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ISOTONE PROJECTION CONES IN EUCLIDEAN SPACES 

GEORGE ISAC AND ALEXANDRE B.NÉMETH 

RESUMA. Soit K un cône convexe ferme dans l’espace euclidien Rn. On note par PK la 
projection sur IC. Dans ce papier on caractérise les cônes convexes fermes K qui engendrent 
l’espace Rn et qui ont la propriété que PK est isotone par rapport à l’ordre défini par K. Voir 
le résume substantiel en français à la fin de l’article. 

ABSTRACT. Let K be a closed convex cane in the Euclidean space Rn. We denote by pK 
the projection onto K. In this paper we characterize the generating closed convex cones such 
that fi is isotone with respect to the ordering defined by K. 

0. Introduction. The metric projections on closed convex sets in Hilbert or Banach 
spaces have been deeply investigated (see for instance the monograph [19] and the 
papers 14-6, 13-161. 

A special case is the metric projection on a closed convex cane in a Hilbert space. 
Although this subject was much studied by Zarantonello in II.91, it seems that the 

relation between the projection operator and the ordering defined by a cane was first 
considered in our paper [7]. 

The cited paper as well as [g-11] are concem with various characterization of a cane 
K in a Hilbert space having the property that the metric projection PK is isotone with 
respect to the order defined by I< (called in this case isotone projection cane). 

Besides its theoretical importance this property has interesting applications to the 
study and the solvability of the Complementarity Problem (important in Optimization, 
SMechanics, Game Theory, etc.) [S-11, 13-151. ’ 

The aim of this paper is to place our investigations on isotone projection cones in 
Euclidean spaces, in the recent literature which investigates some related problems. 

More precisely, we intend to exploit from this point of view some recent results 
of Barker, Laidacker and Poole [2] to complete the existent characterizations of isotone 
projection cones with new ones, and finally, to simplify some earlier proofs and to present 
them in a concise and independent exposition. 

1. Preliminaries and the main result. For the following basic facts about cones we 
refer the reader to the book [ 171. 

A subset K in the Euclidean space Rn is a cane if 

(i) K + K C K, 
(ii) XK C Kwhenever X f R+ and 

(iii) K n(-K) = (0). 
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36 Isotone projection cones in Euclidean spaces 

A cane is a convex set. We say that K is generating if Rn = K - K. A cane in Rn 
is generating if and only if its interior is nonempty. The set 

Ko = {x E Rn 1 (~,y) 5 0,Vy E K} 

(where (s, 0) is the inner product) is called the polar of K. If K is generating, then Ko 
is a closed cane. If K is closed then K = (KO)‘. 

If we put x 5 y whenever y - x f K, then we obtain an order relation (that is a 
reflexive, transitive and antisymmetric relation) compatible with the vector structure of 
Rn. We say in this case that (R”, K) is an ordered vector space and K is its positive 
cane. The order defined by K is called the order induced by K. 

An Upper bound of a set A c Rn is an element b E Rn such that a < b for every - 
a f A. 

If there exists a least Upper bound for A, it Will be called the supremum of A and 
Will be denoted by sup A. Lower bounds and infima cari be defined similarly. 

If for any two elements x, y f Rn there exists SU~{ x, y} (which Will be denoted by 
x V y), then the ordered vector space is called a vector Zattice and its positive cane K 
is said to be Zatticial (or minihedral). 

We say that a subset F of the cane K is a face if it is a cane and if it satisfies the 
condition: from x E F, y E K and y < x it follows that y E F. 

A closed half-space of Rn with biundary point 0 is a subset of Rn of the form 
{X f Rn 1 (x,p) 5 0} where p E Rn, p # 0. 

A polyhedral cone in Rn is the intersection of finitely many closed half-spaces of Rn 
with boundary point 0. 

A closed cane K c Rn is a polyhedral cane if and only if K is a finitely generated 
cane, that is there exists a finite subset { a1 , a2, . . . , .aa) of R”, called a set of generators 
for K such that, 

A closed generating cane K c Rn is polyhedral if it has a finite number of proper 
faces having codimension one in Rn and every proper face of K is contained in some 
such face. 

