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ON A CONSTRUCTION OF ALGEBRAS STABLY EQUIVALENT 

TO SELFIN JECTIVE SPECIAL BISERIAL ALGEBRAS 

ZYGMUNT POGORZALY 

RÉSUMÉ. On considère des systèmes maximaux de blocs othogonaux stables pour des algèbres auto- 
injectives, speciales et bissérielles. Si A est une telle algebre, qui n’est pas une algebre locale du type 
de Nakayama, chacun de ses systèmes définit une algèbre auto-injective stablement équivalente a A. Voir le 
résumé substantiel en français à la fin de l’article. 

ABSTRACT. Maximal systems of orthogonal stable bricks for selfinjective special biserial algebras are 
studied. It is shown that every such a system over a selfinjective special biserial algebra A which is not a 
local Nakayama algebra produces a selfinjective algebra that is stably equivalent to A. 

study of stable equivalences of finite-dimensional algebras over an algebraically closed 
field K has its sources in modular representation theory of finite groups. Problems of stable 
equivalences were considered in [4, 7, 8, 15, 16, 17, 21, 22, 24, 251. R. Martinez-Villa in [ 171 
indicated that the most important algebras for many problems concerning stable equivalences are 
selfinjective algebras. Ch. Riedtmann gave in [24, 251 (see also [SI) a classification of algebras 
stably equivalent to selfinjective algebras of finite representation type. But the problem of a 
classification in representation-tame cases is far from a satisfactory solution. 

Recently a new important problem of classifying of derived equivalent algebras appeared (see 
[14]) that is equivalent in many cases to classifying stably equivalent selfinjective algebras of 
infinite dimension. 

It was introduced a notion of a maximal system of orthogonal stable bricks (see Section 3 
for a definition) in [21] that was applied successfully in the proof of the fact that the class of 
selfinjective special biserial algebras is closed under stable equivalence, where two algebras A, B 

are stably equivalent if there is an equivalence Qi, : mod-A -+ mod-B of their stable categories 
of finite-dimensional modules. In [22] this notion was applied to a classification of the algebras 
that are stably equivalent to trivial extensions of tame hereditary algebras of extended Dynkin type 
An. On the other hand the problem how to construct a11 algebras that are stably equivalent to a 
given selfinjective algebra is still open. The main aim of the paper is to give such a construction 
for selfinjective special biserial algebras. Moreover this construction seems to have a general 
character. It cari be applied to other classes of selfinjective algebras and it shows new properties 
and new structures on stable categories of finite-dimensional selfinjective algebras. 

Throughout the paper we shall fix an algebraically closed field 1’. 
The paper is organized in the following way. 
We recall a notion of a locally bounded K-category and some standard notations in Section 1. 
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66 Construction of algebras stably equivalent to selfinjective special biserial algebras 

Section 2 is about Galois coverings of finite-dimensiona K-algebras. There are recalled a11 

known facts that Will be used in the paper. 

Special biserial algebras are defined in Section 3. There are also given two useful lemmas 
from [21]. 

Maximal systems of orthogonal stable bricks are defined in Section 4. There is also recalled a 
notion of s-projective modules and their s-radicals. 

Section 5 is about s-socles and s-tops. In this section there is proved that every finite-dimensional 
module of the first kind (with respect to a fixed Galois covering) has a finite nonzero s-top and a 
finite nonzero s-socle (see Corollary 1). 

The same is proved for modules of the second kind in Section 6. 
Sections 7, 8 are devoted for proving that modules of the first kind have their s-radicals. The 

notion of an s-radical is generalized for arbitrary modules in Section 8. 
There is introduced a notion of an s-support for modules of the first kind in Section 9. Moreover 

shapes of s-supports are studied. s-supports of 7=-shifts of s-projective modules are studied in 
Section 10. 

Section 11 is devoted for a description of indecomposable modules of the second kind in terms 
of primitive families of s-local modules. The obtained description allows to define s-supports for 
modules of the second kind. 

There is given a standard construction of a selfinjective special biserial algebra in Section 12. 
This construction shows that from a fixed maximal system of orthogonal stable bricks over a special 
biserial selfinjective algebra one cari produce a selfinjective special biserial algebra. 

Section 13 is devoted for a useful descripti on of stable morph isms between modules of the first 
kind. 

There are studied supports of indecomposable modules over the constructed algebras in Sec- 
tion 14. 

Section 15 shows that the constructed algebras are stably equivalent to algebras over that we 
consider maximal systems of orthogonal stable bricks (see Theorem 1) Moreover, under some 
assumptions, every stable equivalence of two selfinjective special biserial algebras is induced by a 
stable equivalence of subcategories of their modules of the first kind (see Theorem 2). 

1. Preliminaries. Recall from [9,12] that a K-category 72 is a category that has a structure of 
KYlinear spaces on the sets R( X, y) of morphisms from every abject x to every abject y and 
compositions of morphisms are K-bilinear. A K-category 72 is said to be LocaZZy bounded if it 
satisfies the following conditions: 

(a) Different abjects are not isomorphic. 
(b) For any abject x in R its endomorphism algebra R(z, s) is local. 
(c) For every abject x in R we have: 

c dimK R(x, y) < oo and C dimK a( y, x) < oo. 

YER YER 

It is well-known that every basic finite-dimensional K-algebra is a locally bounded K-category. 
Let A be a finite-dimensional JC-algebra over a fixed algebraically closed field K. A is 

assumed to be basic connected with an identity element. Let mod-A denote the category of a11 
finite-dimensional right A-modules. As usual, mod-A denotes the stable category of mod-A. 
We denote by MOD-A the category of a11 right A-modules, and by (ind-A)/g the set of the 
isomorphism classes of the indecomposable abjects in mod-A. 

Recall that a quiver Q is a pair (QO, QI), where Q0 is a set of vertices and QI is a set of 
arrows between vertices from Qo. A relation between vertices x, y E Qo is a linear combination 
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P=C:1 Xiwi where, for each 1 2 i 5 m, Xi f K* = K \ (0) and wi is a path from x to y 
that is a composition of at least two arrows. A set of relations in Q generates an ideal 1 in the path 
algebra (category) KQ of Q. A pair (Q, 1) is said to be a bound quiver. It is well-known that 
for every basic algebra A (more general for every locally bounded K-category) there is a bound 
quiver (&A, 1~) such that there is an isomorphism A % KQ&A which is called a presentation 

of A (see [5, 111). 
For each vertex ut: in QA, we shall denote by S, the corresponding simple A-module, by P7: 

(resp. E,) its projective caver (resp. injective envelope). 
We shall use 

Reiten quiver l? 

31. 

freely a11 properties of the Auslander-Reiten translati on 7 and of the Ausland .er- 
A of an algebra A. Al1 informations concerni ng these notions cari be found in [2 7 

, 2. Galois coverings. Let R, S be K-categories. A K-linear functor F: ‘73 -+ S is said to be a 

covering functor [12] if the induced maps eFyza n(z, y) += S(Fx, a> and $FyXa R(y, S) + 
S(a, Fx) are K-isomorphisms for a11 x E 72 and a f S. 

Let (Q, 1) be a connected bound quiver. A minimal relation in I is a relation p = xz1 Xiwi 

between vertices x, y E Q0 such that for each nonempty proper subset T c { 1, . . . , m} we have 
CiETXiWi $!! I(see[18]). L e x0 be a fixed vertex of Q. Then III (Q, x0) denotes the fundamental t 
group of the quiver Q with the base point x0 [ 191, i.e. the set of forma1 walks whose sources and 
whose sinks coincide to x0 with an ordinary composition. Recall that a waZk in the quiver Q is 
a forma1 composition of arrows and their forma1 inverses. Let N(Q, x0, m(I)) be the subgroup 
in II1 (Q, x0) that is generated by a11 elements of the form y -lu-‘vy, where y is a walk from x0 
to x, and U, v are paths from x to y such that in the set m( 1) of minimal relations in 1 there is 

P=X1 Xiwi with WI = u, w2 = v, m 2 2 (see [13,20]). Consequently N(Q,xo,m(I)) is 
a normal subgroup in III(&, x0) and the group II(Q, 1) = l&(Q, xo)/N(Q, x0, m(1)) is called 
a fundamental group of the bound quiver (Q, I). In fact if (Q, 1) is connected then for different 
choices of the base point one obtains the same group (up to isomorphism). 

Let A = 1cQ~l-l~ for a bound quiver (&A, IA) and let x0 E &A be a fixed vertex. Suppose 
that W is a topological universal caver of &A with the base point x0. Following [ 191 it is known 
that there is a natural map q: W that there is a natural map q: W -+ &A given by the action of &(&A, x0). Consequently we -+ &A given by the action of &(&A, x0). Consequently we 

define &A as an orbit quiver W /N ( QA , x0, m( 1)) define &A as an orbit quiver W /N ( QA , x0, m( 1)) an an d d a map 7r: QA -+ &A is given by the action a map 7r: QA -+ &A is given by the action 

of the group II( &A, IA). The map r yields a Galois covering 7r : KQA -+ K&A of path categories of the group II( &A, IA). The map r yields a Galois covering 7r : KQA -+ K&A of path categories 
[ 13,201 and we obtain a Galois covering F : IC$AIIA [ 13,201 and we obtain a Galois covering F : IC$AIIA --+ I<QA/IA with the group II(QA, IA), --+ I<QA/IA with the group II(QA, IA), 

where TA is an ideal in I<QA that is generated by a11 elements u such that X(U) E IA. The locally where TA is an ideal in I<QA that is generated by a11 elements u such that X(U) E IA. The locally 
bounded K-category A = KQA/IA is said to be a universal GaZois caver of A [ 181 determined bounded K-category A = KQA/IA is said to be a universal GaZois caver of A [ 181 determined 
by the presentation A g ICQA/IA. by the presentation A g ICQA/IA. 

Recall (see [ 1, 231) that a locally bounded K-category 7Z is said to be simply connected if it Recall (see [ 1, 231) that a locally bounded K-category 7Z is said to be simply connected if it 
is triangular (its quiver has no oriented cycles) and for any presentation 72 E KQ/I as a path is triangular (its quiver has no oriented cycles) and for any presentation 72 E KQ/I as a path 
category, the fundamental group II( Q, 1) of the bound quiver (Q, 1) is trivial. An algebra A is said category, the fundamental group II( Q, 1) of the bound quiver (Q, 1) is trivial. An algebra A is said 
to be standard [1] if there is a Galois covering A -+ A with A simply connected. to be standard [1] if there is a Galois covering A -+ A with A simply connected. 

Every Galois covering F : ~<QA/YA + ~<QA/IA induces a functor Every Galois covering F : ~<QA/YA + ~<QA/IA induces a functor 

F.: MOD-I<QA/IA + MOD-I<~A/ÏA 

which attaches the module N o F”P to a I<QA/IA-module N. Moreover, there exists a functor 

FA: MOD-ICQAIJA --+ MOD-I~‘QA/IA 

[6,9, 121 thatisleftadjointtoF., andFx inducesaninjectionof ((ind-KQA/IR)/N)/~(QA,lil), 

the Set Of ~I(&A,&)-Orbits of (ind-I(QA)/f,@, into the set (ind-I<QA/IA)/%. we shall 
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denote by modl-KQA/IA the full subcategory of mod-.K&&A formed by a11 modules of the 
form FA(M), h w ere E is an abject of mod-K$&A. Modules from modl-I<QA/IA are called 
modules of the$rst kind (with respect to the covering F). We shall denote by mod2--KQ&A the 
full subcategory of mod-KQ,&A formed by a11 modules that do not have direct summands from 
modl -.KQA /IA. Modules from mod 2--1r’Q~/& are called modules of the second kind (with 
respect to the covering F). 

For every K&/-&module &! E mod-lii&A/-?A its support is a full subcategory supp(M) 
of I<&/I/1 formed by a11 abjects x E KQ&J such that M(X) # 0. 

