ON THE HOCHSCHILD COHOMOLOGY OF ALGEBRAS

 WITH SMALL HOMOLOGICAL DIMENSIONSFlávio U. COELHO, Marcelo A. LANZILOTA and Angela M. P. D. SAVIOLI

Abstract

RÉSumé. Nous étudions la cohomologie de Hochschild d'une algèbre A satisfaisant la propriété suivante : il existe un entier positif n_{0} tel que la longueur de chaque chemin de ind A d'un module injectif vers un module projectif est bornée par n_{0}.

Abstract

We study the Hochschild cohomology of an algebra A which satisfies the following property: there exists a positive integer n_{0} such that the length of any path in ind A from an injective to a projective module is bounded by n_{0}.

The Hochschild cohomology groups $\mathrm{H}^{i}(A), i \geq 1$, of a finite dimensional algebra A, introduced in [8], have been much investigated lately (see, for instance, [5,11]). In this article, we shall study them for a class of algebras introduced and studied in [4], the so-called weakly shod algebras.

An algebra A is called weakly shod provided there exists a positive integer n_{0} such that the length of any path in ind A from an injective to a projective module is bounded by n_{0}. It is not difficult to see that for a weakly shod algebra A all but finitely many indecomposable A-modules have its projective dimension at most one or its injective dimension at most one. Moreover, the class of weakly shod algebras includes the shod algebras [3] and the quasitilted algebras [7] (see Section 1 below for more details). A weakly shod algebra A is called strict provided it is not quasitilted. Our main result here is the following.

Theorem. Let A be a strict weakly shod algebra. Then $\mathrm{H}^{i}(A)=0$, for each $i \geq 2$.
Observe that this result cannot be extended to arbitrary weakly shod algebras since there are quasitilted algebras with the second Hochschild cohomology different from zero (see, for instance [6]). The proof of our main result will be given in Section 2. Section 1 is devoted to some preliminary results while in Section 3 we characterize the strict weakly shod algebras with the first Hochschild cohomology equal to zero and give some examples.

Reçu le 31 mai 2001 et, sous forme définitive, le 9 janvier 2002.

1. Preliminaries.

1.1. Throughout this article all algebras will be assumed to be (associative with unity) finite dimensional k-algebras, where k is an algebraically closed field. Given an algebra A, we will denote by $\bmod A$ the category of all finitely generated left A-modules, while ind A denotes its full subcategory with one representative of each indecomposable A module. By τ_{A}, we denote the Auslander-Reiten translate DTr on A and by Γ_{A} the Auslander-Reiten quiver of A. Let $X, Y \in$ ind A. A path from X to Y in ind A is a chain of nonzero morphisms

$$
\begin{equation*}
X=X_{0} \xrightarrow{f_{1}} X_{1} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{t-1}} X_{t-1} \xrightarrow{f_{t}} X_{t}=Y \tag{1}
\end{equation*}
$$

with $t>0$, between indecomposable modules. We indicate the existence of a path from X to Y with the notation $X \rightsquigarrow Y$. If the morphisms f_{i} 's in (1) are irreducible, we say that this path belongs to Γ_{A}. We say that X is a predecessor of Y and Y is a successor of X provided there is a path $X \rightsquigarrow Y$. Observe that each indecomposable module is a predecessor and a successor of itself. Let (1) $X_{0} \longrightarrow X_{1} \longrightarrow \cdots \longrightarrow X_{t}$ be a path of irreducible maps in Γ_{A}. If $\tau_{A} X_{j+1}=X_{j-1}$, for some $1 \leq j \leq t-1$, then we say that j is a hook in (1).

For unexplained notions on representations theory of algebras we refer the reader to [2].
1.2. The following result will be useful in our considerations. For a proof, we refer the reader to [2].

