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ISOTONE PROJECTION CONES IN EUCLIDEAN SPACES

GEORGE ISAC AND ALEXANDRE B. NEMETH

REsuME. Soit K un cone convexe fermé dans I’espace euclidien R™. On note par Pk la
projection sur K. Dans ce papier on caractérise les cOnes convexes fermés K qui engendrent
I’espace R™ et qui ont la propriété que Pk est isotone par rapport a 1’ordre défini par K. Voir
le résumé substantiel en frangais 2 1a fin de ’article.

ABsTrACT. Let K be a closed convex cone in the Euclidean space R™. We denote by Py
the projection onto K. In this paper we characterize the generating closed convex cones such
that Pk is isotone with respect to the ordering defined by K.

0. Introduction. The metric projections on closed convex sets in Hilbert or Banach
spaces have been deeply investigated (see for instance the monograph [19] and the
papers [4-6, 13-16].

A special case is the metric projection on a closed convex cone in a Hilbert space.

Although this subject was much studied by Zarantonello in [19], it seems that the
relation between the projection operator and the ordering defined by a cone was first
considered in our paper [7].

The cited paper as well as [8-11] are concern with various characterization of a cone
K in a Hilbert space having the property that the metric projection Pk is isotone with
respect to the order defined by K (called in this case isotone projection cone).

Besides its theoretical importance this property has interesting applications to the
study and the solvability of the Complementarity Problem (important in Optimization,
Mechanics, Game Theory, etc.) [8-11, 13-15].

The aim of this paper is to place our investigations on isotone projection cones in
Euclidean spaces, in the recent literature which investigates some related problems.

More precisely, we intend to exploit from this point of view some recent results
of Barker, Laidacker and Poole [2] to complete the existent characterizations of isotone
projection cones with new ones, and finally, to simplify some earlier proofs and to present
them in a concise and independent exposition.

1. Preliminaries and the main result. For the following basic facts about cones we
refer the reader to the book [17].
A subset K in the Euclidean space R" is a cone if
() K+ KCK,
(ii)) AK C K whenever A € R, and
(i) K n(-K) = {0}.

Recu le 1¢* février 1991 et, sous forme définitive, le 18 novembre 1991,
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36 Isotone projection cones in Euclidean spaces

A cone is a convex set. We say that K is generating if R" = K — K. A cone in R"
is generating if and only if its interior is nonempty. The set

K" ={z € R"|(z,y) <0,Yy € K}

(where (-, -) is the inner product) is called the polar of K. If K is generating, then K°
is a closed cone. If K is closed then K = (K°)°.

If we put z < y whenever y — ¢ € K, then we obtain an order relation (that is a
reflexive, transitive and antisymmetric relation) compatible with the vector structure of
R™. We say in this case that (R",K) is an ordered vector space and K is its positive
cone. The order defined by K is called the order induced by K.

An upper bound of a set A C R" is an element b € R™ such that a < b for every
a€A.

If there exists a least upper bound for A, it will be called the supremum of A and
will be denoted by sup A. Lower bounds and infima can be defined similarly.

If for any two elements z, y € R" there exists sup{z, y} (which will be denoted by
z V y), then the ordered vector space is called a vector lattice and its positive cone K
is said to be latticial (or minihedral).

We say that a subset F' of the cone K is a face if it is a cone and if it satisfies the
condition: from z € F, y € K and y < =z it follows that y € F.

A closed half-space of R™ with boundary point 0 is a subset of R™ of the form
{z € R" | (z,p) <0} where p€ R", p £0.

A polyhedral cone in R" is the intersection of finitely many closed half-spaces of R™
with boundary point 0.

A closed cone K C R" is a polyhedral cone if and only if K is a finitely generated
cone, that is there exists a finite subset {a1, as, ... ,.ax} of R", called a set of generators
for K such that,

K= {/\1a1 + doag + -+ Arag |)\1,/\2,... ,)\k 20}

A closed generating cone K C R" is polyhedral if it has a finite number of proper
faces having codimension cne in R™ and every proper face of K is contained in some
such face.

We shall use this last characterization for polyhedral cones.

If C is a closed convex set in R™, then for each z € R" there exists a unique point
in C denoted by Pc(z) such that ||z — Po(z)|| < |lz = y||, Yy € C. The operator Pg
is called the projection (or metric projection) on C [17].

The cone K C R" is called correct if for each of its face F' we have that P, r(K) C
F, where sp F' denotes the linear span of the set F'. Correct cones are called projectionally
exposed by Borwein and Wolkowicz [3] and orthogonally projectionally exposed cones
by Barker, Laidacker and Poole [2].

We have independently introduced this notion and called it correct by some analogy
with the notion of perfect cones in which occur the additional condition K = K*, where
K* = —=K° (see [1, 12]).

We maintain this term here to be in keeping with our terminology in [8, 9, 11].

The closed cone K C R" is called an isotone projection cone if from y — z € K it
follows that Pk (y) — Pk(z) € K, for every z, y € R"

By using the order relation defined by K, this condition can be written in the form:
t <y = Pk(z) < Pk(y).

We are now ready to give our main result.
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Theorem. Let K be a closed generating cone in R™. Then the following assertions are
equivalent:

(i) K is an isotone projection cone,
(ii) K is correct and latticial,
(iii) K is polyhedral and correct,
(iv) there exists a set of vectors {u; | 1 € I} with the property that (u;,u;) < 0,
Vi, j €1, i#j and such that K = ({u; |i € I})’,
(v) K is latticial and Pk (z) < x* for every x € R", where z+ =z V 0.

The equivalence (i) <= (iv) was proved in [7]. The equivalence (i) <= (iv) was
independently established in [2, 8] while (ii) <= (iii) was established in [2].