We shall use this last characterization for polyhedral cones. 
If C is a closed convex set in Rn, then for each x E Rn there exists a unique point 

in C denoted by PC(X) such that ~IX - &(X)II < 112 - yll, Vy f C. The operator PC 
is called the projection (or metric projection) on?Z [17]. 

The cane K c Rn is called correct if for each of its face F we have that Psp F(K) c 
F, where sp F denotes the linear span of the set F. Correct cones are called projectionally 
exposed by Bonvein and Wolkowicz [3] and orthogonally projectionally exposed cones 
by Barker, Laidacker and Poole [2]. 

We have independently introduced this notion and called it correct by some analogy 
with the notion of Perfect cones in which occur the additional condition K = K*, where 
K *- - -Ko (see [l, 121). 

We maintain this term here to be in keeping with our terminology in [8, 9, 111. 
The closed cane K c RIa is called an isotone projection cane if from y - x f K it 

follows that PK(Y) - PK(x) E K, for every x, y E Rn 
By using the order relation defined by K, this condition cari be written in the form: 

J: < y - pK(J:) 5 ~K($“)O 
We are now ready to give our main result. 
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Theorem. Let K be a closed generating cane in Rn. Then the following assertions are 

(i) K is an isotone projection cane, 
(ii) K is correct and latticial, 

(iii) K is polyhedral and correct, 
(iv) there exists a set of vectors (ui 1 i E I) with the property that (ui, uj> < 0, - 

Vi, j E 1, i # j and such that K = ({ui 1 i E I})“, 
(v) K is latticial and PK(x) < x+ for every x f Rn, where x+ = x V 0. - 

The equivalence (i) <* (iv) was proved in [7]. The equivalence (ii) m (iv) was 
independently established in [2, 81 while (ii) - (iii) was established in [2]. 

In [8] was proved (i) =+ (ii) for a general Hilbert space. 
We shall give in the sequel a complete proof of this theorem witch we shall make 

as self contained as possible. The only facts we shall use apart from the ones in this 
section are the theorem of Youdine on latticial cones and some properties of the projection 
operator including Moreau’s decomposition theorem with respect to mutually polar cones. 
The most part of the proofs are new. 

The proof of (i) =+ (ii) is a simplified version of the similar result for Hilbert 
spaces proved in [8]. The most difficult steps are those which imply the operator PK. 

Hence one of the main reaches of the paper is the proof of (ii) + (i) presented in 
Section 4 and which is much simpler than that of (iv) ti (i) in [7]. 

Condition (v) constitutes a new characterization of the isotone projection cones in Rn. 

2. Preliminary results. The following result of Youdine [ 181 Will be used often in our 
proofs. 

Theorem (Youdine). The cane K c R” is latticial if and only if there exist n vectors 
linearly independent in Rn, ~1, ~2, . . . , un such th.at 

K = {X f Rn 1 (2,~;) 5 0,i = 1,2,. . . ,n}. (2.1) 

Thatis,KislatticialifandonlyifitisofformK= ({ui li=1,2,... ,n))O,where 
w, u2, ’  l  l  9  

un are linearly independent vectors. 
Several technical corollaries follow from this result. 
Let A c Rn. The ufine hull aff (A) of A is the smallest affine subset of Rn containing 

A. The relative inferior, ri&(A) of A is defined as the interior of A regarded as a subset 
of aff (A) (with the relative topology). 

We remark that if A c .Rn is nonempty and convex then rint( A) is nonempty and 
dim(rint(A)) = dim(A). 

Lemma 1. If K is ofform (2.1) with ul, ~2, . . . , un linearly independent then for every 
subset {il, . . l  &} C {1,2,. . . ,n} the set Fi1 ,..,, ik = {X E K 1 (x,uij) = 0,j = 
1,. . . $ k} is a face of K. @‘ih # il whenever h # 1, then both Fil,.,. ,ik an.d 

rint (Fil ,... , ik) = {x c  Fi l  ,... , ik  1  (x~ uj) < ‘7. i  E {l, l  ‘* Yn} \ {Ill* ’  

are for k < n nonempty set.y in Rn of codimension n - k. 



