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ON A CONSTRUCTION OF ALGEBRAS STABLY EQUIVALENT
TO SELFINJECTIVE SPECIAL BISERIAL ALGEBRAS

ZYGMUNT POGORZALY

RESUME. On considere des systtmes maximaux de blocs othogonaux stables pour des algebres auto-
injectives, spéciales et bissérielles. Si A est une telle alggbre, qui n’est pas une algebre locale du type
de Nakayama, chacun de ses syst®mes définit une algebre auto-injective stablement équivalente 2 A. Voir le
résumé substantiel en francais 2 la fin de ’article.

ABSTRACT. Maximal systems of orthogonal stable bricks for selfinjective special biserial algebras are
studied. It is shown that every such a system over a selfinjective special biserial algebra A which is not a
local Nakayama algebra produces a selfinjective algebra that is stably equivalent to A.

The study of stable equivalences of finite-dimensional algebras over an algebraically closed
field K has its sources in modular representation theory of finite groups. Problems of stable
equivalences were considered in [4, 7, 8, 15, 16, 17, 21, 22, 24, 25]. R. Martinez-Villa in [17]
indicated that the most important algebras for many problems concerning stable equivalences are
selfinjective algebras. Ch. Riedtmann gave in [24, 25] (see also [8]) a classification of algebras
stably equivalent to selfinjective algebras of finite representation type. But the problem of a
classification in representation-tame cases is far from a satisfactory solution.

Recently a new important problem of classifying of derived equivalent algebras appeared (see
[14]) that is equivalent in many cases to classifying stably equivalent selfinjective algebras of
infinite dimension.

It was introduced a notion of a maximal system of orthogonal stable bricks (see Section 3
for a definition) in [21] that was applied successfully in the proof of the fact that the class of
selfinjective special biserial algebras is closed under stable equivalence, where two algebras A, B
are stably equivalent if there is an equivalence ®: mod—A — mod-B of their stable categories
of finite-dimensional modules. In [22] this notion was applied to a classification of the algebras
that are stably equivalent to trivial extensions of tame hereditary algebras of extended Dynkin type
A,,. On the other hand the problem how to construct all algebras that are stably equivalent to a
given selfinjective algebra is still open. The main aim of the paper is to give such a construction
for selfinjective special biserial algebras. Moreover this construction seems to have a general
character. It can be applied to other classes of selfinjective algebras and it shows new properties
and new structures on stable categories of finite-dimensional selfinjective algebras.

Throughout the paper we shall fix an algebraically closed field K.

The paper is organized in the following way.

We recall a notion of a locally bounded X —category and some standard notations in Section 1.
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66 Construction of algebras stably equivalent to selfinjective special biserial algebras

Section 2 is about Galois coverings of finite-dimensional K—algebras. There are recalled all
known facts that will be used in the paper.

Special biserial algebras are defined in Section 3. There are also given two useful lemmas
from [21].

Maximal systems of orthogonal stable bricks are defined in Section 4. There is also recalled a
notion of s-projective modules and their s-radicals.

Section 5 is about s-socles and s-tops. In this section there is proved that every finite-dimensional
module of the first kind (with respect to a fixed Galois covering) has a finite nonzero s-top and a
finite nonzero s-socle (see Corollary 1).

The same is proved for modules of the second kind in Section 6.

Sections 7, 8 are devoted for proving that modules of the first kind have their s-radicals. The
notion of an s-radical is generalized for arbitrary modules in Section 8.

There is introduced a notion of an s-support for modules of the first kind in Section 9. Moreover
shapes of s-supports are studied. s-supports of r—shifts of s-projective modules are studied in
Section 10.

Section 11 is devoted for a description of indecomposable modules of the second kind in terms
of primitive families of s-local modules. The obtained description allows to define s-supports for
modules of the second kind.

There is given a standard construction of a selfinjective special biserial algebra in Section 12.
This construction shows that from a fixed maximal system of orthogonal stable bricks over a special
biserial selfinjective algebra one can produce a selfinjective special biserial algebra.

Section 13 is devoted for a useful description of stable morphisms between modules of the first
kind.

There are studied supports of indecomposable modules over the constructed algebras in Sec-
tion 14.

Section 15 shows that the constructed algebras are stably equivalent to algebras over that we
consider maximal systems of orthogonal stable bricks (see Theorem 1). Moreover, under some
assumptions, every stable equivalence of two selfinjective special biserial algebras is induced by a
stable equivalence of subcategories of their modules of the first kind (see Theorem 2).

1. Preliminaries. Recall from [9,12] that a ~category R is a category that has a structure of
K-linear spaces on the sets R(z,y) of morphisms from every object z to every object y and
compositions of morphisms are K -bilinear. A K—category R is said to be locally bounded if it
satisfies the following conditions:

(a) Different objects are not isomorphic.
(b) For any object z in R its endomorphism algebra R(z, ) is local.
(c) For every object z in R we have:

Z dimg R(z,y) < oo and Z dimg R(y,z) < oco.
yER yER

Itis well-known that every basic finite-dimensional X —algebrais alocally bounded /X —category.

Let A be a finite-dimensional K -algebra over a fixed algebraically closed field K. A is
assumed to be basic connected with an identity element. Let mod—A denote the category of all
finite-dimensional right A-modules. As usual, mod-A denotes the stable category of mod-A.
We denote by MOD-A the category of all right A-modules, and by (ind—A)/22 the set of the
isomorphism classes of the indecomposable objects in mod—A.

Recall that a quiver @ is a pair (Qo,Q1), where Qg is a set of vertices and ()7 is a set of
arrows between vertices from Qg. A relation between vertices z,y € (o is a linear combination
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p = E:’;l Ajw; where, foreach 1 <7 < m, \; € K* = K \ {0} and w; is a path from z to y
that is a composition of at least two arrows. A set of relations in () generates an ideal I in the path
algebra (category) K@ of Q). A pair (Q,I) is said to be a bound quiver. It is well-known that
for every basic algebra A (more general for every locally bounded K -category) there is a bound
quiver (@4, I4) such that there is an isomorphism A =2 K@) 4 /14 which is called a presentation
of A (see [5, 11]).

For each vertex z in @) 4, we shall denote by S, the corresponding simple A-module, by P,
(resp. E.) its projective cover (resp. injective envelope).

We shall use freely all properties of the Auslander—Reiten translation 7 and of the Auslander—

Reiten quiver "4 of an algebra A. All informations concerning these notions can be found in [2,
3].

2. Galois coverings. Let R, S be K—categories. A K-linear functor F': ® — § is said to be a
covering functor [12] if the induced maps @ p,_, R(z,y) — S(Fz,a) and D p,_, R(y,z) —
S(a, Fz) are K—isomorphisms forallz € R anda € S.

Let (@, I) be a connected bound quiver. A minimal relation in I is a relation p = Zf;l Aiw;
between vertices z, y € Qo such that for each nonempty proper subset T C {1,...,m} we have
Y ier diw; ¢ I (see[18]). Let zg be a fixed vertex of Q. Then II; (Q, o) denotes the fundamental
group of the quiver () with the base point z [19], i.e. the set of formal walks whose sources and
whose sinks coincide to o with an ordinary composition. Recall that a walk in the quiver @ is
a formal composition of arrows and their formal inverses. Let N(Q,zo,m(I)) be the subgroup
in I1;(Q, o ) that is generated by all elements of the form v~ !u ™ vy, where 7 is a walk from g
to z, and u, v are paths from x to y such that in the set m(I) of minimal relations in I there is
p =0 Xiw; with wy = u, wy = v, m > 2 (see [13,20]). Consequently N(Q,zq,m([)) is
a normal subgroup in I1;(Q, zo) and the group II(Q, I) = II;1(Q, zo)/N(Q, xo, m(I)) is called
a fundamental group of the bound quiver (Q, I). In fact if (@, I) is connected then for different
choices of the base point one obtains the same group (up to isomorphism).

Let A = KQa /I, for abound quiver (Qa,I4) and let zo € ()4 be a fixed vertex. Suppose
that W is a topological universal cover of () 4 with the base point z,. Following [19] it is known
that there is a natural map ¢: W — Q4 given by the action of II;(Q 4, z¢). Consequently we
define @A as an orbit quiver W/N(Q 4, o, m(I)) and a map 7: @A — (4 is given by the action
of the group II(Q 4, L4 ). The map 7 yields a Galois covering 7 : KC}A — K@ 4 of path categories
[13,20] and we obtain a Galois covering F': I&’@A/fA — KQa/I4 with the group II{(Q 4, 14),
where I 4 is an ideal in KCT)A that is generated by all elements u such that 7(u) € I4. The locally
bounded K -category A = K @ Al I4 is said to be a universal Galois cover of A [18] determined
by the presentation A = KQa/I4.

Recall (see [1, 23]) that a locally bounded {—category R is said to be simply connected if it
is triangular (its quiver has no oriented cycles) and for any presentation R = K()/I as a path
category, the fundamental group II(Q, I) of the bound quiver (@, I) is trivial. An algebra A is said
to be standard [1] if there is a Galois covering A — A with A simply connected.

Every Galois covering F': Ix’@A/fA — KQa/14 induces a functor

Fu: MOD-KQ4/I4 — MOD-KQ4/I4
which attaches the module N o F°P to a K Q) 4 /I 4—module N. Moreover, there exists a functor
Fy: MOD-KQ/I4 — MOD-KQ4/I4

[6,9, 12] that is left adjoint to F,, and F induces an injection of ((ind—](@A/fA)/%)/H(QA, Iy),
the set of II(Qa, I4)-orbits of (ind-KQ4)/I4/=, into the set (ind~KQ4/I4)/=. We shall
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denote by mod;~KQ 4 / I4 the full subcategory of mod-KQ 4 /14 formed by all modules of the
form FA(M) where M is an object of mod-K QA/IA Modules from mod;—KQ 4 /14 are called
modules of the first kind (with respect to the covering F'). We shall denote by moda—K Q4 /I 4 the
full subcategory of mod—/'() 4 /I 4 formed by all modules that do not have direct summands from
mod; -/ Q4 /l4. Modules from mods~KQ4/I4 are called modules of the second kind (with
respect to the covering F’).

For every K QA/IA—module M € mod-K QA/IA its support is a full subcategory supp(M)
of KQ /14 formed by all objects z € KQ 4/I4 such that M(z) +# 0.

3. Special biserial algebras. Let A be a finite-dimensional K —algebra (locally bounded K-
category). A is said to be biserial [10] if the radical of any indecomposable left or right projective
A-module is a sum of at most two uniserial submodules whose intersection is simple or zero. A is
said to be special biserial [26] if it is isomorphic to K Q 4 /I, where the bound quiver (Q4,14)
satisfies the following conditions:
(i) Every vertex of @) 4 is a source of at most two arrows and a sink of at most two arrows.
(i) For every arrow « of () 4 there are at most one arrow 3 and at most one arrow - such that
aff,ya ¢ 14.

It was proved in [26] that every special biserial K —algebra A is biserial. This class of algebras
was studied in [9, 23, 26, 27]. We are interested in selfinjective special biserial algebras. The main
result of [23] shows that the class of selfinjective special biserial algebras coincides to the class
of standard selfinjective biserial algebras. Moreover we have a full description of indecomposable
A-modules in [9, 27]. In particular indecomposable A-modules of the first kind are of the forms
F\(M), where M are indecomposable A-modules of finite dimension whose supp(M) are path
categories K () pr, Q pr are relation-free quivers and their underlying graphs are of Dynkin type A.,,.
Moreover, every indecomposable A-module N of the second kind is of 7—period 1, i.e. 7(N) = N.