3. Special biserial algebras. Let A be a finite-dimensional K-algebra (locally bounded K- 
category). A is said to be biseriaZ [ 101 if the radical of any indecomposable left or right projective 
A-module is a sum of at most two uniserial submodules whose intersection is simple or zero. A is 
said to be special biserial [26] if it is isomorphic to K&A/IA, where the bound quiver ( QA, IA) 
satisfies the following conditions: 

(i) Every vertex of &A is a source of at most two arrows and a sink of at most two arrows. 
(ii) For every arrow CY of &A there are at most one arrow p and at most one arrow y such that 

@Y ‘)‘Q! $ IA* 

It was proved in [26] that every special biserial K-algebra A is biserial. This class of algebras 
was studied in [9,23, 26, 271. We are interested in selfinjective special biserial algebras. The main 
result of [23] shows that the class of selfinjective special biserial algebras coincides to the class 
of standard selfinjective biserial algebras. Moreover we have a full description of indecomposable 
A-modules in [9, 271. In particular indecomposable A-modules of the first kind are of the forms 
FA( A&), where M are indecomposable &-modules of finite dimension whose supp( A4) are path 
categories K’QM, QM are relation-free quivers and their underlying graphs are of Dynkin type A,. 
Moreover, every indecomposable A-module N of the second kind is of T--period 1, i.e. T(N) g N. 

Following [6] we know that FA preserves simple abjects and projectives abjects. Consequently 
FA preserves factorization of morphisms through projective abjects. There is given a reduction of 
studying of mod-A to studying of mod-A in [21]. We shall use this reduction. Moreover, we have - 
the following two important lemmas that were proved in [21]. 

Lemma 1. Let A g I<QA/IA b e a seljînjective special biserial K-algebra. Let M, N be two 
indecomposable jinite-dimensional I<QA /IA-modules whose supports are of the forms 

respectively. Let f : N -+ M be a morphism that is a composition of an epimorphism fi : N * X - - 
and a monomorphism fi : X -+ M, where X is an indecomposable II&A/IA-module whose 
support is of the form x + - l  l  + rl. Let f denote the coset off in mod-A. Then the following - 
implications hold: 

(a) If P,, is uniserial, then f # 0 iff the path - 

does not contain a subpath of the fonn 

which is the support of Pr,. 
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(b) If c-0 is not uniserial, then f # 0 implies either the path r1 -+ l  . . += ri does not contain - 
a verte-x x with S, g s-SOC( PT0 ), or it contains such a vertex z and thus z = ri, supp( M) 

is of the form 

- . . . 

and supp(N) is of the form 

L . 
Y . 

I . 

is the support of Pr,. 

Lemma 2. Let A E KQA/IA be a selfinjective special biserial K-algebra. Let M, N be two 

indecomposable jinite-dimensional K& /ÏA--modules whose supports are of the forms: 

respectively, such that the paths 

do not belong to IA and their diflerence belongs to ÏA. Let f : N -+ M be a morphism that is a 
composition of an epimorphism fi : N -+ X and a monomorphism fi : X -+ M, where X is an 

indecomposable IC&/I&module whose support is of the form x -+ l  - - + r-1. Let g : N + M 

be a morphism that is a composition of an epimorphism gl : N + Y and a monomorphism 
g2 : Y -+ M, where Y is an indecomposable IC?& / IA-module whose support is of the form 
y + - - - -+ r-1. Then Xf = g forsome X E AY. - - 

4. Systems of orthogonal stable bricks. 
We start this section with recalling a notion of a system of orthogonal stable bricks over a 

selfinjective K-algebra that was used succesfully in [2 1,221. 

Let B be a selfinjective K-algebra. An indecomposable B-module M in mod-B is said to be 

a stable B-brick if its endomorphism ring End,(M) is isomorphic to K. A family {Mj}jE~ of 

stable B-bricks is said to be a system of orthogonal stable B-bricks if the following conditions are 

satisfied: 

(1) Mj is not of -r-period 1 for every j f J. 

(2) For any two different i, j E J; HomB( Mi, A$) = 0 = HomB(Mj, Mi). 
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A system of orthogonal stable B-bricks { n/r,}j,J is called maximal if for every indecom- 
posable B-module N that is neither projective nor of -r-period 1 there exists j0 E J such that 
HO~~(~~, , N) # 0 and there exists j, E J such that HomB(N, Mil) # 0. 

We are interested in maximal systems of orthogonal B-bricks whose cardinalities coincide 
with the cardinality of isoclasses of the simple B-modules. We shall consider only su& maximal 
systems without additional comments. 

Let A be a special biserial selfinjecti,ve K-algebra that is not a local Nakayama algebra. Let 
MA = {Ml,. . . , Mn} be a maximal system of orthogonal stable A-bricks. Let us fix a Galois 
covering functor F: A -+ A with A to be simply connected. We know by definition that a11 
Mi E MA are A-modules of the first kind with respect to any Galois covering functor, because 
they are not of r-period 1. Therefore any Mi E MA is of the form FA(%?~) and supp( Ei) is one 
of the following forms: 

. (iii) ro -+ - l  . + 7-1 + - l  l  f- r2 -3 - l  - -+ 7-t; f- l  - l  i- rti+l, ti 2 1 

(iv) ro t- l  .0 +-- r1 -+ l  n. --+ r2 +- l  ** +- rti -3 l  ** --+ ?y+l, ti 2 1. 

We state some conventions concerning notations of supports of indecomposable A-modules. 
If P,. is an indecomposable projective A-module then ,!& denotes its socle. SZ* denotes the 
top of E,. If supp(X) is of the form ro - . . . -+ rl f- . . . - (where - means an arro’w 
that cari be -+ or t) then r-1 + . . . rb means either the nonzero path connecting r-1 with 
1-0, where S,-, is the direct summand in s-top(s-rad(P,,)) and r-1 6 (ro -+ . ao -+ rl>, if 
Pr, is not uniserial or (r-1 -+ . . . -+ ro> = rb if Pr, is uniserial. If supp(X) is of the form 
- . . . -3 rt +- -- + rt+l then T:+~ + . l  . f- rt+2 has a similar meaning. If supp(X) is of the 
formro +- a.. + r1 + a*. -thenr-1 +- l  ** +- ro means either the nonzero path that connects ro 

with r-1, where S,-, is a direct summand in S-SOC( PT0 / S-SOC( Pro)) and r-1 $ (ro -+ l  . l  -+ ri), 

. if Pr, is not uniserial or S,-, S S-SOC( Pr, / S-SOC( P,, )) if Pr, is uniserial. If supp(X) is of the 
form - . . . + rt -+ . . l  -+ rt+l then rt+l -+ . . . -+ rt+2 has a similar meaning. Moreover, if r is 
a vertex in $A whose neighbourhood is of the form 

then we shall denote y = r+, x = r-, u = r-, v = r+. 

For a given maximal system of orthogonal stable A-bricks MA = {Ml, . . . , Mn}, an inde- 
composable A-module N that is not of T--period 1 is said to be s-projective with respect to MA if 
the following conditions are satisfied: 

. 

(1) hA(N,@rY1 Mi) g K. 

(2) If HomA( N, Mi, ) # 0, then for every 0 # f : X -+ Mi0 and every 0 # g : N --+ Mi0 

- 
- 

there is h : N - + X such that f h = g. - - 
s-projective modules were studied in [21] and their supports are known. If we have a max- 

imal system of orthogonal stable A-bricks MA = {Ml, . . . , Mn} then we have a system of 
s-projective modules NA = {NI, . . . , N,} with respect to MA. Moreover, -A( Ni, Mi) = -fc 

and HomJ4( Ni, Mj) = 0 for different 1 < i, j < n. 
Following [21] if N is an s-projective A-module with respect to a maximal system of orthogonal 

stable A-bricks JU A, then A-module R is said to be an s-radical of N (we denote R by s-rad( N)) 
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if the following conditions are satisfied: 

(1) R does not contain any projective direct summand. 
(2) There is a projective or zero A-module P such that there exists a right minimal almost 

split morphism R $ P -+ 1v in mod-A. 

It was proved in [21] that for each s-projective A-module iv its s-radical is a direct sum of at 
most two indecomposable A-modules of the first kind. 

5. s-tops and s-socles. Let Y be an A-module. Suppose that dirnlc hA(Y, Afi) = di, i = 1, 

l  ** 9  
n. Then we say that @yX1 Mzfi is an s-top of Y and we denote it s-top(Y), where Mfi 

denotes a direct sum of d; copies of Mi. We define s-socle of Y (that is denoted by s-soc(Y)) 
dually. In [21] it was proved that each direct summand in s-rad(N) has an indecomposable s-top 
and an indecomposable s-socle, where N is s-projective. 

The main aim of this section is to show for any special biserial selfinjective K-algebra A which 
is not a local Nakayama algebra that every A-module of the first kind has its s-top which is a direct 
sum of finitely many indecomposable modules from MA. 

Throughout the paper we assume that the above fixed Galois covering F : A + A with A simply 
connected is chosen in such a manner that IA is generated only by paths and differences of some 
paths,i.e. if u - Xv f IA is a generator with X E K”, then X = 1. It is well-known that for special 
biserial algebras it is possible to choose such a set of generators of IA. 

Lemma 3. Let A be a special biserial selfinjective K--algebra which is not a local Nakayama 
algebra. Let FA.(&) = Y1, FA(?~ > = Y2 be two indecomposable A-modules of the first kind. Let 

0 # FA(f) = f: y1 -+ Y2 be a morphism in mod-A. Then one of the following conditions is - - 
satisJied: 

( > a supp(F2) is of the fornz 

(b) 

SU~~(?I) is of the fom 

where x E (& + . l  0 t- ri), x # r:+ x # ro and f is given by a composition of a - 
projection of k; onto S,i with an injection Of S,i into F2. 

supp(~~) is of the form 

supp(?~ ) is of the fornz 

where x E (r; 

projection of FI an indecomposable A-module 

and f is given by a - 
Z whose support is 

composition of a 
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with an injection of ji into V2. 
(c) supp(~2) is of the form 

where x E (q-1 + -. . -+ ri) and x = ri-1 implies i = 1, f is given by a composition of - 
a projection of Y1 onto an indecomposable A-module 2 whose support is of the fom 

Or 

II: + l  ‘a  -+ ri t l  -a t ri+1 --+ **a + ri+2 t l  -0 + rj 

with an injection of x into Y& 
(d) supp(~2) is of the form 

supp( &) is of the forrn 

where x E (y; +- * l  * +- ri+l), x # r;+l, and f is given by a composition of a projection of - 
k; onto an indecomposable A-module X whose support is x -+ . l  . -+ ri with an injection 
of 2 into Y$ 

Proof Under the assumptions of our lemma suppose that 0 # ï?~(f) = f : Y- + lr2. Thus 

f : yl + p2 and supp(k2) n SU~~(?I) # 0. Suppose that vertices ofkqq@l) are numbered by 
mtegers in such a way that they increase from the left hand to the right hand. Let x be the lowest 
vertex of supp(?l ) that is contained in supp(~2). If the neighbourhood of x in supp( F2) is of the 
form . . . ---+ x --+ . . . then z f (ri-1 -+ . l  . + ri) and it is not hard to verify that (b) or (c) or (d) 
holds by Lemmas 1,2. If the neighbourhood of x in supp(p2) is of the form l  . l  -3 x t . . . , then 
z = r; and by Lemmas 1, 2 (a) holds. If the neighbourhood of x is of the form l  l  l  t x -+ l  . . , 
then there cannot be such a morphism 0 # f : ?-- -+ y2 that factors through an indecomposable - 
A-module 2 with z E supp(@. This finishes the proof of our lemma. q 

If 15 E M A in Lemma 3, then we cal1 the vertex x of supp( Y1 ) a Zeft frame of f” and we denote - 
it If(f). Similarly we define a right frame rf (f”) of f. A f rame of f is a left or right frame. - - - - 

Lemma 4. Let A be a special biserial seljinjective K-algebra which is not a local Nakayama 
algebra. Let FA(?~) = Y1, FA( Y9 = Y2 be two indecomposable A-modules of thefirst kind. Let 

0 # FA(j) = g: y2 -+ Y1 be a morphism in mod-A. Then one of the following conditions is 
sa tisfied:- - 

(a) supp(Y2) is of the form 

- . . . 
t ri 4  l  l  l  + ri+1 t * l  - t ri+2 + . ’  l  t rj -+ * l  * - 
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supp( FI) is of the form 

where x E (& -+ 9. 9 + ri), x # rzA1, x # ro, and 5 is given by a composition of a - 
projection of Fz onto S,; with an injection of S,; into FI. 