38 Isotone projection cones in Euclidean spaces 

Every face of K is of form Fi1 ,,.. ,ik with some set {il,. . . , ik} c {1,2,. . . , n). 

Proof. The assertion that F,r, ,,.. ,ik and rint (Fi, ,,.. ,ik ) are nonempty and of codimension 
n - Ic if k < n is a routine exercise of linear algebra. 

Suppose that x E Fil, . . . ,tk 9 y E K and y < x- 
Then (x - Y, uij) = - (Y, uij) 5 0, j = 1, 2, . . . , k since x - Y f K. 
Hence (Y, uij ) = 0, j = 1, 2, . . . , k because y E K and we know that (y, uj) 5 0, 

j = 1,2, . . . , n- Thus y f Fi1,... ,ik and this set is a face of K. 
Suppose that F is an arbitrary proper face of K. 
If for some x f F we would have that (x, uj) < 0, j = 1, 2, . . . , n then for arbitrary 

y f K there exist some positive scalar t such that (x - ty, uj) 5 0, j = 1, 2, . . . , n. 

But then x - ty E K, that is ty < x and ty E K whence ty E F by the definition of 
F. Now, since F is a cane, it follows that y E F and y being arbitrary in K we obtain 
that K c F contradicting the hypothesis that F is a proper face of K. Hence there exists 
some minimal set {il,. . . ,ik} C {1,2,.. . ,n}, Ic 2 1 SO that (x,uij) = 0, j = 1, 2, 
. . . , Ic for every x f F. By the first part of the proof we have F = Fil ,.,. ,ik . Cl 

Lemma 2. If K is a latticial cane given by (2.1), then for y, x f Rn the supremum y V z 
is the solution of the following system in x: 

(x+i>=min{(Y,ui)&,U;)} i=l,2,... ,n (2.2) 

Inparticular, if v f Rn and (v,uj> = 0 for some j f {1,2,. . . ,n} then (v’,uj> = 0 

where v+ = v V 0. 

Proof. Since u1, u2, . . . , 'Un are linearly independent vectors, the system (2.2) has a 
unique solution x0. Let us see that x0 = z V y. From the definition of x0 we have, 

txO - Y44 = (X07%) - (Yyui) = min{(y,ui) 7 (zyui)} - (Y,Ui) 5 0, i = 1,. . . pi. 

Hence x0 - y f K, that is y < x0 Similarly we deduce that z < x0. 
Suppose now that for some X-E Rn, y < x and z < x Then bi the definition of K, 

(X - y+) 5 0 and (X - z,ui) < 0, i = lr2, . . . , n Which imply - 

(2, U;) L min{(y,Ui), (z,Ui)} = (X(),Ui), i = 1,2,. . . ,n. 

Using again the definition of K we conclude that x - x0 E K, i. e., x0 < x. Thus we 
have x0 = y V z. If for some v E Rn and some j f { 1,2,. . . , n} one h& (21, uj) = 0 
we get (V+,Uj) = min (v, Uj) ,O = 0, since v = v V 0 is the solution of the system: 

(X,Ui) = min{@&) y (O)ui)), i = 1,2,. . . ,n. Cl 

Lemma 3. Suppose th.at K Es a latticial cane given by (2.1). Then there exists the linearly 
independent vectors el, e2, . . . , en c Rn with (ei, uj> = 0 if i # j and (e;, uj> < 0, i, 

j = 1, 2, . . . ) n, such that 

K=cone{el,... ,e,} (=(CXiei/X>O,i=1,2 ,..., n}). (2.3) 

i=l 
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I In particular, Ko = cone{ul, 142, . . . , u, ) and every latticial cane has a representa- 
tion of form 

