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RANDOM p-GROUPS AND GALOIS GROUPS
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Dedicated to John Labute on the occasion of his retirement.

RÉSUMÉ. Nous comparons des pro-p -groupes sélectionnés au hasard et des grou-
pes de Galois de p-extensions non ramifiées en dehors d’un ensemble aléatoire de
nombres premiers. Dans chaque cas, nous calculons la probabilité qu’un tel groupe
soit sélectionné au hasard. Par exemple, nous montrons qu’un pro-p -groupe avec 2
générateurs et 2 relations choisis au hasard est fini avec une probabilité de plus de 99%,
mais moins de 100%. De plus, nous montrons que la probabilité de sélectionner un pro-
p -groupe infini est non nulle et que la probabilité qu’un pro-p -groupe ayant autant de
relations que de générateurs satisfasse une conjecture dite modérée de Fontaine-Mazur
est de 100%.

ABSTRACT. We compare random pro-p-groups and Galois groups of p-extensions
unramified outside a random set of primes. In each case, we compute probabilities that
a given group arises. We show, for instance, that a random 2-generator, 2-relator pro-
p-group is more than 99% but less than 100% likely to be finite. We also show that
there exist infinite pro-p-groups that arise with non zero probability, and that pro-p-
groups with as many relators as generators satisfy a tame Fontaine-Mazur conjecture
with 100% probability.

1. Introduction

In this paper, we describe what, for a given g, r, and p, a typical g-generator, r-
relator pro-p-group looks like. The motivation for this comes from our lack of know-
ledge of the structure of the Galois group of the maximal pro-p extension unramified
outside a finite set S of places of a number field K. This is particularly true in the
tame case, which means that S does not contain any place above p. In the tame case
g ≤ r, we show that, with probability 100%, a g-generator, r-relator pro-p-group has no
infinite analytic quotients. Thus, the Fontaine-Mazur conjecture [16], which says that
this should hold for the tame Galois groups above, may be viewed as simply saying that
these Galois groups are typical.

This approach is inspired by that of Dunfield and Thurston [12]. There is a well-
developed analogy between number fields and 3-manifolds. Ideas from each have en-
riched the other, such as in Labute’s recent breakthrough [21] giving some information
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about the mysterious tame Galois groups above. Like their number theoretical coun-
terparts, the fundamental groups of 3-manifolds are conjectured to satisfy important
conjectures but are poorly understood. To improve our understanding, Dunfield and
Thurston addressed the question of whether the finite quotients of a random 3-manifold
group resemble those of a random discrete group with the same number of generators
as relators.

In our scenario, we begin by computing the probability that a pro-p-group is iso-
morphic to a given group. One consequence of our formula is, for instance, that for
a given prime p, a 2-generator, 2-relator pro-p presentation gives a finite group with
probability more than 99% but less than 100%. We also introduce the notion of a posi-
tive probability pro-p-group (meaning that a non zero proportion of presentations yields
it) and find several families of such groups which are infinite. We then study related
questions for Galois groups of p-extensions with restricted ramification as the set of
ramified primes varies.

Gromov [17] introduced one notion of random group and Gowers [18] recently
considered quasi-random groups. We take a different approach, picking r relators from
the free pro-p-group on g generators uniformly, according to the Haar measure on its
Frattini subgroup. Then, we investigate which pro-p-group these present.

2. The main formula

Given a prime p and positive integer g, let F be the free pro-p-group on g genera-
tors. Its Frattini subgroup will be denoted Φ(F ). Since Φ(F ) is a profinite group, it is
compact and Hausdorff and so has a Haar measure, which we normalize so that Φ(F )
has measure 1. For a given non negative integer r, we shall pick r elements of Φ(F )
uniformly with respect to this measure. If Γ is a g-generator, r-relator pro-p-group,
we consider the set of r-tuples from Φ(F ) that yields a presentation of Γ. This set is
measurable as explained in Theorem 2.1 when Γ is finite and in Theorem 4.1 for the
general case. We let pr(Γ) denote its measure; in other words, the probability that r
randomly selected relators will present Γ.

Define φp(n) = (pn − 1)(pn−1 − 1) · · · (p − 1) if n is a positive integer and
φp(0) = 1, otherwise. Let

cp,g,r = φp(g)φp(r)pgr−g(g+1)/2−r(r+1)/2.