(b) supp(~~) is of the form 

where x E (ri + l  l  . + r&,), x # rz+I, x # ro, and g is given by a composition of a - 
projection of Fz onto an indecomposable A-module Z whose support is either 

or 
ri + l  ** 4  ri+1 t l  l  l  t ri+2 + * l  l  t rj 

with an injection of X into FI. 

(c) supp(?~) is of the form 

- . . . 

where x E (ri-1 +- . . . t- ri) and x = ri-1 implies i = 1, g is given by a composition of - 
a projection of Y2 onto an indecomposable A-module X whose support is either 

or 
x  t l  ** t ri + . l  - + ri+1 t - * * t ri+2 + * * - t rj 

with an injection of 2 into FI. 

(d) supp&) is of the form 

where x E (ri + *. * --+ ri+l), x # r;+l and G is given by a composition of a projection of - 
Y2 onto an indecomposable A-module X whose support is x t- . l  a + ri with an injection 

of X into FI. 

Proof The proof is dual to that of Lemma 3 and we omit it. 0 

If Y2 E ADA in Lemma 4, then we cal1 the vertex x of s~pp(~~) a Zeft coframe of y and we 
denote it lcf (y). Similarly we define a right coframe rcf(i) of 6. A coframe of 5 is a le6 or right 
coframe. - 

- - - 
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_ .* 

. ’  

Lemma 5. Let A be a special biserial seljinjective K-algebra which is not a local Nakayama 
algebra. If FA(~) = Y is an indecomposable A-module of thefîrst kind that is of -r-period 1 then 
s”pp( Y) is of the form 

x1,1 h,t a2 x2,1 X2,t a3 x3,1 x 3,t 04 x x 
+ . . . -3tj . . . +t+ . . . -t . , . 3 . . . 3 

m > 1, where F(X;,j) = F(X,,j, i = 1, 2, . . . , rn, F(a,) = F(cxz), s = 2, . . . , m and 
\ . . ’ 1,l . X1 ,t is a maximal nonzero path that does not connect a top of an indecomposable projective 
A-module with its socle. 

Proof. This lemma follows immediatly from the description of indecomposable modules for special 
biserial algebras contained in [9,27]. CI 

Lemma 6. Let A be a seljînjective special biserial K-algebra which is not a local Nakayama 
algebra. If FA(?) = Y is an indecomposable A-module of thejïrst kind that is of r-period 1 then 
s-top(Y) # 0 and s-soc(Y) # 0. 

ProoJ: Suppose that FA(T/) = Y satisfies the assumptions of the lemma. We deduce from Lemma 7 
that SU~~(Y) is of the following form : 

x1,1 h,t a2 x2,1 X2,t a3 x x 

- . . . j+ j  , . . +t . . , 3 . . . "It . 

But consider an A-module Yr whose support is of the form 

x1,1 
--+ . . . 

h,t a2 
+t . . . 

x 
m,l . . . 

with F(am+l) = F(Q~). Th en s-top(k;) # 0, because it is not of T-period 1. Consequently 
s-top(Y) f 0. Dually one proves that s-soc(Y) # 0. Cl 

An A-module X is said to have ajinite nonzero s-top (resp. jînite nonzero s-socle) if s-top(X) 

(resp s-soc(X)) is a direct sum of finitely many nonzero indecomposable A-modules. 

Corollary 1. Let A be a seljinjective special biserial K-algebra which is not a local Nakayama 
algebra. Every nonzero Jinite-dimensional A-module of the Jirst kind has a finite nonzero s-top 
and a jinite nonzero s-socle. 

Proof By definition of the maximal system of orthogonal stable A-bricks and by Lemma 6 our 
corollary is obvious. 0 

6. Modules of the second kind. The aim of this section is proving that A-modules of the second 
kind have also nonzero finite s-tops and nonzero finite s-socles. We start with some known facts. Let 
A = K&&A and the bound quiver (&A, 1~) satisfies the required conditions for special biserial 
algebras. We are interested in closed walks which are assumed to have the property that their start 
points coincide with their end points. A closed walk w in (&A, IA) Will be calledprimitive [27] if 
it is not of the form vn for some natural n > 2, and w is not of the form w = wruwz, where u is - 
a path (resp. a forma1 inverse of a path) such that either u (resp. u-l) lies in 1~, or u - v (resp. 

- u l - v) belongs to 1~ for some path v # Xu (resp. v # Au-‘) in QA, X E K*, or else u is of the 
forms (K&, 0+ Q! for some arrow a in &A. It is well-known (see [27]) that primitive walks in 
($A, 1~) produce A-modules of the second kind. We shall visualize primitive closed walks w as 
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the following quivers 

75 

and we shall identify them with covering functors w from the path categories of the above quivers 
QW to KQA/IA. Thus every indecomposable A-module of the second kind is (up to isomorphism) 
of the form F,(M(Q,, nz, X)), where F,,, : mod-KQ, -+ mod-lilQA/IA is induced by w, and 

M(Qw , nz, X) is a representation of Qw which has Km at each vertex, the identity map at each 
but one arrow and the Jordan box Jm( X) at the exceptional arrow (it does not matter which one) 
for some X E K* (see [27]). Consequently we cari look at A-modules of the second kind as at 
KQ,-modules of the second kind. Moreover nonzero maps between A-modules of the first kind 
and of the second kind are induced by nonzero functors between supports of finite-dimensional 
A-modules and KQw (in particular by nontrivial maps between their quivers). 

For an A-module 2 of the form 2 = F,( M(Qw , 772, X)) consider an A-module 2” which 
is a direct sum of m copies of F,(L.) for a11 sinks II: in Q,, where L, is an injective KQrU- 
module with S-SOC( Lx) g S,. Thus we have an injection iz from 2 to 2”. Dually consider 
an A-module 2” which is a direct sum of m copies of F,( C,) for a11 sources y in Qw, where 
C, is a projective KQ,-module with s-top(C,) E S,. Consequently we have a projection ~2 
from 2” to 2. Let us denote by HO~~ (Z”, Y) the set of morphisms f : Z* + Y such that 

fl ker( rz > = 0. Thus ( ;TTZ)* = HomA( nz, Y) establishes an isomorphism between Horn? (Z* , Y) 

and Homn( 2, Y) for every A-module Y. Dually let Horn? (Y, 2”) denotes the set of morphisms 
g : Y -+ 2” such that the composition hg = 0, where h : 2” + coker(i& Consequently we 
have Horn2 (Y, 2”) g HomA( Y, 2) established by the isomorphism (;z)* = HomA (Y, iz). 

Moreover the following lemma is true. 

Lemma 7. Let A be a seljinjective special biserial K-algebra which is not a local Nakayama 
algebra. For every A-module Y andfor every inndecomposable A-Module 2 = Fw ( M( Q, , m, A> > 

the isomorphisms (;Z)* and (TT& induce the following isomorphisms: 

Homg(Y, 2”) g HomA(Y, Z), Horn? (Z*, Y) E Hom,(Z, Y). 

Proo$ In order to prove that Horn? (.Z’*, Y) g Hom,(Z, Y) it is enough to show that for every 
f E Horn&?, Y) it holds: if f n-z = 0 then f = 0. But if frz = 0 then frz factors through 
a projective A-module, hence f 77-z factors through an injective envelope E( Z*) of Z*. But 

fl kerb-z > = 0 SO f n-z factors through an injective envelope E(Z) of 2. Therefore f factors 

through E( 2) and f = 0. Dual arguments show that Horn2 (Y, 2”) e HomA(Y, 2). Cl - 

Lemma 8. Let A be a special biserial selfinjective K-algebra which is not a local Nakayama 
algebra. Every jînite-dimensional A-module of the second kind has a jinite nonzero s-top and a 
Jinite nonzero s-socle. 

ProoJc The lemma is an easy consequence of Lemma 7 and Corollary 1. ’ Cl 
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7 Maximal modules. Let (y) = Y be an indecomposable A-module and set Y = I$,(F). Let 
F&?) = M E MA and 0 # FJ@) = p: Y -+ M. An indecomposable A-module X = FA(~) 

is said to beproduced by If@) ‘f 1 one of the following conditions is satisfied: - 

(1) supp(M) is of the form 

supp(i)) is of the form 

with x c (& +- l  - - +- ri) x # rivl, x # ro, and F is given by a composition of a 

projection of y onto S,; with an injection of S,; into %&qq(X) is of the form: 

if ro is a source in supp(M) and 

if ro is a sink in supp( 2). 
(2) supp(~) is of the form 

supp(~) is of the form 

with x E (ri ---+ . l  l  --+ ri+& x # ri+,, x # ro and 3 is given by a composition of a - 
projection of Y onto an indecomposable A-module & whose support is 

with an injection of Fr into E, and SU~~(X) is of the form 

if ro is a source in SU~~(G) and 

if rg is a sink in supp(M) 
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(3) supp(%?) is of the form 

SU~~(F) is of the form 

with x f (ri-1 --+ l  l  l  + r;) and x = ri-1 implies i = 1,$ is given by a composition of a - 

projection of Y onto an indecomposable A-module yl whose support is 

or 

with an injection of Fr into &?, and supp(~) is of the form 

if+*. is a source in supp(~) and x # f-0, or 

ifro.isasinkïnsupp(M)andx#ro,orelse-...-x-ifx=ro. 

(4) SU~~(M) is of the form 

supp(?) is of the form 

with x f (ri + * * . t Ti+r), x # r;+l, and a is given by a composition of a projection of - 
y onto an indecomposable A-module Fr whose support is x + . . . + r; with an injection 

of pl into E, supp(~) is of the form 

if rt+l is a source in supp(.?CFj,or 

if rt+l is a sink in supp(%?). 

Symmetrically we define a module produced by rf (a). - 

. 
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Lemma 9. Let A be a selfinjective special biserial K-algebra which is not a local Nakayama 
algebra. Let FA(E) = ïW E MA. Let FA(Y) = Y be an indecomposable A-module of the first 
kind. Suppose that s-top(Y) E ïW and 0 # FA@) = p: Y + ïW. Let X1 = Fx(x1) beproduced 

by if(a) and let .X2 = F&&) be produced by rf(p). Fhen the following implications hold: 

(6 vx’ 1 = 0, then s-t op(X,) is indecompisable and for every 0 # FA(@) = q:X2 + 
- - s-top(Xz ) one of the modules produced by If (6) and by rf (4) is zero. 

(2) If X2 = 0, then s-top(X1) is indecomposabïe and for ev&y 0 # FA(@) = q : X1 -+ 
- - s-top( & ) one of the modules produced by If (4) and by rf( 4) is zero. - - 

Proof Under the assumptions and notations of the lemma suppose that Xr = 0. Moreover assume 
that supp(M) is of the form 

A handy analysis shows that if X1 = 0 then supp(i/) must be one of the following forms: 

. by definition of the modules produced by frames. 
Thus in case (i) supp(X2) is one of the following forms: 

if ro is a source in supp(&?) and 

( > 7-0 + --+ l  . . --+ 

if rg is a sink in supp( %?). Moreover in case (ii) supp(X2) is one of the following forms: 

+r; -+ . . 

rt+2 -+ l  . . 4 risI +-- l  . . f- Tj+2 -3 l  - - --+ ri+, +- . . . rj t rf($) t l  l  l  - 

- 

if rt+l is a source in supp(ii?) and 

t  Tj+2 + .  .  .  

