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AUSLANDER-REITEN SEQUENCES AS APPETIZERS
FOR HOMOTOPISTS AND ARITHMETICIANS

SUNIL K. CHEBOLU AND JÁN MINÁČ

Dedicated to professor John Labute with admiration, respect and friendship.

RÉSUMÉ. Nous introduisons les suites d’Auslander-Reiten pour des algèbres de
groupes et en donnons plusieurs applications récentes. La première partie de cet article
est consacrée à des problèmes fondamentaux liés à la cohomologie de Tate et motivés
par la théorie de l’homotopie. Dans la deuxième partie, nous interprétons les suites
de Auslander-Reiten dans le contexte de la théorie de Galois et nous les relions à
d’importants objets arithmétiques.

ABSTRACT. We introduce Auslander-Reiten sequences for group algebras and
give several recent applications. The first part of the paper is devoted to some fun-
damental problems in Tate cohomology which are motivated by homotopy theory. In
the second part of the paper we interpret Auslander-Reiten sequences in the context of
Galois theory and connect them to some important arithmetic objects.

1. Introduction

In the past, the second author had an opportunity to discuss with John Labute some
beautiful aspects of modular representation theory and they both came to the conclusion
that the techniques from modular representation theory could be applied effectively to
study problems in number theory, particularly in field theory and Galois theory. But
unfortunately some of these techniques from representation theory are not well-known
to people working in number theory.

Several times recently, we ran into Auslander-Reiten sequences in our work and
we began to appreciate the power and elegance of these sequences. These sequences
are some special non-split short exact sequences which are very close to being split
sequences. They were introduced by Auslander and Reiten in the early 70s [AR75], and
they have been among the most important tools from modular representation theory.

The goal of this article is to introduce Auslander-Reiten sequences and to give some
applications. This article is by no means a historical survey of Auslander-Reiten theory;
it focuses only on some selective applications from our recent joint work. The treatment
here will be particularly suitable for homotopy theorists and number theorists. We hope
that the readers who are not specialists in representation theory might be inspired further

Reçu le 27 juin 2008 et, sous forme définitive, le 10 octobre 2008.



140 AUSLANDER-REITEN SEQUENCES

to learn more about Auslander-Reiten sequences and investigate possible Galois field
theoretic applications.

2. Auslander-Reiten sequences

Throughout we let G denote a finite group and k a field of characteristic p that
divides the order of G. We denote by Λ the group algebra kG. Although Auslander-
Reiten theory is often studied in the broader context of Artin algebras, for simplicity
we restrict ourselves to the most interesting case of group algebras.

Definition 2.1. A short exact sequence of Λ-modules

ε : 0 −→M
α−→ E

β−→ N −→ 0

is an Auslander-Reiten (AR) sequence if the following three conditions are satisfied:

• ε is a non-split sequence;
• α is left almost split, i.e., any map φ : M → M ′ that is not a split monomor-

phism factors through E via α;
• β is right almost split, i.e., any map ψ : N ′ → N that is not a split epimorphism

factors through E via β.

The second and third conditions are illustrated in the diagram below:

N ′

ψ

��~~

0 // M
α

//

φ
��

E
β

//

~~

N // 0.

M ′

There are several other equivalent definitions of an Auslander-Reiten sequence.
The one we have given here is perhaps the most symmetric of all. Note that a split short
exact sequence satisfies the last two conditions. This justifies why Auslander-Reiten
sequences are also called almost split sequences. Further, we note that these conditions
also imply that the terms M and N in an AR sequence have to be indecomposable and
non-projective.

Example 2.2 (One-up and one-down). Let us start with a very simple example.
Let Λ = k[x]/xp where p is the characteristic of k. Observe that Λ is a group algebra
kG with a cyclic group G of order p. Then for each integer i strictly between 0 and p,
the short exact sequence

0 −→ k[x]/xi
(j,−π)−→ k[x]/xi+1 ⊕ k[x]/xi−1 −→ k[x]/xi −→ 0

is easily shown (exercise left to the reader) to be an Auslander-Reiten sequence of Λ-
modules. Here j is the obvious injection into the first summand of the middle term, and
π is the obvious surjection on the second summand.

The remarkable result is the existence of these sequences [ARS95].
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Theorem 2.3. Given any indecomposable non-projective Λ-moduleN , there exists
a unique (up to isomorphism of short exact sequences) Auslander-Reiten sequence ε
ending at N . Moreover, the first term M of the AR-sequence ε is isomorphic to Ω2N .

In Section 4 we present a non-standard proof due to Krause of the existence of AR
sequences. This uses the Brown representability theorem from algebraic topology. For
now, we assume existence and show uniqueness.

Suppose we have two AR-sequences ending at an indecomposable non-projective
kG-module L:

0 // M
α

// E
β

// L // 0,

0 // M ′
α′

// E′
β′

// L // 0.
The defining property of AR sequences then gives the following commutative diagram:

0 // M
α

//

f
��

E
β

//

��

L //

=

��

0

0 // M ′
α′

//

g

��

E′
β′

//

��

L //

=

��

0

0 // M
α

// E
β

// L // 0.

