $f \in K[X]$ with splitting field L such that G acts regularly on the roots x_{1}, \ldots, x_{n} of f and $x_{1}=x_{2} x_{3}$ (suitably numbered, again).

We briefly discuss some natural questions connected with Theorem 1. The condition $|H| \equiv 0(\bmod 6)$ is not necessary for our relations to hold, as the example $G=\operatorname{ASL}(1,11),|G|=55$, shows. Here both relations are possible by Theorem 1 of [4], since $1 \equiv 3^{2}+6^{2}(\bmod 11)$. On the other hand, none of $|H| \equiv 0(\bmod 2)$ and $|H| \equiv 0(\bmod 3)$ is sufficient because these relations are impossible for abelian groups G with $|G| \not \equiv 0(\bmod 6)$.

What about the case when G does not act regularly? For a necessary condition that covers certain cases, see [1]. Conversely, the Corollary to Proposition 10 in [3] says that both relations are possible if $G=F J$, where F is a cyclic normal subgroup of G, $|F| \equiv 0(\bmod 6), J$ is an arbitrary group with $F \cap J=1$, and G acts faithfully on G / J (here the group J will be the stabilizer of one of the roots of the polynomial $f \in K[X]$). An example of this kind is the dihedral group G of order 12 , with $F=C_{6}$ and $J=C_{2}$ (cyclic groups of respective order). In this example, however, G acts imprimitively on the roots of f, as in all other examples known to us. It would be interesting to know whether there is a Galois group G acting primitively on x_{1}, \ldots, x_{n} and admitting a three-term relation like $x_{1}=x_{2}+x_{3}$ or $x_{1}+x_{2}+x_{3}=0(n>3$ in the last-mentioned case).

2. Proof of the main result

By Proposition 1 of [4], it suffices to show that there is a subgroup H^{\prime} of H and elements $s, t \in H^{\prime} \backslash\{1\}$, with $s \neq t$, such that $\alpha=1-s-t$ is an admissible element of the rational group ring $\mathbb{Q}\left[H^{\prime}\right]$; here admissible means that α annihilates an element $\tau \in \mathbb{Q}\left[H^{\prime}\right]$ whose stabilizer $H_{\tau}^{\prime}=\left\{u \in H^{\prime}: u \tau=\tau\right\}$ equals $\{1\}$ (for the multiplicative case (b), see also Propositions 4 and 5 of [3]). A possible choice for H^{\prime} is the cyclic group C_{6}, the symmetric group S_{3}, or the alternating group A_{4}. For these three groups admissible elements of the desired shape do exist; see [4], Corollary to Proposition 1, and references. So our proof comes down to showing that each solvable group H with $|H| \equiv 0(\bmod 6)$ contains one of these groups (up to isomorphy, of course).

Since H is solvable, it contains a (2,3)-Hall group H_{1}; see [6], Kap. VI, Hauptsatz 1.8. In particular, $\left|H_{1}\right|$ is divisible only by 2 and 3 , and $\left|H_{1}\right| \equiv 0(\bmod 6)$. Let F be a minimal normal subgroup of H_{1}. Since H_{1} is solvable, F is an elementary abelian p-group; see [6], Kap. I, Satz 9.13. But this requires either $F \cong \mathbb{F}_{2}^{m}$ or $F \cong \mathbb{F}_{3}^{m}$, where \mathbb{F}_{p} is the field of p elements, and $m \geq 1$. We write $F=\mathbb{F}_{p}^{m}$ henceforth.

Case 1. Suppose $F=\mathbb{F}_{2}^{m}$. Put $T=\langle t\rangle$, where $t \in H_{1}$ has order 3. As F is a normal subgroup of H_{1}, the group T acts on F by conjugation, in particular, as an automorphism group of F. Since the automorphism group of $F=\mathbb{F}_{2}^{m}$ is the linear group $\operatorname{GL}\left(\mathbb{F}_{2}^{m}\right)$, we obtain a representation

$$
\rho: T \rightarrow \mathrm{GL}\left(\mathbb{F}_{2}^{m}\right) .
$$

By means of ρ, the \mathbb{F}_{2}-vector space \mathbb{F}_{2}^{m} becomes a module over the (commutative) group ring $\mathbb{F}_{2}[T]$. Because the characteristic of \mathbb{F}_{2} does not divide the group order $|T|=3$, this module is semisimple. Hence it must contain a simple $\mathbb{F}_{2}[T]$-submodule V. However, all possible simple $\mathbb{F}_{2}[T]$-modules can be read from the decomposition

$$
\mathbb{F}_{2}[T]=V_{0} \oplus V_{1},
$$

where

$$
V_{0}=\mathbb{F}_{2}\left(1+t+t^{2}\right)
$$

is the trivial submodule of $\mathbb{F}_{2}[T]$ and

$$
V_{1}=\mathbb{F}_{2}(1+t)+\mathbb{F}_{2}\left(1+t^{2}\right)
$$

has \mathbb{F}_{2}-dimension 2 (note that $t+t^{2}=(1+t)+\left(1+t^{2}\right)$; further, $1+t$ and $1+t^{2}$ annihilate V_{0}). If V is isomorphic to V_{0}, T acts trivially on the subgroup V of order 2 of F, hence $V T$ is isomorphic to C_{6}. If V is isomorphic to V_{1}, the cyclic group T acts on the subgroup $V \cong \mathbb{F}_{2}^{2}$ of F in a nontrivial way, hence $V T=T V$ is isomorphic to A_{4}.

Case 2. Suppose $F=\mathbb{F}_{3}^{m}$. Here we take an element $s \in H_{1}$ of order 2 and put $S=\langle s\rangle$. Then \mathbb{F}_{3}^{m} becomes a semisimple $\mathbb{F}_{3}[S]$-module by the argument of Case 1 . Let W be a simple submodule of \mathbb{F}_{3}^{m}. If W is trivial (that is, isomorphic to $\mathbb{F}_{3}(1+s)$), the group $W S$ is isomorphic to C_{6}. In the remaining case we have $W \cong \mathbb{F}_{3}(1-s)$, so S acts on the group W of three elements nontrivially, and $W S=S W \cong S_{3}$.

References

[1] J. D. Dixon, Polynomials with nontrivial relations between their roots, Acta Arith. 82 (1997), 293-302.
[2] M. Drmota, M. Skałba, Relations between polynomial roots, Acta Arith. 71 (1995), no. 1, 65-77.
[3] K. Girstmair, Linear relations between roots of polynomials, Acta Arith. 89 (1999), no. 1, 53-96.
[4] K. Girstmair, The Galois relation $x_{1}=x_{2}+x_{3}$ and Fermat over finite fields, Acta Arith. 124 (2006), no. 4, 357-370.
[5] K. Girstmair, The Galois relation $x_{1}=x_{2}+x_{3}$ for finite simple groups, Acta Arith. 127 (2007), no. 3, 301-303.
[6] B. Huppert, Endliche Gruppen I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967, xii+793 pp.
[7] F. Lalande, La relation linéaire $a=b+c+\ldots+t$ entre les racines d'un polynôme, J. Théor. Nombres Bordeaux 19 (2007), no. 2, 473-484.
K. Girstmair, Institut für Mathematik, U. Innsbruck Technikerstr. 13/7, A-6020 InnsBRUCK, AUSTRIA
Kurt.Girstmair@uibk.ac.at