-+ r’. 
3+1 t l  l  * + 5  t 

l  l  l  t rf(fi) t . l  - - 

- 

if rt+l is a sink in supp(ii?) and 

0 i 

(ii) 

02) 

w 

(ii21 

(ii31 \ 

if rf(fi) = rt+l. - - 
It is easy to deduce from Lemma 3 and the orthogonality of elements in A4 A that if FA( AI1 ) = 

Mi E MA and Mr is a direct summand in s-top(X2) then supp$&) is of the form Y-~ - l  l  . - 
in Case (il), (ro)+ -+ . s. - in Case (iz), ri+2 - . . m - in Case (iir), (rt+& - l  l  l  - in 
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Case (ii& rf($) - . . l  

easily follows, 
- in Case (ii& Hence s-top(X2) is indecomposable and implication (1) 

A similar analysis shows implication (2) which finishes the proof. Cl 

Let Y be an indecomposable nonprojective A-module. Let 0 # p: Y -+ A4 with M f MA. - 
An A-module X without projective direct sumr 
condition holds: if X # 0 then there is 0 # .f : - 

(1) pf = 0 
(2) If 2 is an A-module such that there is 0 

such that g = f h. - - 

mima1 for Y if the following nands is said to be p-max 

X + Y such that- 

#g: Z+Ywithlîy= 0, then there is 12 : Z + X - - 

We have the following description of p-maximal modules for indecomposable A-modules of - 
the first kind. 

Proposition 1. Let A be a special biserial selfinjective K-algebra which is not a local Nakayama 

algebra. Let FA(G) = M E MA. Let FA(Y) = Y be an indecomposable A-module of the$rst 

kind. Let 0 # FA(~) = p: Y -+ M. If X is a p-maximal module for Y with 0 # .f : X’ -+ Y then 

X E XI $ X’z and the~ollowing conditions are satisfied: 
- 

(a) FA(X~) = X1 isp ru d uced by lf(fi), F&%a) = x/2 isproduced by rf($). 

(b) lfo # 4: y -+ M’ with M’ E &A and q # xp for any x E K* th& qf # 0, and for 

f = (f,, &) it holds either 4f, # 0 and qf, = 6 or 4f, = 0 and 4f, # 0. - 
(c) IfM’EMAandthereisO#q: M’+Xthenfq#O. 

(d) If M’ E MA and there is 0 #-q: M’ + Y then there is 0 # g : M’ + XT such that for 

0 # ,f = (f,,f,)eitherflg=q’andf,-= oTf2g= qandf,g= 0. 
(e) If there is M’ E MA such that M’ is a direct summand in;-top(X) and 0 # q : X’ -+ M’ 

dues not belong tu HomA(Y, s-top(Y)), then there is an indecomposable direct summand 

L in s-rad(N) with N being s-projective whose s-top is M such that M’ = s-top(L). 

Moreover there are at most two such modules M’, M” and one of them is a direct summand 
in s-top(X1) and the other one is a direct summand in s-top(X2). 

(f) rf xi, i = 1, 2, dues not have a direct summand M’ in its s-top such that there is 

0 # q: X -+ M’ with q $ &A(Y, s-top(Y)), th en one of the direct summands in 

s-top(s-rad(N)), say My, has the property that if Mi’ E s-top(Li’), Li’ is an indecom- 

posable direct summand in s-rad(N), and N is s-projective with s-top(N) e M, then 

there is 0 # & : M” -+ X’;. 
(g) Let N be s-projective with s-top(N) = M and let L be an indecomposable direct summand 

in s-rad(N). Let &.N L : L -+ N be a coset of an irreducible map QN,& : L -+ N. Then 

there is 0 # g : N -+’ Y and there is AN L(Y) E I< such that f o (AN ~(1~) - aN L) is a 

morphism fro-m L tu Xi, i = 1,2, where s’-top( L) is either a direct summand in;-tkp(X j, 

or a direct summand in s-soc(X). 

Proof Under the assumptions and the notations of the proposition suppose that SU~~(%I?) is of the 
following form 

We shall consider two typical cases of supp( y j. 

1. Suppose that supp( Y) is of the form 
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with x f (& f- . - -. 
+-- ri), X # ?-Le,, y  E (rj ---+ . * l  --+ ri+l), ZJ # r(i+, . Let Fx(2-r) = X-r, 

Fx(T2) = -Y2 be the modules produced by If (a) and by rf(j3) respectively. Thus by definition - - 
SU~&&) is of the form 

and slpp(X1) is of the form 

where 

- i 

r-1 -+ - l  --+y; t - -0 t r1 + -*- t ri-2 + -a * + riwl t -0 * t X 

KO Kl 

if 7-0 is a source in supp(M) 
- - - . . . 

TO,+ -3 l  l  -47-i t 0-e -+ y?;-1 t - l  l  t x  

if ro is a sink in SU~~(G) 

y ---+ g a* -+r’. I+l +- ** l  t rt -4 --- + ri+l t l  *- 
t- n+2 

if rt+l is a source in supp(M) 

y  -+ l  l  - -4. I+l +- -* l  t rt-l --+ -a. --+ 7-i t- l  a t rt+1,- 

if rt+l is a sink in supp(%?) 

It is easy to see that there is 0 # f : X1 $ X2 -+ Y which has the property J$ = 0 by Lemmas 1, 

2, and f = (flLf2b If 27 is a nonzero A-module of the first kind that is indecomposable and - 
there is 0 # g : 2 -+ Y then 2 = FJ,( 2) and y = FA@). If pg = 0 and supp( z) is disjoint with - - - 
ri + **a + ri+1 t ** * -+ rj then obviously g factors through f. If supp( 2) is not disjoint with - - 
ri + *** --i ri+1 t *** -+ rj then let r;, be the lowest sink of supp(%?) that is contained in 

~upp( Z) and let r;, be the highest sink of supp( G) that is contained in supp( z). Thus supp( 2) 
must be of the form 

I 
- . . . t Y;, 4 - *  l  4  rio+ t l  ** t rio+ + l  l  - t ri1 

j  . . . - 

and an easy verification shows that there exists h : 2 -+ Xl $X2 which has the required properties. 
Consequently (a) is proved in this case, because for A-modules of the second kind we apply 
Lemma 7. 

In order to prove (b) let us observe that if 0 # g : Y + M’ with M’ = F@?l) E MA and 
q = FA(~) then for f: X --) Y it holds qf # 0 for FA(@) = q with If(@) 2 x, or rf(ij) 5 y. 

MoreoveFif lf(@) 2 

qf, # 0 and sf, 

x, rf(@) # y then 4f, # 0 and 4f, G 0, id if rf(4) 5 y, lf(q”) Fx then 
= 0. We ihould only consider the case If(q) < x and rf(q) > y. Bit if such an - - 

M’ exists then M’ S FA( fil) and by Lemma 3 supp( A@) is of the form 

- . . . + (!i, t " ' t li,+l + " ' + ii,+2 f- " ' f- Zi, + 

. . . j y-. ,l+...jrj+...+l. j...- 
Jl 

or 
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In the first case HomA(M, M’) # 0 and in the other one HomA( M’ , M) # 0 which contradicts 
to the fact that M’, M f hi A. If If (4) = 

Consequently (b) is proved in this cas; 
x, rf(q”) = y then it is easily seen that (b) holds too. - 

In order to prove (c) suppose that FA (GI) = M’ f MA and there is 0 # FA( 6) = y : M’ + X. 
We may assume that 0 # q: M’ -+ X2. - 
only check that if If(@) <- 

If lf({) > II: then it is obvious that & # 0. We should - 
x - then (c) also holds. But consider a module T = FA(?) for which 

supp(T) is of the form 

S, is a direct summand in prttl / s-soc&,+,) if rt+l is a sink in supp(.@), or 

KO I 
. . . KL x + . . . + ri j . . . j ris1 + . . . t- ri+2 -+ 

. . . f- rj + -- -+ y --+ -- ----+ r'. J+l + * ' - +-- rt --+ -. - -+ r 
:;1 

if rt+l is a source in supp(M). By [21, Proposition 21 and by (a) and Lemma 9 s-soc(T) is 
indecomposable and it holds supP(T) is of the form 

with x = v or x = r t+l,-, where w E (rio- -+ -a -+ ri,), w # ri,-1. Consequently s-soc(T) 
is the only M’ such that there is 0 # q : M’ -+ X2 with If(@) < x, and the composition ,f q # 0. 

In the same manner one proves (c) if we replace X2 by Xi. Moreover the above M’ satisfies also 
(d) by [21]. Applying [21, Proposition 21 one proves (e), (f) dually to (c), (d). 

(g) is obvious by the shapes of supp(M), SU~~(Y), supp(-&), supp(x2) and [21, Lemma 141. 

2. Suppose that supp(?) is of the form 

with x E (ri-1 -+ l  l  l  + ri), x = ri-1 implies i = 1, y E (rj t- l  . . t- rj+l), y = rj+l implies 

j = t. Let FJ(Xl) = X1, Fx(X2) = X2 be the modules produced by lf(a> and rf(j5) respectively. - - 
Thus by definition supp(x1) is of the form 

and supp(X2) is of the form 

KO 
. . . KI rj +... t-y + *.a - 
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where 

KO Kl 
if rt+l is a source in supp(G) 

-- -- - . . . - 

i 

7-j -3 l  a s  + r’. 

a+1 + l  * 

l  ---+ 7-L t- l  - 
+- rt+1,- 

if rt+l is a sink in supp(;i?) 

It is easily seen that there is 0 # f = (fï , f2) : X1 $ X2 -+ Y which has the property that pf = 0 
by Lemmas 1, 2. If 2 is a nonzero A-module of the first kind that is indecomposable and there is 
0 # g: Z + Y then Z = F@) and g = FA(~). Ifpg = 0 then supp@) cannot be contained in - - 
ri j . - - j r! 

fAl 

\ 
2+1 f- l  a + r +- - - l  +- rj, %herwiseHom,(Z,Y) = Oor&@,M) # 0. 

Now we cari follow the arguments used in 1. and (a) -(g) hold. 
1. and 2. are typical cases of supp( ?), and in each another case one proceeds similarly to 1.) 2. 

We leave the details to the reader. Cl 

8 s-radicals. The aim of this section is a generalization of the notion of an s-radical that was 
introduced for s-projective modules only. 

Let Y be a nonprojective A-module. An A-module X without projective direct summands is 
said to be an s-radical of Y, and is denoted by s-rad(Y), if there is 0 # f : X + Y such that the - 
following conditions are satisfied: 

(1) If0 #p: Y -+ s-top(Y) thenpf = 0. 
(2) If 2 isiuch an A-module that there is 0 # g : 2 -+ Y with pg = 0 for any 0 # p : Y -+ 

s-top(Y) then there exists 0 # h : Z -+ X &ch that g = f h 
- 

- -’ - - 

Remark 1. The s-radical of an s-projective A-module defined in Section 4 shares the above 
properties. 

Proposition 2. Let A be a seljinjective special biserial K-algebra which is not a local Nakayama 
algebra. Every nonprojective A-module Y of the jirst kind has its s-radical whose s-socle is 
contained in s-soc(Y). Moreovec s-rad(Y) is an A-module of theJirst kind. 