Proposition. Let A be an algebra and $X \in \operatorname{ind} A$. Then
(a) $\operatorname{pd}_{A} X \leq 1$ if, and only if, $\operatorname{Hom}_{A}\left(I, \tau_{A} X\right)=0$ for each injective module I.
(b) $\operatorname{id}_{A} X \leq 1$ if, and only if, $\operatorname{Hom}_{A}\left(\tau_{A}^{-1} X, P\right)=0$ for each projective module P.
1.3. Following [3], we say that an algebra A is shod provided for each indecomposable A-module X, its projective dimension $\operatorname{pd}_{A} X$ is at most one or its injective dimension $\mathrm{id}_{A} X$ is at most one. As observed in [7], a shod algebra has the global dimension at most 3. Also, a shod algebra of global dimension at most 2 is called quasitilted (see [7] for details) and if it has global dimension equal to 3 we shall call it a strict shod algebra. The main feature on shod algebras is the existence of a trisection in the category ind A, which we shall now recall. For a given algebra A, denote by \mathcal{L}_{A} and \mathcal{R}_{A} the following two subcategories of ind A :

$$
\begin{aligned}
& \mathcal{L}_{A}=\left\{X \in \text { ind } A: \text { if } Y \rightsquigarrow X, \text { then } \operatorname{pd}_{A} Y \leq 1\right\} \\
& \mathcal{R}_{A}=\left\{X \in \text { ind } A: \text { if } X \rightsquigarrow Y, \text { then } \operatorname{id}_{A} Y \leq 1\right\} .
\end{aligned}
$$

We recall the following result from [3].
Theorem [3]. The following are equivalent for an algebra A :
(a) A is shod;
(b) $\mathcal{L}_{A} \cup \mathcal{R}_{A}=\operatorname{ind} A$;
(c) Any path from an indecomposable injective module to an indecomposable projective module can be refined to a path of irreducible maps and any such
refinement has at most two hooks, and, in case there are two, they are consecutive.
Moreover, if A satisfies one of the above conditions, then

$$
\operatorname{Hom}_{A}\left(\mathcal{R}_{A} \backslash \mathcal{L}_{A}, \mathcal{L}_{A}\right)=0=\operatorname{Hom}_{A}\left(\mathcal{L}_{A} \cap \mathcal{R}_{A}, \mathcal{L}_{A} \backslash \mathcal{R}_{A}\right)
$$

The existence of the trisection as above for quasitilted algebras has been established by Happel-Reiten-Smalø in [7].
1.4. As observed in [4], some of the results concerning, for instance, the structure of the Auslander-Reiten quiver of a shod algebra can be generalized by relaxing the condition (c) of the above theorem. With this in mind, we say that an algebra A is a weakly shod algebra provided there exists a positive integer n_{0} such that the length of any path in ind A from an injective to a projective module is bounded by n_{0}, or equivalently, provided there exists a positive integer m_{0} such that any path in ind A from an injective to a projective module pass through at most m_{0} hooks (see [4] for details). It is not difficult then to see that a shod algebra is weakly shod (for $m_{0}=2$). Observe also that if A is weakly shod, then $\mathcal{L}_{A} \cup \mathcal{R}_{A}$ is cofinite in ind A (see [4]). Finally, we say that an algebra A is a strict weakly shod algebra provided it is weakly shod but it is not quasitilted.
1.5. An important step in our considerations is the possibility of writing a strict weakly shod algebra as an iteration of one-point extensions starting from tilted algebras. We shall now recall the precise statement. Let B be an algebra and $M \in \bmod B$. We say that the algebra

$$
B[M]=\left(\begin{array}{cc}
k & 0 \\
M & B
\end{array}\right)
$$

is the one-point extension of B by M. The objects in $\bmod B[M]$ can be written as triples $\left(k^{t}, X, f\right)$ where $t \geq 0, X$ is a B-module and $f: M^{t} \longrightarrow X$ is a morphism in $\bmod B$. By taking $t=0$ and $f=0$, we can embed naturally the category $\bmod B$ into $\bmod B[M]$ (see, for instance, [2], for details). Observe, however, that the (unique) indecomposable projective $B[M]$-module which is not a B-module can be written as ($k, M, I d_{M}$), where $I d_{M}$ is the identity map, and we shall refer to it as the extended projective $B[M]$-module.
1.6. For an algebra A, denote by \mathcal{P}_{A}^{f} the set of the projective modules $P \in \operatorname{ind} A$ such that there exists a path $I \rightsquigarrow P$ where I is an indecomposable injective A-module. We define the following (partial) order in \mathcal{P}_{A}^{f}, (see [4]):

