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ON CERTAIN SUMS RELATED TO MULTIPLE
DIVISIBILITY BY THE LARGEST PRIME FACTOR

WILLIAM D. BANKS, FLORIAN LUCA AND IGOR E. SHPARLINSKI

RÉSUMÉ. Pour un nombre entier positif n, P (n) désigne le plus grand facteur
premier de n. Nous montrons que pour deux nombres réels fixés ϑ, µ et un entier
k ≥ 2, avec ϑ ∈ (−1, 0] et µ < k − 1, l’estimation∑

P (n)k |n
n≤x

P (n)µnϑ = x1+ϑ exp
(
−(1 + o(1))

√
2(k − 1− µ) log x log2 x

)

a lieu lorsque x → ∞, ou log2 x = log log x. Avec ϑ = µ = 0 et k = 2, nous
retrouvons le résultat connu à l’effet que, lorsque x → ∞, le nombre d’entiers
positifs n ≤ x pour lesquels P (n)2 |n est x exp

(
−(1 + o(1))

√
2 log x log2 x

)
.

Nous obtenons aussi des bornes supérieure et inférieure pour le nombre d’entiers
positifs n ≤ x pour lesquels P (ϕ(n))k |ϕ(n), où ϕ(n) est la fonction d’Euler.

ABSTRACT. For a positive integer n, let P (n) denote the largest prime factor of n.
We show that for two fixed real numbers ϑ, µ and an integer k ≥ 2, with ϑ ∈ (−1, 0]
and µ < k − 1, the estimate∑

P (n)k |n
n≤x

P (n)µnϑ = x1+ϑ exp
(
−(1 + o(1))

√
2(k − 1− µ) log x log2 x

)

holds as x →∞, where log2 x = log log x. With ϑ = µ = 0 and k = 2, we recover
the known result that, as x →∞, the number of positive integers n ≤ x for which
P (n)2 |n is x exp

(
−(1 + o(1))

√
2 log x log2 x

)
. We also obtain upper and lower

bounds for the number of positive integers n ≤ x for which P (ϕ(n))k |ϕ(n), where
ϕ(n) is the Euler function.

1. Introduction. For an integer n ≥ 2, let P (n) denote the largest prime factor of n,
and put P (1) = 1. In many situations, especially when counting integers subject to
various arithmetical constraints, it can be important to understand the set of positive
integers n for which P (n) is small relative to n, or the set of positive integers n for
which P (n)2 |n. Such sets often contribute to the error term in a given estimate, hence
it is useful to have tight bounds for the number of elements in these sets. For example,
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such sets of integers have played an important role in estimating exponential sums
with the Euler function ϕ(n) (see [4, 5]), in studying the “average prime divisor” of
an integer (see [3]), or in evaluating various means and moments of the Smarandache
function of n (see [6, 9]).

Positive integers with the first property (that is, P (n) is small) are called smooth,
and the distribution of smooth numbers has been extensively studied.

Although there is no special name for integers with the second property (that is,
P (n)2 |n), they have also been studied in the literature. For example, in [10] it has been
shown that for a fixed real number r ≥ 0, the following estimate holds as x →∞:∑

P (n)2 |n
n≤x

1
P (n)r

= x exp
(
−(1 + o(1))

√
(2r + 2) log x log log x

)
. (1)

The error term o(1) in the above estimate can be taken to be of the form

Or(log log log x/ log log x).

More general sums taken over integers n ≤ x with P (n) in a fixed arithmetic progres-
sion have been estimated in [8]. In Theorem 1 below, we complement the result (1) by
showing that if ϑ, µ are fixed real numbers and k ≥ 2 is an integer such that ϑ ∈ (−1, 0]
and µ < k − 1, then the following estimate holds as x →∞:

S(k, ϑ, µ, x) =
∑

P (n)k |n
n≤x

P (n)µnϑ

= x1+ϑ exp
(
−(1 + o(1))

√
2(k − 1− µ) log x log log x

)
.