Following [6] we know that Fy preserves simple objects and projectives objects. Consequently
F) preserves factorization of morphisms through projective objects. There is given a reduction of
studying of mod—A to studying of m&iﬂ& in [21]. We shall use this reduction. Moreover, we have
the following two important lemmas that were proved in [21].

Lemma 1. Let A & KQ4/I4 bea selﬁnjectlve special biserial K-algebra. Let M, N be two
indecomposable finite-dimensional K Q A/ I s-modules whose supports are of the forms

I e o T A e A & I

S g

respectively. Let f: N — M be a morphism that is a composition of an eptmorphzsm fi:N—-X
and a monomorphism fy: X — M, where X is an indecomposable K Q A/ I a—module whose
support is of the form x — -+ — r1. Let f denote the coset of f in mod—A. Then the following
implications hold: -

(@) If Pr, is uniserial, then f # 0 iff the path
PO bt T e Ty e o1
does not contain a subpath of the form
gL s T s Y

which is the support of Pr,.
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(b) If Py, is not uniserial, then f # 0 implies either the pathry — --- — 7' does not contain
a vertex z with S, = s-soc(Py, ), or it contains such a vertex z and thus z = r', supp(M)
is of the form

_..._)T-_l(_....(_y(_...(_ro_)..._>m__;..._>7~1(_..._

and supp(N) is of the form

_....(_:E_)....._)Tl._)..‘_)fri(_...(_T_l(_‘...(_y_)..._
where
70 — — T — -
! !
!
Y
!
! !
r_1 — e — )
is the support of Pr,.

Lemma 2. Let A =2 KQ4/I4 be a selfinjective special biserial K-algebra. Let M, N be two
indecomposable finite-dimensional K Q) 4 | I s~modules whose supports are of the forms:

_..._>7~_1<_...(_y<_...(__r0_)..._)1-_)..._;7"1(_..._

U S P S
respectively, such that the paths

!
ro_.)..._)y_)..._)r_l_)..._)ro

P N N

do not belong to 14 and their difference belongs to Is. Let f: N — M be a morphism that is a
composition of an epimorphism f1: N — X and a monomorphism fs: X — M, where X is an
indecomposable I\"QA/jA—module whose support is of the formx — --- — ry. Letg: N — M
be a morphism that is a composition of an epimorphism g1: N — Y and a monomorphism
g2: Y — M, where Y is an indecomposable K é a/ I s—module whose support is of the form
y— - —r1_1. Then \f = g for some A € K*.

4. Systems of orthogonal stable bricks.
We start this section with recalling a notion of a system of orthogonal stable bricks over a
selfinjective K -algebra that was used succesfully in [21,22].
Let B be a selfinjective K—algebra. An indecomposable B—module M in mod—2B is said to be
a stable B-brick if its endomorphism ring End 5 (M) is isomorphic to . A family {M,} ;e of
stable B-bricks is said to be a system of orthogonal stable B-bricks if the following conditions are
satisfied:

(1) M; is not of 7-period 1 for every 7 € J.
(2) For any two different ¢, j € J; Homp(M;, M;) = 0 = Hom g(M;, M;).
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A system of orthogonal stable B-bricks {M;};es is called maximal if for every indecom-
posable B-module N that is neither projective nor of 7—period 1 there exists jo € J such that
Hom z(Mj,, N) # 0 and there exists j; € J such that Hom z(N, M;,) # 0.

We are interested in maximal systems of orthogonal B-bricks whose cardinalities coincide
with the cardinality of isoclasses of the simple B—modules. We shall consider only such maximal
systems without additional comments.

Let A be a special biserial selfinjective {—algebra that is not a local Nakayama algebra. Let
My = {Mi,...,M,} be a maximal system of orthogonal stable A-bricks. Let us fix a Galois
covering functor F': A — A with A to be simply connected. We know by definition that all
M; € M4 are A—modules of the first kind with respect to any Galois covering functor, because
they are not of 7—period 1. Therefore any M; € M 4 is of the form F)\(M) and supp(]\’zi) is one
of the following forms:

(D) rog ==y ey o ey e = gt 2 0
(i) 7o oo e oty e oy e e g, 20
(i) rg = - Py Ty s oy e Ty, 2
(V) ro = ooy = s Ty Ty s Ty, 2> L

We state some conventions concerning notations of supports of indecomposable A-modules.
If P, is an indecomposable projective A—module then S, denotes its socle. S,« denotes the
top of E,. If supp(X) is of the formrg — -+ — r; « -.- — (where — means an arrow
that can be — or «) then r_; — ...ry means either the nonzero path connecting r—_; with
ry, where S,_, is the direct summand in s-top(s-rad(Py,)) and r_y ¢ (ro — -+ — r1), if
P,, is not uniserial or (r_y — -+ — ry) = ry if P, is uniserial. If supp(X) is of the form
— - = g o= ryyq then vy — -+ 74y has a similar meaning. If supp(X) is of the
formrg < -+ «—r; — --- —thenr_; « --- « ro means either the nonzero path that connects o
with r_;, where S,_, is a direct summand in s—soc(PrO/ s—soc(PrO)) andr—y ¢ (ro — --- —1}),
if P,, is not uniserial or S,_, & s-soc(P,, / s-soc(Py,)) if Py, is uniserial. If supp(X) is of the
form — -+« ry — -+ — rypq then r449 — - -+ — 7442 has a similar meaning. Moreover, if r is
a vertex in ) 4 whose neighbourhood is of the form

then we shall denote y = rte=r",u=r_,v= 4.

For a given maximal system of orthogonal stable A-bricks M4 = {Mj,..., My}, an inde-
composable A-module N that is not of 7—period 1 is said to be s-projective with respect to M 4 if
the following conditions are satisfied:

(1) Hom (N, D, M;) = K.
(2) If Hom 4(N, M;,) # 0, then for every 0 # f: X — M;, and every 0 # g: N — M;,
there is h: N — X such that fh = g. a

s-projective modules were studied in [21] and their supports are known. If we have a max-
imal system of orthogonal stable A-bricks M4 = {Mj,...,M,} then we have a system of
s-projective modules N4 = {Ny, ..., N, } with respect to M 4. Moreover, Hom 4, (N;, M;) = K
and Hom 4 (N;, M;) = 0 for different 1 <4, 5 < n.

Following [21]if NV is an s-projective A—module with respect to a maximal system of orthogonal
stable A-bricks M 4, then A—module R is said to be an s-radical of N (we denote R by s-rad(N))
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if the following conditions are satisfied:

(1) R does not contain any projective direct summand.
(2) There is a projective or zero A—module P such that there exists a right minimal almost
split morphism R @ P — N in mod—-A.
It was proved in [21] that for each s-projective A-module N its s-radical is a direct sum of at
most two indecomposable A-modules of the first kind.

5. s-tops and s-socles. Let Y be an A-module. Suppose that dimy Hom 4 (Y, M;) = d;, 1 = 1,

., n. Then we say that @, M is an s-top of ¥ and we denote it s-top(Y’), where M
denotes a direct sum of d; copies of M;. We define s-socle of Y (that is denoted by s-soc(Y'))
dually. In [21] it was proved that each direct summand in s-rad(/N') has an indecomposable s-top
and an indecomposable s-socle, where IV is s-projective.

The main aim of this section is to show for any special biserial selfinjective {—algebra A which
is not a local Nakayama algebra that every A-module of the first kind has its s-top which is a direct
sum of finitely many indecomposable modules from M 4.

Throughout the paper we assume that the above fixed Galois covering F': A — A with A simply
connected is chosen in such a manner that I 4 is generated only by paths and differences of some
paths,i.e. if u — v € I4 is a generator with A € K*, then A\ = 1. It is well-known that for special
biserial algebras it is possible to choose such a set of generators of Iy

Lemma 3. Let /}Vbe a special éiserial selfinjective K—algebra which is not a local Nakayama
algebra. Let F\(Y1) =Yy, F\(Ys) = Y2 be two indecomposable A~modules of the first kind. Let
0 # FA(f) = f: Y1 — Y be a morphism in mod-A. Then one of the following conditions is
satisfied:

(a) supp(?g) is of the form

e T A e Ty T s Ty s Ty e —

supp(l?l) is of the form

ey e o P e g Ty ey —
where x € (rj_y «— -+« ri), & #ri_y, x # ro and [ is given by a composition of a
projection of Yy onto S, with an injection of Sy, into Ys.
(b) supp(Y2) is of the form
e P e Tl o e o Pigg e T e —
supp(Y1) is of the form
e D L e T Ty D T — e —
where & € (ri — -+ — i) & # iy, ¢ F# 7o, and [ is given by a composition of a

projection of Y onto an indecomposable A-module X whose support is

Ty = = Tipy —> 0 T < 0 Ty

je ey

or

T &= o = Tip1 = ... T & 1+ =7
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with an injection of X into Vs.
(c) supp(Y3) is of the form

T e e P e D Py e D T e e —
supp(Y1) is of the form
B e T e Ty e Ty — e —

where x € (ri—y — <+ = ;) and © = r;—q impliesi = 1, f is given by a composition of

a projection of Y1 onto an indecomposable A-module X whose support is of the form
e A T e e R R S A = B el Al AF B I sl /]

or

T T Ty s S Tygg s T

with an injection of X into Y.
(d) supp(Y?2) is of the form

T e e P e D iy b D Ty e —
supp(f/l) is of the form

!
*"'Hxﬂ""—ﬁriq"'_)ri_}.](-—"'<_Ti+2_)”.<_rj—'A'_

wherex € (r; « -+ «—Tip1), T # Titls andf is given by a composition of a projection of

Yi onto an indecomposable A-module X whose support is x — -+ — r; with an injection
of X into Yz

Proof. Under the assumptions of our lemma suppose that 0 # Fi( f ) = f: Y1 — Y. Thus
f :Y; — Y, and supp( 572) N supp(f’l) # @. Suppose that vertices of supp()N’l) are numbered by
integers in such a way that they increase from the left hand to the right hand. Let z be the lowest
vertex of supp(Y; ) that is contained in supp(Y3 ). If the neighbourhood of z in supp(¥2) is of the
foorm--+ — z — .- thenz € (r;_; — -+ — ;) and it is not hard to verify that (b) or (¢) or (d)
holds by Lemmas 1, 2. If the neighbourhood of z in supp(ffz) is of the form - -+ — z « - - -, then
z = r; and by Lemmas 1, 2 (a) holds. If the neighbourhood of z is of the form - -+ 2z — .-,
then there cannot be such a morphism 0 # f Y, — Y, that factors through an 1ndecomposable

A-module X with z € supp(X ). This finishes the proof of our lemma. [

If Y2 € M 4 in Lemma 3, then we call the vertex z of supp()N’I) a left frame of f and we denote
it lf(f). Similarly we define a right frame rf(f) of Z A frame ofi~ is a left or right frame.
Lemma 4. Let A be a special biserial selfinjective K—algebra which is not a local Nakayama
algebra. Let F)\(Y1) = Y1, Fa(Y2) = Ya be two indecomposable A-modules of the first kind. Let

0 # F\(g) = g: Yo — Y1 be a morphism in mod—A. Then one of the following conditions is
satisfied:

(a) supp(ffg) is of the form

R S T T B Rl A B e o B
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supp(ﬁ) is of the form

_"'(_$_>"'_)Ti(_"'(_71;+1_)"'—")Ti—{-QH"'_)Tj(_—"'*—
where x € (ri_, — .-+ — 1), & # iy, © # ro, and § is given by a composition of a
projection of Yz onto Sy, with an injection of S, into Y.