Since el, 
(2.3) 
e2, l  

with some linearly independent vectors el, e2, . . . , e,. 
l  * 9  e, are linearly independent then every y f Rn cari be uniquely 

represented in the form, y = ciel + c2e2 + l  * l  + enen; cl, ~2, . . . , cn E R. 
If for another vector x CI Rn we have z = dlel + d2e2 + l  l  9 + dnen; dl, dz, . . . , 

dn E R then x < y is equivalent with di < ci, i = 1, 2, . . . , n. - - 

Proof. Since ui, ~2, . . . , un are linearly independent, then ui, . . . , uj-1, uj+l, . . . , 
un span a hyperplane in En. If e is a normal vector to this hyperplane then, since 
Uj 4 sP{“17*** 7Uj-l,Uj+l,*-* , Un} it follows that (e, uj) # 0. Choose a normal ej to 
this hyperplane SO that (ej, uj) < 0. Obviously (ej, 21;) = 0 if i # j and hence ej E K. 

Takej =1,2,... , n in order to obtain ei , e2, . . . , en. By the biorthogonality of the 
systems ei, e2, . . . , en and ui, u2, . . . , Un, it cari be easily deduced that el, e2, . . . , 
en are linearly independent.. We have obviously cane{ el, e2,. . . , en} c K . TO show 
the converse inclusion take x = cl el + l  l  l  + cnen with cj < 0. By scalar multiplication 
with uj it follows that (x, uj) = cj (ej, uj) > 0 and hence x 4. K. 

The last assertion of the lemma follows directly from the representation (2.3) of 
K. CI . 

The next result is true for a well based closed convex cane in a reflexive Banach 
space but because in this paper K is in Rn we give this result with an elementary proof. 

Lemma 4. If K is a closed cane in Rn then every K-increasing, K-order bounded 
sequence in Rn converges to its K-supremum. 

Pro~f. Since K is a closed cane, we have K = (KO)‘. 
IIence Ko must be generating, since if Ko would be contained in some subspace 

of codimension one, then the orthogonal complement of this last space would be in 
0 0 

F > = K, contradicting the definition of K. 
Let Ul, t-4, . . . , un be a linearly independent vectors in Ko. Then cone{ul, 24,. . . , 

Un} C Ko and hence K C ‘Ko, where Ko = ((~1,. . . , un})‘. 
By Lemma 3, Ko cari be represented in the form, Ko = cone{el, e2,. . . , en}, el, 

e2, l  a* 9  
en being linearly independent vectors in Rn. 

Consider now the sequence { x~}~~N in Rn such that, 

for some u f Rn. Since K C Ko we have also - 

Let us take the representations 

xX7, ==crel +***+C:e,, m=1,2,... 

UZ 
qq + l  l  l  + Cnen 

where cy, cj E R, j = 1,2, . . . , n. Then according (2.4) and Lemma 3, every sequence 
of real numbers {~jrn),~~ (j = 1, 2, . . . , n) is monotonically increasing and bounded 
bY cj, hence convergent. Denote 

o- 
Cj - lim cjm) j = 1,2 ,... ,n. (2.5) 

m-00 
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Then {z,}~~N is convergent to 30 = ciel +a. l  + cien. 
From relations xP - xq f K for 4 5 p and u - xP E K for each p, passing to the 

limit with p -+ 00 and taking into account that K is closed, we deduce that xq <K x0 
for each Q and x0 <K u, wj.tch completes the proof of the lemma. 0 - 

Before passing to some facts concerning correct cones, let us remember some results 
on projections maps. First of a11 we have that PC(X) is the nearest element in the closed 
convex set C c Rn to x E Rn, if and only if we have: 

_1 -x . . 
‘,. 

?  

(x - Pc(x),Pc(x) - Y) 2 0, 

(see [ 19, Lemma 1.11) 

vy E c. (2.6) 

We shall also use the fact that for any ut: and y in Rn and for every closed convex set 
C c Rn the following holds 

Ilpc(x> - WY)II 5 112 - YIL (2.7) 

that is, PC is nonexpansive and hence also continuous (see [ 19, formula (1.8)]). 
The characterization of projections on a cane and its polar is the abject of the following 

result. 

