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LOCAL EXISTENCE, UNIQUENESS AND REGULARITY OF A
SPECIAL SOLUTION FOR A MIXED PROBLEM IN ELASTICITY

MUSTAPHA RAISSOULI AND JAOUAD OUDAANI

RESUME. Le but de cet article est@établir desésultats d’existence locale, d’unigit
et de egularit de solution pour un probine, erélasticié tridimensionnelle, avec
conditions aux limites de type Dirichlet et Neuman.

ABSTRACT. The purpose of this paper is to give some results for local existence,
unigueness and regularity of solution of linear and nonlinear problems in three-
dimensional elasticity with mixed Dirichlet and Neuman boundary conditions.

Introduction. In nonlinear three-dimensional elasticity, a central problem consists in
finding the equilibrium position of an elastic material subject to given internal body
forces with surface forces prescribed on part of the boundary and the displacement
given on the remainder. More precisely, f&be a bounded open subset®f whose
boundaryl” consists of disjoint subsely, I'; such thal'oNT'y = (), andl’ = T'oUT';.

The closurd? of 2 represents the reference configuration occupied by an homogeneous
elastic material in the abscence of applied forces. The material is subject to given body
forces f in , given surface forceg on I'1, and zero displacement dry. When

the homogeneous elastic material is isotropic [2], the response furkt{onsecond
Piola-Kirchhoff stress) is given by:

Y(E) = A(tracd E))I + 2uE +o(||E|]), (1)

where|| - || denotes any norm in the space ok3 matrices\ > 0, u > 0 are two
constants, known as the La&ncoefficients, and

E = E(Vu) = 1/2((Vu)"(Vu) + (Vu)" + Vu)

is the nonlinear Green-Saint-Venant strain tensar,is the displacement gradient.

A special physical case, occuring an important place in nonlinear elasticity, is the
Saint-Venant-Kirchhoff material whose the response function is given by the second
Piola-Kirchhoff stress tensor,

Y(E) = \tracE))I + 2uE. (2)
Recu le 25 mai 2001 et, sous formefititive, le 9 mai 2003.
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192 Existence, uniqueness, regularity of a special solution for a problem in elasticity

The mathematical problem consists in solving a nonlinear boundary value problem,
with mixed Dirichlet and Neuman conditions, for the displacemesiich that

—div(({ +Vu)(Z(E(Vu)))) = f inQ,
(S) (I+Vu)(X(E(Vu)))) =g onT'y,
u=20 onl,.

We limit our attention to consider only zero displacement. Note that because the Saint-
Venant-Green strain tensor is nonlinear, a problem with nonhomogeneous boundary
displacement cannot be reduced to a nonlinear problem with homogeneous boundary
displacement and non-zero body force.

The linearized mixed problem ¢F) is

—div(Z(e(u))) = f InQ,
(Se) q Zle(w)-fi=yg onTy,
u=0 onl',,

wheree(u) = 1/2(Vu + (Vu)?) is the linear Green-Saint-Venant strain.

In[2], P. G. Ciarlet has proved that the nonlinear prob{éfywith Dirichlet boundary
condition (i.e.I'y = 0)) has a unique solution. The same problem with mixed Dirichlet
and Neuman boundary conditions is, for the moment, unsolved.

In [1], J. M. Ball introduces the notion of polyconvexity and minimises the stored
energy to study the existence of solutions to the mixed boundary value problem of
nonlinear elasticity for a wide class of hyperelastic materials, which does not include
the Saint-Venant-Kirchhoff material, because its stored energy function, as shown by
A. Raoult, is not polyconvex (then neither convex) in the spacexd gnatrices (see [2]
and the reference therein). However, this is not a restriction for the Ball's approach,
since P. G. Ciarletand G. Geymonat (cf. [2] or [3]) have proved that, given two constants
A > 0andu > 0, itis possible to construct a constitutive equation satisfying (2) and to
which Ball’s theory can be applied. The main difficulty is then to prove if the previous
minimum of stored energy function is a solution of the Euler’s equilibrium equations
of the systents).