For example, one has c2,2,2 = 9/4. Let d(Γ), r(Γ) denote the generator and relator
ranks of Γ, respectively.

Theorem 2.1. Let Γ be a finite p-group with d(Γ) = g and r(Γ) = r. Then,

pr(Γ) = cp,g,r
|Γ|g−r

|Aut(Γ)|
·

Remarks 2.2. (i) Since Γ has g generators, the map F/Φ(F ) → Γ/Φ(Γ) is an
isomorphism. If Γ = F/N , then it follows that N ≤ Φ(F ), which is why any relators
for Γ have to be in Φ(F ).
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(ii) It is noteworthy that cp,g,r is symmetric in g and r. This comes out of the proof,
but one wonders if there is some deeper reason underlying this observation.

We can also give a relative version, which will be necessary in understanding these
probabilities for infinite groups. In preparation, we need to define the property of being
of p-class c.

Definition 2.3. If G is a pro-p-group, its lower p-central series is given by

P0(G) = G,Pi+1(G) = [G,Pi(G)]Pi(G)p, i ∈ N,

where, for pro-p-groups, we mean the closed subgroup so generated. Thus, P1(G) =
Φ(G). The quotient G/Pc(G) is called the p-class c quotient of G. If G/Pc(G) ∼= H ,
then G is called a descendant of H and if, furthermore, Pc+1(G) = {1} and G 6= H ,
then G is called an immediate descendant of H .

Let V be some subclass of pro-p-groups given by a verbal condition V , such as "all
abelian groups" or "all metabelian groups" or "all groups with a given bound on their
p-class". Then there is a g-generator free pro-p-group F = F/V (F ) in this class, and
we can talk of pro-p-groups being g-generator, r-relator qua this class. For example,
all finite g-generator abelian p-groups Γ are g-relator qua abelian. Indeed, since Γ is a
product 〈x1〉×· · ·×〈xg〉 of cyclic groups of orders r1, . . . , rg, respectively, the relators
xri

i , for i = 1, . . . , g, present Γ qua abelian, the commutation relations coming for free.
In this case, F = F/[F, F ] is the free abelian pro-p-group on g generators. Once again,
we can pick r relators from its Frattini subgroup and ask if they present a given group
Γ in the class.

Now, let prV (Γ) denote the measure of the set of r-tuples of Φ(F ) that present Γ
qua V . Let dV (Γ), rV (Γ) denote the generator and relator ranks of Γ qua V , respec-
tively.

Theorem 2.4. Let Γ be a finite p-group in the class V with dV (Γ) = g and
rV (Γ) = r. Then,

prV (Γ) = cp,g,r
|Γ|g−r

|Aut(Γ)|
·

The proofs of the two theorems are similar, with F playing the role of F in the
second. However, before going into the proof of the above theorem, we need some
preliminary material.

Definition 2.5. Let Γ be a finite group and G be a finitely generated (profinite)
group.

(i) Hom(G,Γ) (Epi(G,Γ)) denotes the set of continuous homomorphisms (sur-
jective continuous homomorphisms, respectively) from G to Γ.

(ii) The Moebius function of the lattice of subgroups of Γ is defined inductively by
µ(Γ) = 1 and by

∑
K≤H≤Γ

µ(H) = 0 for every K < Γ.

(iii) Hall’s invariant δΓ(G) [24] is defined to be the number of closed normal sub-
groups N of G such that G/N is isomorphic to Γ.
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(iv) The probabilistic zeta function [3, 23] is defined to be the proportion of s-
tuples of elements of Γ that generate Γ and is denoted P (Γ, s).

Lemma 2.6. The following statements hold true:

(i) |Hom(G,Γ)| =
∑
H≤Γ

|Epi(G,H)|.

(ii) |Epi(G,Γ)| =
∑
H≤Γ

µ(H)|Hom(G,H)|.

(iii) δΓ(G) =
|Epi(G,Γ)|
|Aut(Γ)|

=

∑
H≤Γ

µ(H)|Hom(G,H)|

/ |Aut(Γ)|.