The composite φ := gf cannot be nilpotent, otherwise β would be a split epimorphism.
(This is an easy diagram chase exercise.) Now since M is a module of finite length, for
sufficiently large values of n, we must have

M ∼= Im(φn)⊕ Ker(φn).

Since M is indecomposable, and φ is not nilpotent, it follows that M ∼= Im(φn) and
0 = Ker(φn). This shows that φn, and hence φ, is an isomorphism. Therefore f is
the left inverse of g. Interchanging the roles of the two AR-sequences above, it follows
similarly that f is the right inverse of g. Thus we have M ∼= M ′. The five lemma
now tells us that E ∼= E′. Thus the two AR-sequences are isomorphic as short exact
sequences.

3. Stable module category

We now introduce the stable module category. We will work mostly in this cate-
gory for the first half of the paper. The stable module category StMod(kG) of G is the
category obtained from the category Mod(kG) of (left) kG-modules by killing the pro-
jective modules. More precisely, it is the category whose objects are kG-modules and
whose morphisms are equivalence classes of kG-module homomorphisms, where two
homomorphisms are equivalent if their difference factors through a projective module
(such a map is called projective). If M and N are two kG-modules, then we write
HomkG(M,N) for the k-vector space of maps between M and N in the stable module
category. It is easy to see that a kG-module is projective if and only if it is (isomor-
phic to) the zero object in StMod(kG). The compact stable category stmod(kG) is
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the full subcategory of StMod(kG) consisting of the finitely generated (equivalently,
finite-dimensional) kG-modules.

The category StMod(kG) admits a natural tensor triangulated structure which we
now explain. If M is a kG-module then define its desuspension ΩM to be the kernel
of a surjective map from a projective module to M . By Schanuel’s Lemma, the new
module thus obtained is well-defined up to projective summands and therefore defines
an endofunctor

Ω: StMod(kG) −→ StMod(kG).

Using the fact that kG is a Frobenius algebra (injectives and projective coincide) one
can show that Ω is an equivalence. The inverse functor Ω−1 sends M to the cokernel of
an injective map from M to an injective module. This allows one to talk about negative
powers of Ω.

The importance of the stable module category can be seen in the following useful
and well-known fact.

Proposition 3.1. Let M and N be kG-modules. If n is any positive integer, then

HomkG(ΩnM,N) ∼= ExtnkG (M,N) ∼= HomkG(M,Ω−nN).

In particular, group cohomology is elegantly encoded in the stable module category.
In fact, allowing n to be any integer, one recovers the Tate cohomology ring of G in
this way as the (graded) ring of self maps of the trivial representation. Under this
isomorphism, the multiplication in the Tate ring of G corresponds to composition in
Hom(Ω∗ k, k).

Now we describe the triangles in the stable module category. These arise from short
exact sequences in the module category in the following way. Suppose

0 −→ L −→M −→ N −→ 0

is a short exact sequence of kG-modules. This short exact sequence determines a
unique class in Ext1

kG(N,L) which under the isomorphism given in the above propo-
sition corresponds to a map N → Ω−1L. Thus we get a diagram

L −→M −→ N −→ Ω−1L. (∗)

A triangle in StMod(kG) is any such diagram which is isomorphic to a diagram which
arises as above (∗). These triangles and the suspension functor satisfy the standard
axioms for a triangulated category; see [Car96] for example.

The tensor product of two kG-modules (with diagonalG-action on the tensor prod-
uct of k-vector spaces) descends to a well-behaved tensor product in the stable module
category. (This follows from the fact that if M and N are kG-modules with either M
or N projective, then M ⊗k N is projective.) The trivial representation k of G serves
as a unit for the tensor product.
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4. Krause’s proof of the existence of AR sequences

The proof of the existence of Auslander-Reiten sequences can be found in [ARS95].
We present a different avatar of Auslander-Reiten sequences in the stable module cate-
gory, and prove their existence following Krause [Kra00].

Definition 4.1. A triangle A α−→ B
β−→ C

γ−→ Ω−1A in StMod(kG) is an
Auslander-Reiten triangle if the following three conditions hold:

• γ 6= 0;
• Every map f : A −→ A′ which is not a section factors through α;
• Every map g : C ′ −→ C which is not a retraction factors through β.

The following theorem is crucial in what follows. This is the Brown representability
theorem for StMod(kG).

Theorem 4.2. (Brown) A contravariant functor F : StMod(kG) −→ Ab that is
exact and sends coproducts to products is representable, i.e., there exists a module MF

in StMod(kG) such that

F (−) ∼= HomkG(−,MF ).

Now fix a finitely generated non-projective kG-module Z that has a local endo-
morphism ring, and set Γ = HomkG(Z,Z). Let I be the injective envelope of Γ/rad Γ.
Consider the functor

HomΓ(HomkG(Z,−), I).

It is not hard to see that this is a contravariant functor that is exact and sends coproducts
to products. So by the Brown representability theorem this functor is representable:

(4.1) Ψ: HomΓ(HomkG(Z,−), I) ∼= HomkG(−, TZI).