$$
P \preceq Q \Leftrightarrow \exists \text { a path } P \rightsquigarrow Q
$$

We also recall the following result from [4] (see also [9]).
Theorem [4]. Let A be a strict weakly shod algebra. Then, there are algebras $B=$ $A_{0}, A_{1}, \ldots, A_{t}=A$ and A_{i}-modules M_{i} for each $i=0, \ldots, t-1$ such that:
(i) B is a product of tilted algebras;
(ii) $A_{i+1}=A_{i}\left[M_{i}\right]$ for each $i=0, \ldots, t-1$;
(iii) The extended projective A_{i+1}-module $\left(k, M_{i}, I d_{M_{i}}\right)$ is a maximal element in $\mathcal{P}_{A_{i+1}}^{f}$ with the order defined above.
1.7. For an algebra A, denote by $\mathrm{H}^{i}(A)$ its i-th Hochschild cohomology group (see [5, 8] for details). The next results, due to Happel, will be useful in our considerations. For a proof of them, we refer to [5].

Theorem [5]. Let B be a connected tilted algebra of type Q. Then
(i) $\mathrm{H}^{0}(B)=k$;
(ii) $\mathrm{H}^{1}(B)=0$ if, and only if, Q is a tree;
(iii) $\mathrm{H}^{i}(B)=0$ for each $i \geq 2$.
1.8. Theorem [5]. Let $A=B[M]$. Then there exists a long exact sequence

$$
\begin{aligned}
0 \longrightarrow & \mathrm{H}^{0}(A) \longrightarrow \mathrm{H}^{0}(B) \longrightarrow\left(\operatorname{End}_{A} M\right) / k \longrightarrow \mathrm{H}^{1}(A) \longrightarrow \mathrm{H}^{1}(B) \longrightarrow \\
& \longrightarrow \operatorname{Ext}_{B}^{1}(M, M) \longrightarrow \cdots \longrightarrow \mathrm{H}^{i}(A) \longrightarrow \mathrm{H}^{i}(B) \longrightarrow \operatorname{Ext}_{B}^{i}(M, M) \longrightarrow \cdots
\end{aligned}
$$

2. The results.

2.1. Let A be a strict weakly shod algebra. The strategy of the proof of our main result will be to show that at each step in the iteration of one-point extension given in (1.6), the modules M_{i} satisfy $\operatorname{Ext}_{A_{i}}^{j}\left(M_{i}, M_{i}\right)=0$ for $j>0$ (using the notations of (1.6)) and then use Happel's long exact sequence given in (1.8). This will follow from the next two propositions.
2.2. Proposition. Let $A=B[M]$ be a weakly shod algebra and assume that the extended projective A-module is a maximal element in \mathcal{P}_{A}^{f}. Then $\operatorname{Ext}_{B}^{1}(M, M)=0$.
Proof. Let N be an indecomposable direct summand of M. We shall first show that $\operatorname{Ext}_{B}^{1}(N, N)=0$. Suppose this does not hold.

Since $\operatorname{Ext}_{B}^{1}(N, N)=\mathrm{D} \overline{\operatorname{Hom}}_{B}\left(N, \tau_{B} N\right)$, (see [2] for details), we then infer that $\operatorname{Hom}_{B}\left(N, \tau_{B} N\right) \neq 0$. It follows from [10] that

$$
\tau_{A}(0, N, 0)=\left(\operatorname{Hom}_{B}\left(N, \tau_{B} N\right), \tau_{B} N, e_{\tau_{B} N}\right),
$$

where $e_{\tau_{B} N}$ stands for the evaluation map from $\operatorname{Hom}_{B}\left(N, \tau_{B} N\right)$ to $\tau_{B} N$ (see [10] for details). Observe that

$$
\operatorname{Hom}_{A}\left(\left(k, M, I d_{M}\right),\left(\operatorname{Hom}_{B}\left(N, \tau_{B} N\right), \tau_{B} N, e_{\tau_{B} N}\right)\right) \neq 0
$$