(2)

Our method closely resembles that of [8]. In particular, taking ϑ = µ = 0 in (2), we
obtain the estimate

#Nk(x) = x exp
(
−(1 + o(1))

√
2(k − 1) log x log log x

)
(3)

for the cardinality of the set

Nk(x) = {n ≤ x : P (n)k |n}.

When k = 2, the bound (3) can be recovered from (1) by taking r = 0, and it appears
also in [6].

We also consider a similar question for values of the Euler function ϕ(n). In Theo-
rem 2, we give upper and lower bounds for the cardinality of the sets

Fk(x) = {n ≤ x : P (ϕ(n))k |ϕ(n)}, k = 2, 3, . . .

Finally, for an odd integer n, we define t(n) to be the multiplicative order of 2 modulo
n, and we give upper bounds on the cardinality of the sets

Tk(x) = {n ≤ x : n odd, P
(
t(n)

)k | t(n)}, k = 2, 3, . . .
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Throughout the paper, x denotes a large positive real number. We use the Landau
symbols ‘O’ and ‘o’ as well as the Vinogradov symbols ‘�’, ‘�’ and ‘�’ with their
usual meanings. The constants or convergence implied by these symbols depend only
on our parameters ϑ, µ and k. For a positive integer `, we write log` x for the function
defined inductively by log1 x = max{log x, 1} and log` x = log1(log`−1 x) for ` ≥ 2,
where log denotes the natural logarithm function. In the case ` = 1, we omit the
subscript to simplify the notation; however, it should be understood that all the values
of all logarithms that appear are at least 1.

2. Preliminary results. For the results in this section, we refer the reader to Sec-
tion III.5.4 in the book of Tenenbaum [11].

Let ρ : R≥0 → R denote the Dickman function. We recall that ρ(u) = 1 for
0 ≤ u ≤ 1, ρ is continuous at u = 1 and differentiable for all u > 1, and ρ satisfies the
difference-differential equation

uρ′(u) + ρ(u− 1) = 0 (u > 1).

Thus,

ρ(u) =
1
u

∫ u

u−1
ρ(v) dv (u ≥ 1).

For u > 0, u 6= 1, let ξ(u) denote the (unique) real nonzero root of the equation
eξ = 1 + uξ. By convention, we also put ξ(1) = 0.

Lemma 1. The following estimate holds:

ξ(u) = log(u log u) + O

(
log2 u

log u

)
(u > 1).

Lemma 2. For any fixed real number u0 > 1, the following estimate holds:

ρ′(u) = −ξ(u)ρ(u)
(
1 + O(1/u)

)
(u ≥ u0).

Lemma 3. The following estimate holds:

ρ(u) = u−(1+o(1))u (u →∞).

As usual, we say that a positive integer n is y-smooth if P (n) ≤ y. For all real
numbers x ≥ y ≥ 2, we denote by Ψ(x, y) the number of y-smooth integers n ≤ x:

Ψ(x, y) = #{n ≤ x : P (n) ≤ y}.

Lemma 4. For any fixed ε > 0 and

exp
(
(log2 x)5/3+ε

)
≤ y ≤ x,

we have

Ψ(x, y) = xρ(u)
(

1 + O

(
log u

log y

))
,

when u = (log x)/(log y) →∞.
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Lemma 5. For all x ≥ y ≥ 2, we have

Ψ(x, y) � xe−u/2.

We also denote by Φ(x, y) the number of integers n ≤ x for which ϕ(n) is y-smooth:

Φ(x, y) = #{n ≤ x : P (ϕ(n)) ≤ y}.

By Theorem 3.1 of [2], the following bound holds.

Lemma 6. For any fixed ε > 0 and

(log2 x)1+ε ≤ y ≤ x,

we have
Φ(x, y) ≤ x exp(−(1 + o(1))u log2 u)

when u = (log x)/(log y) →∞.