Proof: It is obvious that we need only to show the proposition for indecomposable A-modules of 
the first kind. Let Y be such an A-module. We fix a K-basis {-, , . . . , PS} of HomA( Yy s-top(Y)) in 
such a way that each p. is in HomA( Y, M), M E M 
Y we have that {p2, .y” 

A. Thus, taking the El-maximal module Y1 for 
. , Es} is a K-basis of HomA( Y1 , s-top(Y)) by Proposition 1. Consequently 

we cari take Y2 to be the g,-maximal module for Yl. Continuing this procedure successivly we 
obtain a module Y, that is s-rad(Y) and our proposition follows by Proposition 1. Cl 

Lemma 10. Let A = KQA JIA be a seljinjective special biserial algebra that is not a local 
Nakayama algebra. There are only jinitely many nonisomorphic indecomposable A-modules of 
the$rst kind with afixed$nite s-top. 

ProoJ: We shall prove our lemma in two steps. Let Y be an indecomposable A-module of the first 
‘) = Y. Let s-top (Y ) = M E MA be indecomposable with FA( ii?) = M. Let kind with FA( Y 

, 
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0 # F&!i) = p: Y - - -+ M. Then, by Lemma 3, supp(%?) is of the form 

and supp(Y) is one of the following forms: 

0 i -.. 
. --+ If$) t - l  l  t r; --+ l  . - : r:$, t l  l  . t ri+2 + . - l  t rj - -- - - 

- 

(i i> - -. 9  -3 lf(jj) t . - - t ri t - - l  t r;+l -4 - - - 

- 

-+ r;+2 t -. - + rj - -. - - 

(iii) - - . 9  t lf(fi) --+ l  l  l  

- 

+ ri t l  - l  t ri+1 + l  . . + ri+2 t l  -a + 7-j - l  * . - 

(iv) - l  - l  t l-f@) ---+ - - + ri + .* l  + 7-t 

- 2+1 t ** 

l  t ri+2 -9 l  - - t rj - - - - - . 

In each of the above cases, if (- . . l  + If@)) # if(@) or (- l  l  . + If@)) # lf(jF), then - - 
the indecomposable A-module Yr = FA(?--) with supp(Yr) of the form z . . a + r&?) or 
- .., t- If(P) respectively has also its s-top which is not given by X . p for any X E K” by the 
properties ofïf@). An easy verification shows that s-top(Y1) c s-top(f), hence s-top(Y) is not 

indecomposable- We cari do the same with rf(fi) and we obtain that supp(Y) starts at lf(fi) and 
ends at rf (a>. Hence the number of isoclasses of indecomposable A-modules Y of the firz kind - 
with s-top(Y) E M is bounded by the maximal number of relation-free walks between vertices 

of supp(ii?) U supp(fl), where N- FA@) is the s-projective A-module whose s-top is M. 
Consequently this number is finite and the required condition holds. 

Let Y be an indecomposable A-module of the first kind with dirnIi- HomA( Y, s-top(Y)) 2 

Let Y = FA(~) and let the vertices of supp(Y) be numbered increasingly from the left to t 
right. 

Letp = FA(F) : Y -+ M E &!A be an element of afixed K-basis of HomA4(Y, s-top(Y)) su 

that If(F) 7 is minimal in the family of a11 left frames of the fixed K-basis. Thus in the same way - 

2. 

he 

as 

above we cari show that supp( Y) starts at If (fi) and ends at rf (4) for some 4 = 2$,(d) belonging to 
the fixed K-basis. Furthermore in the same mariner one cari pr6ve that if rf (p,> < lf(P_,) then there 

is p3 = FA(&) with lf(&) I rf(&) and @,> > rf(&)* c onsequently the number of isoclasses 
of Y with a fixed s-top is bounded by the number of composed walks of the form as in the first part 
of the proof. This number is also finite and our lemma is proved. Cl 

Lemma 11. Let A = I<Q&-A b e a selfînjective special biserial K-algebra that is not a local 
Nakayama algebra. There are only jinitely many nonisomorphic indecornposable A-modules of 
the$rst kind with aJixedJinite s-socle. 

ProoJ: The proof is dual to that of Lemma 10. Cl 

Now we cari define inductively s-radnS1 (Y) = s-rad(s-rad”(Y)) for every natural number n, 

where s-rad’ (Y) = Y. 

Proposition 3. Let A = ICQA/I~ be a selfinjective special biserial K-algebra that is not a 
local Nakayama algebra. For every Jinite-dimensional A-module Y of theJlrst kind there exists a 
natural number ny with s-radnY (Y) = 0. 

Proof. Let A g KQA/IA be a selfinjective special biserial K-algebra that is not a local Nakayama 
algebra. If Y is a finite-dimensional of the first kind then by Proposition 2 s-rad( Y) is an A-module 
of the first kind whose s-socle is contained in S-SOC( Y). If s-rad”( Y) # 0 for every natural72 then 
by definition we have an infinite sequence of nonzero maps 

f f f f 
l  . . -+ s-rad”(Y) Z s-rd”-l(Y) -“-,1 . . . -2\ s-rad(Y) * Y 
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such that for each indecomposable direct summand A4 in s-Soc(s-radn(Y)) and every nonzero 
map q: M -+ s-Soc(s-rad”(Y)) it holds frfi . . . f q # 0. Moreover, by Lemma 11, there is 
only finitely many such modules, hence f,, . . . f 

-n- 

is an isomorphism for some natural r > nz. 
Therefore f is an isomorphism for some natural &‘which contradicts to the definition of s-radicals. 
Consequer$ there is a natural number ny with s-radnY (Y) =o.o’ 

9. s-supports of A-modules of the first kind. Let Y be an indecomposable A-module of the 
first kind. For each s-projective A-module N with respect to MA and for each indecomposable 
direct summand L in s-rad(N) we fix a coset eN L 

s-su& 
of an irreducible map ~JN,L : L + N. Thus 

an s-support of Y, that Will be denoted by MA (Y), is the path category of the following 
relation-free quiver &M~ (Y): vertices of QM~ (Y) are indecomposable direct summands in 
s-top(s-‘ad”(Y)) for a11 n = O,l, 2,. . . , where we do not identify isomorphic direct summands. 
If Mr, Mz are direct summands in s-top( s-radnl (Y)) and s-top( s-radn2 (Y)) respectively for 

some nl, n2 = 0, 1,2, . . . then there is an arrow 441 e- M2 in &M~(Y) iff n2 = nl + 1 and 
there is a coset -N1,L1 such that s-top(N1) E Ml and s-top(L1) N_ M2. 

Lemma 12. Let A be a special biserial selfmjective K-algebra which is a local Nakayama algebra. 
Let Y be an indecomposable A-module of thefirst kind. Then s-suppMA (Y) is a path category of 
afinite connected quiver QM~ (Y) of Dynkin type An and the following conditions hold: 

(a) The sources in QM~ (Y) correspond to the indecomposable direct summands in s-top(Y). 

(b) The sinks in QM~ (Y) correspond to the indecomposable direct summands in s-SOC(~ ). 
(1) (c) If Y is s-projective then QMA(Y) is one of theforms 

GN 2s+19 L2s+1,2.?+1 -&43 3cyN~,L~,~-~,~1 -Y,L~-N~,L~,~ -N2&2t,2t gN,L gNl,Ll 
( . . . I f------3+ ... d 

-N,,L,s 
-d . . . d . 

(d) IfQ =+ . . . $N,L,-%$ . . . -+ is a subquiver in QM~ (Y) then Q is a subquiver of 

(e) Ij’Q =,sk . - - -+ is a subquiver in QmA (Y) then Q is a subquiver in QM~ (IV). 

ProoJ: Let Y be an indecomposable A-module of the first kind. By Corollary 1, Proposition 3 and 
by the above construction of QmA (Y) we infer that QM~ (Y) is finite. Inductively on the number 
of vertices in QM~ (Y) we shall prove the remained part of our lemma. If QM~ (Y) has only one 
vertex then the required conditions are obvious, since Y f MA. Suppose that our assertions hold 
for a11 A-modules X whose quivers QM~ (X) have less vertices than n, and let Y be such a module 
that QM~ (Y) has n vertices. Thus s-rad(Y) is a direct sum of indecomposable A-modules of the 
first kind and each indecomposable direct summand Y; in s-rad(Y) has the property QM~ (Y,> has 
less vertices than n. By the inductive assumption QM~ (Y;> is connected of type A, and (a)-(e) 
hold. But by the construction of QM~ (Y) and by the construction of s-rad(Y) in the proof of 
Proposition 2 we infer that QM~ (Y) is of type An in view of Proposition 1 and (a), (b) hold. Since 
by [21, Proposition 21 each indecomposable direct summand in s-rad(Y) has an indecomposable 
s-top and an indecomposable s-socle for s-projective Y by Proposition 2 and Lemma 9, hence (c) 
holds. In order to prove (d) observe that by the definition of an s-projective module we have a 
nonzero map l: N + Y and by Proposition 1, s-rad( N) =Lr@L2,L1,L2#O.LetQbeofthe 
form 

CYNI L’ CXN 

2 
2m++ 2m+1,2m+l -NIIL I,I ~N,L1-N,L2%&,2 -N2,.,L2r,2r-N",L~ 

t- . . . < . . . 

f 
db.,. - - l *-+. 

S’JPPOS’ that BN’ L’ # -NzTn+3,L2m+3 2m+3* But in this case s-top(L2m+1,2m+1) is contained 

in s-soc(Y) since’ ie cari consider an ‘A-module R that has the following property: for every 
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0 # f2: N + y with hls-raqL2 +1 2 - , m +1 = 0 , h factors through R. It is easy to verify that such 

an R exists (by a dual version omf Proposition 1) and s-top@ 2m+r,2mtl) is a direct summand in 
%Soc( Y), SO cN/ ,J,’ does not exist in Q. In the same manner we prove that (&N/I L11 does not exist 
in Q and (d) is proved. Similarly we prove (e) and our lemma is proved. 

'1 

q 

Corollary 2. Let A be a seljînjective special biserial K-algebra which is not a local Nakayamn 
algebra. Let Y be an indecomposable A-module of thejîrst kind. Let X’ be a p-maximal module for 
Ywithp: Y -+ M. ThenQM,(X) - isasubquiverofQ~JY)andQM,(Y)\Q~,(X) = {M}. 

Proof The corollary is an obvious consequence of the constructions of QMA (Y) and s-rad( Y). Cl 

10 T-shifts of the s-projective modules. We starts this section with a lemma that Will be of great 
importance in our further considerations. 

Lemma 13. Let A be a seljînjective special biserial IL’-algebra which is a local Nakayama algebra. 
Let N be an s-projective A-module whose s-top is M. Then S-SOC(~( N)) is indecomposable and 

S-tOP(+q) E s-top(s-rad( N)). 

AIoreover if 
91 

c > 
0 + r(N) 3 L1 $ L2 

cf1,.f2)-~N 

0 

is an Auslander-Reiten sequence in mod-A then there is X E K* such that flgI = Xf2g2 with 

f,g, f O* 

Proo$ Under the notations of the lemma let FA( Â$ = N, FA(~) = M. Suppose that SU~~,(G) 

t > 1. Then by [21, Lemma 121 we obtain that supp(N) is of the form - 

( > 
- rh t-0• t r. --+ . l  l  --+ 7-1 t - - - +r2 -+ . . . 