Theorem (Moreau). If K is a closed convex cane in Rn then the following assertions 
are equivalent: 

(0 J3 =u+v,u~K,v~KOand(u,v)=O 
(ii) u = pK(x), v = &O(X). 

Lemma 5. If K c Rn is a correct cane and if F is a face of K, then for every x E sp F 
one bas &(x) = pu. 

Proof. Assume the contrary, that is, there exists some x in sp F such that PK( X) 4 F. 
Since PSp F is nonexpansive (see (2.7)) we have 

I[x - PS,F(PK($ll = IlcpF(x) - ?sp F(PK(x))II 5 11x - pK(x)II. (2.8) 

Since P sp~(K) c F, by the correctness of K we have Ps,~(P~(x)) E F c K. 
By the uniqueness of the nearest element, we have by (2.8) that PSp F( PK (x)) = 

PK(x), whence PK(x) c (spF) fi K = F which is impossible and the lemma is 
proved. Cl 

Let v be in Ko and consider the set Fv = {x f K 1 (x, v) = 0). 
Then a straightforward verification shows that FV is a face of K. 
Faces of the above kind are called exposed faces [ 191. 
The vector v is said a normaZ to the face FV. 

Lemma 6. Let K be a correct cane in Rn and let F be an exposed face of K with 
codimension one in Rn. 

If v is normal to F, then for any other normal 21’ to any other exposed F’ of K, A 
not contained in F, we bave (v, v'> < 0. 

Proof. Suppose the contrary. SO, we suppose that for some such normal v’ 
(qv’) > 0. Let x E F’ \ F 

we have 
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Hence (v, s) c 0 (since v f. Ko) and we cari determine a positive scalar t such that 
(x + tv’, v) = 0. 

But from Moreau’s theorem we have PK (x + tv’) = x. since F is of codimension 
one, its normal is v and (x + tv’, v) = 0, necessarily we have x + tv’ E sp F and we 
have got a contradiction with Lemma 5. Cl 

Proof of the principal Theorem 

3. Proof of the implication (i) d (ii). In proving that the isotone projection cane 
K c Rn is latticial we shall use the following assertion: 

(a). Let K be a closed and generating cane in Rn and u, v two elements of Rn. 
If there exist a f u + K, b E v + K with the properties 

a = P,+K(b) and b = PV+&), then a = b f (u + K) n (v + K) 

Indeed, since K is generating the set (u + K) n (v + K) is nonempty, that is, there 
exists an element w such that u 5 w and v 5 w. This follows by writing u = u1 .- u2, 
V-VI- 212, where ul, ~2, ~1, v2 f K and observing that we cari consider w = u1 + vl. 

We have from the characterization (2.6) of the metric projections that, 

ta - pv+K(a),pv+K(a) - w> 2 0 

cb - pu+K(b>,P,+K(b) - W) 2 0 
(3.1) 

Using the conditions in the assertion (a) the second relation becomes, 

On the other hand we have 

(Pv+K(a) - %a - w> = (P,+K(a) - a, (a - P,+K(a)) + (&+K(a) - w>> 

= - (/&+K(a) - aIl2 + (a - fi+K(~),&+K(a) - w)) 

whence, taking into account. (3.1) and (3.2) it follows that, 

IIPv+K(a) - aIl = llb - aIl = 0, ’ ’ 

and the assertion (a) is proved. 

(b). Let us pass to the proof of the latticiality of K. 
Consider the arbitrary elements u and v in Rn. We shall show, using the isotone 

projection property of K, that they admit a least Upper bound u V v by constructing 
effectively this element. 

We cari assume that u and v are not comparable. 
Let w be an arbitrary Upper bound of the set {u, v}, i. e. an arbitrary element of the 

set (u + K) n (v + K) whiçh is not empty since K is generating by hypothesis. 
Let us note next that if PK is isotone, then for an arbitrary element y in Rn the 

operator Py+K is isotone too. 