In [8] was proved (i) = (ii) for a general Hilbert space.

We shall give in the sequel a complete proof of this theorem witch we shall make
as self contained as possible. The only facts we shall use apart from the ones in this
section are the theorem of Youdine on latticial cones and some properties of the projection
operator including Moreau’s decomposition theorem with respect to mutually polar cones.
The most part of the proofs are new.

The proof of (i) = (ii) is a simplified version of the similar result for Hilbert
spaces proved in [8]. The most difficult steps are those which imply the operator Pk.

Hence one of the main reaches of the paper is the proof of (ii) == (i) presented in
Section 4 and which is much simpler than that of (iv) = (i) in [7].

Condition (v) constitutes a new characterization of the isotone projection cones in R".

2. Preliminary results. The following result of Youdine [18] will be used often in our
proofs. '

Theorem (Youdine). The cone K € R" is latticial if and only if there exist n vectors

linearly independent in R", uy, us, ..., u, such that
K={z€R"|(z,u;) <0,i=1,2,... ,n}. @.1)
That is, K is latticial if and only if it is of form K = ({u; | i = 1,2,... ,n})°, where
uy, u2, ... , Up are linearly independent vectors.

Several technical corollaries follow from this result.

Let A C R". The affine hull aff(A) of A is the smallest affine subset of R" containing
A. The relative interior, rint(A) of A is defined as the interior of A regarded as a subset
of aff(A) (with the relative topology).

We remark that if A C R™ is nonempty and convex then rint(A) is nonempty and
dim(rint(A)) = dim(A4).

Lemma 1. If K is of form (2.1) with uy, us, ..., u, linearly independent then for every
subset {i1,...,ix} C {1,2,... ,n} the set F;, . ; = {z € K| <:c,u,'j> =0, =

1,...,k} is a face of K. If iy # 1, whenever h # , then both F;, . ;. and

rint(Fil,...,ik) = {:L‘ € Fil,...,ik l <.’IJ,U]‘> < 07.7 € {17 an} \ {ila--- »ik}}

are for k < n nonempty sets in R" of codimension n — k.
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Every face of K is of form F;, .. ;. with some set {iy,... it} C {1,2,... ,n}.

Proof. The assertion that F;, . ;, and rint (Fj, . ;) are nonempty and of codimension
n — k if k¥ < n is a routine exercise of linear algebra.

Suppose that ¢ € Fy, .. ,,,y € Kand y < z.

Then (z—y,u,-j> = —(y,u,-j> <0,75=1,2,...,ksince z — y € K.

Hence (y,u;;) =0,5 =1,2,..., k because y € K and we know that (y,u;) <0,
j=1,2,...,n Thus y € F; . ;. and this set is a face of K.

Suppose that F' is an arbitrary proper face of K.

If for some = € F we would have that (z,u;) < 0,5 =1, 2, ..., n then for arbitrary
y € K there exist some positive scalar ¢ such that (z — ty,u;) <0,;=1,2,...,n.

But then z — ty € K, that is ty < = and ty € K whence ty € F by the definition of
F. Now, since F is a cone, it follows that y € F' and y being arbitrary in K we obtain
that K C F contradicting the hypothesis that F is a proper face of K. Hence there exists
some minimal set {i1,...,ix} C {1,2,...,n}, k > 1 so that (z,u;) =0, j =1, 2,
..., k for every = € F. By the first part of the proof we have FF = F; ;. O
Lemma 2. If K is a latticial cone given by (2.1), then for y, = € R™ the supremum yV z
is the solution of the following system in x:

(z,u;) = min{(y, u;), (z,u;)} i=1,2,...,n 2.2)

In particular, if v € R"™ and (v,u;) = 0 for some j € {1,2,... ,n} then (vt ,u;) =0
where v = v V0.
Proof. Since uy, us, ..., up are linearly independent vectors, the system (2.2) has a
unique solution . Let us see that o = 2z V y. From the definition of z¢ we have,

(xo — ¥, ui) = (o, ui) — (Y, ui) = min{(y,u;),(z,u;)} — (y,u;) <0, 1=1,... ,n.

Hence =y — y € K, that is y < z( Similarly we deduce that z < x,.
Suppose now that for some z € R", y < z and z < = Then by the definition of K,
(x —y,u;) <0and (z — z,u;) <0,7=1,2,...,n which imply

(z,u;) <min{(y,u;), (z,ui)} = (zg,u;), 1=1,2,...,n.
Using again the definition of K we conclude that ¢ — zy € K, i.e., 29 < z. Thus we
have 2o = y V z. If for some v € R" and some j € {1,2,... ,n} one has (v,u;) =0

we get (v, u;) = min (v,u;),0 =0, since v = v V 0 is the solution of the system:

(z,u;) = min{(v,u;), (0,u;)}, 1=1,2,...,n. O

Lemma 3. Suppose that K is a latticial cone given by (2.1). Then there exists the linearly
independent vectors ey, ey, ..., en € R" with (ei,u;) = 0 if i # j and (ei, u;) <0, i,
ji=1,2, ..., n, such that

K = cone{ey,... ,en} <= {i Aie;

=1

A>0,i=1,2,... n}) 2.3)
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In particular, K° = cone{u;,us,... ,u,} and every latticial cone has a representa-
tion of form (2.3) with some linearly independent vectors ey, ez, ..., €n.

Since ey, ea, ..., ey are linearly independent then every y € R"™ can be uniquely
represented in the form, y = c1e1 + c2ez + -+ +cpeén; €1, €2, ..., ¢ € R.