In particular, there exists a path from the extended projective A-module $\left(k, M, I d_{M}\right)$ to $\tau_{A}(0, N, 0)$. Also, since N is an indecomposable summand of M, there exists a path (indeed a nonzero morphism) from $(0, N, 0)$ to $\left(k, M, I d_{M}\right)$. Hence there is a path

$$
\begin{equation*}
\left(k, M, I d_{M}\right) \longrightarrow \tau_{A}(0, N, 0) \longrightarrow(*) \longrightarrow(0, N, 0) \longrightarrow\left(k, M, I d_{M}\right) . \tag{1}
\end{equation*}
$$

Now, since $\left(k, M, I d_{M}\right)$ is in \mathcal{P}_{A}^{f}, there exists an indecomposable injective A-module I and a path (2) in ind A from I to ($k, M, I d_{M}$). Glueing the paths (1) and (2), we get a path in ind A from an indecomposable injective A-module to an indecomposable projective A-module. Since B is weakly shod, we know from [4] that this path can be refined to a path of irreducible maps

$$
\begin{aligned}
I \longrightarrow \cdots \longrightarrow & \left(k, M, I d_{M}\right) \longrightarrow \cdots \longrightarrow \tau_{A}(0, N, 0) \longrightarrow \\
& E \longrightarrow(0, N, 0) \longrightarrow\left(k, M, I d_{M}\right) .
\end{aligned}
$$

Observe that there exists a subpath in the above path which is a cycle in Γ_{A} through $\left(k, M, I d_{M}\right)$. Using this latter path one can construct paths in Γ_{A} from I to $\left(k, M, I d_{M}\right)$ with arbitrary length, a contradiction to the fact that A is a weakly shod algebra. Therefore, $\operatorname{Ext}_{B}^{1}(N, N)=0$ for each indecomposable direct summand N of M. In particular, the result is proven if M is indecomposable. Suppose now that M is not indecomposable and that $\operatorname{Ext}_{B}^{1}(M, M) \neq 0$. So, there exists an indecomposable direct summand N_{1} of M with $\operatorname{Ext}_{B}^{1}\left(M, N_{1}\right) \neq 0$. Write $M=N_{1} \oplus N_{2}$ and observe that N_{2} is not projective, since otherwise,

$$
0 \neq \operatorname{Ext}_{B}^{1}\left(N_{1} \oplus N_{2}, N_{1}\right)=\operatorname{Ext}_{B}^{1}\left(N_{1}, N_{1}\right)
$$

which is a contradiction to the claim proven above. Consider now the indecomposable A-module $Z=\left(k, N_{1}, \pi_{1}\right)$ where $\pi_{1}: N_{1} \oplus N_{2} \longrightarrow N_{1}$ is the canonical projection over N_{1}. Since $\operatorname{Ext}_{B}^{1}\left(M, N_{1}\right) \neq 0$, it follows from [7] that $\operatorname{id}_{A} Z \geq 2$. Now, by (1.2), there exists an indecomposable projective module P^{\prime} such that $\operatorname{Hom}_{A}\left(\tau^{-1} Z, P^{\prime}\right) \neq 0$. Since there is a nonzero morphism $\left(k, M, I d_{M}\right) \longrightarrow Z$, we get a path

$$
\left(k, M, I d_{M}\right) \longrightarrow Z \rightsquigarrow \tau_{A}^{-1} Z \longrightarrow P^{\prime}
$$

in ind A, a contradiction to the fact that the extended projective module $\left(k, M, I d_{M}\right)$ is maximal in \mathcal{P}_{A}^{f}. Therefore, $\operatorname{Ext}_{B}^{1}(M, M)=0$, as required.
2.3. Proposition. Let $A=B[M]$ be a weakly shod algebra and assume that the extended projective A-module is a maximal element in \mathcal{P}_{A}^{f}. Then $\operatorname{Ext}_{B}^{i}(M, M)=0$ for each $i \geq 2$.
Proof. Suppose there exists an $i \geq 2$ such that $\operatorname{Ext}_{B}^{i}(M, M) \neq 0$. Then there exists an indecomposable summand M_{1} of M such that $\operatorname{Ext}_{B}^{i}\left(M, M_{1}\right) \neq 0$. Clearly, then, $\operatorname{Ext}_{A}^{i}\left((0, M, 0),\left(0, M_{1}, 0\right)\right) \neq 0$. Denote by Z the quotient of the extended projective A-module $\left(k, M, I d_{M}\right)$ by $\left(0, M_{1}, 0\right)$. Applying now $\operatorname{Hom}_{A}((0, M, 0),-)$ to the short exact sequence