The assumptions. > 0 andp > 0 satisfied by the La# coefficients are two
physical conditions as shown by an experimental evidence. But many authors (see [3] for
example) included the case= 0 corresponding to “limit” of Saint-Venant-Kirchhoff
material in the sense thatis physically very small X ~ 0). Mathematically, this
“limit” case plays an important part for the two next reasons: Firstly, the Ciarlet's
existence theory for the pure displacement problem {ie= () still hold under the
weaker assumptions > 0 and 3\ + 2i, > 0, see [2], Chapter 6; and [5], Section 6.1.
The second reason is explained by the fact that the study of the nonlinear pr@hlem
for A = 0 is more difficult than other cases, since M. Atteia and MisBauli showed,
see [2] or [7], that the associated stored energy function) fer 0, can’t be convex,
even locally, in a neighbourhood of the point 0 which corresponds to the trifling null
solution for the simple casg = 0 andg = 0. For the previous arguments, we limit
our attention throughout the following, not to lengthen the paper, to thel\caseé and
= 1/2 that corresponds tB(F) = E.
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The fundamental goal of this work is to prove, first, that the linearized mixed problem
has one and only one regular solution and so to deduce the local existence, unigueness
and regularity of solution of the nonlinear problem with mixed conditions.

The paper is organized as follows. In Section 1 we draw a background material that
will be needed throughout the following. Section 2 describes the formulation of the
problem which we will study later. Section 3 is devoted to introduce some preliminary
results for the linearized mixed problem. In the final Section, we state our fundamental
theorem concerning the local existence, uniqueness and regularity of solution for the
nonlinear mixed problem.

1. Preliminary. In this short section, we recall some standard notation and results. For
some details, one can consult [6] for example.

Let Q2 be an open bounded domaini3 with its boundant™ = 9. For a given real
numbers > 0, we recall that the spadé®(2) is equipped with the norm:

1/2

8 u(x
HuHHs(Q) = H“HHk(Q) Z I |o’+3/2 HLZ(QxQ) y (3)
loo|=k

wheres = k+0,0 < 0 < 1,k is the integer part of and| - | is the classical Euclidian
norm of R3.

We say thafl" is of classC*°, [6], if the following conditions are simultaneously
satisfied: there exist two real numbers> 0, 6 > 0, the local cartesian coordinate
systemsz,,, T,, 2r3) = (2., z,,), and the functions, € C*,r = 1,...,m, in the
bidimensional closed cuue | < a such that every point € I' can be represented in
the forma = (a7, a,(x])). We suppose that the points.., z,,) such thafz’,| < «,
ar(q:’) < xpy < ar(z)) + [ are inQ, and the pointgz;,., z,,) such thatjz]| < «,
ar(zl) — B < zpy < a,(x) are out of(2.

With the above notation, let us ptt, = {2} , |2}| < a} and consider a functiofi
defined ol satisfying:

f(@) = f(ay, ar(zy)) = fr(a7), (4)

wheref, is defined inA,. forr=121,2,... ,m
In order to define the surface integral of a functibrwe need a partition of unity
associated with the covering of the boundBrgy the open sets:

Ur = {(x;,x,ns) ]x | <, ar( ) B < Ty < ar(x )+/3}
that is, a family of functiony, : R3 — R, that satisfy:
suppy, C Uy, 0< e, <1forr=1,...,m, andZwr(x) —1forallz €T,
r=1

with . € D(T") space of functions infinitely differentiable of compact support.
Then, we define

2 4 1/2
/fd”‘Z/ f (@, ar (@) e (@, ar(a)) (1+Z<8§:_)2> da,.
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With the above notations, we define the spaéd”) by
fell) — /|f|2da < +00,
T

andL?(T") can be equipped with the norm:

1/2
Flue = ( / !f!2d0'> ,

which according to [6, page 120], is equivalent to the next one

1/2
Hlelz( (Z/ wr,ar )|2d$ > .

r=1

As is pointed out in [6], we notice that the previous norms are independent of the local
coordinate systems considered and independent of the associated partition of unity.

Endowed with| - || 2y (OF | - 1)), L3(T') is a reflexive and separable Banach
space

In order to simplify the statement below, we use fhé| >y norm.

Similarly to the above definitions, the spakié(T") is deflned by:

fe ) < f, € H(Ay),

for everyr = 1,2,...,m and we can define oH*(I") the following norm:

1/2
s = (Zufr 2 ) ,

for which H#(T") is a reflexive and separable Banach space.