If for another vector z € R™ we have z = dyey + daes + -+ + dpep; dy, da, ...,
dn € R then z < y is equivalent with d; < c¢;, 1 =1, 2, ..., n.
Proof. Since uj, ug, ..., u, are linearly independent, then uy, ..., uj_1, ¥jt1, ...,
u, span a hyperplane in R™. If e is a normal vector to this hyperplane then, since
uj & sp{u1,... ,uj_1,%j41,... ,up} it follows that (e,u;) # 0. Choose a normal e; to

this hyperplane so that (ej,u;) < 0. Obviously (e, u;) = 0 if ¢ # j and hence ¢; € K.

Take j =1, 2, ..., n in order to obtain ey, ez, ..., e,. By the biorthogonality of the
systems e, €2, ..., e, and uj, ug, ..., Up, it can be easily deduced that eq, ez, ...,
e, are linearly independent. We have obviously cone{e;,es,... ,e,} C K . To show
the converse inclusion take = = cye; + -+ - 4+ cpe, With ¢; < 0. By scalar multiplication
with u; it follows that (z,u;) = ¢; (e;,u;) > 0 and hence = ¢ K.

The last assertion of the lemma follows directly from the representation (2.3) of
K. O .

The next result is true for a well based closed convex cone in a reflexive Banach
space but because in this paper K is in R™ we give this result with an elementary proof.

Lemma 4. If K is a closed cone in R" then every K-increasing, K-order bounded
sequence in R"™ converges to its K-supremum.

Proof. Since K is a closed cone, we have K = (K?)0,

Hence K° must be generating, since if K° would be contained in some subspace
of codimension one, then the orthogonal complement of this last space would be in
(K%)? = K, contradicting the definition of K.

Let u;, ua, ... , u, be a linearly independent vectors in K°. Then cone{uy,us,... ,
un} C K° and hence K C K, where Ko = ({u1,... ,un})°.

By Lemma 3, K, can be represented in the form, K, = cone{ey,es,... ,e,}, €1,
es, ..., €y being linearly independent vectors in R™.

Consider now the sequerce {zn}, v in R" such that,
T3 SKZ2SK ' SKZTm SK ' SKU
for some u € R". Since K C K, we have also
T1 <K, T2 SKo *** SKo Tm <K, ' SK, U (2.4)

Let us take the representations

Tm==cller 4+ Fcie,, m=12...
U ==c1e; + -+ cpen
where ¢, ¢c; € R, j =1, 2,...,n. Then according (2.4) and Lemma 3, every sequence

of real numbers {c;"}me N (G =1,2,..., n) is monotonically increasing and bounded
by c;, hence convergent. Denote

)= lim 7, j=1,2,...,n. (2.5)

m—o0
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Then {zm},,cN is convergent to 2o = cfe; + -+ + chen.

From relations z, — ¢, € K for ¢ < p and v — z, € K for each p, passing to the
limit with p — oo and taking into account that K is closed, we deduce that z, <k o
for each ¢ and zo <k u, witch completes the proof of the lemma. [

Before passing to some facts concerning correct cones, let us remember some results
on projections maps. First of all we have that Pc(z) is the nearest element in the closed
convex set C C R" to ¢ € R", if and only if we have:

(z — Po(z), Pc(z) —y) >0, Vy € C. (2.6)

(see [19, Lemma 1.1])
We shall also use the fact that for any z and y in R™ and for every closed convex set
C C R" the following holds

[Po(z) = Pe(y)ll < llz —yll. Q.7

that is, Pc is nonexpansive and hence also continuous (see [19, formula (1.8)]).
The characterization of projections on a cone and its polar is the object of the following
result.

Theorem (Moreau). If K is a closed convex cone in R™ then the following assertions
are equivalent:

@D z=u+v,ueK veK®and (u,v) =0

(ii) u = Pg(z), v = Pko(z).

Lemma 5. If K C R" is a correct cone and if F' is a face of K, then for every x € sp F
one has Px(z) = Pp(z).

Proof. Assume the contrary, that is, there exists some z in sp F' such that Px(z) ¢ F.
Since P,  is nonexpansive (see (2.7)) we have

llz — Pap r(P(2)|| = | Pop r(2) — Pop r(Px(2))]| < llz — P ()|l (2.8)

Since P, p(K) C F, by the correctness of K we have P, p(Pk(z)) € F C K.

By the uniqueness of the nearest element, we have by (2.8) that P, p(Pk(z)) =
Py (z), whence Pk(z) € (spF)NK = F which is impossible and the lemma is
proved. O

Let v be in K° and consider the set F, = {z € K | (z,v) = 0}.
Then a straightforward verification shows that F, is a face of K.
Faces of the above kind are called ezposed faces [19].

The vector v is said a normal to the face F,.

Lemma 6. Let K be a correct cone in R" and let F be an exposed face of K with
codimension one in R".

If v is normal to F, then for any other normal v' to any other exposed face F' of K,
not contained in F, we have (v,v') <0.

Proof. Suppose the contrary. So, we suppose that for some such normal v’ we have
(v,v') >0. Letz € F'\ F
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Hence (v,z) < 0 (since v € K°) and we can determine a positive scalar t such that
(z +tv',v) =0.

But from Moreau’s theorem we have Pk (z + tv') = z. since F' is of codimension
one, its normal is v and (z + tv’,v) = 0, necessarily we have z + tv' € sp F' and we
have got a contradiction with Lemma 5. O

Proof of the principal Theorem

3. Proof of the implication (i) = (ii). In proving that the isotone projection cone
K C R" is latticial we shall use the following assertion:

(a). Let K be a closed and generating cone in R"™ and u, v two elements of R".
If there exist a € u + K, b € v 4+ K with the properties

a=Pux(b) and b=P,.x(a), then a=be (u+K)n(@+K)

Indeed, since K is generating the set (u + K) N (v 4+ K) is nonempty, that is, there
exists an element w such that v < w and v < w. This follows by writing u = u; — u,,
v = vy — v9, Where uq, ug, v3, v2 € K and observing that we can consider w = uy + v;.