Finally, let Θ(x, y) be the number of integers n ≤ x for which t(n) is y-smooth:

Θ(x, y) = #{n ≤ x : P (t(n)) ≤ y}.

By Theorem 5.1 of [2], the following bound holds.

Lemma 7. For exp
(√

log x log2 x
)
≤ y ≤ x we have

Θ(x, y) ≤ x exp(−(1
2 + o(1))u log2 u)

when u = (log x)/(log y) →∞.

3. Main Results. It is easy to see that a positive integer n satisfies P (n)k |n if and only
if n = mP (m)k−1, where m = n/P (n)k−1; therefore, the sum in (2) can be rewritten
as

S(k, ϑ, µ, x) =
∑

P (n)k |n
n≤x

P (n)µnϑ =
∑

mP (m)k−1≤x

P (m)µ+kϑmϑ.

Theorem 1. Let ϑ ∈ (−1, 0] and µ < k−1 be fixed. Then the following estimate holds
as x →∞:

S(k, ϑ, µ, x) = x1+ϑ exp
(
−(1 + o(1))

√
2(k − 1− µ) log x log2 x

)
.

Proof. Given real numbers x ≥ y ≥ 2, we put

S(x, y) = {n ≤ x : P (n) ≤ y};

thus, Ψ(x, y) = #S(x, y). For any integer m such that mP (m)k−1 ≤ x, setting
p = P (m) we see that m = pn, where n ≤ x/pk and P (n) ≤ p; in other words,
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n ∈ S(x/pk, p). Conversely, for a prime p and an integer n ∈ S(x/pk, p), the number
m = pn clearly satisfies mP (m)k−1 ≤ x. We therefore have the basic identity:

S(k, ϑ, µ, x) =
∑

mP (m)k−1≤x

P (m)µ+kϑmϑ =
∑
p≤x

pµ+kϑ
∑

n∈S(x/pk, p)

nϑ. (4)

We begin by considering the contribution to (4) coming from “small” primes p. Let

y1 = exp

(√
(1 + ϑ)2

16(k − 1− µ)
log x log2 x

)
.

Then ∑
p≤y1

pµ+kϑ
∑

n∈S(x/pk, p)

nϑ ≤
∑
p≤y1

pµ+kϑ
∑

n≤Ψ(x/pk, p)

nϑ

�
∑
p≤y1

pµ+kϑ

∫ Ψ(x/pk, p)

1
tϑdt �

∑
p≤y1

pµ+kϑΨ(x/pk, p)1+ϑ

(5)

since ϑ ∈ (−1, 0].
To estimate the last sum in (5), we define

y∗1 = exp
(

1
3

√
log x/ log2 x

)
and consider separately the contributions coming from primes p ≤ y∗1 and from primes
p > y∗1 . For a real number z > 0, let

uz =
log(x/zk)

log z
=

log x

log z
− k.

If p ≤ y∗1 , the inequality

up ≥
log x

log y∗1
− k ≥ 3

√
log x log2 x− k ≥ 2

√
log x log2 x

holds provided that x is large enough; hence, by Lemma 5, we have∑
p≤y∗1

pµ+kϑΨ(x/pk, p)1+ϑ �
∑
p≤y∗1

pµ+kϑ

(
x

pk

)1+ϑ

exp
(
−(1 + ϑ)

√
log x log2 x

)
= x1+ϑ exp

(
−(1 + ϑ)

√
log x log2 x

) ∑
p≤y∗1

pµ−k

� x1+ϑ exp
(
−(1 + ϑ)

√
log x log2 x

)
(6)

since µ− k < −1.
For primes p in the range y∗1 < p ≤ y1, we remark that

log up

log p
≤ log2 x

log p
<

log2 x

log y∗1
� (log2 x)2

√
log x

= o(1);
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hence, by Lemma 4:

∑
y∗1 <p≤y1

pµ+kϑΨ(x/pk, p)1+ϑ =
∑

y∗1 <p≤y1

pµ+kϑ

(
x

pk
ρ(up)

(
1 + O

(
log up

log p

)))1+ϑ

� x1+ϑ
∑

y∗1 <p≤y1

pµ−kρ(up)1+ϑ.