(iv) P (Γ, s) =
∑
H≤Γ

µ(H)
[Γ : H]s

·

Proof. Part (ii) follows from Part (i) by Mobius inversion. Part (iv) is in [3, 23].
�

Proof of Theorem 2.1. Suppose that x1, . . . , xr is an ordered r-tuple of elements
of F . Denote by N the closed normal subgroup they generate.

We shall calculate the probability that they present Γ by computing how many N
satisfy F/N ∼= Γ and, for each such N , the measure of the set XN of r-tuples that
topologically generate N as a normal subgroup. We begin with the latter.

Given such an N , an r-tuple x1, . . . , xr generates N if and only if their images
in the elementary abelian p-group N/[N,F ]Np

(
which has order pr - it is dual to

H2(Γ,Z/p)
)

generate N/[N,F ]Np. This occurs with probability φp(r)/pr(r+1)/2.
Thus, XN is measurable and has measure φp(r)/pr(r+1)/2 times the measure of N
raised to the power r. Since Φ(F ) has measure 1, N has measure

1
[Φ(F ) : N ]

=
[F : Φ(F )]

[F : N ]
=

pg

[F : N ]
·

Thus, XN has measure

φp(r)
pr(r+1)/2

·
(

pg

|F/N |

)r

·

Let X denote the set of r-tuples that present Γ. The measure of X is the number of N
such that F/N ∼= Γ times the measure of XN just computed. The number of such N is

δΓ(F ) =

∑
H≤Γ

µ(H)|H|g
/ |Aut(Γ)|,
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since |Hom(F,H)| = |H|g. Combining, we obtain that the measure of S is

φp(r)
pr(r+1)/2

(
pg

|Γ|

)r


∑
H≤Γ

µ(H)|H|g

|Aut(Γ)|

 =
(

φp(r)
pr(r+1)/2

)
pgr|Γ|g−r

(
P (Γ, g)
|Aut(Γ)|

)

=
(

φp(r)
pr(r+1)/2

)
pgr

(
|Γ|g−r

|Aut(Γ)|

) g∏
i=1

(
1− 1

pi

)
= φp(g)φp(r)pgr−(g(g+1)−r(r+1))/2 |Γ|g−r

|Aut(Γ)|

= cp,g,r
|Γ|g−r

|Aut(Γ)|
,

since P (Γ, s) = P

(
Γ

Φ(Γ)
, s

)
=

g∏
i=1

(
1− 1

ps−i+1

)
. �

Remarks 2.7. (i) If g = r (as in the case of finite abelian p-groups qua abelian),
then this simplifies to

φp(g)2

pg|Aut(Γ)|
.

(ii) If r = 0, in which case with certainty we present the g-generator free pro-p-
group, then the formula simplifies to

φp(g)|Γ|g

pg(g+1)/2|Aut(Γ)|
= 1,

where Γ = F/V (F ). In fact, this is a convenient way to compute |Aut(F/Pc(F ))|.
(iii) Since a probability is at most 1, an immediate corollary is that

|Γ|g−r

|Aut(Γ)|
≤ 1
cp,g,r

·

Equality can occur when Γ is one of the p-class quotients of a free pro-p-group, as noted
in the last remark.

3. Finite examples and mass formulae

Using the computer algebra system MAGMA [2], the formulae in Theorems 1 and
2 can be tested experimentally. For example, we let MAGMA pick many pairs of
words of length at most 50 from the free group on 2 generators and compute the maxi-
mal quotient of 2-power order (if finite) of the group so presented, only saving those
with generator rank 2. In fact, 9.5% of these yielded the quaternion group of order
8, whereas 15.0%, 13.9% and 6.1% yielded the three groups of order 16 which have
both generator and relator ranks 2. According to Theorem 2.1, these proportions should
approximate 9/(4|Aut(Γ)|) which is 9.4%, 14.1%, 14.1% and 7.0%, respectively. Note
that MAGMA uses the product replacement algorithm [8] to produce random words.
However, the distribution so produced does tend in the limit to the Haar measure we
use.
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These 4 groups already account for almost 50% of all pairs of relators. We next
investigate what proportion of pairs of relators yield a finite 2-group. This naturally
leads to some mass formulae.