We have from the characterization (2.6) of the metric projections that,

(a — Pyyk(a), Pryk(a) —w) 20

3.1
(b — Pyyk(d), Puyk(b) —w) >0
Using the conditions in the assertion (a) the second relation becomes,
(Py+k(a) —a,a—w) > 0. (3.2)

On the other hand we have

(Po(a) — a,0 — w) = (Prykc(a) - a,(a = Pryxc(a)) + (Porxc(a) = w))
= — (I1Posk(@) = all” + (a = Posxc(a), Posxc(a) = w))

whence, taking into account (3.1) and (3.2) it follows that,
1 Po+x(a) —all = ||b—al| =0,

and the assertion (a) is proved.

(b). Let us pass to the proof of the latticiality of K.

Consider the arbitrary elements v and v in R". We shall show, using the isotone
projection property of K, that they admit a least upper bound v V v by constructing
effectively this element.

We can assume that v and v are not comparable.

Let w be an arbitrary upper bound of the set {u,v}, i.e. an arbitrary element of the
set (v + K) N (v + K) which is not empty since K is generating by hypothesis.

Let us note next that if Pk is isotone, then for an arbitrary element y in R™ the
operator Py is isotone too.
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This follows from the relation P4k (z) = Px(z —y)+y which holds for an arbitrary
z in R™ and which can be directly verified by using (2.6). Hence P,k and P,k are
both isotone. Since no one of the convex sets u + K and v + K is contained in the
other, using assertion (a) we see that there cannot hold simultaneously the relations
u = Pyyk(v) and v = Pyyk(u).

Suppose that u # Pyyk(v) € u + K

Then u < P4k (v) < Pyyk(w) = w, since P4k is isotone and w € u + K.

Let us consider the operators Q@ = P,k o P,yx and R = P,k o P, k. They are
isotone since P,+x and P4k are. Putv, = Q"(v), u1 = Py4k(v) and u, = R*1(u).
Then we have the following relations:

v<wv <

n

<o, <
u<<u < <y, <+ <w

since u < uy, v < vy, since P4k, @ and R are isotone, and since P,k (w) = Q(w) =
R(w) = w. Obviously P,yk o Pyyk(v) € v+ K, hence v < Pyyk o Pyk(v) =
Q(v) = vy and u; = Pyuyk(v) £ Puyk 0 Pyyk 0 Puyk(v), that is, u; < R(uy) = ug
etc. We have further

vn = Q"(v) = (Py+k 0 Puyk)"(v)
=Iy4K O (Pu+K o PU+K)n—1 o Pu+K(U) = Pv+K o Rn_l(ul) = Pv—{-K(“n) (33)
and
Un41 = R(un) = Pu+K o Pv+K(un) = Pu+K(vn)- (34)

Since the sequences {u,} and {v,} are increasing and bounded above by w, we have
(using Lemma 4) the following relations:

uyg = lim u, and vy = lim v, (3.5)
as well as
u<ug<w and v <y <w. (3.6)

From the continuity of the metric projections (see relation (2.7))the formulas (3.3),
(3.4) and (3.5) yield

vo = Pyyk(ug) and wuo =P + v+ K(vp).
Using assertion (a) again we deduce that
up =vg € (u+K)N(v+K).

Since the upper bound v was arbitrary, from the relation (3.6) we obtain that indeed
ug = vo = u V v and the latticiality of K is proved.

To prove the correctness of K we begin by proving the following assertion:
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(c¢). For every face F of the generating isotone projection cone K in R"™ the subspace
sp F' projects onto F by Pk and F is an isotone projection cone in the space sp F.

Consider z € sp F.. Then z =z — y with z, y € F C K whence z < z.

Since Pk is isotone, one follows 0 < Pk (z) < Pkg(z) =z € F. Hence Pk(z) € F.

This relation shows that Pr(z) = Pk(z) and implicitly that Pr|, ¢ is isotone pro-
jection in sp F' and (c) is proved.

(d). We pass to the proof of correctness of the isotone projection cone K by assuming
the contrary, that is, we suppose that there exists a face F' of K and an element & of K
such that z = Py, p(k) ¢ F.

Put 2o = Pk(2). Since z € sp F, it follows from the assertion (c) that z, € F.

We shall show first that one can find a real number ¢ € (0,1) such that the element
w given by

w=tk+(1-1)z (3.7
satisfies the relation
(z—w,k—2)=0 (3.8)

Indeed, we have

(z—tk—(1—t)zo,k —20) =(z—k+ (1 —t)(k — z0), k — 20)
=(z=kk—2)+ (1 —t)]z0 — k||?
=(z—kk—z+2z—20)+ (1 —1)|lz0 — k||
= —llz = k|I* + (1 = )llz0 — K||?,

since (z — k,z — z9) = 0 (2 — 20 € sp F' and z — k is orthogonal to sp F).
Since ||z — k|| < ||z0 — k|| by the definition of z and zo, then putting

llz — kI|?

1—t=—
llz0 — k|2

<1,

we have (3.8) for w determined by (3.7).
Using the characterization (2.6) of the metric projections, we have

(2 — 20,20 — k) = (2 — Px(z), Px(z) — k) > 0. (3.9)
From the definition of w it follows on the other hand that

(z— 20,20 — k) = (z —w+w—29,20 — k) = (w — 29,20 — k)
= (tk+ (1 —t)z0 — 20,20 — k) =t (k — 29,290 — k) < 0.