42 Isotone projection cones in Euclidean spaces 

This follows from the rekttion P~+K( z) = &(a: - y) + y which holds for an arbitrary 
x in Rn and which cari be directly verified by using (2.6). Hence &+K and PV+K are 
both isotone. Since no one of the convex sets u + K and v + K is contained in the 
other, using assertion (a) we see that there cannot hold simultaneously the relations 
u = Pu+~(v) and v = Pu+~(u). 

Suppose that u # pu+K(V) E u + K 
Then U < Pu+~(v) < Pi+,(w) = w, since Pu+~ is isotone and w E u + K. 
Let us cksider the oierators Q = PV+K o &+K and R = Pu+~ 0 PV+& They are 

isotone since PV+K and Pu+.~ are. Put v, = Q"(v), ur = Pu+~(v) and un = R”-‘(u). 
Then we have the following relations: 

since u < ~1, v < vl, since Pu+~, Q and R are isotone, and since Pu+~(w) = Q(W) = 
R(w) = w. Obviously PV+.~ 0 Pu+~(v) E v + K, hence v < PV+K o Pu+K(v) = 
QC > V = vl and ur = Pu+~(v) 5 Pu+~ 0 &+K 0 pu+&), thii is, ul 5 R(U~) = U2 
etc. We have further 

Vn = Qn(v) = (Pv+K 01pZl+K>“(V) 

- - P v+K 0 (P~+K 0 P~,+K)~-’ 0 ~&+K(V> = pv+K 0 Rnwl(U1) = pv+K(un) (s-3) 

Un+1 = R(u,) = Pu+K 0 Pv+K(Un) = Pu+K(Vn)e (3.4) 

Since the sequences {un ) and { vn} are increasing and bounded above by w, we have 
(using Lemma 4) the following relations: 

ug = lim Un and vug = lim vn (3.5) 
n-+00 n-,00 

as well as 
‘il 5 u() < w - and v<vo Lw. (3.6) 

From the continuity of the metric. projections (see relation (2.7))the formulas (3.3), 
(3.4) and (3.5) yield 

VO = fi+K(uo) and u. = p + v + K(Q). 

Using assertion (a) again we deduce that 

uo = vo f (u + K) n (v + K). 

Since the Upper bound u was arbitrary, from the relation (3.6) we obtain that indeed 
UO = vo = u V v and the latticiality of K is proved. 

TO prove the correctness of K we begin by proving the following assertion: 
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(c). For every face F of the gen.erating isotone projection cane K in Rn the subspace 
sp F projects onto F by PI~ and F is an isotone projection cane in the space sp F. 

Consider z E sp F. Then z = x - y with x, y E F c K whence z < x. 
Since Pk is isotone, one follows 0 5 PK(z) < PK(x) = x E F. Hkce PK(z) f F. 
This relation shows that PF( z) = PK(z) and implicitly that PF &, F is isotone pro- 

jection in sp F and (c) is proved. 

(d). We pass to the proof of correctness of the isotone projection cane K by assuming 
the contrary, that is, we suppose that there exists a face F of K and an element k of K 
such that z = psp F(k) $ F. 

Put 20 = PK(z). Since z f sp F, it follows from the assertion (c) that z. f F. 
We shall show first that one cari find a real number t f (0,l) such that the element 

w given by 

w = tk + (1 - t)z() (3.7) 

satisfies the relation 

( z - w, k - zo) = 0 (3.8) 

Indeed, we have 

(z - tk - (1 - t)zo, k - zo) = (z - k + (1 - t)(k - zo), k - zo) 

= (z - k, k - zo) + (1 - t)llzo - kil” 

= (z - k, k - z + x - zo) + (1 - t)l(zo - kil2 

= -112 - kil2 + (1 - t>ll~o - kl12, 

since (Z - k, z - 20) = 0 (2 - zo E sp F and z - k is orthogonal to sp F). 
Since llz - kil < Ilzo - kil by the definition of z and 20, then putting 

1 t - - - lb - ““2 < 1 
II kil 7 20 - 

we have (3.8) for w determined by (3.7). 
Using the characterization (2.6) of the metric projections, we have 

( x- zo, z. - k) = (z - pK(z), pK(z) - -) >_ 0. (3.9) 

From the definition of w it follows on the other hand that 

( z- zo,zo-k)=(z-w+w-zo,zo-k)=(w-zo,zo-k) 

= (tk + (1 - t)zo - xo,zo - k) = t (k - zo,zo - k) < 0. 