For each p ≤ y1, we also have the lower bound

up =
log x

log p
− k ≥ log x

log y1
− k = (1 + o(1))u∗,

where

u∗ =
(

4(k − 1− µ) log x

(1 + ϑ)2 log2 x

)1/2

.

Using Lemma 3 and the fact that ρ is decreasing for large u, we deduce that

ρ(up)1+ϑ ≤ exp
(
−(1 + o(1))

√
4(k − 1− µ) log x log2 x

)
,

which implies the bound∑
y∗1 <p≤y1

pµ+kϑΨ(x/pk, p)1+ϑ ≤ x1+ϑ exp
(
−(1+o(1))

√
4(k−1−µ) logx log2x

)
. (7)

Combining the estimates (6) and (7) and substituting into (5), it follows that∑
p≤y1

pµ+kϑ
∑

n∈S(x/pk, p)

nϑ ≤ x1+ϑ exp
(
−(1 + o(1))

√
4(k − 1− µ) log x log2 x

)
.

Therefore, we see that the contribution to (4) from “small” primes p ≤ y1 is negligible
compared to the claimed bound on S(k, ϑ, µ, x).

Next, we estimate the contribution to (4) coming from “large” primes p > y2, where

y2 = exp
(√

4(k − 1− µ)−1 log x log2 x

)
.

We have∑
p>y2

pµ+kϑ
∑

n∈S(x/pk, p)

nϑ ≤
∑
p>y2

pµ+kϑ
∑

n≤x/pk

nϑ �
∑
p>y2

pµ+kϑ

∫ x/pk

1
tϑdt

�
∑
p>y2

pµ+kϑ

(
x

pk

)1+ϑ

= x1+ϑ
∑
p>y2

pµ−k � x1+ϑy2
µ−k+1

= x1+ϑ exp
(
−(1 + o(1))

√
4(k − 1− µ) log x log2 x

)
.
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Hence, the contribution to (4) from “large” primes p > y2 is also negligible.
Thus, to complete the proof of Theorem 1, it suffices to show that “medium” primes

y1 < p ≤ y2 make the appropriate contribution to (4); that is, we need to show that

∑
y1<p≤y2

pµ+kϑ
∑

n∈S(x/pk, p)

nϑ = x1+ϑ exp
(
−(1 + o(1))

√
2(k − 1− µ) log x log2 x

)
. (8)

To do this, let us first fix a prime p ∈ (y1, y2]. Using Lemma 4, we obtain the lower
bound ∑

n∈S(x/pk, p)

nϑ ≥ (x/pk)ϑΨ(x/pk, p) � ρ(up)
x1+ϑ

pk+kϑ
, (9)

where

up =
log(x/pk)

log p
=

log x

log p
− k

as before. For the upper bound, we have by partial summation:

∑
n∈S(x/pk, p)

nϑ =
∫ x/pk

1−
tϑd
(
Ψ(t, p)

)
= tϑΨ(t, p)

∣∣∣t=x/pk

t=1−
+ |ϑ|

∫ x/pk

1−
tϑ−1Ψ(t, p) dt

� ρ(up) pµ−kx1+ϑ +
∫ x/pk

1−
tϑ−1Ψ(t, p) dt.