$$
0 \longrightarrow\left(0, M_{1}, 0\right) \longrightarrow\left(k, M, I d_{M}\right) \longrightarrow Z \longrightarrow 0
$$

one gets, for each $j \geq 2$,

$$
\begin{aligned}
& \cdots \longrightarrow \operatorname{Ext}_{A}^{j-1}((0, M, 0), Z) \longrightarrow \operatorname{Ext}_{A}^{j}\left((0, M, 0),\left(0, M_{1}, 0\right)\right) \longrightarrow \\
& \longrightarrow \operatorname{Ext}_{A}^{j}\left((0, M, 0),\left(k, M, I d_{M}\right)\right) \longrightarrow \cdots
\end{aligned}
$$

Observe that $\operatorname{id}_{A}\left(k, M, I d_{M}\right) \leq 1$. Indeed, if $\operatorname{id}_{A}\left(k, M, I d_{M}\right) \geq 2$, there would exist a nonzero morphism from $\tau^{-1}\left(k, M, I d_{M}\right)$ to a projective A-module (1.2) leading to a contradiction to the fact that $\left(k, M, I d_{M}\right)$ is maximal in \mathcal{P}_{A}^{f}. Therefore, $\operatorname{Ext}_{A}^{j}\left((0, M, 0),\left(k, M, I d_{M}\right)\right)=0$ for each $j \geq 2$. Since $\operatorname{Ext}_{A}^{i}\left((0, M, 0),\left(0, M_{1}, 0\right)\right)$
$\neq 0$, we then infer that $\operatorname{Ext}_{A}^{i-1}((0, M, 0), Z) \neq 0$. Consequently, in case $i=2$, $\operatorname{Hom}_{A}\left(Z, \tau_{A}(0, M, 0)\right) \neq 0\left(\right.$ recall that $\operatorname{Ext}_{A}^{1}((0, M, 0), Z)=\mathrm{D} \overline{\operatorname{Hom}}_{A}\left(Z, \tau_{A}(0, M, 0)\right)$, see [2]). In particular, there exists an indecomposable direct summand N of M such that $\operatorname{Hom}_{A}\left(Z, \tau_{A}(0, N, 0)\right) \neq 0$. We obtain then a path

$$
\left(k, M, I d_{M}\right) \longrightarrow Z \longrightarrow \tau_{A}(0, N, 0) \rightsquigarrow(0, N, 0) \longrightarrow\left(k, M, I d_{M}\right)
$$

in Γ_{A}. Since $\left(k, M, I d_{M}\right) \in \mathcal{P}_{A}^{f}$ and using the same argument in the proof of Proposition 2.2, one can get paths in Γ_{A} from an indecomposable injective to an indecomposable projective module with arbitrary length, a contradiction to our hypothesis on A being weakly shod.

Now, in case $i \geq 3$, we infer that $\operatorname{id}_{A} Z \geq 2$ and then we get a path

$$
\left(k, M, I d_{M}\right) \longrightarrow Z \rightsquigarrow \tau_{A}^{-1} Z \longrightarrow P^{\prime}
$$

with P^{\prime} be a projective module (1.2), a contradiction to the fact that $\left(k, M, I d_{M}\right)$ is a maximal element in \mathcal{P}_{A}^{f}.
2.4. We can now prove our main result.