This relation contradicts (3.9) and shows that our hypothesis that K is not correct, is
false.
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4. Proof of the implications (ii) = (iii) = (i). Obviously, the implication
(iil) = (iii) is a consequence of Youdine’s Theorem.

We shall prove (iii) = (i) by induction with respect to the dimension of the space.

For dimension one we have nothing to prove. We shall do the induction step for the
sake of simplicity as follows.

Suppose that the implication

z <ry = Pr(z) <r Pr(y), Y,z €spF @.1)

holds for every face F' of codimension one of K in R™ and prove it for F' replaced by K.
(Observe that the hypothesis in (iii) hold for faces too since correctness and polyhedrality
are both hereditary for faces).

Since K is polyhedral, there exists a finite set of unit vectors {u;}™,, the normals
to the maximal proper faces of K, such that K = ({u,-},-";l)o and F; = K Nkeru; is a
face of codimension one for each :.

(a). Consider the elements y, z in R" such that z < y. Let u; be the normal to the
face F of codimension one of K.

Then ker u; = sp F' and let us denote p = P, p. Since u; is a unit vector we have,
p(y) =y — (y,u;) u; and p(z) = z — (z,u;) u;. Let us show that

p(z) < p(y). @.2)

We have obviously (p(y) — p(z),u;) =0
Using the above expressions for p(y) and p(z) we have for j # ¢

(p(y) — p(2),u5) = (y — 2 — (y — z,us) s, u5) = (y — 2,u;5) — (y — z,u;) (ui, uj) .

The first term in the last sum and the factor (y — z,u;) in the second term are both
nonpositive since y — z € K.

The correctness of K implies via Lemma 6 that (u;,u;) < 0, whence the second term
in the last sum of the above formula is also nonpositive.

According to the definition of K as ({u j};-’_‘__l)o the above conclusions prove (4.2),
which can be written also in the form,

p(z) <r p(y) 4.3)

since p(z), p(y) € spF and F =sp FN K.

(b). Let us show next that, if condition (iii) is satisfied then for every z € R™ such
that (z,u;) > 0 for some ¢, one has

Pk(z) = Pr(p(z)) @.4)

with F' = (keru;)NK and p = P, .
Indeed, since K is correct, Lemma 5 implies,

Pp((2)) = Px(p(2))-
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Hence, for an arbitrary w € R™ we have

(e = Pr(p(2)), Pr(p(z)) — w)
= (z — p(z}, Pk (p(z)) — w) + (p(z) — Pk (p(z)), Px (p(z)) — w)

Let now w be an arbitrary element of K.

Then the second term in the last sum is nonnegative according to the characteriza-
tion (2.6) of the projection maps.

If (z,u;) = 0, then z = p(z) and the first term in the above sum is zero.

If (z,u;) > 0, then z — p(z) is orthogonal to sp F' = ker u;. Hence it is parallel with
u; and has its direction since (z — p(z),u;) = (z,u;) > 0 by hypothesis.

Whence = — p(z) € K° and since Pk (p(z)) € F C keru;, it follows that

(‘T "‘p(:"')v PK(p(l‘)) - w> =- <1' —p(x),w) 20,

for every w € K.
In conclusion we have,

(z = Pr(p(c)), Pr(p(z)) —w) 20,  VweK,

whence using again the characterization (2.6) of the projection, we conclude that the
relation (4.4) holds.

(¢). Let us consider again that z < y and suppose that y ¢ Int K. This condition is
equivalent with the existence of some subscript 7 such that (y,u;) > 0.

Since y — z € K we have (y — z,u;) < 0 whence we have also (z,u;) > 0.

If FF = (keru;) N K and p = P, r, then we have by the result proved in (a) (see
relation (4.3)), that

p(z) <r p(y). 4.5)

Use now the fact that both (y,u;) and (z,u;) are nonnegative and the result proved
in (b), formula (4.4) to conclude that

Px(y) = Pr(p(y)) and Px(z)= Pp(p(z)). (4.6)

Since p(y) and p(z) are in sp F' we have according to the induction hypothesis (4.1)
via (4.5) that

Pr (p(z)) < Pr (P(?/))

Using now (4.6) we conclude that Pk(z) <p Pk(y), whence Pk(z) < Pk(y).
(Particularly in this case it follows that both y and z project on the same proper face F').

(d). Suppose now that y € Int K. If z € K, then we have nothing to prove.

If z ¢ K, then the line segment {y, | t € (0,1)} with y; = ¢tz + (1 — t)y pierces the
boundary of K at some point y;,, that is, we have (y,,u;) = 0 for some subscript 7 and
(Yto,uj) <0 for j #i.

But z < y;, < y. From the result established by induction in the point (c) we have

, PK(Z) < Px (yto) = Yto-
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Since y;, < y = Pk(y) the last two relations show that Pk(z) < Pk(y) also in this
case.
Thus the proof of (iii) == (i) is complete. O

Remark. Putting together the results of sections 3 and 4 we conclude that the assertions
(i), (ii) and (iii) of our theorem are equivalent.

Hence we got in turn a naw proof of the equivalence of (ii) and (iii) which was given
in [2].

5. Proof of the implications (iii) =— (iv) == (ii). Suppose that (iii) holds. If we
consider the normals u;, ¢ = 1, ..., m to the maximal faces of the polyhedral cone
K, then K = ({u;}7,)" and using the correctness of K, we have by Lemma 6 that
(uiyuj) <0, for 7 # 5. Thus the implication (iii) = (iv) was established.

Suppose now that we have (iv) fulfilled.

We shall show first that the vectors u;, ¢ € I satisfying this condition are linearly
independent.