A mass formula is usually the sum of the reciprocals of the orders of certain au-
tomorphism groups. They arise all over mathematics and appear here because, for
fixed V, p, g, r, the sum of the probabilities prV (Γ) over all g-generator, r-relator finite
p-groups cannot exceed 1. Since the r relators could conceivably present an infinite
pro-p-group, the sum may be strictly less than 1.

Theorem 3.1 (Partial Mass formula). Summing over all finite p-groups Γ of class
V with dV (Γ) = g and rV (Γ) = r, we have

∑ |Γ|g−r

|Aut(Γ)|
≤ 1
cp,g,r

·

A natural question is to ask when there is equality in this mass formula. It is easy
to see that there is equality if g = r = 1. More generally, if the class consists of
all abelian p-groups (see below - this was noted by Cohen and Lenstra [9]), there is
equality. This result implies that a pro-p-group with g = r (and so with any g ≤ r) has
finite abelianization with probability 1.

Theorem 3.2 (Mass formula). Summing over all finite abelian p-groups Γ with
d(Γ) = g, we have

∑ 1
|Aut(Γ)|

=
1

cp,g,g
·

Proof. The automorphism groups of finite abelian p-groups are explicitly known
[19]. The formula then comes from summing two nested geometric series. �

In general, summing over all finite g-generator, g-relator p-groups, one can show
that the sum is always strictly less than 1/cp,g,g if g ≥ 2. For g ≥ 4, this follows from
the fact that there are actually no such groups by the Golod-Shafarevich inequality and
so the sum is zero. For g = 2 or g = 3, refinements of this inequality [20] show that
if the relations are at a certain depth inside the Zassenhaus filtration, then the group
presented is infinite. In fact, we can prove the following.

Theorem 3.3. Let p be a fixed prime. If g ≥ 4, then there are no finite g-generator,
g-relator p-groups. If g ≥ 2, then the sum of 1/|Aut(Γ)| over all finite g-generator,
g-relator p-groups is strictly less than 1/cp,g,g. This assertion is equivalent to saying
that the probability that the g relators present a finite p-group is strictly less than 100%.

Moreover, we have the following theorem which makes explicit the case g = 2 of
the above theorem.

Theorem 3.4. Consider the sum S(p) of 1/|Aut(Γ)| over all 2-generator, 2-relator
finite p-groups. Then, for p = 2, we have

0.44189 < S(2) < 4/9 = 0.4444 . . . .



N. Boston 131

If p > 3, then(
1 + 2

p + 4
p2 + 6

p3 + 5
p4 − 1

p6

)
(p4 − p2)

≤ S(p) <
1

cp,2,2
=

p2

(p2 − 1)2(p− 1)2
·

This in turn implies that the sum of pr(Γ) over all 2-generator, 2-relator finite p-groups
is at least

1− 4
p4
− 4
p5

+
7
p6

+
6
p7
− 5
p8
− 2
p9
− 1
p10

,

which is greater than 99% for every such p.

Before going into the proof of the above theorems, one needs the following lemma
which classify the 2-generator, 2-relator p-groups of order at most p7 (see [28]).

Lemma 3.5. Let p > 3 be a prime. The following is a complete list of 2-generator,
2-relator p-groups of order at most p7.

(i) There is only one such group of order p3. Its automorphism group has order
(p− 1)p3.

(ii) There is only one such group of order p4. Its automorphism group has order
(p− 1)p4.

(iii) There are p + 3 such groups of order p5. Of their automorphism groups, 2
have order (p− 1)p5, (p− 3)/2 have order (p− 1)p6, (p− 1)/2 have order (p+ 1)p6,
2 have order 2p7, and 1 has order (p2 − 1)p7.

(iv) There are p+ 2 such groups of order p6. Of their automorphism groups, 1 has
order (p− 1)p6, 1 has order p7, and p have order (p− 1)p7.

(v) There are p2 + 3p+ 2 such groups of order p7. Of their automorphism groups,
2 have order (p− 1)p7, 2 have order p8, 2p− 2 have order 2p8, p have order (p− 1)p8,
and p2 have order p9.

Proof of Theorems 3.3 and 3.4. The comments before the theorem establish all
but the case g = 2. So assume g = 2. We treat the three cases, p = 2, p = 3, p > 3,
separately.