(b) supp(Y2) is of the form
T P e Ty e Ty o e —

supp(Y1) is of the form

T e Ty D D P e b Tipg e Ty — e —
where © € (r; «— -+ — ri ), & # ri, © # ro, and § is given by a composition of a

projection of Yy onto an indecomposable A-module X whose support is either
T T T I Ry

or
Ty = Ty 6 T 4)...%711-
with an injection of X into Y.
(c) supp(Y>) is of the form

T e D T A e e Ty e = T e —
supp(lN/l)is of the form

e e e g o L 70 T SRR
where & € (ri_y «— -+ — 1;) and x = r;_y implies i = 1, g is given by a composition of

a projection of Y onto an indecomposable A-module X whose support is either
B e Py D ] e Ty e Ty

or

:B(_...(_Ti_)...___)ri+l (_"'Hri+2_)"'(_74]'
with an injection of X into Y.

(d) supp()N’z) is of the form

e SR P P
supp(Y7) is of the form
S P

where x € (r; — -+ — Tiq1), © # riy1 and § is given by a composition of a projection of
37'2 onto an indecomposable A-module X whose support is x «— --- « r; with an injection
of X into Y.

Proof. The proof is dual to that of Lemma 3 and we omitit. O

If Y € M, in Lemma 4, then we call the vertex x of supp(lN/l) a left coframe of § and we
denote it 1cf(g). Similarly we define a right coframe rcf(g) of §. A coframe of § is a left or right
coframe.
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Lemma 5. Let A be a special biserial selfinjective K—algebra which is not a local Nakayama
algebra. If Fx(Y') =Y is an indecomposable A—module of the first kind that is of T—period 1 then
supp(Y') is of the form

A1 At ap A2 A2t ag Azl Azt gy Am,1 Amt
m > 1, where F(A\;;) = F(Mj 1t =12 ..., m Fla;) = F(az), s =2, ..., m and

A11 - Ai ¢ is a maximal nonzero path that does not connect a top of an indecomposable projective
A-module with its socle.

Proof. Thislemma follows immediatly from the description of indecomposable modules for special
biserial algebras contained in [9,27]. O

Lemma 6. Let A be a selfinjective special biserial K-algebra which is not a local Nakayama
algebra. If FA(Y') =Y is an indecomposable A-module of the first kind that is of T—period 1 then
s-top(Y') # 0 and s-soc(Y') # 0.

Proof. Suppose that FA(Y’) = Y satisfies the assumptions of the lemma. We deduce from Lemma 7
that supp(Y") is of the following form :

A1l ALt @y A2,1 A2t as Am,1 At
e S e R e O A

But consider an A-module ¥; whose support is of the form

A1,1 ALt as Am,t Q1

>\m1

with F(am41) = F(az). Then s-top(Y1) # 0, because it is not of 7-period 1. Consequently
s-top(Y") # 0. Dually one proves that s-soc(Y") # 0. O

An A-module X is said to have a finite nonzero s-top (resp. finite nonzero s-socle) if s-top(X)
(resp s-soc(X)) is a direct sum of finitely many nonzero indecomposable A-modules.

Corollary 1. Let A be a selfinjective special biserial K—algebra which is not a local Nakayama
algebra. Every nonzero finite-dimensional A—module of the first kind has a finite nonzero s-top
and a finite nonzero s-socle.

Proof. By definition of the maximal system of orthogonal stable A-bricks and by Lemma 6 our
corollary is obvious. [

6. Modules of the second kind. The aim of this section is proving that A—modules of the second
kind have also nonzero finite s-tops and nonzero finite s-socles. We start with some known facts. Let
A = KQa/I4 and the bound quiver (Q 4, I 4) satisfies the required conditions for special biserial
algebras. We are interested in closed walks which are assumed to have the property that their start
points coincide with their end points. A closed walk w in (Q 4, I4) will be called primitive [27] if
it is not of the form v»™ for some natural n > 2, and w is not of the form w = wyuws, wWhere u is
a path (resp. a formal inverse of a path) such that either u (resp. u™1) lies in I 4, or u — v (resp.
u~! — v) belongs to I4 for some path v # Au (resp. v # A\u~1)in Qa, A € K*, or else u is of the
forms aa™!, o'« for some arrow « in Q4. It is well-known (see [27]) that primitive walks in
(Qa,I4) produce A-modules of the second kind. We shall visualize primitive closed walks w as
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the following quivers

Qu ¥ N NS \

\/

and we shall identify them with covering functors w from the path categories of the above quivers
Quw to KQ 4/I4. Thus every indecomposable A-module of the second kind is (up to isomorphism)
of the form F,(M(Qw,m, \)), where Fy,: mod-K Q,, — mod-KQ4/I4 is induced by w, and
M(Qw,m, \) is a representation of (), which has K™ at each vertex, the identity map at each
but one arrow and the Jordan box J,,,() at the exceptional arrow (it does not matter which one)
for some A € K* (see [27]). Consequently we can look at A-modules of the second kind as at
K (@Q,,—modules of the second kind. Moreover nonzero maps between A-modules of the first kind
and of the second kind are induced by nonzero functors between supports of finite-dimensional
A-modules and K Q) (in particular by nontrivial maps between their quivers).

For an A-module Z of the form Z = F,(M(Qw,m,\)) consider an A~module ZV which
is a direct sum of m copies of F,,(L,) for all sinks = in Q.,, where L, is an injective KQ.,,—
module with s-soc(L,) 2 S,. Thus we have an injection iz from Z to ZV. Dually consider
an A-module Z”" which is a direct sum of m copies of Fy,(C,) for all sources y in Q,,, where
Cy is a projective K Q,,-module with s-top(Cy) = .S,. Consequently we have a projection 7z
from Z” to Z. Let us denote by Hom’? (Z",Y’) the set of morphisms f: Z* — Y such that
f|ker(nz) = 0. Thus (72 )« = Homa(7z,Y") establishes an isomorphism between Hom’}? (Z",Y")
and Hom 4(Z,Y’) for every A-module Y. Dually let Hom'7 (Y, Z") denotes the set of morphisms
g:Y — ZY such that the composition hg = 0, where h: Z¥ — coker(iz). Consequently we
have Hom'? (Y, ZV) 2 Hom (Y, Z) established by the isomorphism (iz)* = Homu (Y, 7).
Moreover the following lemma is true.

Lemma 7. Let A be a selfinjective special biserial K—algebra which is not a local Nakayama
algebra. Forevery A—moduleY and for every indecomposable A—module Z = Fy,( M (Q,m, \))
the isomorphisms (i z)* and (77 )« induce the following isomorphisms:

Hom'Z(Y,ZY) = Hom,(Y,Z), Hom™ (Z",Y) = Hom,(Z,Y).

Proof. In order to prove that Hom"” (Z",Y) = Hom 4(Z,Y’) it is enough to show that for every
f € Homa(Z,Y) itholds: if frz = 0then f = 0. Butif frz = 0 then frz factors through
a projective A—-module, hence fmz factors through an injective envelope E(Z”") of Z*. But
f Kor(ng) = 0 so fmz factors through an injective envelope E(Z) of Z. Therefore f factors

through E(Z) and f = 0. Dual arguments show that Hom'Z (Y, ZV) = Hom (Y, Z). O

Lemma 8. Let A be a special biserial selfinjective K—algebra which is not a local Nakayama
algebra. Every finite-dimensional A-module of the second kind has a finite nonzero s-top and a
finite nonzero s-socle.

Proof. The lemma is an easy consequence of Lemma 7 and Corollary 1. '
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7 Maximal modules. Let (Y) = Y be an indecomposable A-module and set ¥ = Fy(Y). Let
Ex(M)=M € Maand 0 # Fx(p) = p: Y — M. An indecomposable A-module X = Fx(X)
is said to be produced by If(p) if one of the following conditions is satisfied:

(1) supp(M) is of the form
P e Pl e Tigg e T

supp(Y') is of the form
Ty

with z € (ri_y « .-+« 7)) & # ri_y, @ # 9, and p is given by a composition of a
projection of Y onto S, with an injection of S, into M, supp(X ) is of the form:

. ' _ ' .
T = T A Ty e Ty g e = Tig L.
T
if ro is a source in supp(M) and

Po4 = T e Ty o T e e T T o
. ! 2 e e —
ST e T —

if ro is a sink in supp(M).
(2) supp(M) is of the form

P e Ty D D Tigg e T
supp(Y') is of the form
e T e A &

withz € (r; — -+ — ri ), © # ri,y, ¢ # ro and p is given by a composition of a
projection of ¥ onto an indecomposable A-module Y7 whose support is

Ti“"'<—7"i+1—>"‘“’7‘i+2<*"'—>7’j<-""‘—1J

or

P T P P e
with an injection of ¥7 into M, and supp(X) is of the form
S A Sy
if r¢ is a source in supp(M) and

1

‘ !
_...._)"1:(,;...(_7"1-_>...__)7-i_1 <—"'<‘—'T1‘_2—)"'*>'r'1(—"'4’—7"0’_.}_

if rg is a sink in supp(ﬁ)
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3) Supp(ﬁ) is of the form

(4)

T T e o Tigg e T e e —
supp(Y') is of the form
_...(_:Z;_)..._)Ti(.__...ﬁri*_l_)..._)ri+2<_..._)7~j___..._

withz € (r;_y — -+ — r;) and ¢ = r;_; implies ¢ = 1, p is given by a composition of a
projection of Y onto an indecomposable A-module }71 whose support is

$_)..._)Ti(_...(_ri+l_>..._>7-i+2(_..._)rj<_...<_y

or

B Py e Tip] e Tigg T
with an injection of ¥; into M, and supp()?)is of the form

e T i P e g e T e ey
if 7o is a source in supp(ﬁ) and z # o, or

—"'<—:C—>"'—>7'i—)"'—>‘7‘,

A S A iy

if 7o is a sink in supp(]Tf) and x # ro,orelse — -+ — z_ if & = rg.
supp(M) is of the form
T e Ty e o Ty e T e e —

supp(Y") is of the form
I iy
withz € (r; « -+ ¢ 7it1), T # 7341, and p is given by a composition of a projection of

Y onto an indecomposable A-module Y, whose support is ¢ — --- — r; with an injection
of Y7 into M, supp(X) is of the form

! !
_...(__x_;...ﬁri_)..._)ri_‘_l(_...(_rl-+2_)..._;7~t+1(_...(_.7~t+2

! !
_"'<_$_>"'_)Ti_)"'_’7‘i+](_"'(_T.Z'-‘r?_)"'__)rt(_"‘

if 7441 is a source in supp(M ),or
— Tl =

if 7441 is a sink in supp(M).