-+ ri t s-s t rt+l +- .- + 

One cari deduce from [27] that SU~~(T(@) is of the form 

(r:+l)+* 

By Proposition 2 and Lemma 9 we know that s-soc(N) is a direct sum of at most two indecompos- 

able A-modules and s-soc@) = - s soc s-rad(lV)). Moreover, if M’ f’A4~ with FA(@) = M’ ( 

and there is 0 # il : A? -+ Li and there is 0 # y2 : &?’ + L2 with s-rad(fi) = zl $ L2, where 

P,, P2 factor through à, then by Lemmas 1, 2, 3 X l  BN L g1 = -fi L ci2 for some X E K*. ) 1 > 2 

Therefore one of El, 62 has the property that its s-socle decomposes into two direct summands 
which contradicts to the fact that S-SOC(-&) is indecomposable. Consequently if M’ E MA and 

0 # 6 : 2 -+ 7-(B) then 4 cannot be prolongated to a nonzero morphism from 2 to fi. In fact - - 
there is only one A-module with this property and its support is of the form 

This shows that S-SO~(T( N)) is indecomposable in the considered case. 
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Suppose that supp(G) is of the form 

t 2 1. Thus supp(fi) is of the form 0 

( > ’ +.+.. 
rO . t q  --+ a* - --+ rk t -. l  t 7-3 -3 -0 t 7-t -+ l  - -+ (rk+J 

and supp(@)) is of the following form 

by [27]. Similar arguments as above show that s~pp(s-soc(,(#))) is of the form 

and the required assertion holds in this case. 
Suppose that supp(%) is of the form 

Then supp(fi) is of the form 

( > ’ ++.. 
r0 

l  t rl ---+ - l  l  -+ r; t l  l  l  4-7-t t -0 trt+l -+ -- ' + b-t+1>+ 

andsuPP(~(w is of the following form 

(ro)- ---+ -0 -3 7-0 +-- a-- t r-1 -+ -. l  --+ ri t l  - - + 7-t + 0-a t (rt+& 

by [27]. Similarly we obtain that SU~~(S-soc(~(fi))) is of the form 

Consequently, S-SOC( T(N)) is also indecomposable in this case. 
In order to finish the proof, it is enough to observe that every nonzero map starting at à 

must factor through a linear combination of the irreducible maps from @) to ir and to L2. 
Consequently s-top(@)) coincides with s-top(s-rad(N)). The last sentence in the lemma is 
obvious what finishes the proof. Cl 

Corollary 3. Let A be a selfinjective special biserial K-algebra which is not a local Nakayama 
algebra. Let N be an s-projective A-module whose s-support is the path category of the quiver 

-N 29+1, L2s+1,2s+l -NI>~ I-N,L~-N,L~-Nz>L~,z 
< . . . I' 

+242t,2t 
t---w - . . . - 

(respectively -d w . . . -3) then &~M,(T(N)) is of the form 

+dq -N ON -: 1 2s+1J 2s+1,2s+l- > 2s+3, L2s+3,2r+3-N2t+~~L2t+2,2t+2 -NZtJZt,2t 52J2 2 . . . > - l  . . I 

-N+I -W->LT ‘XN 

(resp. -4 . . . d 
r+lJl+ 

- )* 

Proof The corollary is an easy consequence of Lemmas 12, 13, of the construction of s-supports 
and of the construction of s-radicals. Al1 details are left to the reader. Cl 
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11. s-supports of A-modules of the second kind. Throughout this section let 2 be an indecom- 
l posable A-module of the second kind, where A is a selfinjective special biserial algebra. Now we 

are going to interpret Lemma 7 in terms of s-projective A-modules with respect to Jtf~. In order 
to do it we need the following lemma. 

Lemma 14. If M f MA and 0 + 2 -Jf+ Y -J+ 2 + 0 is an Auslander-Reiten sequence in 

mod-A then there is the foilowing short exact sequence 0 + HO~*( 2, M) 2 HomA (Y, M) 3 

HomA(Z, M) -+ 0 of K-spaces. 

ProoJ: Suppose That M E MA and 0 -+ 2 --% Y T\ 2 -+ 0 is an Auslander-Reiten sequence 
in mod-A. If $9 f &A(& M) is nonzero then p # 0 is not a splitable 
there is a noniero map t : Y -+ M such that p = tw Moreover t 

monomorphism. 
# 0, because p - 

Hence 
= &zJ 

Consequently w* : HomA( Y, M) - + HOmA(Z, M) is an epimorphism of li<-spaces. Suppose 
now that py = 0. Then there is a factorization 
we have the following commutative diagram 

of pr through the injective envelope E(Y) of Y and 

1 1 1 P 

E(Y) s M. 

But it is easily seen that E(Y) E E(Z) @ E(Z) and Z = (Z&). Furthermore there is q : 2 - 

E(Z)withlz = qr. Ifs = (1:) thenwehavesl = (1:) (l&) = s-&+s& =pr. Consequently 
sl = SI II + s& = pr. But llw # 0, hence s& = 0 and s2qr = pr. But r is an epimorphism, SO 
s2 y = p which gives a contradiction to the assumption that p # 0. Therefore HomA (r, M) = r* 

is a monomorphism. Of course g*r* = 0 what shows that we should check for 0 # I : Y -+ & - 
whether & = 0 implies that there is 0 # p : 2 -+ M such that pr = l. In order to check the last 
implication observe that &J = 0 implies that Iw factors through E(Z) e.g. we have the following 
commutative diagram 

Moreover there is i : Y -+ E(Z) such that i = tw, hence Zw = stw. Now we are able to define 
a homomorphism p : 2 + M by the formula p(r( y)) = Z(y) - st( y). It is easy to check that p 

does not 
proved. 

depend on the choice of representatives of r(y) and l = pu. - 
cl 

Consequently our lemma is 

Corollary 4. Let Z be an indecomposable A-module of the second kind that is of the form 

Fw(M(Qw,m, X)). Then s-top(Z) E [s-top(F,(M(&,, 1, X)))]m. 

ProoJ The cor011 ary is an easy consequence of Lemma 
leave the detailes to the reader. 0 

14. It cari be proved inductively on m. We 

An indecomposable A-module Y of the first kind is said to be s-local if its s-top is indecompos- 
able. A family {Vi)i,l,... ,l of s-local A-modules is said to be primitive if the following conditions 
are satisfied: 

(i) if I = 1 then S-SOC( VI) = M $ M, M E JUA 
(ii) if I > 1 then s-soc(V;) = A/r;, $ Mi2 with A&, , Ad;, f jtiad and Mi7 g M(;+~I~ for 

i = 1,2,..., Z-landMl, rMll. 
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Proposition 4. Let Z be an indecomposable A-module of the second kind. Then there exists a 

primitive family { V; } ix 1,. . . ,l of s-local A-modules and there is a natural number r such that the 

following conditions are satisjed: 

(a) [s-top($fEl V;>I’ E s-top(Z). 

(b) There exists a map 0 # q: (@ix, Mil)’ + (& V;>’ such thatfor every A-module 

Y it hoZds Horn? (Z”, Y> % HO~%((&, Vi)‘, Y), where Horn%(($2,l V& Y) isa - 
subspace in H~rn~~(($f=, Vi)T) Y) consisting of the morphisms f that satisfy f q = 0. - 

Proof Let 2 be an indecomposable A-module of the second kind. We begin our proof with the 
case 2 s &(A4(Qw, 1,X)). Let Mr = P&?I ) E MA be an indecomposable direct summand 
in s-top( 2). Let Nr be s-projective with s-top(&) 2 Ml. Thus by definition there is a morphism 
0 # f : N1 -+ 2 which satisfies pf # 0 for every 0 # p : 2 += Ml. Let VI be an s-local 
A-module such that f factors through VI and for f = flfz with fr : VI -+ 2 it holds f,g, # 0, 
where 0 # Or : S-SOC&) + VI. First we shouldshow that S-SOC( VI) decomposes into a direct 
sum of two mdecomposable A-modules. Suppose that Qw is of the form 

. 

< 

. l  

1  

S+I 

. 
. 

< 

. 
1 3 

. 

. 
1 1 

< . 

. 
1 1 S 

. 

. 

. 

1 

4 / . 

. 

1 1 
2 / . 

. 

1 1 0 

\ 1 s+3 

/ 

/ 

Since FW( P1;) = I/l; is a submodule in 2, hence there is some Zi,, say 21, such that for 0 # 
p: 2 -+ Mi it holdsplLI # 0 orpILI = 0 andplLl # 0. Therefore in the first case there is 

f, : VI ++ Li, with ~7~ ‘fi # 0. Ït is’easy to verify by construction that a ~1,~ -maximal A- 
-1 
module for LE1 is a diiec&um of exactly two indecomposable A-modules, hence s-top(s-rad( VI)) 

decomposes into two indecomposable direct summands by Lemma 11 and Lemma 12 implies that 
S-SOC( VI ) decomposes into a direct sum of exactly two indecomposable A-modules. In the second 
case Li, is a submodule of s-rad(N) and s-SOC(~~,) decomposes, hence s-soc(V1) decomposes. 
Suppose that S-SOC( VI) 2 M’ $ M” with M’, 111” E MA. If M2 is another indecomposable 
direct summand in s-top(Z) in the sense that there is 0 # p, : 2 -+ Mz with p # Xe1 for every - 
X f K* then we construct in the above way V2. Continuingthis procedure we obtain a family of 
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s-local A-modules ( V; } i= 1,. . . , l. Applying a usual duality D we cari show the same for D(Z) what 
shows that {Vi}i=i,... ,l is a primitive family of s-local A-modules, 

In order to finish the proof of the considered case observe that s-top( @1=, V;) = s-top(Z) 

by the construction of the family {K}i=r,...,l what shows (a) in this case. Now we should 

indicate a morphism 0 # 4 : @f=, Mi, + @ix, Vi. But q acts in such a manner that for each 
i = l,.. . , Z the followingformula is true f;-r qi2 (m) # fiui, (m) for every element m of Mi,, -- 
where 0 # qil : Mi, + Vi and 0 # qi2 1. Mi1 = M(i-lj2 -+ Vi-l. Then (b) holds in this case for 

H$&i3:xl Vi), Y) E HomA( 2, Y). Indeed, the morphism 

fi 

c-1 

1 

. . 

. . 
cl3 

Vi + . 

fi 
i=l 

- 

z 

yields a needed isomorphism. Consequently the case 2 E F,( M( QW , 1, X)) is proved. 
The general case ,Z E F,(M(Q,, m, X)) is obtained by applying Lemma 14, Corollary 4 and 

the above analysis. Al1 details in this case are left to the reader. Cl 

Lemma 15. v M E MA and 0 -+ Z --%= Y --% Z -+ 0 is an Auslander-Reiten se- 

quence in mod-A then there is the following short exact sequence 0 + &A( M, z> 3 

HomA(M, Y) -% HomA(M, 2) -+ 0 of IC--spaces. 

Proof The proof is dual to the proof of Lemma 14. q 

Corollary 5. Let Z be an indecomposable A-module of the second kind which is of the form 
FW(M(QW,m, X)). Then s-soc(Z) E [s-soc(F,(M(Q,, 1, X)))l”. 

Proof The corollary is easy proved inductively on ?n by using of Lemma 15. 0 

An indecomposable A-module Y of the first kind is said to be s-coLocaL if its s-socle is inde- 
composable. A family { Ui}i=r,..., l of s-colocal A-modules is said to be primitive if the following 
conditions are satisfied: 

(i) if 1 = 1 then s-top(&) = M $M, M E MA 
(ii) if Z > 1 then s-top(Ui) S Mi, $ Mi, with Mi,, Mi, E MA and Mi, E Mc;+,,, for 

i = 1,2, . . . ) 1 - 1 and Mt, E Ml,. 

Proposition 5. Let Z be an indecomposable A-module of the second kind. Then there exists a 
primitive family { Ui}i=l,..., 1 of s-colocal A-modules and there is a natural number r such that the 
following conditions are satisJied: 

(a) [S-SOC(@2=, Ui)]’ = S-SOC(Z). 

(b) There exists a map 0 # p: (@f=, ,>, + (@ix, MiJ” such that for any A-module 

Y it hoZds Homg,Z(Y, Z”)F Hom:(Y, (&, Ui)‘), where Hom:(Y, (&:, Vi)‘) is a 

subspace of &A(Y, (& Uijr) consisting of the morphisms f that staisfy pf = 0. - 

Proof By applying the usual duality D to Proposition 4 one obtains the proposition at once. Cl 

Now we are able to define s-supports for indecomposable A-modules of the second kind. 
Let 2 be an indecomposable A-module of the second kind. Then s-support of 2, that Will 

be denoted also by s-suppM, (Z), is a path category of the following relation-free quiver 
QM,(~>* If 2 E F,(M(&,,m,~)) then we put &M~(Z) = QM~(F,(M(Q~,L~))). 