For p = 2, O’Brien [27] calculated a lower bound for the sum by finding many
2-generator, 2-relator 2-groups, some as large as 225. He does this by employing his p-
group generation algorithm [26], which produces very many 2-generator, 2-groups by
iteratively computing descendants. By lemma 3.5 above, the 2-relator ones are detected
as those with multiplicator rank equal to 2. This lower bound was

62191043501935/140737488355328 ≈ 0.441893941896402964175649685785,

more than 99% of 1/c2,2,2 = 0.4444 . . . . The question remains as to what is the true
value of the sum, a quantitative form of the Golod-Shafarevich inequality. The case
p = 3 is handled similarly.

Consider now 2-generator, 2-relator p-groups with p > 3. The proof is completed
by summing the reciprocals of the orders of the above automorphism groups in the
lemma. �
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One wonders whether a similar classification to that in the above lemma holds for
p-groups of order pn for n greater than 7. Namely perhaps, analogously to the PORC
conjecture [13], the groups can be partitioned into sets of size a polynomial in p, where
each group in the set has the same automorphism group size, again polynomial in p. If
so, the sum of the pr(Γ) will be an infinite series in 1/p.

4. Infinite positive probability pro-p-groups

Next, we turn to infinite pro-p-groups. Using the relative version, Theorem 2.4,
we obtain a formula for the probability that r relators present a given, possibly infinite,
pro-p-group Γ.

Theorem 4.1. Let Γ be a g-generator, r-relator pro-p-group. Then the probability
pr(Γ) that r relators picked from the Frattini subgroup of the free pro-p-group on g
generators present Γ is given by

pr(Γ) = lim
c→∞

φp(g)φp(r)pgr−g(g+1)/2−r(r+1)/2 |Γ/Pc(Γ)|g−r

|Aut(Γ/Pc(Γ))|
·

Proof. An r-tuple presents Γ if and only if, for every c ≥ 1, their images in
F/Pc(F ) present Γ/Pc(Γ) qua a p-class ≤ c group. Call the set of such r-tuples Xc.
By Theorem 2.4, since for large enough c the group Γ/Pc(Γ) is r-relator,Xc is a closed
set and has measure

φp(g)φp(r)pgr−g(g+1)/2−r(r+1)/2|Γ/Pc(Γ)|g−r

|Aut(Γ/Pc(Γ))|
·

The set of r-tuples that present Γ equals the intersection of the Xc’s which, as an inter-
section of closed sets, is closed. Hence, it is measurable with measure the limit of the
measures of the Xc as c→∞, since

· · · ⊆ Xc ⊆ · · · ⊆ X2 ⊆ X1.

�

If r = 0, then, with probability 1, the free pro-p-group F is presented, that is
pr(F ) = 1. In this section, we observe that there are many other infinite pro-p-groups
occurring with probability greater than 0.

Definition 4.2. A positive probability pro-p-group Γ is one that satisfies pr(Γ) > 0.
We call this a PPP group for short.

All finite p-groups are PPP. There are also many infinite PPP groups.

Theorem 4.3. (i) Consider, for k ≥ 2, the sequences of pro-2-groups

Gk =
〈
x, y | xy = x2k−1

〉
and Hk =

〈
x, y | xy = x2k+1

〉
.

Then Gk is PPP with pr(Gk) = 3/2k+2 and Hk is PPP with pr(Hk) = 3/22k+1.

(ii) Suppose p is an odd prime. Consider, for k ≥ 1, the sequence of pro-p-groups

Gk =
〈
x, y | xy = xpk+1

〉
.
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Then Gk is PPP with pr(Gk) = (p2 − 1)(p− 1)/p2k+1.

(iii) For any p, these are prometacyclic groups and the sum of the pr(Γ) over the
above groups Γ is (1− 1/p).

Proof. The finite quotients Γ/Pc(Γ) of these pro-p-groups are metacyclic of order
p2c, and the automorphism groups of metacyclic p-groups are all known [1, 10, 11].
Plugging cp,2,1 = (p2 − 1)(p − 1)2/p2 and the orders of Γ/Pc(Γ) and its automor-
phism group into the above formula yields the claimed values for pr(Γ). For a given p,
summing the geometric series gives that the sum of these pr(Γ) is (p− 1)/p. �

What happens if the relator is picked from the remaining 1/p of the Frattini sub-
group Φ(F )? In fact, it appears that the groups so obtained all have pr(Γ) = 0. The
best way to look at this is in terms of the p-group generation algorithm. MAGMA im-
plements an algorithm of O’Brien [26] that finds all immediate descendants of a given
finite p-groupH and computes associated non negative integers called the nuclear rank
and multiplicator rank of H . The following lemma allows us to tell which of those
descendants could come from a 1-relator group.