Finally consider the composite ω : Γ π−→ Γ/rad Γ ↪→ I , and denote by γ the map
Ψ(ω). Note that γ is a map from Z −→ TZI . Extending this map to a triangle in
StMod(kG), we get

ΩTZI −→ Y −→ Z
γ−→ TZI.

Theorem 4.3. ([Kra00]) The triangle ΩTZI
α−→ Y

β−→ Z
γ−→ TZI is an

Auslander-Reiten triangle.

Proof. We first show that γ 6= 0. Recall that γ = Ψ(ω), where Ψ is an isomor-
phism of functors, and ω is a non-zero map. Therefore γ 6= 0.

We now show that β has the right almost split property: that is, for any map
ρ : Z ′ −→ Z that is not a retraction, there exists a map ρ′ : Z ′ −→ Y making the
following diagram commutative:

Z ′

ρ

��

ρ′

��

ΩTZI // Y // Z
γ

// TZI.
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For this, it is enough to show that γρ = 0, since the bottom row in the above diagram
is an exact triangle. Since ρ is not a retraction, Im(ρ∗), with

HomkG(Z,Z ′)
ρ∗−→ HomkG(Z,Z) = Γ,

does not contain the identity map. Consequently Im(ρ∗) is contained in rad Γ.

The naturality of the isomorphism Ψ yields the following commutative diagram:

HomΓ(HomkG(Z,Z), I)
∼=

//

��

HomkG(Z, TZI)

��

HomΓ(HomkG(Z,Z ′), I)
∼=

// HomkG(Z ′, TZI).

Note that ω maps to zero under the left vertical map and by the commutativity of the
diagram, we see that γ also maps to zero under the right vertical map. Thus γρ = 0, as
desired.

Finally, we show that α has the left almost split property. For this, it turns out that
it suffices to show that HomkG(TzI, TZI) is a local ring; see [Kra00] for details. We
have

HomkG(TzI, TZI) ∼= HomΓ(HomkG(Z, TZI), I)
∼= HomΓ(HomΓ(HomkG(Z,Z), I), I)
∼= HomΓ(HomΓ(Γ, I), I)
∼= HomΓ(I, I).

The injective Γ-module I is indecomposable since Γ/rad Γ is simple, and therefore
HomΓ(I, I) is a local ring. So we are done. �

5. Auslander-Reiten duality

The isomorphism given in Equation 4.1 is just another avatar of Auslander-Reiten
duality which we now explain. Let M and L be finitely generated kG-modules. Then
the Auslander-Reiten duality says that there is a non-degenerate bilinear form (functo-
rial in both variables)

Φ(−,−) : HomkG(L,ΩM)×HomkG(M,L) −→ k.

To explain this pairing, first recall that ΩM is defined by the short exact sequence

0 −→ ΩM
j−→ P

q−→M −→ 0,

where P is a minimal projective cover of M . Given f : L→ ΩM and g : M → L, we
then get the following diagram:

P

q

��

// P

M
g

// L
f

// ΩM.

j

OO
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The induced top horizontal automorphism of P is in the image of the norm map
η : EndkP → EndkGP which sends φ to

∑
g∈G g · φ. Now we define Φ(f, g) = tr(θ),

where η(θ) = jfgq.

To see the connection between the Auslander-Reiten sequence and the natural iso-
morphism 4.1, which was responsible for the existence of Auslander-Reiten triangles,
consider the special case of Auslander-Reiten duality for M = k. This gives a pairing
(natural in L):

HomkG(L,Ωk)×HomkG(k, L) −→ k.

Or equivalently, a natural isomorphism of functors

Homk(HomkG(k,−), k) ∼= HomkG(−,Ωk).

This is precisely the isomorphism 4.1 when Z = k. Since the representing object is
unique, we get TkI = Ωk. Thus the Auslander-Reiten triangle ending at k has the form

Ω2k −→M −→ k −→ Ωk.

In the next three sections we give three different applications of Auslander-Reiten
sequences from our recent work.

6. Representations of V4-modules

Consider the Klein four group V4 = C2 ⊕ C2. We use AR sequences to prove the
following intriguing result which also plays a crucial role in the proof of the classifica-
tion of the indecomposable V4 representations.

Theorem 6.1. Let M be a projective-free V4-module. Then we have the following.

(1) If l is the smallest positive integer such that Ωl(k) is isomorphic to a submodule
of M , then Ωl(k) is a summand of M .

(2) Dually, if l is the smallest positive integer such that Ω−l(k) is isomorphic to a
quotient module of M , then Ω−l(k) is a summand of M .

Proof. First note that the second part of this lemma follows by dualising the first
part; here we also use the fact that (Ωl k)∗ ∼= Ω−l k. So it is enough to prove the first
part.

The AR sequences in the category of kV4-modules are of the form (see [Ben84,
Appendix, p. 180]):

0 // Ωl+2 k // Ωl+1 k ⊕ Ωl+1 k // Ωl k // 0 for l 6= −1,

0 // Ω1 k // kV4 ⊕ k ⊕ k // Ω−1 k // 0.