To bound the last term, we split the integral at w = ρ(up)1/(1+ϑ)x/pk. For the lower
range, we have∫ w

1−
tϑ−1Ψ(t, p) dt ≤

∫ w

1−
tϑdt � w1+ϑ = ρ(up)

x1+ϑ

pk+kϑ
. (10)

For the upper range, writing ut,p = (log t)/(log p), we have by Lemma 4:∫ x/pk

w
tϑ−1Ψ(t, p) dt =

∫ x/pk

w
ρ(ut,p)tϑ

(
1 + O

(
log ut,p

log p

))
dt

≤ ρ(uw,p)
(

1 + O

(
log2 x

log p

))∫ x/pk

w
tϑdt � ρ(uw,p)

xϑ+1

pk+kϑ
.

(11)

Since
log x

log y2
≤ up <

log x

log y1

holds for y1 < p ≤ y2, using Lemma 3 we derive that

log ρ(up) �
√

log x log2 x � log p.
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Thus,

uw,p =
log w

log p
=

log(x/pk)
log p

+
log ρ(up)

(1− ϑ) log p
≥ up + O(1),

Using Lemma 3 again, it follows that

ρ(uw,p) = ρ(up) exp
(
O(up)

)
= ρ(up) exp

(
o
(√

log x log2 x
))

.

Substituting this estimate into (11) and combining this with (10), we obtain the upper
bound ∑

n∈S(x/pk, p)

nϑ ≤ ρ(up)
x1+ϑ

pk+kϑ
exp

(
o
(√

log x log2 x
))

.

Taking into account the lower bound (9), we obtain that∑
n∈S(x/pk, p)

nϑ � ρ(up)
x1+ϑ

pk+kϑ
exp

(
o
(√

log x log2 x
))

. (12)

Now let δ = (log x log2 x)−1/4. Put z0 = y1, and let z` = z0(1 + δ)` for each ` ≥ 1.
Let L denote the smallest positive integer for which zL > y2.

For each ` = 1, . . . , L, let J` denote the half-open interval J` = (z`−1, z`]; clearly,

L−1∑
`=1

∑
p∈J`

ρ(up)pµ−k ≤
∑

y1<p≤y2

ρ(up)pµ−k ≤
L∑

`=1

∑
p∈J`

ρ(up)pµ−k. (13)

Now let
v` = uz`

(1 ≤ ` ≤ L).

For every prime p ∈ J`, we have

up =
log x

log p
− k =

log x

log z` + O(δ)
− k

=
log x

log z`
− k + O

(
δ log x

(log z`)2

)
= v` + O

(
δ

log2 x

)
,

since log z` ≥ log y1 �
√

log x log2 x. Thus, using Lemmas 1 and 2, we obtain that

ρ(up) = ρ(v`) + O

(
|up − v`|max

t∈J`

|ρ′(ut)|
)

= ρ(v`) + O

(
δ max

t∈J`

ρ(ut)
)

.

Consequently,

∑
p∈J`

ρ(up)pµ−k = ρ(v`)

∑
p∈J`

pµ−k

(1 + O(δ)
)
. (14)

Let π(t) denote, as usual, the number of prime numbers p ≤ t. As the asymptotic
relation log t �

√
log x log2 x = δ−2 holds uniformly for all t ∈ (y1, y2], we have

π(t) =
t

log t
+ O

(
t

log2 t

)
=

t

log t

(
1 + O(δ2)

)
. (15)
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In particular,

#J` = π(z`(1 + δ))− π(z`) =
δz`

log z`

(
1 + O(δ)

)
.

Noting that pµ−k � zµ−k
` for every p ∈ J`, we obtain that∑

p∈J`

pµ−k � #J` · zµ−k
` = δzµ−k+1

`

1
log z`

(
1 + O(δ)

)
. (16)

Combining (16) with (14) using the resulting estimate in (13), we have therefore
shown that

(
δ + O(δ2)

) L−1∑
`=1

H(`) �
∑

y1<p≤y2

ρ(up)pµ−k �
(
δ + O(δ2)

) L∑
`=1

H(`), (17)

where
H(`) = ρ(v`)z

µ−k+1
`

1
log z`

(1 ≤ ` ≤ L).