Lemma 4.4. Let Γ be a g-generator, r-relator pro-p-group. Then the multiplicator
rank minus the nuclear rank of Γ/Pc(Γ) is non negative and at most r.

Proof. See the lemma in section 3 of [6]. �

For instance, let p be odd. If G is a 2-generator, 1-relator pro-p-group, then
G/P1(G) ∼= Cp × Cp. This group has 4 immediate descendants whose multiplica-
tor rank minus nuclear rank is at most 1 (call such a descendant viable). Two of these
are metacyclic. Of them, one has just one viable descendant, which has just one vi-
able descendant, and so on. Call such a group stable. The inverse limit of the viable
descendants of a stable group is PPP (in this case it is G1).

The other metacyclic group has two viable descendants, one of which is stable
(leading to G2), the other of which has two viable descendants. Similarly, one of these
descendants is stable (leading to G3), and so on. The periodic structure of the viable
descendants is reminiscent but different to Conjecture P of Newman and O’Brien [13,
14, 15, 25].

As for p = 2, C2×C2 has two metacyclic viable descendants. In this case, both of
these have two viable descendants, one of which is stable, the other of which has two
viable descendants. Again, one of these two descendants is stable, and so on. Thus, we
get two sequences of PPP pro-2-groups.

The two non metacyclic descendants of Cp × Cp have many viable descendants,
all of which have many viable descendants, and so on. We therefore believe that they
have no stable descendants and that the above list of 2-generator, 1-relator PPP groups
is complete. This problem will be addressed in a forthcoming paper of the author with
Charles Leedham-Green.

In that paper, it will also be proven that, if a group has just one viable descendant,
then it is stable. This allows us to prove that several other pro-p-groups are PPP. For
example, if Γ is the pro-2-group < x, y, z | xy = x3z2 >, then pr(Γ) = 21/64. It
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is surprising that this most common 3-generator, 1-relator pro-2-group has apparently
never previously arisen in research.

5. Random Galois groups

For a fixed prime p, we shall denote by P the set of primes that are congruent to 1
modulo p and by P(x) the subset of those primes less or equal to x . Given a subset Y
of Pg, its relative Dirichlet density is defined to be the limit (if it exists) as x → ∞ of
|(Y ∩ P(x)g)|/|P(x)g|.

For any set S of g elements of P , we consider the Galois group GS of the maximal
p-extension of Q unramified outside S (allowing ramification at infinity if p = 2). This
is a pro-p-group with d(GS) = r(GS) = g, where g = |S| [20].

Given a pro-p-group Γ, let Y consists of all g-tuples of primes in P which form a
set S such that GS

∼= Γ. We give Y its Dirichlet density relative to Pg (and conjecture
that it always exists). For example, if g = 1, then Γ ∼= Cpr for some r. If S = {q} and
p is odd, then GS

∼= Cps where ps exactly divides q− 1. Thus, Y consists of all primes
q that are congruent to 1 modulo ps and not congruent to 1 modulo ps+1. Therefore, Y
has measure (p− 1)/ps.

We set pr′(Γ) to the the above Dirichlet density. Thus, the above argument gives
the following theorem.

Theorem 5.1. Suppose Γ ∼= Cps . Then, pr′(Γ) = (p− 1)/ps.

Next, consider the case g = 2 and Γ a finite 2-group.

Theorem 5.2. Suppose Γ is a finite 2-group with abelianization C2 × C2 (so Γ
is dihedral, generalized quaternion, or semidihedral). If Γ is dihedral or generalized
quaternion, then pr′(Γ) = 0. If Γ is the semidihedral group S2s of order 2s with s ≥ 4,
then pr′(Γ) = 1/2s−1.