Symmetrically we define a module produced by rf(p).
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Lemma 9. Let A | be a selfinjective special biserial K-algebra which is not a local Nakayama
algebra. Let F\(M) =M € M. Let FA(?) =Y be an indecomposable A-module of the first
kind. Suppose that s-top(Y) = M and 0 # F\(p) = p: Y — M. Let X1 = F\(X,) be produced
by lf(p) and let X5 = F\(X2) be produced by rf(p). Then the following implications hold:
(1) If X1 = 0, then s-top(X2) is indecomposable and for every 0 # F\(¢) = ¢: X2 —
s-top( X3 ) one of the modules produced by 1£(§) and by rf(§) is zero. B
(2) If X5 = 0, then s-top(X,) is indecomposable and for every 0 # Fx\(§) = ¢: X; —
s-top(X1) one of the modules produced by 1f(§) and by rf(§) is zero. - -

Proof. Under the assumptions and notations of the lemma suppose that X; = 0. Moreover assume

that supp(M) is of the form
T A e R SR
A handy analysis shows that if X; = 0 then supp(}Nf) must be one of the following forms:
PO =t Ty e Tigg e 3 Tigg e =1y = e — T (B) = e — ®

S T T o K RETIEE s J(-) IR (1))

by definition of the modules produced by frames.
Thus in case (i) supp(X3) is one of the following forms:

r_l—>---—>T6<—-~<——7"1—+---—>7";_1<—---<—T‘i—>...
<——7‘j_2—>~--—+7";_1 = rf(p) = = (1)
if ro is a source in supp(M ) and
(r0)+—>~.~—>r§ R e e R e e
<—r]~_2—>---‘»r;~_1<—--~<——rf(£~)<—~--— (i2)

if ro is a sink in supp(}). Moreover in case (ii) supp(Xs ) is one of the following forms:
Pega o Ty e Ty = o Ty ey e () = (i)

if r41 is a source in supp(ﬁ) and

(rt+1)_-—>~~-—>r;<—~--4—rt_1—>---<—~rj+2—>...

T R e B 1 1) kKRR (119

if r444 is asink in supp(M) and
rf(p) — -+ — (iis)
if rf(]_5) = Tt+41. ' .
It is easy to deduce from Lemma 3 and the orthogonality of elements in M 4 that if Fi\(M;) =

M; € M 4 and M; is a direct summand in s-top(X2) then supp(ﬁl) is of the formr_; — - -+ —
in Case (i1), (r9)4+ — -+ — in Case (i2), r¢42 — -+- — in Case (ii1), (r¢41)- — -+ — in
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Case (iiy), rf(p) — -+ — in Case (iis). Hence s-top(X3) is indecomposable and implication (1)
easily follows.
A similar analysis shows implication (2) which finishes the proof. [

Let Y be an indecomposable nonprojective A-module. Let 0 # p: Y — M with M € M 4.
An A-module X without projective direct summands is said to be p—maximal for Y if the following
condition holds: if X # 0 then there is 0 # f: X — Y such that

(1) pf =0
(2) If Z is an A-module such that thereis 0 # g: Z — Y withpg = 0, thenthereish: Z — X
such that g = fh.

We have the following description of p-maximal modules for indecomposable A-modules of
the first kind.

Proposition 1. Let A be a special biserial selfinjective K—algebra which is not a local Nakayama
algebra. Let FA(M) M e M. Let F,\(}N/) Y be an indecomposable A-module of the first
kind. Let 0 # Fx\(p) = p: Y — M. If X is a p-maximal module for Y with 0 # f : X — Y then
X =2 X, ® X, and the followzng conditions are satisfied:

(a) FA(Xl) = X is produced by lf(p), F,\(Xz) = X, is produced by rf(p).

(b) If0 # ¢: Y — M' with M' € M4 and q # \p for any A € K* then ¢f # 0, and for
f= (f1’f ) it holds either qf | # 0 and ¢f , = 0or¢f =0andqf, #O0.

(¢) If M' € M 4 and there is 0 ;éq M —>Xthenfq7é 0.

(d) If M' € M4 and there is 0 # q: M' — Y then there is 0 # g: M' — X such that for
0#f= (L,iZ)eitherilg:gandiQQ: Oorizgzgandilgz 0.

(e) Ifthereis M' € M 4 such that M' is a direct summand in s-top(X ) and 0 # ¢: X — M’
does not belong to Hom ,(Y, s-top(Y")), then there is an indecomposable direct summand
L in s-rad(N) with N being s-projective whose s-top is M such that M' = s-top(L).
Moreover there are at most two such modules M', M'" and one of them is a direct summand
in s-top(X1 ) and the other one is a direct summand in s-top(X>).

(f) If Xi, ¢+ = 1, 2, does not have a direct summand M' in its s-top such that there is
0 +# q: X — M with ¢ ¢ Hom 4(Y,s-top(Y)), then one of the direct summands in
s-top(s-rad(N)), say MY', has the property that if M!' = s-top(L!), L" is an indecom-
posable direct summand in s-rad(N), and N is s-projective with s- top(N ) & M, then
thereis 0 #t,: M" — X;.

(8) Let N be s-projective withs-top(N) = M and let L be an indecomposable direct summand
in s-tad(N). Let ay,: L — N be acoset of an irreducible map ay,1,: L — N. Then
there is0 # g: N — Y and there is A\n,(Y") € K such that f o (An,(Y) ~gN,L’) isa
morphism from L to X;, 1 = 1,2, where s-top(L) is either a direct summand in s-top(X'),
or a direct summand in s-soc(X).

Proof. Under the assumptions and the notations of the proposition suppose that supp(ﬁ ) is of the
following form

ot Ty A Ty P s Ty T

We shall consider two typical cases of supp(f’).
1. Suppose that supp(Y") is of the form

T e PR
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WithMI E(risy & er)eFEri,y€(ry— - =riy),y# iy Let F)\()zl) = Xy,
Fi\(X2) = X, be the modules produced by 1f(j) and by rf(p) respectively. Thus by definition
supp(Xs) is of the form

Ko Ky !

_ .., — x‘—"'*—T‘i—“"—”“Hl"""—7"i+2H"'*""jﬁ"‘*’y*—"'*

and supp( X ) is of the form

. ! ! . Po 12
T T e T e Ty e T —rj = oy — =
where
A g
o . if ro is a source in supp(M)

! !
To 4 >t T e Ty e

if rg is a sink in supp(M)
1 !
Y T e T D Ty e e Ty

if r¢yq is a source in supp(M)

! !
Yo Ty e Ty Y s Y T e e Ty
if 441 is a sink in supp(M)

It is easy to see that there is 0 # f: X; ® Xy — Y which has the property pf = 0 by Lemmas 1,
2,and f = (f i ,)- If Z is a nonzero A-module of the first kind that is indecomposable and
thereis 0 # g: Z — Y then Z = F\(Z) and g = Fx(g). If pg = 0 and supp(Z) is disjoint with
7i — .-+ — iy  --- — r; then obviously g factors through f. If supp(g) is not disjoint with
ri — -+ — ripq « --- — r; then let r;; be the lowest sink of supp(M) that is contained in

supp(Z) and let ;, be the highest sink of supp(M) that is contained in supp(Z ). Thus supp(Z)
must be of the form

!
_...<_7-Z~0_)...,_yrio_*_l(._._...(_rz-0+2_)...(___7»“_>..._

and an easy verification shows that there exists h: Z — X; @ X, which has the required properties.
Consequently (a) is proved in this case, because for A-modules of the second kind we apply
Lemma 7.

In order to prove (b) let us observe that if 0 # ¢: ¥ — M’ with M’ = Fy(M') € M4 and
¢ = F\(q) then for f: X — Y it holds ¢f # 0 for Fx(§) = ¢ with 1f(§) > =, or rf(§) < v.
Moreover if 1f(§) >z, rf(§) # y then ¢f  # O and ¢f = 0, and if rf(§) < y, }f(§) # @ then
qf, # 0and ¢f, = 0. We should only consider the case f(§) < = and rf(¢) > y. But if such an
M’ exists then M’ = F\(M') and by Lemma 3 supp(M") is of the form

e o Ly e gy e gy e e Ly

)

i R
or

!
7""‘)1'(_""*_‘7‘1'—_”"—’7‘1'_}.1(__"'(—ri+2"’"'(_Tj——’"'_}y('_""“-
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In the first case Hom 4 (M, M") % 0 and in the other one Hom ,(M', M) # 0 which contradicts
to the fact that M', M € M. If1f(§) = =z, rf(§) = y then it is easily seen that (b) holds too.
Consequently (b) is proved in this case.

In order to prove (c) suppose that Fi (M') = M' € M 4 and there is 0 #IN§) =q¢ M — X.
We may assume that 0 # ¢: M’ — X,. If f(§) > « then it is obvious that fq # 0. We should
only check that if 1f(§) < x then (c) also holds. But consider a module T = F»(T') for which

supp(T) is of the form
Ko Ky !
T e T LT T e Ty e Ty

~4—T']‘—-)~'~—>y~)“~—>?“;«+l =Ty — s >
where S, is a direct summand in P, , / s-soc(Py,,, ) if 7441 is a sink in supp(M ), or

— ... $<—-~-<—ri—>---—)r;+1(—--~e—ri+2—>

] —
AT e Y e T e e T e S T

if r441 is a source in supp(M). By [21, Proposition 2] and by (a) and Lemma 9 s-soc(T') is
indecomposable and it holds supp(7) is of the form

T PPN

! . e e I e —
Ty e Ty e T -y — =Ty z

withz =wvorz =ryq_, wherew € (rjp_y — -+ — T;o)’ w # r4,_1. Consequently s-soc(T")
is the only M’ such that there is 0 # ¢: M' — X, with If(§) < =, and the composition f¢ # 0.
In the same manner one proves (c) if we replace X, by X;. Moreover the above M’ satisfies also
(d) by [21]. Applying [21, Proposition 2] one proves (), (f) dually to (c), (d).
(g) is obvious by the shapes of Supp(M), supp(l~/), supp(}?l ), Supp()?g) and [21, Lemma 14].
2. Suppose that supp(l~/) is of the form

T e Ty e T o Pigg e

T I P s
withz € (riy — -+ = 1),z =r;—y implies: = 1,y € (rj = -+ rjq1), y = rjy1 implies
j=t. Let Fk(ffl) = X1, FA(X2) = X; be the modules produced by If(5) and rf() respectively.
Thus by definition supp(X; ) is of the form

and supp()@) is of the form
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where
r_1 _)..._.yré)(_...(_lrl__)..._)rl 1 — =y
N e if o is a source in supp( M)
PO —> oo Ty 4= e TG e T
if ro is a sink in supp(M)
N ]
Pj o o Py e S Ty e e e Ty
o . if 7441 is a source in supp(M)
e T = ! / y
Pp o P e S e ey

if o4 is a sink in supp(M )

Itis easily seen that thereis 0 # f = (f , f,): X1 & X3 — Y which has the property that pf = 0
by Lemmas 1, 2. If Z is a nonzero A-module of the first kind that is indecomposable and there is
0#g:Z —YthenZ = F)\(Z) and g = F)\(g). If pg = 0 then supp(Z) cannot be contained in
Py = iy 4= s = iy 4= oo =1y, otherwise Hom 4(Z,Y") = 0 or Hom 4(Z, M) # 0.
Now we can follow the arguments used in 1. and (a) —(g) hold.

1. and 2. are typical cases of supp(Y) and in each another case one proceeds 51m11ar1y to 1., 2.
We leave the details to the reader. O

8 s-radicals. The aim of this section is a generalization of the notion of an s-radical that was
introduced for s-projective modules only.

Let Y be a nonprojective A—-module. An A-module X without projective direct summands is
said to be an s-radical of Y, and is denoted by s-rad(Y"), if there is 0 # f: X — Y such that the
following conditions are satisfied: h

(1) If0 # p: Y — s-top(Y') then pf = 0.
(2) If Z is such an A—module that thereis0 # g : Z — Y with pg = 0forany0 #p:Y —
s-top(Y") then there exists 0 # b : Z — X such that g = fh.