J 
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Moreover, QM~(F,(M(Q~., 1, X))) is defined as follows: if {Vi}i,l,...,t is a primitive fam- 
ily of s-local A-modules from Proposition 4 then QM~ (F,(M( Qw, 1, X))) is obtained from 

QM~(V~)U-* U QM~ (Vt) by the identifications of the following sinks Mi, with &!(;+,), for a11 
i = l,... , 2 - 1 and Ml2 with Ml,. 

Lemma 16. Let Z be an indecomposable A-module of the second kind. Then S-suppM, (2) is a 
path category of a$nite connected quiver QM~ (2) of extended Dynkin type An and the following 
conditions hold: 

(a) The sources in QM A (2) correspond to the indecomposable direct summands in s-top( 2) . 
(b) The sinks in &MA( 2) correspond to the indecomposable direct summands in s-SOC(~ > . 

Proof The lemma is an obvious consequence of Proposition 4, Lemma 12 and the definition of 
QM~ (2) for indecomposable A-modules of the second kind. Cl 

12. Algebras produced by maximal systems of orthogonal stable A-bricks. Let MA be a 
fixed maximal system of orthogonal stable A-bricks, where A is a special biserial selfinjective 
algebra which is not a local Nakayama algebra. We start this section with defining a quiver QM~ 
produced by M A. The vertices of QM~ are the elements of MA. For any Ml , Mz f M A there 
is an arrow -N1,L1 from Ml to Mz iff there is a coset BN, ,L1 such that s-top( NI ) E Ml and 
s-top( & ) E Mz. Moreover, different cosets of the form aN,L, c&$ produce different arrows in 
QM, iff AdN,L # QIN L for a11 X E K*. 1 

Now we cari define a two-sided 
generated by the differences 

ideal in the path category K&M~ of MA to be an ideal In/tA 

- ~N,L~-Nz,L’L,~ l  l  l  aNzt ,La,z -Na+z,L2t+2,2t+2 

for N with s-rad(N) = L1 $ L2, L1, Lz # 0, and by the paths that are not subpaths of the fol- 

lowing Paths &N LlaN1,L1 1 l  l  - aN2 +1,L2 +1 2 +$Na +3 L2 +3 2 +39 EN L2aN2,L2 2 ’ l  =Nat,Lzt 2t 

“N ’ for N with s-iad( N> 
2t+2&2t+2,2t+2 = i, &, Jh  , ‘La’  #‘o;  b; &T;,Ll l  l  - a; L  ~N,++l,L,;l 

for N with s-rad(N) = L indecomposable. We shall denote the algebra I<&N~ @LT by AM,. 
The algebra AMA is called Jz/i A-algebra. 

Lemma 17. Let MA be a maximal system of orthogonal stable A-bricks. Then an M A-algebra 
AMA is finite-dimensional seljinjective special biserial connected. 

Proof Obvious by the construction of hM, and by Lemma 12, Corollary 3. Cl 

Let Y be an indecomposable A-module. Consider the following morphism of quivers ZY : 

&MA(Y) + &MA that acts as follows: for each M E MA we put ly (M) = M, and for each 
arrow gN, L in &MA (Y) weputl~(~N,L) = aN,,p It is easy to observe that 2~ induces a Il-linear 
fUnCtOr of locally bounded K-categories 2~ : s-SuppM, (Y) + AMA. 

Lemma 18. For every 
a covering functoi: 

indecomposable A-module Y the functor ly : s-suppMA(Y) + AMA is 

Proof An easy verification shows the lemma. cl 

13. Specified quivers and stable morphisms. A quiver Q is said to be specified if the arrows in 
Q have their names. It may happen that different arrows in a specified quiver have the same names. 
A subquiver Q’ in a specified quiver Q is said to be a speci$!ed subquiver if Q’ is a specified quiver 
and the names of arrows in Q’ coincide to their names in Q. 
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Let Yi, Y2 be two indecomposable A-modules of the first kind. A specified quiver Q (connected 

or not) is said to be an essential subquiver of QM~ (Yi) with respect to &MA (Y2) if it is a specified 

subquiver of QM~ (Yl) and it is a specified subquiver of QM~ (Yz) such that if J: is a source in Q 

then a11 paths in QM~ (Y1 ) starting at zc are contained in Q and if y is a sink in Q then a11 paths in 

QM~(Y~) ending at y are contained in Q. 

Lemma 19. Let A be a selfînjective special biserial K-algebra which is not a local Nakayama 
algebra. Let Y1, Y2 be two indecomposable A-modules of the jîrst kind that are not projective. 
If 0 # f : Y1 -+ Y2 then there exists a uniquely deterrnined essential speci$ed subquiver Q of 
QM~ (E) with respect to QM~ (YI) and there existsa uniquelydetermined by f family (fn/r}~f~O 
of morphisms fhl : M -+ M such that the following conditions are sati@ed: 

(a) For each arrow aN L : MI -+ Mz in Q it holds XN,J(Y~) . f, = fnI . ~N#I). 

(b) If M’ is a source in’QMA (Yz) such that a -N,L f QI is contained in a path starting at M’ 
with an arrow a -NI, L; then the following conditions are satisfied: 

(bl) If s-rad(N’) is indecomposable then there is not a path in QM~ (Yl) that contains 
&N L and passes through M” with M” = S-~OC(T( N’)), where N’ is s-projective 
with s-top(N’) = M’. 

(b2) If s-rad( N’) is decomposable and s-rad( N’) = Li $ LL then in case that there is 
a path v in QM~ (YJ which contains GIN L and passes through M” with M” = 
S-SO~(~(N’)) it holds M” is a sink in Q,& (YI) and there is another path w in 
QM~ (Yl) connecting Q with M” for which there is a path in QM~ (Yz) starting at 
M’ with the arrow ENI Ll and ending at a vertex that belongs to 20. Moreover in 
this case if f is such that & # 0 only for M lying on the intersection of Q with a 
path &NI L’z connecting M’ with M” and h: Y1 -+ Y2 is such that /zM # 0 only - - 
for M lying on the intersection of Q with a path @Nl,L$ connecting M’ with n/r” 
then X f = h for some X E A?. 

Moreover every eisential specijied subquiver Q of QmA (Yz) with respect to &MA (Y1 > and 
every family {fM}~E~* of morphisms f, : M -+ M satisfiing (a) and (b) determines uniquely 
a nonzero morphism f : Y1 + Yz. - 
ProoJ: We shall prove our lemma by induction on the number m of vertices in QM A ( Y2 ). If m = 1 

then Y2 E JUA and the required conditions hold obviously. Suppose now that the lemma holds 

for a11 0 # f : Y1 - -+ Y2 with the property that QM~ (Yz) has mo vertices or less than mo vertices. 

Consider 0 # f : Y, + Y2 such that QM*(Y~) h a mo + 1 vertices. Suppose that there exists s 

MEia/iAandO#p:YL + M with pf = 0. Thus f factors through a p-maximal A-module X2 

for Y2, hence f = fÏf” with 0 # f” : Y1 -+ X2, 0 #-f’ : X2 --) Yz. By Corollary 2 we obtain that 

QM~ (X,> ha; mo vertices. Therefore the lemma holds for f” by inductive assumption. Let Q be 

the uniquely determined essential specified subquiver of QM~ (X2) with respect to QM~ (Y1 ) for 

which there exists a uniquely determined by f” family {f” hl} MEQ of morphisms satisfying (a) 

and (b). Since Q is also an essential specified subquiver of QM~ (Yz) with respect to QM~ (Yi) 

and pf = 0, hence Q and {f”,} are uniquely determined by f, and (a) holds obviously. In 

order to prove (b) in this case suppose that 0 -N/,L’ E QI is contained in a path starting at M with 

an aïïow aN,L1 and s-rad( N) is indecomposable, where N is s-projective with s-top(N) g M. 
Moreover suppose that there is a path v in QN~ ( Y1) that contains BN/ ,L/ and passes through M” 

with M” Z s-~OC(T(N)). Th en it is easily seen that f factors through r(N) and consequently - 
f = 0. Now suppose that a!Nl Ll 

and s-rad(N) = 

E Qi is contained in a path starting at M with an arrow aN L1 

L1 $ L2, L1 ,‘Lz # 0, where N is s-projective with s-top(N) E M. Moreover, 

suppose that there is a path v in QM~ (Yi) which contains a -Nl,L’ and passes through M” with 
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M ” z s-soc@-(N)). If M” is not a sink in QM~ (Yl) then we get a contradiction to Lemma 12 
and Corollary 3. Consequently f factors through 7(N) and the required assertion is an easy 
consequence of Lemma 13. Therefore (b) holds in the considered case. 

In order to finish the proof we should consider the case that for each M E MA with 0 # 
p: Y2 -+ M it holds pf # 0. But in this case it is easy to verify that Q = QM~(Y~) is 
an essential specified subquiver in QM~ (Y2) with respect to QM~ (Y1), moreover f induces a 
nonzero morphism f, : X1 -+ X2, where X2 is a p-maximal A-module for Y2 aid X1 is a 
pf-maximal A-module for X1 for some 0 # p: Y2 --J M E MA. Of course QM,(X~) has mo 

vertices and QM A (X 2 ) is an essential specifiedsubquiver in QM~ (X2) with respect to QM~ (Xl). 
Consequently the lemma holds for fl by inductive assumption. By Proposition l(g) we obtain a 
uniquely determined by f family {fM}~E~MA (y21 of morphisms satisfying (a) from a uniquely 

determined by fl family {&,}MEQ~~ (X,) of morphisms satisfying (a) and (b). Repeatting our 
arguments from the first part of the proof we obtain that the lemma holds also for f. Therefore our - 
lemma is proved. Cl 

Remark 2. The above lemma shows that in terms of s-supports of A-modules of the first kind there 
are the same laws for morphisms as in Lemmas 1,2 in terms of ordinary supports. 

14. Supports of indecomposable AMA -modules. Throughout we cari fix a Galois covering 
F : L?A -+ AmA with ~~~ simply connected. Then AMI = KQ~/L~/~M~ and every arrow 
p in QN* with F(P) = aN,L Will be named also by EN,&. Thus for every indecomposable 
A-module Y of the first kind its specified quiver QM~ (Y) cari be considered as a specified 

subquiver Of (&MA, fMa). Furthermore every covering functor Zy : s-suppMA (Y) -+ AMA 
cari be considered as F /S-SUPPM Cu>. The first question we should answer is whether there 

is an indecomposable A-moduleAY of the first kind whose s-support s-suppMA (Y) coincides 

with supp(T) for any indecomposable AMA -module 7’. The following proposition answers this 
question in affirmative. 

Proposition 6. For a special biserial selfinjective K-algebra A which is not a local Nakayama 
algebra let T be an indecomposable hM, -module. Then there exists an indecomposable A-, 
module Y of theBrst kind such that s-suppMA (Y) = supp(T). 

ProoJ: Let T be an indecomposable AMA -module whose support is a path category of a quiver Q 
of Dynkin type A,. We shall prove by induction on the number m of vertices in Q that there is an 
indecomposable A-module Y of the first kind such that QM~ (Y) = Q. If m = 1 then the required 
assertion is obvious. Assume that if Q has mo vertices then there is an indecomposable A-module 
Y0 of the first kind with QM~ (Yo) = Q. Suppose now that Q has mo + 1 vertices. Let Q be 
of theform Mx + n/ly - l  es -. Thus by the inductive assumption there is an indecomposable 
A-module Y’ of the first kind such that QN, (Y’) = Q’, where Q’ is of the form My - . l  . -. 
Consider the case y is a source in Q’. In this case QM~ (Y’) is of the form My -+ . . . - and 
consequently Y’ is an indecomposable A-module of the first kind such that for 0 # p: Y’ + My 

there is an indecomposable p--maximal A-module X’ for Y’. If FA(F) = Y’, Fx(Gy) = My 
andp = FA(F) then by Proposition l(a) a simple analisys shows that we have one of the following - - 
possibilities: supp(My) is of the form 

supp(Y’) is of the form 

rf@) - l  *a -, - 



and supp( Y1 j is of the form 

r0 t - l  l  t y-1 --+ l  l  . ---+ r2 t l  l  l  --+ rj - - - l  - rf(fl) - l  - - - . 