Theorem. Let A be a strict weakly shod algebra. Then $\mathrm{H}^{i}(A)=0$, for each $i \geq 2$.
Proof. Let A be a strict weakly shod algebra. So, by (1.6), there are algebras $B=$ $A_{0}, A_{1}, \ldots, A_{t}=A$ and A_{i}-modules M_{i} for each $i=0, \ldots, t-1$ such that: (i) B is a product of tilted algebras; (ii) $A_{i+1}=A_{i}\left[M_{i}\right]$ for each $i=0, \ldots, t-1$; and (iii) the extended projective A_{i+1}-module ($k, M_{i}, I d_{M_{i}}$) is a maximal element in $\mathcal{P}_{A_{i+1}}^{f}$. We shall use induction on $t \geq 1$ to get our result. Suppose $t=1$, that is, $A=B[M]$, where B is a product of tilted algebras and the extended indecomposable projective A-module is maximal in \mathcal{P}_{A}^{f}. Then, by (1.7), $\mathrm{H}^{i}(B)=0$, for each $i \geq 2$. Since $\operatorname{Ext}_{A}^{i}(M, M)=0$ for each $i \geq 1$, we get from Happel's long exact sequence that $\mathrm{H}^{i}(A)=0$ for each $i \geq 2$. The above argument can be indeed made at each step of the iteration of one-point extensions described in (1.6) in order to get the desired result. The proof of our main theorem is now completed.

3. The first Hochschild cohomology of a strict weakly shod algebra.

3.1. We have seen that the higher Hochschild cohomology groups for a strict weakly shod algebra A vanish. However, $\mathrm{H}^{1}(A)$ will clearly depend on the types of the tilted algebras which are components of B and properties of the modules M_{i} (using the notations of (1.6)). In order to give our next result, we shall recall some notions.
3.2. Let A be a triangular algebra and let x a vertex in the ordinary quiver Q_{A} of A and denote by A^{x} the full subcategory of A generated by the non-predecessors of x in Q_{A}. We say that x is separating provided the restricitions to A^{x} of $\operatorname{rad} P_{x}$ is separated as an A^{x}-module, that is, for each connected component C of A^{x}, the restrictions of $\operatorname{rad} P_{x}$ to C is either zero or indecomposable. We also recall the following useful result (see [1]).
Lemma. Let $A=B[M]$ and let x be the vertex of Q_{A} corresponding to the extended projective A-module. Then, the morphism $\mathrm{H}^{1}(A) \longrightarrow \mathrm{H}^{1}(B)$ of (1.8) is injective if, and only if, x is separating and M is the direct sum of pairwise orthogonal bricks.
3.3. The next result will then follow easily from the above together with our considerations along the paper.

Proposition. Let A be a strict weakly shod algebra. Using the notations of (1.6), $\mathrm{H}^{1}(A) \cong \mathrm{H}^{1}(B)$ if, and only if, for each $i \geq 0$,
(a) the extended projective A_{i+1}-module is separating; and
(b) the module M_{i} is a direct sum of pairwise orthogonal bricks.

Corollary. Let A be a strict weakly shod algebra. Using the notations of (1.6), $\mathrm{H}^{1}(A)=$ 0 if, and only if,
(a) B is a product of connected tilted algebras of tree type;
(b) for each $i \geq 0$, the extended projective A_{i+1}-module is separating; and
(c) for each $i \geq 0$, the module M_{i} is a direct sum of pairwise orthogonal bricks.
3.4. We shall finish our article by exhibiting some examples.

Examples. (a) Let B be the k-algebra given by the quiver:

It is not difficult to see that B is a tilted algebra of type \mathbf{D}_{5}. Therefore, by (1.7), $\mathrm{H}^{1}(B)=0$. Consider $M=\tau^{-2} P_{3}$, that is, the indecomposable B-module of dimension vector $\operatorname{dim} M=(0,0,1,0,1)$ and $A=B[M]$. Then A is the k-algebra given by the quiver

and its Auslander-Reiten quiver is

Clearly, A is a strict shod algebra, and since M is a brick and the extended projective A-module is separating we infer that $\mathrm{H}^{1}(A)=0$.
(b) Let B be the k-algebra given by the quiver

The algebra B is tilted of type $\tilde{\mathbf{A}}_{3}$ (with a complete slice in its preinjective component) and therefore by (1.7), $\mathrm{H}^{1}(B) \neq 0$. Consider the one-point extension $A=B\left[S_{3}\right]$ of B by the simple B-module S_{3} associated to the vertex 3 which is indeed the unique indecomposable B-module of projective dimension 2. It is not difficult to see that there are then only two indecomposable A-modules which have projective dimension greater than 2, namely, S_{3} and S_{4}. Since $\operatorname{pd}_{A} S_{3}=2, \operatorname{pd}_{A} S_{4}=3, \operatorname{id}_{A} S_{3}=1$, and id $A_{A} S_{4}=0$, we infer that A is a strict shod algebra. Also, it follows from the above considerations that $\mathrm{H}^{1}(A) \neq 0$.