Remark 1. The s-radical of an s-projective A-module defined in Section 4 shares the above
properties.

Proposition 2. Let A be a selfinjective special biserial K—algebra which is not a local Nakayama
algebra. Every nonprojective A-module Y of the first kind has its s-radical whose s-socle is
contained in s-soc(Y). Moreover, s-rad(Y) is an A-module of the first kind.

Proof. 1t is obvious that we need only to show the proposition for indecomposable A-modules of
the firstkind. Let Y be such an A-module. We fixa K-basis {p,,...,p_} of Hom ,(Y,s-top(Y))in
such a way thateach p_isin Hom , (Y, M), M € M. Thus, takmg the p,~maximal module Y; for
Y wehavethat {p,_,...,p_}isa{-basis of Hom 4(Y3,s-top(Y")) by Proposmon 1. Consequently
we can take Y3 to be the p,—maximal module for ¥;. Continuing this procedure successivly we
obtain a module Y that is s- rad(Y) and our proposition follows by Proposition 1. O

Lemma 10. Let A = KQa/I4 be a selfinjective special biserial algebra that is not a local
Nakayama algebra. There are only finitely many nonisomorphic indecomposable A-modules of
the first kind with a fixed finite s-top.

Proof. We shall prove our lemma in two steps. Let Y be an indecomposable A—mogigle of the first
kind with F5(Y) = Y. Let s-top(Y) = M € M4 be indecomposable with F\(M) = M. Let
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0 # Fx(p) = p: Y — M. Then, by Lemma 3, supp(]\A/f) is of the form
_..._>T-Z~(_...(_ri+'1_)..._)ri+2<_..._)71-<_..4._

and supp(Y’) is one of the following forms:

() — = H@) ey o S T e T e — e —
(i) — - = H(P) Py gy D gy e oy — e —
(iii)—~~-<—1f(§)~>---—+ri<~--~<—rl+1—> S i e e —
(V) = e H(B) = o T o Tl e e Tigg e e e
In each of the above cases, if (— --- —>1f(p)) # If(p) or (= --- « If(p)) # U(p), then
the indecomposable A-module Y; = F,\(Yl) with supp(Yl) of the form — --- — [f(p) or

— +++ + If(p) respectively has also its s-top which is not given by A - p forany A € K'* bgl the
properties of lf(g). An easy verification shows that s-top(Y7) C s-top(Y"), hence s-top(Y") is not
indecomposable. We can do the same with rf(5) and we obtain that supp(Y) starts at If(5) and
ends at rf(). Hence the number of isoclasses of indecomposable A-modules Y’ of the first kind
with s—top(—Y) = M is bounded by the maximal number of relation-free walks between vertices
of Supp(M )uU supp(N ), where N = Fy\(N) is the s-projective A-module whose s-top is M.
Consequently this number is finite and the required condition holds.

Let Y be an indecomposable A-module of the first kind with dim Hom 4 (Y, s-top(Y)) > 2
Let Y = F\(Y) and let the vertices of supp(Y) be numbered increasingly from the left to the
right.

Letp = F\(p) : Y — M € M be anelement of a fixed K -basis of Hom 4 (Y, s-top(Y")) such
that 1f (p) is minimal in the family of all left frames of the fixed I{-basis. Thus in the same way as

above we can show that supp(Y’) starts at 1f(p) and ends at rf(§) for some ¢ = F(§) belonging to
the fixed I -basis. Furthermore in the same manner one can prove that if rf(p, ) < 1f(p,) then there
is p, = Fa(p,) with lf(p,) < 1f(p,) and rf(p,) > rf(p, ). Consequently the number of isoclasses
of Y with a ﬁxed s-top is bounded by the number of composed walks of the form as in the first part
of the proof. This number is also finite and our lemma is proved. O

Lemma 11. Let A = KQa /14 be a selfinjective special biserial K-algebra that is not a local
Nakayama algebra. There are only finitely many nonisomorphic indecomposable A-modules of
the first kind with a fixed finite s-socle.

Proof. The proof is dual to that of Lemma 10. O

Now we can define inductively s-rad”*!(Y) = s-rad(s-rad”(Y")) for every natural number 7,
where s-rad’ (V) =

Proposition 3. Let A = KQa/la be a selfinjective special biserial K-algebra that is not a
local Nakayama algebra. For every finite-dimensional A—module Y of the first kind there exists a
natural number ny with s-rad™¥ (Y') = 0.

Proof. Let A = K@) 4/14 beaselfinjective special biserial K -algebra that is not a local Nakayama
algebra. If Y is a finite-dimensional of the first kind then by Proposition 2 s-rad(Y") is an A-module
of the first kind whose s-socle is contained in s-soc(Y"). If s-rad™(Y") # 0 for every natural n then
by definition we have an infinite sequence of nonzero maps

n in n—1 —)in—l iz il
- = srad® (V) S srad" (YY) == ... S sradlY) — Y



84 Construction of algebras stably equivalent to selfinjective special biserial algebras

such that for each indecomposable direct summand M in s-soc(s-rad™(Y")) and every nonzero
map ¢: M — s-soc(s-rad”(Y')) it holds f f ... f g # 0. Moreover, by Lemma 11, there is
only finitely many such modules, hence f ... f, is an isomorphism for some natural r > m.
Therefore f  isanisomorphism for some natural m which contradicts to the definition of s-radicals.
Consequently there is a natural number ny with s-rad™ (V) =0. O

9. s-supports of A-modules of the first kind. Let Y be an indecomposable A-module of the
first kind. For each s-projective A-module N with respect to M 4 and for each indecomposable
direct summand L in s-rad(/N') we fix a coset ay 7, of an irreducible map an ,: L — N. Thus
an s-support of Y, that will be denoted by s-supp 4, (Y'), is the path category of the following
relation-free quiver Qaq,(Y): vertices of Qaq,(Y) are indecomposable direct summands in
s-top(s-rad”™(Y")) forall n = 0,1,2,..., where we do not identify isomorphic direct summands.
If My, M, are direct summands in s-top(s-rad™ (Y')) and s-top(s-rad™*(Y")) respectively for

o
some 7y, 7o = 0, 1,2, ... then there is an arrow M; —22 M, in Qm,(Y)iff ng =ny +1and
there is a coset ay, 1, such that s-top(Ny) = M; and s-top(L1) = Ma.

Lemma 12. Let A be a special biserial selfinjective K -algebra which is alocal Nakayama algebra.
LetY be an indecomposable A-module of the first kind. Then s-supp rq , (Y') is a path category of
a finite connected quiver Qs , (Y') of Dynkin type A, and the following conditions hold:

(a) The sources in Q am , (Y') correspond to the indecomposable direct summands in s-top(Y").
(b) The sinks in Qa1 ,(Y) correspond to the indecomposable direct summands in s-soc(Y").
(1) (¢)IfY is s-projective then Qs (Y) is one of the forms

ANget1:Loat1,20 41 ANg, L3 3 XNy, L1,1 Ly, L) Ly, L, ENg, Lo o ANoe,Lot,2t AN, L ANy, Ly QN Ly
— e ¢ e > e
AN,L1 &N, Ly . , . . .
@ IfQ =« ... ———5 ... — is a subquiver in Qm,(Y) then Q is a subquiver of

QMA (N)

(e) IfQ N subquiver in Qs , (Y) then Q is a subquiver in Qa1 ,,(N).
A A

Proof. LetY be an indecomposable A-module of the first kind. By Corollary 1, Proposition 3 and
by the above construction of Q A4, (Y") we infer that @ o, (Y) is finite. Inductively on the number
of vertices in Q a1, (Y') we shall prove the remained part of our lemma. If Q o1, (Y") has only one
vertex then the required conditions are obvious, since Y € M 4. Suppose that our assertions hold
for all A-modules X whose quivers Q@ a1, (X)) have less vertices than n, and let Y be such a module
that Q a4, (Y) has n vertices. Thus s-rad(Y") is a direct sum of indecomposable A-modules of the
first kind and each indecomposable direct summand Y; in s-rad(Y") has the property Q ¢, (Y¥;) has
less vertices than n. By the inductive assumption @ a4, (Y5) is connected of type A, and (a)—(e)
hold. But by the construction of Qaq,(Y) and by the construction of s-rad(Y") in the proof of
Proposition 2 we infer that Q a¢, (Y') is of type A, in view of Proposition 1 and (a), (b) hold. Since
by [21, Proposition 2] each indecomposable direct summand in s-rad(Y") has an indecomposable
s-top and an indecomposable s-socle for s-projective Y by Proposition 2 and Lemma 9, hence (c)
holds. In order to prove (d) observe that by the definition of an s-projective module we have a
nonzero map [: N — Y and by Proposition 1, s-tad(N) = Ly @ L, Ly, Ly # 0. Let ) be of the
form

o o o o "
ENL SNy 41 Lomp1,2m 41 ANy, Ly, AN, Ly AN, L, SN2, Ly ANy Loy, o SN, LY

Suppose that an: 11 # AN, o Loy ames: DUL N this case s-t0p(Lam+1,2m+1) 18 contained
in s-soc(Y") since we can consider an A-module R that has the following property: for every
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0#h: N —Y with h|s_rad(L2 o T 0, h factors through R. It is easy to verify that such
an R exists (by a dual version of Proposition 1) and s-top(Lam+1,2m+1) is @ direct summand in

s-soc(Y), so ap 1, does not exist in Q). In the same manner we prove that a Ly does not exist
in @ and (d) is proved. Similarly we prove (e) and our lemma is proved. [

Corollary 2. Let A be a selfinjective special biserial K—algebra which is not a local Nakayama
algebra. LetY be an indecomposable A—module of the first kind. Let X be a p—maximal module for

Y withp: Y — M. Then Q pm , (X) is a subquiver of Q s, (V) and Qas, (Y)\Qpa, (X) = {M}.
Proof. The corollary is an obvious consequence of the constructions of Q o4, (Y) ands-rad(Y). O

10 7—shifts of the s-projective modules. We starts this section with a lemma that will be of great
importance in our further considerations.

Lemma13. Let A be a selfinjective special biserial I{—algebra which is a local Nakayama algebra.
Let N be an s-projective A-module whose s-top is M. Then s-soc(7(N)) is indecomposable and
s-top(7(N)) & s-top(s-rad(NV)).

Moreover if

(5) (f1.f2)——N
O—PT(N)—)LI@LQ 0

is an Auslander—Reiten sequence in mod—A then there is \ € K* such that f 9, = Af,g, with

f.9, # 0.