Now let z∗ be chosen such that

ρ(uz∗)z
µ−k+1
∗

1
log z∗

= max
y1≤z≤y2

ρ(uz)zµ−k+1 1
log z

.

By Lemma 3, we have for all z ∈ [y1, y2]:

ρ(uz)zµ−k+1 1
log z

= exp
(
−(1 + o(1))

(
log x log2 x

2 log z
+ (k − 1− µ) log z

))
;

therefore,

log z∗ = (1 + o(1))

√
log x log2 x

2(k − 1− µ)
,

and

M = ρ(uz∗)z
µ−k+1
∗

1
log z∗

= exp
(
−(1 + o(1))

√
2(k − 1− µ) log x log2 x

)
.

Let κ ∈ {1, . . . , L} be chosen such that

H(κ) = max
1≤`≤L

H(`).

We remark that for each ` ∈ {1, . . . , L} and every number z ∈ J`, we have

ρ(uz) = ρ(v`)
(
1 + O(δ)

)
� ρ(v`)

as in our proof of (14). Thus, for z ∈ J`,

ρ(uz)zµ−k+1 1
log z

� ρ(uz`
)zµ−k

`

1
log z`

.
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In particular,

ρ(uzL)zµ−k+1
L

1
log zL

� ρ(uy2)y
µ−k+1
2

1
log y2

= o(M),

which shows that z∗ 6∈ JL. Therefore y1 < z∗ ≤ y2, which implies that(
δ + O(δ2)

)
H(κ) �

∑
y1<p≤y2

ρ(up)pµ−k �
(
δ + O(δ2)

)
LH(κ).

We also have that if z∗ ∈ J`, then

M = ρ(uz∗)z
µ−k+1
∗

1
log z∗

� ρ(uz`
)zµ−k+1

`

1
log z`

= H(`) ≤ H(κ) ≤ M.

We observe that (17) immediately implies that(
δ + O(δ2)

)
H(κ) �

∑
y1<p≤y2

ρ(up)pµ−k �
(
δ + O(δ2)

)
LH(κ),

and since L � δ−1
√

log x log2 x � (log x log2 x)3/4, it follows that∑
y1<p≤y2

ρ(up)pµ−k � M 1+o(1),

which together with (12) implies (8). This completes the proof. �

Theorem 2. The bounds

#Fk(x) ≤ x exp
(
−(1 + o(1))

√
(k − 1) log x log3 x

)
and

#Fk(x) ≥ x exp
(
−(1 + o(1))

√
2(k + 1) log x log2 x

)
hold as x →∞.

Proof. Let S1 denote the set of positive integers n ≤ x for which ϕ(n) is y-smooth.
Let S2 be the set of positive integers n ≤ x such that P (ϕ(n))k |ϕ(n) and n 6∈ S1.

For each n ∈ S2, there exists a prime ` > y such that `k |ϕ(n). As in the proof of
Theorem 5 of [7], one can show that there are at most xy−k+1+o(1) such positive integers
n ≤ x, that is,

#S2 ≤ xy−k+1+o(1).

Taking

y = exp

(√
1

(k − 1)
log x log3 x

)
,

we see that Lemma 6 applies, and using the fact that

#Fk(x) ≤ #S1 + #S2,
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we obtain the stated upper bound.
For the lower bound, we remark that P (ϕ(n))k |ϕ(n) whenever n has the form

n = mP (ϕ(m))k for some integer m. If m ≤ x/yk is positive and y-smooth, it follows
that

n = mP (ϕ(m))k ≤ mP (m)k ≤ x.

Moreover, since P (ϕ(m)) ≤ P (m) ≤ y, we see that for each n, there are at most y
distinct representations of the form n = mP (ϕ(m))k. We now choose

y = exp

(√
1

2(k + 1)
log x log2 x

)
.