Since K is a generating closed cone, in this set, there exist n linearly independent
vectors (see the first part of the proof of Lemma 4)

Suppose that uq, ug, ..., u, are linearly independent vectors in this set and let us
verify the assertion:

(a) Let uy, ug, ..., uy, be linearly independent elements in R" satisfying the conditions
(i uj) <0,i1%#7, 0 5=1,2 ..., n If for some v € R" one has (v,u;) <0,i=1,
2, ..., n, then

v=cuy+---+cpun withe; <0,1=1,2, ..., n. 5.1)

We shall use in the proof a process, which yields an orthogonal basis wy, ws, ...,
w,, every w; being a linear combination of elements u; with nonnegative coefficients.

Put w; = u; and suppose that w;, wy, ..., wi_; were determined (w;,w;) =0, ¢,
J <k—1,¢# j and each of them is a linear combination with nonnegative coefficients
of the vectors u; with j <k — 1.

Let be wy = tywy + - + tgk—jwr—1 + ug, where the real coefficients ¢y, t2, .
tx—1 will be determined.

ey

According to the conditions on wy, wy, ... , wx_1, we have (w;,ug) <0,7 < k—1.
Hence we can determine #y, to, ..., tx_; such that t; > 0, j < k — 1, from the
relation

0 = (Wi, wj) = t; (wj, w;) + (ur, w;)
This shows that wy is a linear combination with nonnegative coefficients of w;, usg,
. » ug and is orthogonal to wj, j < k — 1.
We have obviously that w;, ws, ..., w, are linearly independent.
Let us consider the representation,

v=dywy + -+ dpwy,, djER, 17=12,...,n. (5.2)
Since (v,u;) < 0,7 =1, 2, ..., n, by hypothesis and since w; are combinations

with nonnegative coefficients of uy, ug, ..., ux, k=1,2,..., n, we have (v,w;) <0,
k=1,2,...,n.



G. Isac and A. B. Németh 47

Assume that we have in (5.2) d; > 0 for some k. Multiplying this relation with wy,
we obtain
0> (v,wk) = dj, (wk,wk) >0

The obtained contradiction shows that d;, <0, k=1,2,...,n

Let we put in (5.2) the representations of wg, k = 1, 2, ... , n as linear combinations
ofuj,j =1,2,...,n. Since the coefficients in these representations are nonnegative and
dr, k =1,2,...,n are nonpositive, we get a representation of v as a linear combination
of uy, ug, ..., u, with nonpositive coefficients. But the resulting coefficients must be
the coefficients c¢;, ¢, ... , ¢, in (5.1) and the assertion (a) is proved.

(b). Let uy, ug, ..., u, be linearly independent vectors in the set {u; | ¢ € I}

considered in assertion (iv) of the theorem.

We shall show that they are the only nonzero vectors of this set.

Indeed, if v would be another nonzero vector in {u; | ¢ € I'}, then by the condition
in (iv) and by assertion (a) we would obtain the representation (5.1) with ¢; < 0.

But then —v € cone{uy, ug, ... ,u,} C cone{u; | i € I'}, thatis, v and —v would be
both in cone{u; | : € I'} and hence K would be contained in the hyperplane perpendicular
to v, contradicting the hypothesis on K to be generating. Thus we must have in fact that

K={z€eR"|(z,u;) <£0,i=1,2,...,n;uy,us,... ,u, linearly independent},
(5.3)
relation which together with the theorem of Youdine shows that K is latticial.

(c). To see that K is correct we shall prove first that if FF = (keru,) N K then
P, r(K) C F.

From representation (5.3) deduced above and from Lemma 3, there exist the linearly
independent vectors ey, ey, ..., e, such that

K = cone{ey,eq,... ,€n},
(e,-,uj) = 0if 2 75_] and (54)
(ei,u,') <0, i,j =12,...,n.

Hence, we have that ker u,, = sp F' = sp{ej,e2,... ,en_1}
The condition P, p(K) C F is then equivalent with P, p(e,) € F, since for an
arbitrary z € K we have

x=ci1e1 +---+ch—1€n—1 + Cnénp
withe¢; 20,5 =1,2,..., n and hence
Psp F(.’L‘) =ce;+---+cp_1€p-1 + CnPspF(en)

by the linearity of Py, F.
We can suppose without loss of generality, that u,, is a unit vector and, then

Psp F(en) =€n — (enaun) Up.

One has further,
(Psp F(en), uj) = - (6n7 un) <una uj) <0,
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forj=1,2,...,n—1(since (en,un) <0 and (un,u;) < 0 by hypothesis).
Since obviously (Psp r(€n), un) = 0, it follows that

Py r(en) E KNspF = F.

(d). Let us see next that F" has in sp F the property similar to those of K in R", that
is,
(z,v;) <0,7=1,2,...,n—1
F={xcspF|vi,vs,...,vn1 linearly independent in sp F’ (5.5)
and (v;,v;) <0, #j,4,5=1,2,... ,n—1

Indeed, let us take
vj =uj — (Uj,Un) Un, J=1,2,...,n—1 (5.6)
Then the vector v; are obviously linearly independent and
(vi,v5) = (Ui = (Ui, Un) Un, uj — (U5, Un) Un) = (i, ) — (W), tn) (Ui, tn)

since ||un|| = 1.

Because (u;,u;), (ui,u,) and (u;,u,) are all nonpositive if 7 # j, we conclude that
in this case (v;,v;) < 0.

We have the representation

F={z€eR"|{z,u,) =0and(z,u;) <0,;=1,2,... ,n—1}

and hence taking into account the representations (5.6) of v; and the relations proved
above, we arrive to (5.5).

(e). Denote by G the face
G=Kn(kerup)N(kerup_q).