- 

By the construction of A MA we infer that if N, is the s-projective A-module with s-top(&) 2 IL& 

then there exists an indecomposable direct summand L, in s-rad( N,) such that s-top( L,) E My . 

If Fx(&&J = &!z then we have one of the following possibilities: s~pp(&!~) is of the form 

(i) 7-T +- l  l  - --+ y-2 t l  l  . t 7-3 ---+ l  l  l  -+ rs t - l  l  - 

(ii) 7-0 t l  - l  t 7-T + l  l  -3 7-2 t l  * l  -+ r, t l  - - - 

(iii) rTl -3 l  9  l  --+ y-0 t - l  - t ro* -+ . l  l  -+ 7-1 t -. - -3 r, t l  . - - 

(iv) rOt~~~trO*~...-,rlt~.~tr~~~~.tr,t..~-, 

where r, is a vertex in s~pp(&?~) n supp(Gy ) with maximal S. In each case if rf(@) is a source - 
in supp(Y’) and j < s then the composition A4!z + My + lies in ÏMA which contradicts to our 

assumptions. Consequently s < j and Y with supp(?) of the form 
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. - 

or 

- a.. trf($--+ -a +rj t*** t 1-j-1 --+ ... t(ry+l)- trB+, + ..a -+ r, tmae - 2 
- 

satisfies the required condition, where 2 is equal to either rT, or to r0, or to r-L1 or else to r[ in 

case (i), (ii), (iii), (iv) respectively. If rf@) is a sink in supp(F) then always Mz -+ My + lies - 
in I/MA which contradicts to our assumptions. 

Now consider the case y is a sink in Q’. In this case &MA (Y’) is of the form My t 
. . . and consequently Y’ is an indecomposable A-module of the first kind such that for 
0 i;(p): D(Y’) - + D(My) there is an indecomposable pmaximal A-module X’ for D(Y’), - 

where D is the usual duality. Then supp(Ey ) is as above and supp(F) is of the form 

7-0 ---+ 9 - l  +- rl t . l  9  t r2 + l  l  l  t rj - - . l  - rcf@) - . . . - - 

or . 

r. t l  - t r1 + -0 --+ r2 t l  - e--q - l  *n - rcf(j5) - ... - - 

respectively. Moreover supp( Ez) is one of the above forms (i)-(iv). Furthermore if rcf (fi) is a - 
source in supp(F) and s < j, then Y with supp(?) of the form 

or 

- . . . 
trcf(F) --+ l  - --+ rj ---+ -- -+ q-1 t l  ** t(r~+l)- t rJsl --+ 0.. t rs + ..a - l 

- 
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satisfies the required condition, where 2 is as above. If rcf(P) is a source and j < s then Y tiith - 
supp(Y) of the form 

satisfies the required condition. If rcf (fi) is a sink then Y with supp(Y) of the form - 

if such a module exists or 

where Z is as above. 
If &MA(Y) = Q’ and Q’ h as no sources of exactly one arrow then we use duality D and apply 

the above arguments, what finishes the proof. Cl 

Keeping the notations of Section 10 we have the following proposition. 

Proposition 7. 

(1 

(2 

Proof 

) For every primitive family {V$};=I,..., t of s-local A-modules there exists an indecompos- 

able A-module Z of the second kind such that s-top($e=, V;> = s-top(Z) and there 

exists a map 0 # q: &, Mi, -+ &=, Vi such that for every A-module Y it holds 

Horn? (Z”, Y) GlIom~(@I=, Vi, Y). 

) For every primitive family { U;)i=l,..., 1 of s-colocal A-modules there exists an indecom- 

posable A-module Z of the second kind such that s-SOC(& Vi) = s-soc(Z) and there 

exists a map 0 # p: @ix, Ui -+ @:=, Mi1 such that for every A-module Y it holds 

Horn2 (Y, 2”) E Horn:(Y, @i=, Ui). 

Simple analysis as in the proof of Proposition 6 shows that there exists a quiver Qw of type 
A, with a covering functor F,,, : KQw -i A such that F,( M( Qw , 1, X)) satisfies the required 
conditions for some X E K*. q 

15. Main results. 

The main aim of this section is a proof of the main results. Before we shall start the proofs we 
study sincere representations of s-supports of indecomposable A-modules. Let Y be an indecom- 
posable A-module of the first kind. A sincere representation of s-suppMA (Y) corresponding to 
Y is the indecomposable representation V(Y) of Q MA (Y) in which 1< stands at each vertex and 
there is given a multiplication by XN,J,(Y) f K* on the arrow aN L. Let Y be an indecomposable 
A-module of the second kind that is of the form Y E F,,, (M( Q, , A, X)). A sincere representation 

of S-SUPPM~ (Y) corresponding to Y is the representation V(Y) of QM~ (Y) obtained in the 
following way: if {Vi}i=i,..., l is a family of s-local A-modules produced by Y as in Proposition 4 
then we consider a family of local s-SuppM, (Y) -modules { Li} i=r,. . .,l corresponding to Vi, i = 1, 

. . . , l, as SinCere repreSentatiOnS of subcategories s-suppn/LA (Vi) of the category s-suppMA (Y). 
Moreover let Si simple S-SUPPM~ (Y)-representations corresponding to the sinks in QM~ (Y). Let 

i: (@i--l Sil)’ + (& Li)’ be an injection induced by 0 # q: (@i=, Mil)’ -+ (& Vi)’ 

as in Proposition 4. In view of Lemma 19 i is really an injection, and we define V(Y) to be a 
coker(i). It is easy to verify that in the case considered case V(Y) g M(&M~ (Y), nz, X). 
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Theorem 1. Let A be a special biserial selfînjective K-algebra which is not a local Nakayama 
algebra. Then there is a stable equivalence Q : mod-A -+ mod-AM, for every maximal system 
of orthogonal stable A-bricks MA. 

Proof In order to prove the theorem we should construct a functor G : mod-A -+ mod-AMA that 
is dense full and faithful. For every indecomposable A-module Y we put +(Y) = Gx(V(Y)) 
in case Y is of the first kind. If Y is of the second kind then we have a covering functor 
lu: s-suppM,(Y) + AMA by Lemma 18. Thus we define @(Y) = Zy(V(Y)). If 0 # 
f : Y1 -+ Y2 is a nonzero morphism between two indecomposable A-modules of the first kind 
t’en there exists a uniquely determined essential specified subquiver of QM~ (Y2) with respect 
to QM~ (Y1 ) and there exists a uniquely determined by f family { flll} hlE~o of morphisms 
fM : J& + M such that the conditions of Lemma 19 are satisfied. Consequently we obtain 
a morphism 0 # V(f): V(Yl) + V(Y2) and we put a(f) = Gx(V(f>). By Lemma 9 and 
Propositions 4, 5 we Fan define + for morphisms between Gbitrary indeimposable A-modules 
in an obvious way. Furthermore we enlarge @ additively to the whole category mod-A. An easy 
verification shows that @ is dense by Propositions 6,7, @ is full and faithful by Lemma 19 and by 
Propositions 4,5. This finishes the proof of our theorem. Cl 

Theorem 2. Let @ : mod-B -+ mod-C be a stable equivalence for a seljînjective special biserial 
algebra B whose bound quiver (QB, IB) dues not contain double arrows and double loups and 
that is not a local Nakayama algebra. IfMc L {@(Si)}i=l,...,n, where {Si)i=l,...,n is a set 
of representatives of the isoclasses of the simple B-modules, then the following conditions are 
sa@îed: 

(1) B g hMc. 
(2) G is induced by a stable equivalence @1 : mod-1 B + mod-1 C. 

Proof Let @ : mod-B + mod-C be a stable equivalence and let B be a selfinjective special bise- 
rial algebra that is not alocal Nakayama algebra. Let MC = {+(S~)}~=~,...,,, where {S&=l,...,n 
is a set of representatives of the isoclasses of the simple B-modules. Then C is a selfinjective 
special biserial algebra that is not a local Nakayama algebra and C, B have the same number of 
isoclasses of the simple modules (see [21]). Thus J& is a maximal system of orthogonal stable 
C-bricks. It is obvious that for each s-projective C-module 1v with respect to M c its s-support co- 
incides to an ordinary support of some P/ s-soc(P) with P indecomposable projective B-module. 
Moreover, s-sur>pM c (T(N)) coincides to supp( s-rad( P)). Therefore by Theorem 1 we have that 
there is a stable equivalence Xl? : mod-B -+ mod-AM, such that 9( P/ s-soc(P)) E Q/ s-soc(Q), 
XP( s-rad( P)) E s-rad( Q) for each indecomposable projective B-module, where Q is an indecom- 
posable projective AM c -module. Moreover q preserves simples. If B g ~<&BI~B is a special 
presentation then QB = QM~. If a is the only arrow between x and y then the indecomposable 
C-module whose support is this arrow is preserved obviously by Xl% The only confusions are 
connected with double arrows, but this case is excluded by the assumption. Consequently (1) is 
provèd. Hence (2) is obvious by Lemma 12. Cl \ 

Résumé substantiel en français. On note K un corps algbriquement clos; toutes les algèbres 
considérées sont des K-algèbres de dimension finie, basiques et connexes. Une algèbre A est dite 
spéciale bissérielle si elle est isomorphe à KQ, / Ia, le carquois avec relations (&A, IA) satisfaisant 
aux conditions suivantes : 

(i) Tout sommet de QA est la source d’au plus deux flèches, et le but d’au plus deux flèches. 
(ii) Pour toute flèche cx de &A, il existe au plus une flèche p et au plus une flèche y telles que 

@ 4 IA>ya $ IA* 
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Un objet indécomposable M de la catégorie stable mod-A est appelé un A-bloc stable si 
l’anneau End&f) de ses endomorphismes est isomorphe à K. On dit qu’une famille { M~}~E.J 
de A-blocs stables est un système maximal de A-blocs stables orthogonaux si les conditions 
suivantes sont satisfaites: 

(1) Pour tout J’ E J, le module Mj n’est pas isomorphe à son translaté d’Auslander-Reiten 
rMj. 

(2) Pour i, j distincts dans J, on a Hom(Mi, Mj) 

(3) Quel que soit le A-module indécomposable N, qui n’est ni projectif, ni isomorphe à TN, 
il existe j, et j, dans J avec Hom(h$-, , N) # 0 et Hom(N, Mjl ) # 0. 

Soit MA un système maximal de A-blocs stables orthogonaux; on suppose que l’algèbre est 
auto-injectives, spéciale et bissérielle, mais que ce n’est pas une algèbre locale de Nakayama. Ces 
données permettent de construire une K-algèbre AMA qui estauto-injective, spéciale et bissérielle. 
Voici les résultats principaux de ce travail. 

Théorème 1. Les catégories mod-A et mod-AM, sont stablement équivalentes. 

Théorème 2. Soit B une algèbre auto-injective, spéciale et bissérielle. On suppose que le carquois 
avec relations (QA, IA) qui lui est associé ne possède pas d’arêtes doubles et de boucles doubles; 
on suppose aussi que l’algèbre B n’est pas une algègre locale de Nakayama. Soit + : mod-B -+ 
mod-C une équivalence stable; on note {Si}+l,...,n un système de représentants des classes 
d’isomorphisme de B-modules simples et l’on pose MC = {(a@‘;));,,,...,,. On a les propriétés 
suivantes : 

(11 B est isomorphe à AM, 
(2) @ est induit par une équivalence stable @l de mod-1 B avec mod-1 C. 
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