Proof. GS has abelianization C2 × C2 precisely when the two primes are both
congruent to 3 modulo 4, which comprises 1/4 of all cases for p = g = 2. Without loss
of generality, if we order the primes so that the first is a square modulo the second (call
that one q), then by [7], GS is semidihedral of order 2k+1 where 2k−1 exactly divides
q+1. For example, in half of cases, q is congruent to 3 modulo 8 andGS is semidihedral
S16 of order 16. It follows that pr′(S16) = 1/8, and likewise pr′(S2s) = 1/2s−1. �

Remark 5.3. In comparison, note that the automorphism group of S2s , with s ≥ 4,
has order 22s−4 and hence, pr(S2s) = 9/22s−2.

Theorem 5.4. Suppose that Γ is the modular group M2s of order 2s, s ≥ 4. Then
pr′(Γ) = 1/2s.

Proof. Since the abelianization of Γ is C2 × C2s−2 , one prime is congruent to 3
modulo 4 and the other, say q, is congruent to (2s−2 + 1) modulo 2s−1. Now, Γ has
a cyclic subgroup of index 2. Calculating ray class groups of quadratic fields shows
that the only time one is cyclic is in the situation of Theorem 2.2 in [7], i.e. when
the Legendre symbol is −1. Putting this with the congruence conditions above yields
pr′(Γ) = (1/2)(1/2)(1/2s−2) = 1/2s. �
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Remark 5.5. In comparison, note that the automorphism group ofM2s , with s ≥ 4,
has order 2s and hence, pr(M2s) = 9/2s+2.

Likewise, we can show that the groups in the third family of [7] and the first family
of [6] only arise in those circumstances and no others. So we can state the following
result.

Theorem 5.6. Let n ≥ 2 and let Γ = Pn with

Pn :=
〈
a, b | a2 = b−1ababab2

n−1 = 1
〉
,

of order 23n+1. Then pr′(Γ) = 1/2n+3.

Proof. This arises when one of the primes is congruent to 3 modulo 4, the other
is congruent to (2n + 1) modulo 2n+1, and the first lies in a particular quarter of the
congruence classes modulo the second. So pr′(Γ) = (1/2)(1/2n)(1/4) = 1/2n+3.
�

Remark 5.7. However, note that the automorphism group of Pn, with n ≥ 3, has
order 24n and hence, pr(Pn) = 9/24n+2. The automorphism group of P2 has order 29

and thus, pr(P2) = 9/211.

Theorem 5.8. Let Γ1,Γ2 be the groups of order 25n+9, with n ≥ 2, arising in [6].
Then pr′(Γ1) + pr′(Γ2) = 1/2n+4.

Proof. In the given situation, we know that GS is one of Γ1 or Γ2, but we do not
know which. One prime is congruent to (2n − 1) modulo 2n+1, the other is congruent
to 5 modulo 8, and the first is a square but not a 4-th power modulo the second. Then,
pr′(Γ1) + pr′(Γ2) = (1/2n)(1/4)(1/4) = 1/2n+4. �

Remark 5.9. In comparison, note that the automorphism groups of the smallest
groups (of order 219) have order 225 and therefore, pr(Γi) = 9/227 in each case.

It is a mystery as to how often Γ1 versus Γ2 arises as GS . It appears that this
phenomenon persists into the case where Γ is infinite. Consider, for example, [5] where
S consists of two primes, both congruent to 5 modulo 8, one a 4-th power modulo the
other but not vice versa. The probability of this occurring is

(1/4)(1/4)(1/4)(1/2) = 1/128

Indeed, note that quadratic reciprocity ensures that both is a square modulo the other,
leading to a last factor of 1/2 instead of 1/4. Let F be the family of infinite pro-2-
groups arising in that paper, where GS is known to belong to. Then,∑

F
pr′(Γ) = 1/128,

but we do not know the relative frequencies with which the different groups in F occur
as GS or, indeed, if any are PPP.

Remarks 5.10. (i) A closer analogue to the approach of Dunfield and Thurston is
to consider, given g and a p-group Γ with d(Γ) ≤ g, how often it arises as a quotient,
on one hand, of a random g-generator, g-relator pro-p-group and, on the other hand, of
GS for a random S of size g. For instance, for g = 2 and Γ the quaternion group of
order 8, there is a Γ-extension of Q unramified outside two odd primes if and only if
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both primes are congruent to 1 modulo 4 and their Legendre symbol is 1. Such a pair
of primes has density 1/8 among all pairs of odd primes.