Then G is a face of F' of codimension one in sp F' and since (d) we can apply the
assertion proved in (c) for K replaced by F' and R" replaced by sp F.
Denote p = Py, F and ¢ = P, g. With these notations we have

Pl p(F) = dl,y r (F) CG.

Let us show now that
q9=4ql,pop

To verify this, consider an arbitrary element z € R™ and put it in the form z = u +v
with u € sp F and v € (sp F')°.

Assume further that v = w + z with w € spG and z € (spG)° Nsp F.

Then 2 = w + z + v. Since spG C sp F, it follows that (sp F)° C (spG)° and
thus z +v € (sp G)°, whence ¢(z) = w, p(z) = w + 2z and g|, p (w + z) = w, that is
9(2) = gl p (p(2))-

If we apply twice (c) and use the above conclusions, it follows that ¢(K) = (¢l g ©
p)(K) C g, p (F) C G, thatis Py, g(K) C G.
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(f). If H is an arbitrary face of K then we can include it in a chain
HCH,CHy,C---CH;

such that Hy, H,, ..., Hy have the property in their spans similar to those of K in R"
stated at (iv) of our theorem and so that H is a face of codimension one of H;, with
respect to sp H,, H; is a face of codimension one of H;,, with respect to sp H;4; if
t < k—1and Hy is a face of codimension one of K.

Repeating step by step the process just described in (c), (d) and (e) we conclude that
Py, u(K) C H, that is K is correct.

The proof of the implications (iv) = (ii) is hence completed.

6. Proof of the implications (i) and (i) = (v) = (iv). If (ii) holds, then K is
latticial.

Since z < z* with 2+ = 2z v 0, from (i) it follows that Pk (z) < Pg(zt) = % and
we have (v).

We shall verify the implication (v) == (iv) by contradiction. That is, we assume
that, K is latticial, that is, it can be represented in the form:

K= {z|(z,u;) <0,i=1,2,... ,n,uy,...un linearly independent}

and that for each ¢ € R™ we have that Px(z) < z*, but there are some vectors, say u,
and u, in the above representation such that (uy,uz) > 0.
We shall suppose in what follows that u;, us, ..., u, are unit vectors.

(a). If n = 2, then we consider an element x € K with (z,u;) =0, (z,u;) <O0.
Since —z < 0 we must have by (v) that Px(—z) < (—z)* = 0, that is Px(—z) = 0.
Consider now the vector z = —z + (z,u3) uy. Then (z,u;) = 0 and

(z,u1) = (—& + (z,u2) ug,u1) = (z,uz) (ug,ur) < 0. (6.1)

Thus 2z € K. We have further,

(—z—z,z—w) = (—z — (—z + (z,uz) uz),(—z + (z, uz) uy) — w)
= (— (z,uz) ug, (z,u2) uz — (z + w))
= —(z,u2)’ + (2, uz) (ug, = + w)
= (z, uz) (u2,w) 20,

Vw € K, since (z,uz) < 0 and (ug,w) <0, Yw € K.

By the characterization (2.6) of the projection we have then that Px(—z) = z. But
by (6.1) it must be z # 0.

The obtained contradiction shows that in this case we cannot have (uy,uz) > 0.

(b). Suppose that n > 3. Let us show first that under the above hypothesis there
exists an element w in R™ such that

(w,ug) =0, (w,u;) <0, j>3 and Pk(w)€rintF, (6.2)
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where F' = K N (ker u;). Consider the cone
K, ={z € R" | (z,u1) > 0,(z,u;) < 0,5 =2,...,n}.
By Lemma 1 there exist some elements y and z in K such that
(y,u1) >0, (y,u2) =0, (y,uj)<0, j=3,...,n,
and
(z,u1) = {z,u2) =0, (z,u;)<0, j=3,...,n
Take w; = ty + (1 — t)z with ¢t € (0, 1].
Then w,; € K; and since ||u;|| =1 we have
Psp F(wt) = wy — (wtau1> ui,

with sp F' = keru;. Let us see that for a sufficiently small ¢ we have P, p(w) € rint F.
We have for j > 3 that

<wt’uj> =t <y’uj> + (1 - t) (z,u]~) < max{<y7uj) > <Z’u‘j)}
Put 6 = max{(y,u,-) ) <2,’LL]') 1j > 3}
Then 6 > 0 and we can take ¢ so small in (0, 1] to have 0 < (wy,uq) < 6.
Then for j > 3 one has
(Pop F(w1),u;) = (Wi, uj) — (we, ur) (U, uj)
< (wi, uj) + | (we, ug) (ur,uj) | < =6+ (wy,u;) < =6+ 6 =0
and
<Psp F(wt),uz) = <wt,u2) - (wt,ul) (ulaUZ) = - (wtaul) (ul,uz) >0,

since (wy,ug) =0, (uy,uz) > 0 and (w¢,uy) > 0.
Since obviously, (Psp p(w¢),u;) = 0, the obtained relation shows that for a such ¢
we have P, p(w¢) € rint F', whence it follows implicitly that Py, p(w:) = Pk (w:).
Take w = w; and observe that is satisfies the requirements in (6.2).

(c). We shall see next that w™ is contained in the face F; ; of K given
Fi2={z €K |(z,m) = (z,u2) = 0}.
Since (w, uz) = 0 we have by Lemma 2 that (w*,u,) = 0. Assuming that
(wF,ug) <0 (6.3)
consider the element v, = tw™ + (1 — ¢t)w. For any t in (0, 1) one has
w< v, <w’, (where z <y means z < y and z # y). (6.4)

This follows from conditions (6.2) which imply that w < w™.
Since wt —w € K, we have (w — w™,u;) <0, that is, (w*,u;) < (w,u;) whence
(wh,u ;) < 0; for j > 2 by the conditions (6.2). Hence,

(ve,uj) =t (wr u;) + (1 —t) (w,u;) <0, j>2, foranyt € (0,1). (6.5)

From the hypothesis (6.3), taking into account that (v, u;) = #{w¥,u;) + (1 —
t) (w, uy) it follows that for ¢ sufficiently close to 1 in (0,1) we have also (v, u;) < 0.