This relation contradicts (3.9) and shows that our hypothesis that K is not correct, is 
false. 
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4. Proof of the implications (ii) =+ (iii) ti (i). Obviously, the implication 
(ii) * (iii) is a consequence of Youdine’s Theorem. 

We shall prove (iii) :) (i) by induction with respect to the dimension of the space. 
For dimension one we have nothing to prove. We shah do the induction step for the 

sake of simplicity as follows. 
Suppose that the implication 

z iF y * pF(z) SF pF(y), Y,Z f SPF (4.1) 

holds for every face F of codimension one of K in Rn and prove it for F replaced by K. 
(Observe that the hypothesis in (iii) hold for faces too since correctness and polyhedrality 
are both hereditary for faces). 

Since K is polyhedral, there exists a finite set of unit vectors { u;}E1, the normals 
to the maximal proper faces of K, such that K = ({~;}1,,)” and Fi = K CI keru; is a 
face of codimension one for each i. 

(a). Consider the elements y, z in Rn such that z < y. Let ui be the normal to the - 
face F of codimension one of K. 

Then ker ui = sp F and let us denote p = Psp F. Since ui is a unit vector we have, 
p(y) = y - (y,~;) U; and P(Z) = z - (z,u~) ui. Let US show that 

We have obviously (p(y) - p(z), ui) = 0 
Using the above expressions for p(y) and p(z) we have for j # i: 

tPCY> - PC47 uj> = (Y - N - (Y - z,Ui) Uiy Uj) = (Y - Z, Uj) - (Y - 2, Ui) (Ui, Uj) . 

The first term in the last sum and the factor (y - z, ui) in the second term are both 
nonpositive since y - 2 E K. 

The correctness of K implies via Lemma 6 that (ui, uj) < 0, whence the second term - 
in the last sum of the above formula is also nonpositive. 

According to the definition of K as ({ uj}? ,)” the above conclusions prove (4.2), = 
which cari be written also in the form, 

since p(z), p(y) f sp F and F = sp F n K. 

(b). Let us show next that, if condition (iii) is satisfied then for every x E Rn such 
that (x,ui) > 0 for some i, one has - 

pK(x) = p&(z)) (4.4) 

with F = (kerui) CI K a.nd p = Psp F. 
Indeed, since K is correct, Lemma 5 implies, 

pF((x)) = p&‘(x))- 
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Hence, for an arbitrary UJ E Rn we have 

( x - PF(P(“)) 7 PF (PW> - W> 

= (x -p(X>,PK(p(x)) - w> + (p(X) - pK(p(x)), pK(dx)) - w> 

Let now w be an arbitrary element of K. 
Then the second term in the last sum is nonnegative according to the characteriza- 

tion (2.6) of the projection maps. 
If (x, f-4) = 0, then x = D(X) and the first term in the above sum is zero. 
If (x, u;) > 0, then x - 1;1( x) is orthogonal to sp F = ker ui. Hence it is parallel with 

ui and has its direction since (x - p(x), ui) = (x, ui) > 0 by hypothesis. 
Whence x - p(x) f Ko and since PK (p(x)) f F C ker ui, it follows that 

(X -p(x),&&(“)) - w) = - (x - p(x)~ w> 2 OY 
for every w E K. 

In conclusion we have, 

(x - PF(p(x)),PF(P(x)) - 4 2 O, vw f K, 

whence using again the characterization (2.6) of the projection, we conclude that the 
relation (4.4) holds. 

(c)’ Let us consider again that z 5 y and suppose that y 4 Int K. This condition is 
equivalent with the existence of some subscript i such that (y, ui) 2 0. 