Proof. Under the notations of the lemma let F\(N) = N, F,\(M) M. Suppose that supp(ﬂ)
is of the form

TQ 4t A= T b e Ty b e m TR e = Ty = e = Ty
t > 1. Then by [21, Lemma 12] we obtain that supp(]\7) is of the form

(rg) " 4= e Py e Ty L

—»r; e = Ty — -~-—>(r;+1)+,
One can deduce from [27] that supp(r(IV)) is of the form
(o) — - Th g e o e o e ()

By Proposition 2 and Lemma 9 we know that s- soc(N) is a direct sum of at most two indecompos—
able A-modules and s- soc(N) = s-soc(s-rad(V)). Moreover, if M' € M 4 with FA(A([’) =M
and there is 0 # ¢ q, M —s L’ and there is 0 # ¢ 4, M L, with s- rad(N) Ly @® L, where
4, 4, factor through 7(N), then by Lemmas 1, 2, 3 \ - ay i, 4, = ey i,q, forsome A € K*.
Therefore one of L;, Ly has the property that its s-socle decomposes into two direct summands
which contradicts to the fact that s—soc(f)i) is indecomposable. Consequently if M’ € M 4 and
0#g: M - 7(N) then G cannot be prolongated to a nonzero morphism from M' to N. In fact
there is only one A-module with this property and its support is of the form

! ! ! ! 1 !
7-0<_...<_7‘1_)..._)7-2¢_...(f7-3‘>...(_.rt_)...__>7ﬂt+lh

This shows that s-soc(7(N)) is indecomposable in the considered case.
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Suppose that Supp(]T/f) is of the form

TQ = T A e e T e Ty e Ty e e Ty
t > 1. Thus supp( V) is of the form
(7‘6)+ — ey _4..._,,1{2 — ey —>-"<—7“t—>"'—>(7“2+1)_

and supp(7(N)) is of the following form

R P S P
by [27]. Similar arguments as above show that supp(s-soc(7(V))) is of the form

(7)) g = o o e ey o o (re))-

and the required assertion holds in this case.
Suppose that supp(M ) is of the form

T PRIy N P S
Then supp(V) is of the form

S R R TTR P
and supp(7(NN)) is of the following form

(S IR S I A (A
by [27]. Similarly we obtain that supp(s-soc((N))) is of the form

(S T Py e S Y

Consequently, s-soc(7(IN)) is also indecomposable in this case.

In order to finish the proof, it is enough to observe that every nonzero map startmg at T(N )
must factor through a linear combination of the irreducible maps from T(N ) to Ly and to L.
Consequently s-top(r(NN)) coincides with s-top(s-rad(N)). The last sentence in the lemma is
obvious what finishes the proof. O

Corollary 3. Let A be a selfinjective special biserial K—algebra which is not a local Nakayama
algebra. Let N be an s-projective A~module whose s-support is the path category of the quiver

ANy y1:Losg1, 2541 ANy, Ly, 1 EN, L, AN, L, EN2, Ly o ANoy, Loy, ot

4

L &Ny, Ly

(respectively —l . gN"LT) then Q s, (7(N)) is of the form

o (e o [o3
ANy, Ly “Nos41:Lost1,2s41=Nos43 Los43,2:43-Not42,Lot42,2te42=Nae, Lot 2t ANy, Lyy
— > D ) ¢ ... (
(o
2Ny, Ly AN, L =Nrg1:Lrg
(resp. ).

Proof. The corollary is an easy consequence of Lemmas 12, 13, of the construction of s-supports
and of the construction of s-radicals. All details are left to the reader. [
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11. s-supports of A-modules of the second kind. Throughout this section let Z be an indecom-
posable A—module of the second kind, where A is a selfinjective special biserial algebra. Now we

are going to interpret Lemma 7 in terms of s-projective A—modules with respect to M 4. In order
to do it we need the following lemma.

Lemma 14. If M €¢ M4 and 0 — Z Y - Z — 0 is an Auslander—Reiten sequence in

mod-—A then there is the following short exact sequence 0 — Hom 4 (Z, M) £ Hom A(Y, M) z,
Hom 4(Z, M) — 0 of K-spaces.

Proof. Suppose That M € M4 and0 — Z — Y — Z — 0 is an Auslander—Reiten sequence
in mod-A. If p € Hom 4(Z, M) is nonzero then p # 0 is not a splitable monomorphism. Hence
there is a nonzero map t : ¥ — M such that p = tw Moreover ¢ # 0, because p = tw.
Consequently w* : Hom 4(Y, M) — Hom 4(Z, M) is an epimorphism of K —spaces. Suppose
now that pr = 0. Then there is a factorization of pr through the injective envelope E(Y") of Y and
we have the following commutative diagram

y 2 7

zl l”
E(Y) —— M.

But it is easily seen that E(Y) & E(Z) @ E(Z) and | = (l,l5). Furthermore there is ¢ : Z —
E(Z)withly = gr. If s = (;) then we have sl = (:;) (li,12) = s1ly+s2ly = pr. Consequently
sl =811y + s2ly = pr. But jw # 0, hence s1{; = 0 and so¢r = pr. But r is an epimorphism, so
s2¢ = p which gives a contradiction to the assumption that p # 0. Therefore Hom 4 (r, M) = r*
is a monomorphism. Of course w*r* = 0 what shows that ‘we should check for 0 FU0:Y - M
whether Jw = 0 implies that there is 0 # p : Z — M such that pr = L. In order to check the last
implication observe that [w = 0 implies that Jw factors through E(Z) e.g. we have the following
commutative diagram

z Y5y

| |

E(Z) —— M.
Moreover there is t: Y — E(Z) such that : = tw, hence lw = stw. Now we are able to define
a homomorphism p: Z — M by the formula p(r(y)) = I(y) — st(y). It is easy to check that p

does not depend on the choice of representatives of r(y) and [ = pr. Consequently our lemma is
proved. O

Corollary 4. Let Z be an indecomposable A-module of the second kind that is of the form
Fu(M(Quw,m, \)). Then s-top(Z) = [s-top(Fu(M(Quw, 1,A)))]™.

Proof. The corollary is an easy consequence of Lemma 14. It can be proved inductively on m. We
leave the detailes to the reader. [

An indecomposable A-module Y of the first kind is said to be s-local if its s-top is indecompos-
able. A family {V;}i=1, .. of s-local A-modules is said to be primitive if the following conditions
are satisfied:

(i) ifl = 1thens-soc(Vi) =M & M, M € M4
(ii) if I > 1 then s-soc(V;) = M;, @ M;, with M; ,M;, € M4 and M;, = M4y, for
1=1,2,...,0 —1and M, = My,.
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Proposition 4. Let Z be an indecomposable A—module of the second kind. Then there exists a
primitive family {V;}i=1,.. 1 of s-local A-modules and there is a natural number v such that the
following conditions are satisfied:

(@) [s-top(Di_, Vi)l = s-top(Z).

(b) There exists amap 0 # q: (@izl M; )" — (@521 Vi)™ such that for every A-module
Y it holds Hom3? (Z",Y') & m_%((@gzl Vi)™, Y'), where ﬂgﬂ_ﬁ((@le Vo, Y)isa
subspace in Ho—mA((Gai:1 Vi)™, Y') consisting of the morphisms f that satisfy fq = 0.

Proof. Let Z be an indecomposable A-module of the second kind. We begin our proof with the
case Z = Fo(M(Quw,1,))). Let My = Fyx(M;) € M4 be an indecomposable direct summand
ins-top(Z). Let Ny be s-projective with s-top(N1) = M;. Thus by definition there is a morphism
0 # f: N1 — Z which satisfies pf # 0 for every 0 # p: Z — M;. Let V; be an s-local

A-module such that f factors through V; and for f = f f with f Vi — Z it holds f 9, #0,
where 0 # g : s-soc(Vi) — Vi. First we should show that s- soc(Vl) decomposes mto a direct
sum of two i_ndecomposable A-modules. Suppose that ),, is of the form

Lsya
Zs+1<:.
\ .
l4 ls+3
<
\ )
ll<:A
\ .

Since Fy,(Py;) = Ly, is a submodule in Z, hence there is some I;,, say [y, such that for 0 #
p: Z — M it holds p{L # 0 or plL =0 and p|L # 0. Therefore in the first case there is

[+ Vi — Ly, with p| I, f #0. Iti is easy to verify by construction that a p| 1, ~“maximal A-

module forL;, isa direct sum of exactly two indecomposable A-modules, hence s- top(s rad(V1))
decomposes into two indecomposable direct summands by Lemma 11 and Lemma 12 implies that
s-soc( V1) decomposes into a direct sum of exactly two indecomposable A-modules. In the second
case L;, is a submodule of s-rad(V) and s-soc(L;, ) decomposes, hence s-soc(V;) decomposes.
Suppose that s-soc(V1) = M' @ M" with M',M" € M. If M, is another indecomposable
direct summand in s-top(Z) in the sense that there is0#p, : Z — M, withp # Ap, forevery
A € K™ then we construct in the above way V3. Continuing thls procedure we obtain a family of
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s-local A-modules {V;};=1,.. ;. Applying a usual duality D we can show the same for D(Z) what
shows that {V;};=1,. . is a primitive family of s-local A-modules.

In order to finish the proof of the considered case observe that s—‘cop({})ﬁz1 Vi) = s-top(2)

by the construction of the family {V;};=1, . what shows (a) in this case. Now we should
indicate a morphism 0 # ¢: @i:l M;, — @221 V;i. But ¢ acts in such a manner that for each
i = 1,...,1 the following formula is true fi—1¢:,(m) # figi,(m) for every element m of M;,,

where 0 # ¢;, © M;, — V;and 0 # ¢;, 0 My, = M(;_1y, — Vi—1. Then (b) holds in this case for
Hom%l((@izl V:),Y) = Hom 4(Z,Y). Indeed, the morphism

A\
I @ Vier Z

ﬂ =1

yields a needed isomorphism. Consequently the case Z = F,,(M(Qw, 1, \)) is proved.

The general case Z = F,,(M(Qw, m, X)) is obtained by applying Lemma 14, Corollary 4 and
the above analysis. All details in this case are left to the reader. O

Lemma 15. If M € My and 0 — Z =Y -5 Z — 0 is an AuslanderReiten se-

quence in mod—A then there is the following short exact sequence 0 — Hom (M, Z) =

Hom ,(M,Y) LN Hom ,(M, Z) — 0 of K-spaces.

Proof. The proof is dual to the proof of Lemma 14. [

Corollary 5. Let Z be an indecomposable A—module of the second kind which is of the form
Fu(M(Quw,m,\)). Thens-soc(Z) = [s-soc(Fy(M(Quw, 1, X)))]™.

Proof. The corollary is easy proved inductively on m by using of Lemma 15. O

An indecomposable A-module Y of the first kind is said to be s-colocal if its s-socle is inde-
composable. A family {U;}i=1,...; of s-colocal A-modules is said to be primitive if the following
conditions are satisfied:

(i) if{ = 1thens-top(U1) =M @M, M € My
(i) if I > 1 then S—tOp(Ui) = Mﬁ D M’ig with Mil, Mi2 € M4 and Mi2 =~ ]\4'(1'4_1)1 for
:=1,2,...,l—1and M,;, = M,.

Proposition 5. Let Z be an indecomposable A—module of the second kind. Then there exists a
primitive family {U; };=1,...1 of s-colocal A—modules and there is a natural number r such that the
following conditions are satisfied.:
(a) [s—soc(@izl U)]" = s-soc(Z).
(b) There exists a map 0 # p: (@5:1 U;,)r — (@2:1 M;, )" such that for any A-module
Y it holds Hom'? (Y, Z¥) = Hom%(Y, ('_, U:)"), where Hom (Y, (D'_, U:)") is a
subspace of Hom , (Y, (@5:1 U;)") consisting of the morphisms f that staisfy pf = 0.