Taking into account that

v =
log(x/yk)

log y
=

√
2(k + 1) log x

log2 x
− k,

using Lemmas 3 and 4 we derive that

#Fk(x) ≥ Ψ(x/yk, y)y−1 = v−(1+o(1))vxy−k−1

= x exp
(
−(1 + o(1))

√
2(k + 1) log x log2 x

)
.

This completes the proof. �

Theorem 3. The bound

#Tk(x) ≤ x exp

(
−(1 + o(1))

√
k − 1

2
log x log3 x

)

holds as x →∞.

Proof. Let S1 denote the set of positive integers n ≤ x for which t(n) is y-smooth.
Let S2 be the set of positive integers n ≤ x such that P (t(n))k | t(n) and n 6∈ S1.

For each n ∈ S2, there exists a prime ` > y such that `k | t(n) |ϕ(n). As in the proof of
Theorem 5 of [7], one can show that there are at most xy−k+1+o(1) such positive integers
n ≤ x, that is,

#S2 ≤ xy−k+1+o(1).

Taking

y = exp

(√
1

(k − 1)
log x log3 x

)
we see that Lemma 7 applies, and using the fact that

#Tk(x) ≤ #S1 + #S2,

we obtain the stated upper bound. �
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4. Remarks. A close analysis of the arguments used in the proof of Theorem 1 shows
that if ε > 0 is fixed, then estimate of Theorem 1 holds uniformly for all ϑ ∈ [−1+ε,−ε),
µ < k − 1 − ε and k = o((log x/ log2 x)1/3). Furthermore, using the Siegel-Walfisz
theorem together with (15), one can easily see that the same asymptotic formula as (2)
holds for

S(k, ϑ, µ, a, b, x) =
∑
n≤x

P (n)k|n
P (n)≡a (mod b)

P (n)µnϑ

for all positive coprime integers a and b with b ≤ (log x)A, where A is an arbitrary
constant. Moreover, since k is arbitrary in (2), it follows that if we replace the range of
summation Nk(x) by

Nk(x)\Nk+1(x) = {n ≤ x : P (n)k‖n},

then the same asymptotic formula as (2) holds for this “smaller” sum. We do not give
further details in this direction.

One might consider a problem related to the estimation of Nk(x), namely that of
estimating the number of positive integers n ≤ x such that p2

j - n for j = 1, . . . , k,
where p1 > . . . > pk are the k largest prime factors of n.

Certainly, a more careful study of #Fk(x) (perhaps in the style of our proof of
Theorem 1) should lead to stronger lower and upper bounds in Theorem 2. On the
other hand, it is unlikely that one can establish unconditionally the precise rate of
growth of the counting function #Fk(x) due to the current lack of matching lower and
upper bounds for Φ(x, y). It is reasonable to expect that the upper bound of Lemma 6
is tight; in fact, similar lower bounds for Φ(x, y) may be derived from certain widely
accepted conjectures about the distribution of smooth shifted primes (see the discussion
in Section 8 of [2]). Nevertheless, the strongest unconditional results on smooth shifted
primes (see [1], for example) are not nearly sufficient to establish a lower bound of the
same order of magnitude as the upper bound of Lemma 6.

There is no reason to doubt that #Tk(x) = x1+o(1); however, at present we do not
even see how to prove that #Tk(x) ≥ xα for some fixed α > 0. Examining the integers
n = 3k one easily concludes that #Tk(x) � log x. This bound can be improved by
considering powers of other small primes, but it still leaves open the question about the
true order of #Tk(x).