A random 2-generator, 2-relator pro-2-group G has this Γ as a quotient if and only
if G/P2(G) does. Of the 7 possibilities for G/P2(G), 3 have a Γ-quotient. Summing
their probabilities of arising (computed by Theorem 2.1) shows that the probability that
a random 2-generator, 2-relator pro-2-group has a quotient isomorphic to the quaternion
group of order 8 is 87/512. As this example illustrates, the formulae obtained are not
as clean as with the less direct analogue to Dunfield-Thurston pursued in this paper.

(ii) A separate joint work consists of studying the frequency with which certain
p-groups arise as Galois groups of p-class towers of imaginary quadratic fields. This
leads to a non abelian analogue of the Cohen-Lenstra heuristics [9].

(iii) We can also look at pro-p Galois groups that are not tame. For instance, con-
sider the Galois group of the maximal pro-p extension of Q unramified outside p and q,
where p is odd and q is congruent to 1 modulo p and ±3 modulo 8. It has presentation
〈x, y | xy = xq〉 [20], and so is one of the PPP groups in Theorem 4.3(ii). One idea that
may help in understanding the mysterious tame Galois pro-p-groups is that the most
popular random groups should arise as Galois groups.

In a forthcoming paper with Ellenberg and Venkatesh, the author will give a con-
jectural formula for pr′(Γ).

6. Tame Fontaine-Mazur conjecture

If S is a finite set of primes of the number field K, none lying above the prime p,
then the tame Fontaine-Mazur conjecture [16] says that the Galois group of the maximal
pro-p extension of K unramified outside S should have no infinite, analytic quotients.
Recall that an analytic pro-p-group is one that embeds in GLn(Zp) for some n. The
conjecture was published 7 years after it was first made in a seminar at IHES, one
concern being that the tame case of the conjecture was making a strong claim. In fact,
this Galois group has g generators and r relators where g ≤ r and in this section we
show that, with probability 1, such a group has no infinite, analytic quotients. In other
words, the Fontaine-Mazur conjecture can be viewed as simply saying that these Galois
groups are just typical.

Lemma 6.1. Let H be an infinite finitely generated pro-p-group and suppose that
g ≤ r. The probability that a random g-generator, r-relator pro-p-group has H as a
quotient is 0.

Proof. Let F be the free pro-p-group on g generators. Let Γ be a finite p-group. For
each open normal subgroup N of F such that F/N ∼= Γ, we compute the probability
that r relators chosen independently at random from Φ(F ) lie in N to be

1
([Φ(F ) : Φ(F ) ∩N ])r

=
(

1
[Φ(F )N : N ]

)r

=
(

[F : Φ(F )N ]
[F : N ]

)r

≤ pgr

|Γ|r
·

The number of open subgroups N such that F/N ∼= Γ is

δΓ(F ) ≤ |Γ|g/|Aut(Γ)|.
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It follows that the probability that a g-generator, r-relator pro-p-group has Γ as a quo-
tient is less than

pgr|Γ|g−r

|Aut(Γ)|
≤ pgr

|Aut(Γ)|
·

Only finitely many finite groups have automorphism group of any given order. Thus,
as Γ runs through a sequence of quotients of H of order tending to infinity, |Aut(Γ)|
tends to infinity and so the probability tends to 0. �

Taking H = Zp shows (again) that a g-generator, r-relator pro-p-group with g ≤ r
has finite abelianization with probability 1. Taking H to be virtually finitely generated
abelian (of which there are countably many isomorphism classes) and using that Haar
measure is countably additive shows that with probability 1, a g-generator, r-relator
pro-p-group with g ≤ r is FAb, meaning that every finite index subgroup has finite
abelianization. A similar approach proves the main result of this section.

Theorem 6.2. The probability that a random g-generator, r-relator pro-p-group,
with g ≤ r, has an infinite analytic quotient is 0.

Proof. The group has an infinite analytic quotient if and only if it has a just-infinite
analytic quotient [4]. Moreover, there are only countably many just-infinite analytic
pro-p-groups [22]. By the above lemma and countable additivity of Haar measure, the
probability of the group having such a quotient is 0. �
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