Proof. By applying the usual duality D to Proposition 4 one obtains the proposition at once. [

Now we are able to define s-supports for indecomposable A-modules of the second kind.
Let Z be an indecomposable A-module of the second kind. Then s-support of Z, that will
be denoted also by s-suppy,,(Z), is a path category of the following relation-free quiver
Qm,(Z). If Z =2 Fpy(M(Quw,m,N)) then we put Qa,(Z2) = Qur,(Fu(M(Quw,1,1))).
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Moreover, Qat, (Fuw(M(Quw,1,X))) is defined as follows: if {V;};=1,..; is a primitive fam-
ily of s-local A-modules from Proposition 4 then Qaq, (Fu(M(Quw,1,X))) is obtained from
Qm, (Vi) U---UQum, (V) by the identifications of the following sinks M;, with M; 1), for all
1=1,...,1—1and M;, with M;,.

Lemma 16. Let Z be an indecomposable A~module of the second kind. Then s-supp r,(Z) is a

path category of a finite connected quiver Q pm , (Z) of extended Dynkin type A, and the following
conditions hold.:

(a) The sources in Qs ,(Z) correspond to the indecomposable direct summands in s-top(Z).
(b) The sinks in Q s ,(Z) correspond to the indecomposable direct summands in s-soc(Z).

Proof. The lemma is an obvious consequence of Proposition 4, Lemma 12 and the definition of
Qm,(Z) for indecomposable A-modules of the second kind. O

12. Algebras produced by maximal systems of orthogonal stable A-bricks. Let M 4 be a
fixed maximal system of orthogonal stable A-bricks, where A is a special biserial selfinjective
algebra which is not a local Nakayama algebra. We start this section with defining a quiver Q a,
produced by M 4. The vertices of Q a1, are the elements of M 4. For any My, My € M 4 there
is an arrow ay;, 7, from M; to M, iff there is a coset ay, ,, such that s-top(Ny) & M; and
s-top(L1) = M,. Moreover, different cosets of the form ay 1, &', 1, produce different arrows in
Qum, iff X!y # ay g, forall A € K.

Now we can define a two-sided ideal in the path category K Qa¢, of M 4 to be an ideal Trq,
generated by the differences

AN LN, Lyt  ENooy1,Doer, 2041 EN2e 43, Los 43,2043

T AN Ly%Ny Loy %Noy Lo, oe ENoe 2, Lae 2,20 42

for N with s-rad(N) = Ly & Lo, Ly, L2 # 0, and by the paths that are not subpaths of the fol-
IOWing paths QN,ngNhLl,l te gN?a-&-l,L2a+1,25+1gN2a+3;L25+3,25+3’ g-N,LQ-C—uNzyLz,z o ‘Q'NZL)L22,2t
N2, Locyo e e for N withs-rad(N) = L1®L,, L1, Ly # 05 QN LAN, Ly -+ ONy Lr &Ny g1, Lo gt
for N with s-rad(NN) = L indecomposable. We shall denote the algebra KQat, /I, by A,
The algebra A o, is called M 4-algebra.

Lemma 17. Let M 4 be a maximal system of orthogonal stable A-bricks. Then an M s—algebra
A a, is finite-dimensional selfinjective special biserial connected.

Proof. Obvious by the construction of A ¢, and by Lemma 12, Corollary 3. O

Let Y be an indecomposable A-module. Consider the following morphism of quivers ly :
Qm,(Y) — Qm, that acts as follows: for each M € M 4 we put ly (M) = M, and for each
arrow a1, in Qm, (Y) weputly(ay 1) = ay 1. Itiseasy to observe that ly induces a K -linear
functor of locally bounded K—categories ly : s-supp, (Y) = Ay,

Lemma 18. For every indecomposable A-module Y the functor ly : s-supppg, (Y) = A, is
a covering functor.

Proof. An easy verification shows the lemma. O

13. Specified quivers and stable morphisms. A quiver () is said to be specified if the arrows in
@ have their names. It may happen that different arrows in a specified quiver have the same names.
A subquiver @' in a specified quiver () is said to be a specified subquiver if Q' is a specified quiver
and the names of arrows in ()’ coincide to their names in Q.
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Let Y7, Y5 be two indecomposable A-modules of the first kind. A specified quiver @ (connected
or not) is said to be an essential subquiver of QQ s, (Y1) with respect to Q o, (Y2 ) if it is a specified
subquiver of @ a1, (Y1) and it is a specified subquiver of Q a¢, (Y2) such that if 2 is a source in Q
then all paths in Q x4, (Y1) starting at @ are contained in @ and if y is a sink in () then all paths in
Qm, (Y2) ending at y are contained in Q.

Lemma 19. Let A be a selfinjective special biserial K—algebra which is not a local Nakayama
algebra. Let Y1, Ys be two indecomposable A—modules of the first kind that are not projective.
If0 # f: Y1 — Y, then there exists a uniquely determined essential specified subquiver Q of
Qm, (Yz) with respect to Q m, (Y1) and there exists a uniquely determined by f family { f I 4} MeQo
of morphisms f : M — M such that the following conditions are satisfied:
(a) For each arrow ay s My — M inQ it holds Ay, 1,(Y2) - iMl = iM AN, L(Y7).
(b) If M' is a source in Q pm , (Ya) such that ay,p, € Q1 is contained in a path starting at M'
with an arrow a . L, then the following conditions are satisfied.:
(b1) If s-rad(N') is indecomposable then there is not a path in Q p , (Y1) that contains
ay 1, and passes through M'"' with M" = s-soc(r(N')), where N' is s-projective
with s-top(N') = M'.
(b2) If s-rad(N') is decomposable and s-rad(N') = L @& LY, then in case that there is
a path v in Qum, (Y1) which contains ay, | and passes through M' with M'" =
s-soc(7(N")) it holds M"" is a sink in Qa (Y1) and there is another path w in
Qm , (Y1) connecting Q with M" for which there is a path in Q sm , (Y2) starting at
M' with the arrow an, 1, and ending at a vertex that belongs to w. Moreover in
this case if f is such that iM # 0 only for M lying on the intersection of Q with a
path AN L% connecting M' with M'" and h: Yy — Y, is such that h,; # 0 only
for M lying on the intersection of Q) with a path Qi 1171 connecting M' with M"'
then \f = h for some \ € K*.

Moreover every essential specified subquiver Q of Q,(Y2) with respect to Q (Y1) and
every family {iM}MeQU of morphisms f .+ M — M satisfying (a) and (b) determines uniquely
a nonzero morphism f: Y1 — Ys.

Proof. We shall prove our lemma by induction on the number m of vertices in Q aq, (Y2). If m = 1
then Y2 € M4 and the required conditions hold obviously. Suppose now that the lemma holds
forall 0 # f: Y1 — Y5 with the property that Q¢ , (Y2) has mg vertices or less than m vertices.
Consider 0 # f: Y1 — Y, such that Qaq, (Y2) has mo + 1 vertices. Suppose that there exists
M e Maand0 #p: Y, — M withpf = 0. Thus f factors through a p-maximal A-module X,

forY, hence f = f'f" with0 # f": Y7 — X5,0 # f’ X, — Y. By Corollary 2 we obtain that
Q. (X2) has my vertices. Therefore the lemma holds for "' by inductive assumption. Let ) be
the uniquely determined essential specified subquiver of Q o, (X2) with respect to Q o, (Y1) for
which there exists a uniquely determined by f" family {f", }meq of morphisms satisfying (a)
and (b). Since (Q is also an essential specified subquiver of Q a, (Y2) with respect to Q a4, (Y1)
and pf = 0, hence @ and {f_”M} are uniquely determined by f, and (a) holds obviously. In
order to prove (b) in this case suppose that a, 1, € @Q is contained in a path starting at M with
an arrow ay ;- and s-rad(V) is indecomposable, where N is s-projective with s-top(N) = M.
Moreover suppose that there is a path v in Q 4, (Y1) that contains & 7, and passes through M"’
with M" = s-soc(7(V)). Then it is easily seen that f factors through 7(NN) and consequently
f = 0. Now suppose that a v, .1 € Q1 is contained in a path starting at M with an arrow an 1,

and s-rad(N) = L1 & Lo, Ll, Ly # 0, where N is s-projective with s-top(NN) = M. Moreover,
suppose that there is a path v in (Y1) which contains v, 7, and passes through M with
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M'" = s-soc(7(N)). If M" is not a sink in Q (Y1) then we get a contradiction to Lemma 12
and Corollary 3. Consequently f factors through (V) and the required assertion is an easy
consequence of Lemma 13. Therefore (b) holds in the considered case.

In order to finish the proof we should consider the case that for each M € M4 with 0 #
p: Y2 — M it holds pf # 0. But in this case it is easy to verify that Q@ = Qaq,(Y2) is
an essential specified subquiver in Q a4, (Y2) with respect to Qaq, (Y1), moreover f induces a
nonzero morphism f X1 — Xy, where X, is a p—max1mal A-module for Y, and X is a
pf-maximal A- module for X forsome 0 # p: Yo — M € M 4. Of course Qat, (X2) has mg
vertices and Q) o, (X2 ) is an essential specified subquiver in Q a4, (X2 ) with respectto Q a4, (X1).
Consequently the lemma holds for f by inductive assumption. By Proposition 1(g) we obtain a
uniquely determined by f family {f }MGQMA (v») of morphisms satisfying (a) from a uniquely
determined by f; family {ﬁ }MGQMA (x,) of morphisms satisfying (a) and (b). Repeatting our
arguments from the first part of the proof we obtain that the lemma holds also for f. Therefore our
lemma is proved. O B

Remark 2. The above lemma shows that in terms of s-supports of A—modules of the first kind there
are the same laws for morphisms as in Lemmas 1, 2 in terms of ordinary supports.

14. Supports of mdecomposable A a, -modules. Throughout we can fix a Galois covering
F AM,, — A, with Apq, simply connected. Then Am, =K QMA/IMA and every arrow
B in QM,, with F(3) = ay, ; will be named also by ay . Thus for every indecomposable
A-module Y of the first kind its specified quiver @4, (Y) can be considered as a specified
subquiver of (Qa4,,Ia, ). Furthermore every covering functor ly : s-supppg, (V) — Am,

can be considered as F[S cup (v The first question we should answer is whether there
“suppas,

is an indecomposable A-module Y of the first kind whose s-support s-supp ¢, (¥") coincides

with supp(7") for any indecomposable A ,—module T'. The following proposition answers this
question in affirmative.

Proposition 6. For a special biserial selfinjective K—algebra A which is not a local Nakayama
algebra let T' be an indecomposable A aq,—module. Then there exists an indecomposable A—
module Y of the first kind such that s-supp x4, (Y') = supp(T').

Proof. Let T be an indecomposable A v ,—module whose support is a path category of a quiver
of Dynkin type A,,. We shall prove by induction on the number m of vertices in () that there is an
indecomposable A—module Y of the first kind such that Q ¢, (Y) = Q. If m = 1 then the required
assertion is obvious. Assume that if () has mg vertices then there is an indecomposable A—module
Y, of the first kind with Qaq, (Yo) = Q. Suppose now that ) has mg + 1 vertices. Let () be

of the form M, — M, — -.- —. Thus by the inductive assumption there is an indecomposable
A-module Y of the first kind such that Q s, (Y') = Q', where @' is of the form M, — --- —.
Consider the case y is a source in Q'. In this case Qq, (Y"') is of the form M, — --- — and

consequently Y’ is an indecomposable A—module of the first kind such that for 0 # p: Y' — M,

there is an indecomposable p-maximal A-module X' for Y. If RAY") =Y, F,\(My) =M,
and p = F(p) then by Proposition 1(a) a simple analisys shows that we have one of the following
possibilities: Supp(ﬂy) is of the form

PO = Ty e e Ty e o T e —
supp(Y") is of the form

R
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or supp(]\A/.fy) is of the form

T e I S
and supp(Y"') is of the form
rO(_...(_711—__)..._)TZ(_..._yrj_...__rf(p')_’..*.