To prove the first part of the above lemma, let l be the smallest positive integer such that
Ωl k embeds in a projective-free V4-module M . If this embedding does not split, then
by the property of an almost split sequence, it should factor through Ωl−1 k ⊕ Ωl−1 k
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as shown in the diagram below:

0 // Ωl k //
� _

��

Ωl−1 k ⊕ Ωl−1 k //

f⊕g
ww

// Ωl−2 k // 0

M

Now if either f or g is injective, that would contradict the minimality of l, so they
cannot be injective. So both f and g should factor through Ωl−2 k ⊕ Ωl−2 k as shown
in the diagrams below:

0 // Ωl−1 k //

f

��

Ωl−2 k ⊕ Ωl−2 k //

(f1⊕f2)
ww

// Ωl−3 k // 0

M

0 // Ωl−1 k //

g

��

Ωl−2 k ⊕ Ωl−2 k //

(g1⊕g2)
ww

// Ωl−3 k // 0.

M

Proceeding in this way we can assemble all the lifts obtained using the almost split
sequences into one diagram as shown below:

Ωl k
� � //

� _

��

M.

Ωl−1 k ⊕ Ωl−1 k

11

� _

��

(Ωl−2 k ⊕ Ωl−2 k)⊕ (Ωl−2 k ⊕ Ωl−2 k)

44

� _

��

... � _

��

(Ω1 k ⊕ Ω1 k)⊕ · · · ⊕ (Ω1 k ⊕ Ω1 k)

99

� _

��

(kV4 ⊕ k ⊕ k)⊕ · · · ⊕ (kV4 ⊕ k ⊕ k)

==
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So it suffices to show that for a projective-free M there cannot exist a factorisation
of the form

Ωl k
� � //

� _

��

M

(kV4)s ⊕ kt
φ

99

where l is a positive integer. It is not hard to see that the invariant submodule (Ωl k)G

of Ωl k maps into ((kV4)s)G. We will arrive at a contradiction by showing ((kV4)s)G

maps to zero under the map φ. Since ((kV4)s)G ∼= ((kV4)G)s it is enough to show that
φ maps each (kV4)G to zero. Here (kV4)G is a one-dimensional subspace, generated
by an element which we denote as v. If v maps to a non-zero element, then it is easy
to see that the restriction of φ on the corresponding copy of kV4 is injective, but M is
projective-free, so this is impossible. In other words φ(v) = 0 and that completes the
proof of the lemma. �

7. Tate cohomology

Recall that the Tate cohomology of G with coefficients in a module M is given by
Ĥ
∗
(G,M) = HomkG(Ω∗k,M). In our recent joint work with Jon Carlson ([CCM07b,

CCM07a]) we focused on two fundamental questions about Tate cohomology which
we discuss in the next two subsections. As we shall see, Auslander-Reiten sequences
play an important role in answering both of these questions.

7.1. Modules with finitely generated Tate cohomology
Let M be a finitely generated kG-module. A well-known result of Evens-Venkov

states that the ordinary cohomology H∗(G,M) is finitely generated as a module over
H∗(G, k). So it is a very natural question to investigate whether the same is true for
Tate cohomology. That is, whether Ĥ

∗
(G,M) is finitely generated as a module over

Ĥ
∗
(G, k). As shown in [CCM07b] Tate cohomology is seldom finitely generated. Ho-

wever, there is an interesting family of modules arising from AR sequences whose Tate
cohomology is finitely generated.

To start, let N be a finitely generated indecomposable non-projective kG-module
that is not isomorphic to Ωik for any i. Consider the Auslander-Reiten sequence

0 −→ Ω2N −→M −→ N −→ 0

ending at N . Assume that N has finitely generated Tate cohomology, then we shall see
that the middle term M also has finitely generated Tate cohomology.

Consider the connecting map φ : N −→ ΩN in the exact triangle

Ω2N −→M −→ N
φ−→ ΩN

corresponding to the above Auslander-Reiten sequence. We first argue that φ induces
the zero map in Tate cohomology. To this end, let f : Ωik → N be an arbitrary map.
We want to show that the composite

Ωik
f→ N

φ→ ΩN
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is zero in the stable category. Now observe that the assumption on N implies that f is
not a split retraction, therefore the map f factors through the middle term M . Since
the composition of any two successive maps in an exact triangle is zero, it follows that
φf = 0.

Since the boundary map φ induces the zero map in Tate cohomology, the resulting
long exact sequence in Tate cohomology breaks into short exact sequences:

0 −→ Ĥ
∗
(G,Ω2N) −→ Ĥ

∗
(G,M) −→ Ĥ

∗
(G,N) −→ 0.

It is now clear that if N has finitely generated Tate cohomology, then so does M .

In [CCM07b] we have also shown that the middle term of the AR sequence ending
at k has finitely generated Tate cohomology.

These results imply that if we have a sequence of finitely generated indecomposable
non-projective kG-modules

N1, N2, . . . , Ns, s ∈ N,

such that Ĥ
∗
(G,N1) is finitely generated as a module over Ĥ

∗
(G, k) and Ni+1 is a

summand of a middle term of the Auslander-Reiten sequence which ends in Ni, for
1 ≤ i < s, then all modules Ĥ

∗
(G,Ni) are finitely generated over Ĥ

∗
(G, k).