Finally, it would also be interesting to prove that the set

Q(x) = {p ≤ x : p prime, P (p− 1)2 |p− 1}

is infinite. This could be considered as an weak form of the conjecture that p = m2 + 1
holds infinitely often.
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Résumé substantiel en français. Pour chaque entier n ≥ 2, P (n) désigne le plus grand
facteur premier de n. Dans plusiers situations, en particulier celles où l’on compte le
nombre d’entiers sujet à divers contraintes arithmétiques, il est souvent important de
comprendre l’ensemble des entiers positifs n pour lesquels P (n) est petit par rapport
à n, ou l’ensemble des entiers positifs n pour lesquels P (n)2 |n. De tels ensembles
souvent contribuent au terme d’erreur dans une estimation. Ainsi, il est utile d’avoir
de très bonnes bornes sur le nombre d’éléments dans ces ensembles. Par exemple,
de tels ensembles d’entiers jouent un rôle important dans l’estimation des sommes
exponentielles avec la fonction d’Euler ϕ(n) (voir [4, 5]), dans l’étude du «diviseur
premier moyen» d’un entier (voir [3]), ou dans l’évaluation de moyennes diverses et
de moments de la fonction de Smarandache de n (voir [6, 9]).

Les entiers positifs ayant la première propriété (à savoir, P (n) est petit) sont dits
lisses, et la distribution d’entiers lisses a été considérablement étudiée. Malgré le fait
qu’aucun nom ne leur a été attribué, les entiers satisfaisant la seconde propriété (à savoir,
P (n)2 |n) ont été aussi étudiés dans le corpus. Par exemple, dans [10] on a montré que
pour un nombre réel fixé r ≥ 0, l’estimation suivante a lieu lorsque x →∞ :∑

P (n)2 |n
n≤x

1
P (n)r

= x exp
(
−(1 + o(1))

√
(2r + 2) log x log2 x

)
. (1)

Ici, log2 x = log log x. Le terme d’erreur o(1) dans l’estimation ci-dessus peut être
pris sous la forme Or(log3 x/ log2 x), où log3 x = log log log x. Plus généralement, les
sommes prises sur des entiers n ≤ x où P (n) est dans une progression arithmétique
fixée ont été estimées dans [8]. Dans ce papier, nous complétons l’estimation (1) en
établissant le résultat suivant :

Théorème 1. Soient ϑ ∈ (−1, 0] et µ < k − 1 deux nombres fixés. L’estimation
suivante a lieu :∑

P (n)k |n
n≤x

P (n)µnϑ = x1+ϑ exp
(
−(1 + o(1))

√
2(k − 1− µ) log x log2 x

)
. (2)

Notre méthode ressemble à celle dans [8]. En particulier, en prenant ϑ = µ = 0
dans (2), nous obtenons l’estimation

#Nk(x) = x exp
(
−(1 + o(1))

√
2(k − 1) log x log2 x

)
(3)

pour le cardinal de l’ensemble

Nk(x) = {n ≤ x : P (n)k |n}.

Lorsque k = 2, la borne (3) peut être récupérée de (1) en prenant r = 0, et ceci apparait
aussi dans [6].

Nous considérons également une question similaire pour les valeurs de la fonction
d’Euler ϕ(n), et nous donnons des bornes inférieures et supérieures pour le cardinal
des ensembles

Fk(x) = {n ≤ x : P (ϕ(n))k |ϕ(n)}, k = 2, 3, 4, . . . .
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Notre résultat est le suivant :

Théorème 2. Les bornes

#Fk(x) ≤ x exp
(
−(1 + o(1))

√
(k − 1) log x log3 x

)
et

#Fk(x) ≥ x exp
(
−(1 + o(1))

√
2(k + 1) log x log2 x

)
ont lieu lorsque x →∞.

Finalement, pour un entier impair n, nous définissons t(n) comme étant l’ordre
multiplicatif de 2 modulo n, et nous donnons des bornes supérieures sur le cardinal des
ensembles

Tk(x) = {n ≤ x : n odd, P
(
t(n)

)k | t(n)}, k = 2, 3, 4, . . . .

Notre résultat est le suivant :

Théorème 3. La borne

#Tk(x) ≤ x exp

(
−(1 + o(1))

√
k − 1

2
log x log3 x

)

a lieu lorsque x →∞.
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