171

2. Formulation of the problem. In what follows, we describe brievly the mathematical
model of the problem which we shall study later. For further details, we refer the reader
to [2] and the rich reference therein.

Throughout this pape) C R3 is a nonempty bounded open domain with its
boundant” = 99 of classC*°, we assume thdt = I'o U I"; wherel', andI'; are two
measurable portions @f with o N T'; = 0.

Let f € (HY(Q))% andg € (H%¥?(I'1))3. In order to fix ideas, and for the reasons
explained in the above first section, we will study the prob{émfor the Saint-Venant-
Kirchhoff material with limiting values\ = 0 andy = 1/2. This restriction, adopted
only for simplicity, can be relaxed and the general case treated similarly. Our problem
is then formulated as follows:

Findu € (H3(£2))3 such that

—div((I +Vu)(E(Vu) = f inQ,
(P) § (U+Vu)(E(Vu)))-i=g  onTy,
u=0 onIg,
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where, as already noted,
E(Vu) = 1/2((Vu)' (Vu) + (Vu)' + Vu),

is the nonlinear Green-Saint-Venant strain artle exterior normal vector tb.
The linearised problem dfP) is the following:
Findu € (H3(£2))3 such that

—div(e(u)) = f InQ,
(Pe) q (e(w))-i=g  only,
u=0 onl'o,

where
e(u) = (eij(u))1<ij<s = 1/2(Vu+ (Vu)"),
is the linear Green-Saint-Venant strain.

3. Existence, uniqueness and regularity of solution fofP;). We start by stating
some results for the linearized probléi#) which will allow us to study the nonlinear
mixed problem(P). For this, we need additional notation. Let us put:

V ={ve (HYQ))®|v=0o0nTy}

V1= {1) = (7)1, U1, ”Ul) S (Hl(Q))3 ’ v=20 onFo}

Clearly,V1 C V andVy, V are two closed vector subspaceg Hf*(Q2))3.
For everyv € (H(9))® we define

3
&zZA@W?

7‘:.7:1

le(v)

With the above definitions, we have the next proposition.

Proposition 3.1. The semi-normie( - )|, is a norm inVy equivalent to the norm
|-l ey of (HH(€2))3.

Proof. SinceVy C V and|e( - )|, is a norm inV (see [2, Chapter 6]), equivalent to
the norm of(H%(2))3, the desired result follows.

Proposition 3.2. Let f € (L?(Q))%andg € (L?(T1))3, then the probleni?,) has one
and only one solutiom € V; satisfying:

Vv e Vi, a(u,v) = L(v),

where

3
atw0) = Y [ euwes o)

,j=1

L(v):/Qf-v+/Flg-v.

and
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Proof. Letu,v € (H(Q))3, by using the Green’s formula and the symmetry (of),
we have:

S | cotures o) =/Qf'v+/rlg-v=L(v)-

ij=1
Let us consider the mapping:

j:Vic (HYQ)® —R
ur— j(u) = (1/2)a(u,u) — L(u)

It is easy to see thaf is a continuous convex and coercive functional. The space

(H(Q))3 is reflexif, we conclude that attains its minimum in the closed spa¢e.
Sinceu(-, -) is coercive then the minimum gfis unique and satisfie§u, v) = L(v),

for all v € V1. This concludes the proof.[]

Now, we are in a position to state our first lemma which will be needed in the sequel.
Lemma3.1. Letg € (HY?(I'1))%andu = (u1, u1,u1) € Vithatsatisfye(u)-ii = g. If

we assume that the exterior normal vecior (n1, np, n3) is such thaty +ny+ng # 0
in Ty, thenVuy € (HY3(I'))3,

Proof. Letu = (u1,u1,u1) € V1, we have successively

3
€(u)- =g <= Vi=123 Zeij(u)nj:gi — AU =y,
j=1

whereU = (Oyui,doug, d3uy) and A = (ai]’)1§¢7j§3 with a11 = 2n1 + np + ng,
az = 2np+ny+n3, azz = ny+np+2n3, ax = azy = Ny, azx2 = a2 = N2,
a3 = az3 = ns.

The linear systemlU = g has one and only one solutiénif and only if detA =
(n1 +ny +n3)® # 0, and in this cas&’ = A~1g € (HY?(T1))3. This concludes the
proof. [

Example 3.1. We state an example illustrating the hypothesis of the previous lemma.
Let Q2 be the interior of the following cylinder:

Here, we have@ = (0,0, —1) andoiu; = —2¢g1+¢3, ous = —2g2+g3, d3us = —gs.