7.2. Counterexamples to Freyd’s generating hypothesis
Motivated by the celebrated generating hypothesis (GH) of Peter Freyd in homo-

topy theory [Fre66] and its analogue in the derived category of a commutative ring
[HLP07, Loc07], we have formulated in [CCM07a] the analogue of Freyd’s GH in the
stable module category stmod(kG) of a finite group G, where k is a field of charac-
teristic p. This is the statement that the Tate cohomology functor detects trivial maps
(maps that factor through a projective module) in the thick subcategory generated by
k. We studied the GH and related questions in special cases in a series of papers:
[CCM08a, BCCM07, CCM08b, CCM07c]. We have finally settled the GH for the sta-
ble module category in joint work with Jon Carlson. The main result of [CCM07a]
is:

Theorem 7.1. ([CCM07a]) The generating hypothesis holds for kG if and only if
the Sylow p-subgroup of G is either C2 or C3.

Maps in the thick subcategory generated by k that induce the zero map in Tate
cohomology are called ghosts. Thus non-trivial ghosts give counterexamples to the
GH. After much research on this, we were led to a big revelation when we discovered
that a good source of non-trivial ghosts come from Auslander-Reiten sequences.

To explain this in more detail, consider an AR sequence

0 −→ Ω2N −→ B −→ N −→ 0

ending at N . This short exact sequence represents a exact triangle

Ω2N −→ B −→ N
φ−→ ΩN

in the stable category. We will show that the map φ : N −→ ΩN is a non-trivial
ghost. First of all, AR sequences are, by definition, non-split short exact sequences,
and therefore the boundary map φ in the above triangle must be a non-trivial map in



S. K. Chebolu and J. Mináč 149

the stable category. The next thing to be shown is that the map φ : N −→ ΩN induces
the zero map on the functors HomkG(Ωik,−) ∼= Êxt

i
(k,−) for all i. Arguing as in

Section 7.1, consider any map f : Ωik −→ N . We have to show that the composite

Ωik
f−→ N

φ−→ ΩN

is trivial in the stable category. Consider the following diagram

Ωik

f

��~~

Ω2N // B // N
φ

// ΩN

where the bottom row is our exact triangle. The map f : Ωik −→ N cannot be a split
epimorphism if we choose N to be an indecomposable non-projective module in the
thick subcategory generated by k that is not isomorphic to Ωik for any i. Then by the
defining property of an AR sequence, the map f factors through the middle term B
as shown in the above diagram. Since the composite of any two successive maps in
a exact triangle is zero, the composite φ ◦ f is also zero by commutativity. Thus the
moral of the story is that in order to disprove the GH for kG, we just have to find an
indecomposable non-projective module in the thick subcategory generated by k that is
not isomorphic to Ωik for any i. This was the strategy we used to disprove the GH for
kG when the Sylow p-subgroup has order at least 4.

8. Galois theoretic connections

In this section we provide the motivation for some of the arithmetic objects which
will appear in the later sections when we study Auslander-Reiten sequences in the con-
text of Galois theory. To set the stage, we begin with our notation.

Let F be a field of characteristic not equal to 2 and let Fsep denote the separable
closure of F . We shall introduce several subextensions of Fsep:

• F (2) = compositum of all quadratic extensions of F ;
• F (3) = compositum of all quadratic extensions of F (2), which are Galois over
F ;
• F {3} = compositum of all quadratic extensions of F (2);
• Fq = compositum of all Galois extensions K/F such that [K : F ] = 2n, for

some positive integer n.

All of these subextensions are Galois and they fit in a tower

F ⊂ F (2) ⊂ F (3) ⊂ F {3} ⊂ Fq ⊂ Fsep.
We denote their Galois groups (over F ) as

GF −→ Gq −→ G
{3}
F −→ G

[3]
F (= GF ) −→ G

[2]
F (= E) −→ 1.

where GF is the absolute Galois group of F . The absolute Galois group of fields are
in general rather mysterious objects of great interest; see [BLMS07] for restrictions on
the possible structure of absolute Galois groups.
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Observe that G[2]
F is just

∏
i∈I
C2, where the cardinality of I is the dimension of

F ∗/F ∗2 over F2, and where F ∗ denotes the multiplicative subgroup of F . Although the
quotients Gq are much simpler we are far from understanding their structure in gene-
ral. The compositum F {3} and its Galois group over F are considerably much simpler
and yet they already contain substantial arithmetic information of the absolute Galois
group.

To illustrate this point, consider WF the Witt ring of quadratic forms; see [Lam05]
for the definition. Then we have the following theorem [MS96].

Theorem 8.1. Let F and L be two fields of characteristic different from 2. Then
WF ∼= WL (as rings) implies that GF ∼= GL as pro-2-groups. Further, if we assume
additionally in the case when each element of F is a sum of two squares, that

√
−1 ∈ F

if and only if
√
−1 ∈ L, then GF ∼= GL implies WF ∼= WL.