But this relation together with (6.5) show that v, € K, that is vy > 0. Hence
wt =w Vv 0 < v; and we have got a contradiction with (6.4).

Thus the assertion (c) is proved.
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(d). Since F ; is a face of K, the relation Pk(w) < w* would imply that Pk (w) €
F ,, in contradiction with (6.2).

The obtained contradiction shows that the inequality (uj,us) > 0 cannot hold, that
is, (ug,u;) < O0fori # 5,4 75 =1,2,..., n. Thatis, we have the condition (iv)
fulfilled. O

Résumé subsantiel en francais. Soit K un cone convexe fermé dans I’espace euclidien
R"™. On note par Pk la projection sur K. Le cone K estavec projection isotone si, pour
tous z, y € R", la relation y — = implique Pk(z) — Pk(y) € K.

Nous étudions dans ce papier la caractérisation des cones avec projection isotone dans
les espaces euclidiens.

On note par «<» ’ordre défini par le cone K et par A° le polaire d’un ensemble
A C R". On dit qu’un sous-ensenble F' C K est une face de K si :

(i) F est un sous-cOne;
(ii)) z € F,y € K ety <z impliquent que y € F.
Le cone K est correct si, pour chaque face F C K, on a que Ps, p(K) C F, o sp F
est le sous-espace vectoriel engendré par F.
Le but de ce papier est de démontrer le résultat suivant :

Théoréme. Soit K un cone convexe qui engendre I’espace R". Les affirmations suivantes
sont équivalentes :

(1) K est un cone avec projection isotone;
(ii) K est correct et R" est un treillis;
(iii) K est polyédrique et correct,
(iv) il existe un ensemble de vecteurs {u; | i € I} avec la propriété que (u;,u;) <0
VijelLi#jeK={uliel})’;
(v) R" est un treillis et Px(z) < =% pour chaque z € R", ot z+ =z V 0.

Les cbnes avec projection isotone sont importants pour les méthodes numériques de
type projection en optimisation et pour I’étude de la complémentarité.

REFERENCES

—

. G. Ph. Barker, Perfect cones, Linear Algebra Appl. 22 (1978), 211-221.

2. G. Ph. Barker, M. Laidacker and G. Poole, Projectionally exposed cones, SIAM J. Algebraic Discrete
Methods 8 (1987), 100-105.

3. J. M. Borwein and H. Wolkowicz, Regularizing the abstract convex program, J. Math. Anal. Appl.
83 (1981), 495-530.

4. A. Haraux, How to differentiate the projection on a convex set in Hilbert space. Some applica-
tions to variational inequalities, J. Math. Soc. Japan 29 (1977), 615-631.

5. J. B. Hiriart-Urruty, At what points is the projection mapping differentiable?, Amer, Math. Monthly
89 (1982), 456-460.

6. R. B. Holmes, Smoothness of certain metric projections on Hilbert space, Trans. Amer. Math. Soc.
184 (1973), 87-100.

7. G. Isac and A. B. Németh, Monotonicity of metric projections onto positive cones in ordered
Euclidean spaces, Ark. Mat. 46 (1986), 568-576.

, Every generating 1sotone projection cone is latticial and correct, J. Math. Anal. Appl.

147 (1990), 53-62.

, Isotone projection cones in Hilbert spaces and the Complementarity Problem, Boll. Un.

Mat. Ital. 7 (1990), 773-802.




52

10.

11.
12.

13.
14.
15.
16.
17.
18.

19.

G.

Isotone projection cones in Euclidean spaces

, Projection methods, isotone projection cones and the Complementarity Problem, J.
Math. Anal. Appl. 153 (1990), 258-275.

, Ordered Hilbert spaces, (preprint).

B. Jochum, Cénes autopolaires et algébres de Jordan, Lecture Notes in Math. 1049, Springer-Verlag,
Berlin, Heidelberg, New York, 1984.

R. R. Phelps, Convexz sets and nearest points, Proc. Amer. Math. Soc. 8 (1957), 790-797; 9 (1958),
867-873.

, Metric projections and the gradient projection method in Banach spaces, SIAM J,
Control Optim. 23 (1985), 972-977.

, The gradient projection methods using Curry’s step-length, SIAM J. Control Optim. 24
(1986), 692-699.

A. Shapiro, On differentiability of metric projections in R™ I: Boundary case, Proc. Amer. Math.
Soc. 99 (1987), 123-128.

J. Stoer and C. Witzgall, Convezity and Optimization in finite dimension I, Springer-Verlag, Berlin,
1970.

A. Youdine, Solution de deuz problémes de la théorie des espaces semi-ordonnés, C. R. Acad.
Sci. U.R.S.S. 27 (1939), 418-422.

E. H. Zarantonello, Projections on convez sets in Hilbert spaces and spectral theory, Contributions
to Nonlinear Functional Analysis, E. H Zarantonello Ed., Acad. Press, New York, 1971, pp. 237424,

Isac

COLLEGE MILITAIRE ROYAL
SAINT-JEAN (QUEBEC) CANADA J0J 1RO

A.

B. NEMETI

INSTITUTUL DE MATEMATICA
STr. REPUBLICHI, C. P. 68
3400 CLui-Naroca, ROUMANIE