By the construction of A x4, we infer that if IV, is the s-projective A-module with s-top(N, ) = M,
then there exists an indecomposable direct summand L, in s-rad(V) such that s-top(L,) & M,,.
If F)\(M,) = M, then we have one of the following possibilities: supp(M, ) is of the form

D rf—o o T o D e —
(i) 7y =T g e g e —
(iii) 7‘f1—>'-~—>?"0_<—"-<—T8‘—*~--—>7"1<—---—>Ts<—'--—
(V) 7g 4= e o Tl e T e T e g e —

where 7, is a vertex in supp(ﬁx) N Supp(My) with maximal s. In each case if rf(p) is a source
in supp(};’ ) and j < s then the composition M, — M, — lies in I .+ Which contradicts to our
assumptions. Consequently s < j and Y with supp(Y") of the form

e Hf(B) o ey e g e
or
—-»-(—ﬁ(ﬁ)»»---—»rj(—---4—7‘j_1—~>~~-<——(r:+1)‘<—7”:+1—>~~—>rs<—'-~—l

satisfies the required condition, where [ is equal to either r}, or to 7, or to r*; orelse to ry in
case (i), (ii), (iii), (iv) respectively. If rf(p) is a sink in supp(lﬁ/J’) then always M, — M, — lies
in I, which contradicts to our assumptions.
Now consider the case y is a sink in Q'. In this case Qar,(Y"') is of the form M,
- —, and consequently Y’ is an indecomposable A-module of the first kind such that for
0 # D(p): D(Y") — D(M,) there is an indecomposable p—maximal A-module X' for D(Y"'),
where D is the usual duality. Then supp(ﬂy) is as above and supp(}ﬁ;’) is of the form

o =Py e ey e ey — o —1ef(B) — e —

or

7’0“‘"'<—7°1—>"'—>7“2<—""—7'j—"'—I'Cf(é)—"'—

respectively. Moreover supp(Mz) is one of the above forms (i)~(iv). Furthermore if rcf(p) is a

source in supp(i’v’) and s < j, then Y with supp(}N’) of the form
e e Tef(B) oy o Ty e g e —
or

e (B) oy o g e (PR )T e e e —
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satisfies the required condition, where [ is as above. If rcf(p) is a source and j < s then Y with
supp(Y’) of the form

— e ef(B) oy e e T e o T e —
satisfies the required condition. If rcf(p) is a sink then Y with supp(Y) of the form

*"")I‘Cf(p)(—"'(—T']'(—‘"'F‘T}(_Fl—)"‘—>T3<—"‘— forj<3

*"'—?I‘Cf(p)f—"'(*T']‘—)"'—*Tj_l = = Py e — forj>8
if such a module exists or
—"'_'rCf(ﬁ)(_—'”(—Tj_)”'—_')’rj-l <_...(_(r:+1)_ ¢_r:+1_.>..._)rs(_..._

where [ is as above.

IfQam, (Y') = Q' and Q' has no sources of exactly one arrow then we use duality D and apply
the above arguments, what finishes the proof. O

Keeping the notations of Section 10 we have the following proposition.

Proposition 7.

(1) For every primitive family {V; }i=1,...1 of s-local A~modules there exists an indecompos-
able A-module Z of the second kind such that s—top(@ﬁzl Vi) = s-top(Z) and there
exists a map 0 # q: @ﬁzl M;, — @2:1 Vi such that for every A-module Y it holds
Hom (2%, Y) & Homs (P, Vi, V).

(2) For every primitive family {Ui}izllm,l of s-colocal A-modules there exists an indecom-
posable A-module Z of the second kind such that s—soc(@iz1 U;) = s-soc(Z) and there
exists a map 0 # p: @i‘:l U, — @5:1 M;, such that for every A-module Y it holds
Hom} (Y, 2") 2 Hom3 (Y, @iz, Uy).

Proof. Simple analysis as in the proof of Proposition 6 shows that there exists a quiver @, of type
A, with a covering functor F,: KQ, — A such that Fy,(M(Qw,1,\)) satisfies the required
conditions for some A € K*. O

15. Main results.

The main aim of this section is a proof of the main results. Before we shall start the proofs we
study sincere representations of s-supports of indecomposable A-modules. Let Y be an indecom-
posable A-module of the first kind. A sincere representation of s-supp, (Y') corresponding to
Y is the indecomposable representation V (Y") of Q4¢,(Y") in which K stands at each vertex and
there is given a multiplication by Ay (V) € K* on the arrow ay 1. Let Y be an indecomposable
A-module of the second kind that is of the form Y & F,(M(Qw,m, X)). A sincere representation
of s-suppyy, (Y) corresponding to Y is the representation V(Y") of Qaq,(Y") obtained in the
following way: if {V;};=1,...; is a family of s-local A-modules produced by Y" as in Proposition 4
then we consider a family of local s-supp x4 , (Y')-modules { L; }i=1,...,; corresponding to V;, 2 = 1,
..., 1, as sincere representations of subcategories s-supp x4, (Vi) of the category s-suppq, (Y').
Moreover let S; simple s-supp 4 , (¥")-representations corresponding to the sinks in Q a1, (Y7). Let
i By Si,)" — (i, Li)" be an injection induced by 0 # ¢: (B, M) — (B, Vi)
as in Proposition 4. In view of Lemma 19 1 is really an injection, and we define V(Y") to be a
coker(s). It is easy to verify that in the case considered case V(V) & M(Qa, (Y), m, A).
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Theorem 1. Let A be a special biserial selfinjective K—algebra which is not a local Nakayama
algebra. Then there is a stable equivalence ® : mod-A — mod—A pq, for every maximal system
of orthogonal stable A-bricks M 4.

Proof. In order to prove the theorem we should construct a functor @ : mod—A — mod-A o4, that
is dense full and faithful. For every indecomposable A-module ¥ we put ®(Y") = GA(V(Y))
in case Y is of the first kind. If Y is of the second kind then we have a covering functor
ly: s-suppy, (Y) — Aum, by Lemma 18. Thus we define ®(Y) = Iy(V(Y)). If 0 #
f: Y1 — Y3 is a nonzero morphism between two indecomposable A—modules of the first kind
then there exists a uniquely determined essential specified subquiver of Q a4, (Y2) with respect
to Qam, (Y1) and there exists a uniquely determined by f family {f M} Meq, of morphisms
f v M — M such that the conditions of Lemma 19 are satisfied. Consequently we obtain
a morphism 0 # V(f): V(Y1) — V(Y2) and we put ®(f) = GA(V(f)). By Lemma 9 and
Propositions 4, 5 we can define ® for morphisms between arbitrary indecomposable A-modules
in an obvious way. Furthermore we enlarge ¢ additively to the whole category mod-A. An easy
verification shows that ® is dense by Propositions 6, 7, @ is full and faithful by Lemma 19 and by
Propositions 4, 5. This finishes the proof of our theorem. O

Theorem 2. Let ®: mod—B — mod—-C be a stable equivalence for a selfinjective special biserial
algebra B whose bound quiver (Qp,Ip) does not contain double arrows and double loops and
that is not a local Nakayama algebra. If M¢ = {®(Si)}i=1,...,n, where {S;}i=1,..n is a set
of representatives of the isoclasses of the simple B-modules, then the following conditions are
satisfied:

(1) B = Apme.

(2) @ is induced by a stable equivalence ®1 : mod— B — mod— C.

Proof. Let ® : mod—B — mod-C be a stable equivalence and let B be a selfinjective special bise-
rial algebra that is not a local Nakayama algebra. Let M¢ = {®(S;)}i=1,... n, Where {Si}i=1, . n
is a set of representatives of the isoclasses of the simple B—modules. Then C' is a selfinjective
special biserial algebra that is not a local Nakayama algebra and C', B have the same number of
isoclasses of the simple modules (see [21]). Thus M is a maximal system of orthogonal stable
C-bricks. Itis obvious that for each s-projective C—module N with respect to M ¢ its s-support co-
incides to an ordinary support of some P/ s-soc(P) with P indecomposable projective B-module.
Moreover, s-supp rq,. (7(IV)) coincides to supp(s-rad(P)). Therefore by Theorem 1 we have that
there is a stable equivalence ¥ : mod-B — mod-A s, such that ¥( P/ s-soc(P)) = @/ s-soc(Q),
U(s-rad(P)) = s-rad(Q) for each indecomposable projective B—module, where (@ is an indecom-
posable projective A xq.—module. Moreover ¥ preserves simples. If B = K@Qp/Ip is a special
presentation then Qp = Qa4 . If a is the only arrow between z and y then the indecomposable
C'-module whose support is this arrow is preserved obviously by ¥. The only confusions are
connected with double arrows, but this case is excluded by the assumption. Consequently (1) is
proved. Hence (2) is obvious by Lemma 12. O

Résumé substantiel en frangais. On note I un corps algbriquement clos; toutes les algébres
considérées sont des K -algeébres de dimension finie, basiques et connexes. Une algebre A est dite
spéciale bissérielle si elle est isomorphe 3 ), /I, le carquois avec relations (Q 4, I 4) satisfaisant
aux conditions suivantes :

(i) Tout sommet de @ 4 est la source d’au plus deux fleches, et le but d’au plus deux fleches.
(ii) Pour toute fleche « de Q) 4, il existe au plus une fleche 3 et au plus une fleche v telles que

a,BéIA,’)’OzéIA.
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Un objet indécomposable M de la catégorie stable mod—A est appelé un A-bloc stable si
I"anneau End (M) de ses endomorphismes est isomorphe & K. On dit qu’une famille {M;} e s
de A-blocs stables est un systéme maximal de A-blocs stables orthogonaux si les conditions
suivantes sont satisfaites:

(1) Pour tout j € J, le module }; n’est pas isomorphe & son translaté d’ Auslander—Reiten
TM;. :

(2) Pourz, j distincts dans J, on a Hom(M;, M)

(3) Quel que soit le A-module indécomposable N, qui n’est ni projectif, ni isomorphe a 7N,
il existe jo et j; dans J avec Hom(M;,, N) # 0 et Hom(N, M;,) # 0.

Soit M4 un syst¢tme maximal de A-blocs stables orthogonaux; on suppose que 1’algébre est
auto-injectives, spéciale et bissérielle, mais que ce n’est pas une algébre locale de Nakayama. Ces
données permettent de construire une K —algebre A s, qui estauto-injective, spéciale et bissérielle.
Voici les résultats principaux de ce travail.

Théoréme 1. Les catégories mod—A et mod—A 1, sont stablement équivalentes.

Théoreme 2. Soit B une algeébre auto-injective, spéciale et bissérielle. On suppose que le carquois
avec relations (Q a, Ia) qui lui est associé ne posséde pas d’arétes doubles et de boucles doubles;
on suppose aussi que 1’algébre B n’est pas une algégre locale de Nakayama. Soit ® : mod—B —
mod—C' une équivalence stable; on note {S’i}izlw,n un systéme de représentants des classes
d’isomorphisme de B—modules simples et I'on pose Mc = {®(5;)}i=1,...,n. On a les propriétés
suivantes :

(1) B est isomorphe a Ay
(2) ® est induit par une équivalence stable ®, de mod— B avec mod— C.
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