Acknowledgement.. The authors acknowledge financial support from CAPES, CNPQ and FAPESP (Brazil) and PEDECIBA (Uruguay) during the preparation of this article.

Résumé substantiel en français. Les groupes de cohomologie de Hochschild, $H^{i}(A)$, $i \geq 1$, d'une algèbre de dimension finie A, introduite en [6], ont récemment été l'objet de plusieurs travaux. Dans cet article, nous les étudions pour une classe d'algèbres, introduite et étudiée en [7], que nous appelons algèbres faiblement chaussées.

Une algèbre A est dite faiblement chaussée s'il existe un entier positif n_{0} tel que la longueur de chaque chemin de non isomorphismes non nuls entre A-modules indécomposables d'un A-module injectif vers un A-module projectif est bornée par n_{0}. Il n'est pas difficile de vérifier que si A est faiblement chaussée, alors tous les A-modules indécomposables sauf un nombre fini de classes d'isomorphisme ont une dimension projective ou une dimension injective au plus égale à un. Par conséquent, la classe des algèbres faiblement chaussée contient celle des algèbres chaussées, et celle des algèbres quasi-inclinées. Une algèbre faiblement chaussée est dite stricte si elle n'est pas quasi-inclinée. Notre résultat principal est le suivant.

Théorème. Soit A une algèbre faiblement chaussée stricte. Alors $H^{i}(A)=0$ pour chaque $i \geq 2$.

Ce résultat ne peut être généralisé aux algèbres faiblement chaussées arbitraires, certaines algèbres quasi-inclinées ayant leur dimension groupe de cohomologie de Hochschild différente de zéro.

References

1. I. Assem, Simply connected algebras, Resenhas 4 (1999), 93-125.
2. M. Auslander, I. Reiten, S. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge Univ. Press, Cambridge, 1995.
3. F. U. Coelho, M. Lanzilotta, Algebras with small homological dimensions, Manuscripta Mathematica 100 (1999), 1-11.
4. F. U. Coelho, M. Lanzilotta, Weakly shod algebras (2001) (preprint).
5. D. Happel, Hochschild cohomology of finite-dimensional algebras, Séminaire d'Algèbre Paul Dubreuil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988), 108-126; Lectures Notes in Maths., vol. 1404, Springer, Berlin, 1989.
6. D. Happel, On consequences of the characterizacion of hereditary categories with tilting object (2001) (preprint).
7. D. Happel, I. Reiten, S. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996); no. 575.
8. G. Hochschild, On the cohomology groups of an associative algebra, Ann. of Math. 46 (1945), 58-67.
9. M. Lanzilotta, Álgebras shod, PhD's thesis, Universidad de la República, Uruguay, 90 pp . (2000).
10. H. Merklen, On Auslander-Reiten sequences of triangular matrix algebras, Representations of finite-dimensional algebras (Tsukuba, 1990), 231-248; Amer. Math. Soc., vol. 11, Providence, RI, 1991.
11. A. Skowroński, Simply connected algebras and Hochschild cohomologies, Carleton-Ottawa Lectures Note Ser. 14, Carleton Univ., Ottawa, On, 1992, pp. 431-447.
F. U. Coelho

Departamento de Matemática -IME
Universidade de São Paulo
CP 66281 SÃo Paulo - SP CEP 05315-970 BraZil
E-MAIL: fucoelho@ime.usp.br
M. A. LanZilotta

Centro de Matemática (CMAT)
Universidad de la República
URUGUAY
E-MAIL: marclan@cmat.edu.uy
A. M. P. D. SAVIOLI

Universidade Estadual de Londrina - UEL
C. P. 6001 - Londrina PR

86051-970 - BRAZIL
E-MAIL: angelamarta@uel.br