Now, using the above results we shall prove the following theorem.
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Theorem 3.1. Let f € (HY(Q))% andg € (HY?(I'1))3. Assume thal; satisfies the
condition of Lemma 3.1 ansupy., |g| < +oo, then the solution: € V; of the linear
mixed problen{P,) belongs to H?(Q))3.

Proof. By Proposition 3.2, let: = (u1, u1,u1) € V1 be the solution of P,) problem.
Sincee(u) - 7 = g in 'y, Lemma 3.1 yield®;u; € HY?(T'y) fori = 1,2, 3. Because
I'is of classC*, let (x,,, zr,, z,,) be a cartesian coordinate systems such that:

I'n C U{(mlrvar(xlr))v . € A},

and

roc |J (@ a(e)). o) € A,).

r=m/+1

We shall show thatr, € (H¥?(T'1))3. First, we have

HUH?H3/2(F1))3 = Z H“iulzqs/Z(rl) =3 H“lHiﬁ/Z(rl)’
i=1

and, (3) with an elementary transformation yields

/

laal ey = 22 M@0 oza,y = D2 (10 22,y + IV @0 20,2
r=1 r=1

Knowing thatur, € (HY2(I'1))3, we deduce, by definition, thét), € (L?(A,))?
and thus(uy), € L?(A,).
Due to relation (4), we can write

9i((u1)r) = (Qjua)r + (G3u1),05ar, j=1,2. (5)

Then, there exist€’; > 0 such that

2
HV((Ul)T)H(ZHl/Z(AT))Z - Z Ha’ﬂ((ul)T)HfﬁIl/Z(A,\)
k=1

- Z 1(@kua), + (B5ua)rOhar | Fpas2 .

< 0> (@)l Faa,y * O30 Bar sz ) -

2
k=1

Sincedyuy € HY(I'y) for k = 1,2 then(dyuz), € HY?(A,).
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Moreover, with (3) we can writek{(= 1, 2):

H (O3u1),Okar Hip/z(Ar) = H (Ozu1),rOay HEZ(AT)

(F3ur(x))rOkar(x) — (O3ur(y))rOkar(y) |2

+
|z — y|? L2A(ArxAy)

< C'2H(33U1)7"Hf:2(&)

. || (O3ua(@))rOpar(x) — (O3ua(y)),rOkar(y) |2

|z —y|? L2(Drx )
whereC, = sup |dka,|, and, there exist€’s > 0 such that
H (Ozu1(x))rOkar(x) — (O3ua(y))rOkar(y) ||2
|z —yl? LY(Arx )
(Okar(z) — Ikar(y))(Fzur(y))r ||?
<C3 H 5
[z — y L2(Lrx D)
1 | (@sale) = D))o o)
|z —y|? LA(Drx D) )
It becomes that
H (O3u1())rOkar(z) — (O3ur(y))rOkar(y) |2
|z — y|? L2(ArxAy)
Okar(x) — Orar(y)||2
<
< Cs SAUTD\(@sm)r\ ‘ P (o)
_ 2
1y ( 2etale) = Oataty) |
|z — y| LA xny)

Fori = 1,2,3, sup., |gi| < +oo, using Lemma 3.1 we obtain spp|(dzuy),| < +oo,

d with (3
andwith (3) <83u1(x) — Osua(y)
|z —y|?

> e LA, x A).

Sincea, € C=(A,), thenda, € HY?(A,) and
Okar(x) — Ogar(y)

|z — y|?
We conclude tha¥/((u1),) € (HY?(A,))?, i.e. (u1)r, € H¥?(T'1), or againur, €
(H¥?(T'1))3. Summarizing the previous results, with the fact thaf = 0, we have

e L3N, x A).

HUH?H3/2(F))3 = Z HUH§H3/2(AT))3 = Z HUH§H3/2(AT))3’
r=1 r=1

and consequently, we have establish that (F%/3(T))2,

The operator-div(e( -)) is strongly elliptic,f € (HY(Q2))3 andu € (H*(Q2))3, we
deduce that (see [4, page 166]k (H2(Q2))% and the desired result is obtained.