Thus we see that GF essentially controls the Witt ring WF and in fact, GF can be
viewed as a Galois theoretic analogue of WF . In particular, GF detects orderings of
fields. (Recall that P is an ordering of F if P is an additively closed subgroup of index
2 in F ∗ .) More precisely, we have (see [MS90]):

Theorem 8.2. There is a one-to-one correspondence between the orderings of a
field F and cosets {σΦ(GF ) |σ ∈ GF \Φ(GF ) and σ2 = 1}. Here Φ(GF ) is the Frattini
subgroup of GF , which is just the closed subgroup of GF generated by all squares in
GF . The correspondence is as follows:

σΦ(GF ) −→ Pσ = {f ∈ F ∗ |σ(
√
f) =

√
f}.

This theorem was generalised considerably for detecting additive properties of mul-
tiplicative subgroups of F ∗ in [MMS04]. In this paper (see [MMS04, Section 8]) it was
shown that GF can be used also for detecting valuations on F .

Also, in [AKM99, Corollary 3.9], it is shown that

GF ∼= GL if and only if k∗(F ) ∼= k∗(L).

where k∗(A) denotes the Milnor K-theory (mod 2) of a field A. In particular, in
[AKM99, Theorem 3.14] it is shown that ifR is the subring ofH∗(GF ,F2) generated by
one dimensional classes, then R is isomorphic to the Galois cohomology H∗(GF ,F2)
of F . Thus we see that GF also controls Galois cohomology and in fact H∗(GF ,F2)
contains some further substantial information about F which H∗(GF ,F2) does not
contain. In summary, GF is a very interesting object. On the one hand, GF is much
simpler than GF or Gq; on the other hand, it contains substantial information about
the arithmetic of F . In [BLMS07, Section 2] the case of p > 2 was also considered,
and the definition of GF was extended to fields which contain a primitive p-th root of
unity. The key reason for restricting to p = 2 in earlier papers stems from the interest
in quadratic forms. Nevertheless a number of interesting properties also hold for GF in
the case p > 2.
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9. Towards the Auslander-Reiten translate Ω2F2

Because GF contains considerable information about the arithmetic of F , it is a
natural question to ask for properties of Gq, or more precisely Gq(F ), determined by
GF . First of all, it is possible that for two fields F1 and F2, we have

GF1
∼= GF2 but Gq(F1) � Gq(F2).

Indeed, set F1 = C((t1))((t2)) to be a field of formal power series in t2 over the field
of formal power series in t1 over C and F2 to be the field Q5 of 5-adic numbers. Then
GF1 = GF2 = C4 × C4, but Gq(F1) = Z2 × Z2 (Z2 being the additive group of 2-adic
integers), while Gq(F2) = 〈σ, τ | τ4[τ−1, σ−1] = 1〉; see [MS96, Koc02]. However, in
this case G{3}F1

∼= G
{3}
F2

, as they are both isomorphic to C4 × C4; see [AGKM01].

The very interesting question about possible groups G{3}F when G[3]
F is given, is

currently investigated by Mináč, Swallow and Topaz [MST]. In order to tackle this
question, it is important to understand the universal case when Gq(F ) is a free pro-2-
group. From now on, we further assume that F ∗/F ∗2 is finite-dimensional. (This is the
most important case to understand, as G{3}F in general is the projective limit of its finite
quotients.) Let n be the dimension. Then we have F ∗/F ∗2 = 2n. In this case we have
an extension

1 −→ A −→ G
{3}
F −→ E → 1

where E =
∏n

1 C2 and A = Gal(G{3}F /F (2)) ∼=
∏m

1 C2 with m = (n− 1)2n + 1. Set
R = F (2) for simplicity. Indeed from Kummer theory we know that

A ∼= HomF2(R∗/R∗2,F2).

Then also by Kummer theory the minimal number of topological generators of
G

(2)
q := Gal(Fq/F (2)) is equal to the dimension of R∗/R∗2. From the topological

version of Schreier’s theorem we know that this number d(G(2)
q ) is given by

d(G(2)
q ) = (n− 1)2n + 1,

because G(2)
q is the open subgroup of index 2n in Gq and d(Gq) = n; see [Koc02,

Example 6.3]. Thus

dim F2 A = dim F2 R
∗/R∗2

= dim F2 H
1(G(2)

q ,F2)

= d(G(2)
q )

= (n− 1)2n + 1.

Moreover, A is a natural F2E-module, where the E-action is induced by conjuga-
tion in G{3}F . The next result (see [Gas54]) gives a completely arithmetical interpreta-
tion of the Auslander-Reiten translate in our case. We write Ω2

EF2 in order to stress that
we are working in the category of F2E-modules.
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Theorem 9.1. We have the isomorphism

Ω2
EF2
∼= A.

We sketch in the next section a direct proof of this theorem as it also provides some
information about the structure of our module A. After that we shall consider the AR
sequence

0 −→ Ω2F2 −→M −→ F2 −→ 0
and interpretM and also its associated groupAR(E) which will be defined later below
as a certain Galois group.

10. Generators and relations for Ω2F2

Recall that

E =
n∏
1

C2 =
n∏
1

〈σi〉.

We shall first use the definition of Ω2F2 over F2E to describe Ω2F2 via generators and
relations and then we shall see that indeed A has this presentation. This, in turn, will
imply that A ∼= Ω2F2.

Let Pai be a free F2E module of rank 1 generated by ai, for 1 ≤ i ≤ n, so

Pai = F2Eai.

Then recall that Ω2F2 is defined by the short exact sequence

0 −→ Ω2F2 −→ ⊕ni=1Pai(= P )
ψ−→ F2E

ε→ F2 −→ 0,

where ε : F2E → F2 is the augmentation map, ε(σi) = 1 for all i, and

ψ(ai) = σi − 1.

We shall denote σi − 1 by ρi for simplicity. Exactness at F2 is trivial and exactness at
F2E is a standard exercise which we leave to the reader. Observe that Ω2F2 is deter-
mined only up to a projective summand. But since we insist that Ω2F2 is projective-free,
we actually get it up to an isomorphism of F2E-modules.

Note that Ω2F2 = Kerψ, and it certainly contains the F2E-submodule of P gene-
rated by

S = {ρiai, ρjai + ρiaj | 1 ≤ i < j ≤ n}.
We claim that the F2E submodule W generated by S is the entire module Ω2F2. First
observe that I = Ω1F2 = Ker ε has dimension 2n − 1 and ρT =

∏
i∈T ρi, where T is

a non-empty subset of {1, 2, . . . , n}, form a basis of I . This allows us to pick a nice
F2-vector space section of ψ: V the vector space span of the set

U = {ρTai | 1 ≤ i ≤ n, and T ⊆ {i+ 1, i+ 2, . . . , n}}.
It is not hard to see that P splits as Kerψ ⊕ V as F2-vector spaces. Therefore it is
enough to show that W ⊆ ker ψ together with V generate the entire module P over
F2. SetQ := W⊕V , the vector span of V andW over F2. Since {a1, a2, . . . , an} ⊆ Q
and {a1, a2, . . . , an} generates P as an F2E-module, it is sufficient to show that Q is
an F2E submodule of P . Because W is an F2E-submodule of Q it is enough to show
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that for each v ∈ U and ρl we also have α := ρlv in Q. Write v = ρTai for some T
and i. If l = i, then α belongs to W . If l > i, then α belongs to U ∪ {0}. In particular,
in both cases, α ∈ Q. If l < i, then

α = ρTρlai

= ρT (ρlai + ρial) + ρTρial

= w + v,

where w belongs to W and v belongs to U ∪ {0} ⊆ V . Hence α belongs to Q, as
desired. This shows that Ω2F2 is generated over F2E by the set S.

Let us denote

[ai, aj , at1 , . . . , atr ] := ρtrρtr−1 · · · ρt1(ρiaj + ρjai),

and

[ai2, at1 , · · · , atr ] := ρtrρtr−1 · · · ρt1ρiai,

where all the subscripts range over the set {1, 2, . . . , n}. Then we have the following
identities, where σ denotes an arbitrary permutation of the set {1, 2, 3, . . . , s}, and
bi = ati for any i:

• [ai, aj ] = [aj , ai];

• [ai, aj , b1, . . . , bs] = [ai, aj , bσ(1), . . . , bσ(s)];

• [a2
i , b1, . . . , bs] = [a2

i , bσ(1), . . . , bσ(s)];

• [ai, aj , ar] + [aj , ar, ai] + [ar, ai, aj ] = 0;

• [a2
i , ar] = [ai, ar, ai];

• [ai, aj , b1, . . . , bα, . . . , bα, . . . , bs] = 0.

Then Ω2F2 ⊆ P is a vector span over F2 of [ai, aj , at1 , . . . , atr ] and [a2
i , at1 , . . . , atr ]

as above. In fact from the short exact sequence

0 −→ Ω2F2 −→ P
ψ−→ F2E

ε→ F2 −→ 0,

we see that dimF2 Ω2F2 = n2n − 2n + 1 = 2n(n − 1) + 1. With what follows using
the above identities we see that the set

X := {[cij , at1 , . . . , atr ] | 1 ≤ i ≤ j ≤ n, i < t1 < · · · < tr ≤ n}

generates Ω2F2 over F2. Here cij = [ai, aj ] if i < j, or cij = a2
i if i = j. Observe that

|X| =
n∑
i=1

(n− i+ 1)2n−i.

Indeed for a fixed i there are n− i+ 1 possibilities for j and there are 2n−i possibilities
for the number of subsets of {i+ 1, . . . , n} for the choices of t1, . . . , tr. Also we have

n∑
i=1

(n− i+ 1)Y n−i =
n∑
i=1

(
Y n−i+1

)′ = (n+ 1)Y n(Y − 1)− (Y n+1 − 1)
(Y − 1)2

·
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Plugging Y = 2, we see that

|X| =
n∑
i=1

(n− i+ 1)2n−i = 2n(n− 1) + 1.

HenceX is the basis of Ω2F2 over F2. Besides this, a detailed investigation of identities
in G[3]

F (see [GT67, MST]) shows that a basis of A over F2 is

Z = {[dij , σt1 , . . . σtr ] | 1 ≤ i ≤ j ≤ n, i < t1 < · · · < tr ≤ n} ,

where dij = [σi, σj ] if i < j, dii = σ2
i , and

[σ1, σ2, . . . , σl] = [· · · [[[σ1, σ2], σ3], . . . , σl].