The following theorem, which gives more regularity than the previous one, will
enable us to study the nonlinear mixed problgh).
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Theorem 3.2. Let f € (HY(Q))3 andg € (HY?(I'1))3. Assume thal; satisfies the
condition of Lemma 3.5up, |g| < +o0, Vg € (HY2(I'1))® andsup., |Vg| < +oc.
Then the solutiom € V1 of the linear problen{ ;) is in (H3(Q))3.

Proof. Let u = (u1,u1,u1) € V1 be the solution of ). First, we will prove that
wr, € (H¥?T'1))3. In fact, one has

3

2 2 2
H“H(HS/Z(Q))S = Z H“Z‘HHS/z(rl) =3 H“1HHS/2(F1)
i=1

and, a simple transformation gives

ml

oy = 32 (N, + 3 1% e, )
r=1 la]=2

According to the proof of Theorem 3.1, we havg), € HY(A,).

Now, we show that fofee| = 2,0%((u1),) € HY?(A,),i.€.0u((u1),) € HY?(A,)
forall k,¢ = 1,2. Using (5), an elementary check yields:

| Oke((ua)r) Hzl/z(ﬁr) = ||(Oke ua)r + (D30 ua)rOre ar + (Da3u1)r O ay

+ (83kul>raZ ar t (a3u1)rak€ G’THZVZ(AT)’

from which we deduce, there exists> 0 such that

18ke((un)) [ Gpa,y < c(uwmumuzm,.) + |/ (Oau)rBuaar | pa,
+[1(@ssu)rDue vy, + 1 @ka)s Do
+ || (9au1 ) One ar’zl/Z(AT)> :
Similarly to the proof of Theorem 3.1, we establish that
(Orua)r € HY2(D), (Ogua),Oar € HYA(D,), (O33ur)rOmar, € HYA(A,),

(B3pua)rOrar € HY?(A,) and (dzuq),Oar € HY?(A,).

In summary, we have showed tha{,((u1),) € HY?(A,), that is for|a| = 2,
(0%((ua),)) € HY?(A,), and consequently; € H¥?(T'y). Sinceyr, = 0, we have
HUH(HS/Z(Fl))B = H'LLH(Hs/z(F))S, and thenu € (HS/Z(F))S

The operaton, — —div(Vu) is strongly elliptic,u € (HY?(T))3, u € (HY(Q))3
andf € (H(Q))3, we deduce (see [4, page 166]) that (F73(2))3, and Theorem 3.2
is proved. O

4. Existence and uniqueness solution for the probleriP). As already pointed, our

aim in this section is to study the nonlinear mixed problgm. Combining the results

of the previous section, we shall prove the next theorem which is the original motivation
of this paper.
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Theorem 4.1. Let f € (HX(Q))® andg € (HY?(I'1))3. Assume thaf; verifies the
condition of Lemma3.Kg € (HY3(T'1))%, sup, |g| < +oc andsup., |Vg| < +oo. If
moreover| f || z1(a))2 and||gll zs/2(r, ) are small, then the nonlinear mixed problem
(P) has one and only one solutianc V5 := V1 N (H3(Q))2 of small norm.

Proof. Let us put thatd;u = (I + Vu)E(Vu). According to [2] with the continuous
injection H2(Q) — C°(Q), we deduce that the following linear operator

A1V, —s (HY(Q))®

u — —div(Aju)

is defined and infinitely Rechet differentiable, and; (0) = 0.
Now, let Aou = Aqu - 7@ where

Ao Vo — (H2(Q))° — (HY?(T1))?

u —  Ajqu — Aju-7

By the same arguments as previous, the opetatas defined and infinitely Fechet
differentiable, the linear operator “trace” is continuous, then the opefatisr defined
and infinitely Fechet differentiable withi,(0) = 0.

We putDu = (Aju, Azu), whereD' (u)(0) = (—div(e(u), e(u) - i7) is a continuous
linear operator. Due to Theorem 3.2, the linear probldfn has one and only one
solutionu € V, and soD’(u)(0) is bijective.

By virtue of the closed graph theorem, we can deduce that

D'(u)(0) € isom(V, (HY(©))% x (H¥?('))%).