In fact, writing σi in place of ai above, the same set of 6 identities hold in G[3]
F . This

shows that the map φ : Ω2F2 −→ A defined by φ(a2
i ) = σ2

i , and φ([ai, aj ]) = [σi, σj ]
is a well-defined surjective F2E homomorphism and because of dimensional reasons it
has to be an isomorphism.

11. The Auslander-Reiten sequence ending at F2

Finally we want to obtain the following Auslander-Reiten sequence ending at F2:

0 −→ Ω2F2 −→M
η−→ F2 −→ 0.

We will get a sequence of this form which is not split. Then simply because

Ext1
F2E

(
F2,Ω2F2

)
= F2,

the non-split sequence we obtain has to be an Auslander-Reiten sequence; see [CR87,
Proposition (78.28)].

Observe from our proof of our description of Ω2F2 ⊆ P that a := ρnρn−1 . . . ρ2a1

belongs to P − Ω2F2. Let

M := Ω2F2 + {a, 0} ⊆ P.

(Because ρia belongs to Ω2F2 for each i = 1, 2, . . . , n, we see that M is indeed an
F2E-module.) Now, let η : M → F2 be defined by η(Ω2F2) = 0 and η(a) = 1.
Observe that since ρ1a belongs to Ω2F2 and ρia = 0, for i ≥ 2, we obtain that η is
indeed an F2E-homomorphism.

We claim that the short exact sequence

0 −→ Ω2F2 −→M
η−→ F2 −→ 0

is an Auslander-Reiten sequence. Suppose to the contrary that this sequence splits.
Then the coset a + Ω2F2 would contain a trivial element t = a + m, for m ∈ Ω2F2

(i.e., the action of each ρi on t is 0). But t ∈ Soc(P ) ⊆ Ω2F2. Hence t − m = a
belongs to Ω2F2, which is a contradiction. (Here Soc(P ) is the socle of P which is the
submodule of E consisting of the fixed elements of P under the action of E.) So we
are done.
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We now introduce Auslander-Reiten groups. Let E =
∏n
i=1C2 =

∏n
i=1〈σi〉 as

before. Assume that n ≥ 2. Consider the Auslander-Reiten sequence

0 −→ Ω2F2
h−→M −→ F2 −→ 0.

Consider the long exact sequence in cohomology associated to the above AR sequence.
As observed before, all connecting homomorphisms are zero except the first one. In
particular, we have a short exact sequence

0 −→ H2(E,Ω2F2) −→ H2(E,M) −→ H2(E,F2) −→ 0.

Furthermore, H2(E,Ω2F2) ∼= F2. The unique non-zero element of H2
(
E,Ω2F2

)
corresponds to a short exact sequence

1 −→ Ω2F2 −→ G
{3}
F −→ E −→ 1

where |F ∗/F ∗2| = 2n and Gal(Fq/F ) is a free pro-2-group. Note that in our case
G
{3}
F does not depend on F , but only on the number n of the rank of the free absolute

pro-2-group GF . Therefore we shall denote it by G{3}(n). Now consider the following
commutative diagram:

1 // Ω2F2
//

h

��

G{3}(n) //

��

E //

=

��

1

1 // M // T (n) // E // 1.

Here T (n) is the pushout of G{3}(n) and M along Ω2F2. The second row corresponds
to the image of the non-trivial element of H2(E,Ω2F2) in H2(E,M).

Definition 11.1. We call T (n) the Auslander-Reiten group associated to E.

Observe that we have obtained a Galois theoretic model for our Auslander-Reiten
sequence

0 −→ Ω2F2 −→M −→ F2 −→ 0.

Indeed, let K/F be a Galois extension as above such that Gal(K/F ) = T (n). Then
we have the short exact sequence

0 −→M −→ T (n) −→ E −→ 0,

where the AR Galois group T (n) is generated byG{3}(n) and τ subject to the relations
τ2 = 1, [τ, σi] = 1 for 2 ≤ i ≤ n, and [τ, σ1] = [σ2

1, σ2, . . . , σn]. Let L be the
fixed field of M . Then the Galois group Gal(K/L) ∼= M is the middle term of our
Auslander-Reiten sequence. Further, let H be a subgroup generated by σ1, . . . , σn.
Then H ∼= G{3}(n) and H ∩M ∼= Ω2F2. Hence our Auslander-Reiten sequence has
the form

0 −→ H ∩ Gal(K/L) −→ Gal(K/L) −→ F2 −→ 0.
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12. Conclusion

We hope that our hot and mild appetizers will inspire our readers in their choices
of further delightful, tasty, and mouth-watering main dishes. John Labute’s skillful in-
terplay between Lie theoretic and group theoretic methods in his past work (see for
example [Lab67]), as well as in his recent work ([Lab06]) provides us with inspiration
for exploiting the connections between modular representation theory and Galois the-
ory. We are now lifting our glasses of champagne in honour of John Labute and we are
wishing him happy further research, and pleasant further Auslander-Reiten encounters.
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almost split sequences, to appear in Proc. Amer. Math. Soc..

[CCM07b] J. F. Carlson, S. K. Chebolu and J. Mináč, Finite generation of Tate cohomology,
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