According to the implicit function theorem, there exist a neighbourhid@dof 0 in
V, and a neighbourhoot, of 0 in (H(Q))3 x (H%2(I'1))® such that for every
(f1,91) € Wa the problemDu = (f1, g1) has one and only one solutianc Wj.
Since|| f{|(z1(qy)e and||gll gsr2(r,))s are small, we conclude that the probldha =
(f,g) has one and only one solutieanc V5, of small norm, i.e. the nonlinear mixed
problem(P) has a unique solutiom € V; of small norm. This completes the proofl]

An immediate consequence of Theorem 4.1 is the next corollary.

Corollary 4.1. LetI'; asin Lemma 3.1 and suppose tifat Oandg = 0. Thenu = 0
is the unique solution iV for the problem(P).

AcknowledgementsThe authors are grateful to the two anonymous referees for their
helpful comments and suggestions.

Résurre substantiel en francais.Soit Q ¢ R3 un ouvert borg de frontereT’ = 99
suffisammenté&guliere. On suppose que= I'o UT'; avecl'y etI'; deux portions dé&
telles quel’'o N Ty = 0.

Soientf € (HX(Q))% etg € (H¥?(I'1))® donrés. On consiére le probdme mixte
(non lingaire) suivant :
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Trouveru € (H3(2))3 tel que
—div((I +Vu)(E(Vu))) = f dansQ,
(P) (I+Vu)(E(Vu)))-i=g surl'y,

u=0 surl’y

ou
E(Vu) = 1/2((Vu)! (Vu) + (Vu)' + Vu)

est le tenseur (non lgaire) de Green-Saint-Venantieest le vecteur normal exterieur
arl'. Le probEme mixte lireari€ de(P) est :

Trouvery € (H3(Q))3 satisfaisant
—div(e(u)) = f dansQ,
(Py) (e(u))-i=g surl’y,
u=0 surl'g

ou
e(u) = (eij(u))1<ij<s = 1/2(Vu + (Vau)’),
est le tenseur ligaire de Green-Saint-Venant.

Les probémes(P) et(F;) occupent une place importante@asticié tridimension-
nelle. Dans [2], P. G. Ciarlet a moatque le prol#me mixte non ligaire (P) avec
condition de Dirichlet (c’es&-direI'; = ()) admet, au voisinage de 0, une solution
unique lorsque la force de volunyeest de norme assez petite. Un tel paoshe avec
conditions mixtes (de Dirichlet et Neuman) est, jusgpiésent, encore ouvert.

Le butde ce travail est de montrer, d’abord, que le grotd mixte liaire( P,) admet
une solution uniqueéguliere, et d’en @duire ensuite I'existence (locale), I'unieiet
la régularié de solution du proBme mixte non liaire(P).

Avant d’enoncer nosésultats, nous avons besoin dé&gser quelques notations
utiles par la suite.

Soient

V ={ve (HYQ)?|v=0surly}
Vi ={v=(v1,v1,11) € (HY())3 | v=0surlo}.
Il est clair queV; C V etqueVy, V sont deux sous-espaces fé@se( H1(2))3. Nous
avons besoin de faire I'hypadse suivante :

(H) Pourg € (HY?(T1))® etu = (ug,u1,u1) € Vi tel quee(u) -7 = g, on
supposera que le vecteur normal exteriéut (n1, nz, ng) satisfaitng + np +
n3 75 0 surl';.

Notre premier @ésultat fondamental est le suivant :

Théoreme 3.2.Soientf € (HY(Q))3 etg € (HY?(I'1))3. Supposons que I'hypatke
(H) soit satisfaite et quesup., [g| < +oo, Vg € (HY2(I'1))° etsup-, |[Vg| < +oc.
Alors le probEme mixte ligaire (P;) admet une solution unique damse V;, :=
V1N (H3(Q))3.

Utilisant le tteoreme des fonctions implicites, lésultat pecedent nous permet de
déduire le suivant :
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Théoreme 4.1.Soientf € (HY(Q))% etg € (HY?(T1))3. Outre I'hypotiese (H), on
suppose queYg € (HY2(T'1))%, sup, |g| < +oo etsup, |Vg| < +oo. Si de plus
£l 22022 €9l (m3/2(ry )2 SONt assez petits, alors le prephe mixte non lieaire (P)
admet une solution et une seules V; := V1 N (H3(22))3 de norme assez petite.
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