Since y - z E K we have (y - z,u;) 5 0 whence we have also (z,ui) > 0. - 
If F = (keru;) n K and JJ = PSp F, then we have by the result proved in (a) (see 

relation (4.3)), that 
P(z) SF P(Y). (4.5) 

Use now the fact that bath (y, ui) and ( z, ui) are nonnegative and the result proved 
in (b), formula (4.4) to conclude that 

pK(y) - pF(&/)) ad pK(z) = pF(P(z)). (4.6) 

Since p(y) and p(z) are in sp F we have according to the induction hypothesis (4.1) 
via (4.5) that 

PF (dz)) 5 PF (P(Y))- 

Using now (4.6) we conclude that PK (2) IF PK( y), whence PK (z) 5 PK (y). 
(Particularly in this case it follows that both y and z project on the same proper face F). 

(d). Suppose now that y E Int K. If z E K, then we have nothing to prove. 
If x 6 K, then the line segment { yt 1 t E (0, 1)) with yt = tz + (1 - t)y pierces the 

boundary of K at some point yto, that is, we have ( yto, ui) = 0 for some subscript i and 
(Yt,,Uj) 5 0 for j # i* 

But z < yto < y. From the result established by induction in the point (c) we have - - 

PIC(z) 5 PK (!ho> = !.b 
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Since yto 5 y = PK( y) l;he last two relations show that PK( z) < PK( y) also in this - 
case. 

Thus the proof of (iii) =‘+ (i) is complete. Cl 

Remark. Putting together the results of sections 3 and 4 we conclude that the assertions 
(i), (ii) and (“‘) f iii 0 our theorem are equivalent. 

Hence we got in turn a niew proof of the equivalence of (ii) and (iii) which was given 
in [2]. 

5. Proof of the implications (iii) + (iv) + (ii). Suppose that (iii) holds. If we 
consider the normals ui 9 i = 1, . . . , m to the maximal faces of the polyhedral cane 
K, then K = ({ui>z,)” and using the correctness of K, we have by Lemma 6 that 
(ui, uj) < 0, for i # j. Thus the implication (iii) + (iv) was established. 

Suppose now that we have (iv) fulfilled. 
We shall show first that the vectors ui, i E I satisfying this condition are linearly 

independent. 
Since K is a generating closed cane, in this set, there exist n linearly independent 

vectors (see the first part of the proof of Lemma 4) 
Suppose that ~1, ~2, . . . , un are linearly independent vectors in this set and let us 

verify the assertion: 

(a) Let q, 24, . . . , u, be linearly independent elements in Rn satisfying the conditions 
(Ui, Uj) 5 0, i # j, i, j = Il., 2, . . . , n. If for som.e v E Rn one has (qui) < 0, i = 1, - 
2, . . . , n, then 

V= 
ClUl + l  l  * + CnUn 

with ci 5 0, i = 1, 2, . . . , n. (5.1) 

We shall use in the proof a process, which yields an orthogonal basis wl, w2, . . . , 
wn, every wi being a linear, combination of elements uj with nonnegative coefficients. 

Put Wl = u1 and suppose that ~1, ~2, . . . , wk-1 were determined (wi,wj) = 0, i, 
j < k - 1, i # j and each of them is a linear combination with nonnegative coefficients - 
of the vectors uj with j 5 Ic - 1. 

kt be wk = tlwr + l  . (< + &..rWk-l + uk, where the real coefficients tl, t2, . . . , 
tk-1 Will be determined. 

According to the conditions on ~1, ~2, . . . , wk-1, we have (wj, Uk) < 0, j < k - 1. 
Hence we cari determine tl, t2, . . . , i!k-1 such that tj > 0, j < kc 1, from the - - 

relation 
0 == (Wk, Wj) = tj (wj?j) + (%wj) 

This shows that 2ok is a linear combination with nonnegative coefficients of ur , ~2, 
. . . , uk and is orthogonal to wj, j < k - 1. 

We have obviously that UQ, ~2, r. . , wn are linearly independent. 
Let us consider the representation, 

V =dl~l+~**+d~w,, djE R, j=l,2,-..,n- (5.2) 

Since (v, Ui) < 0, i = 1, 2, . . . , - n, by hypothesis and since WI, are combinations 
with nonnegative coefficients of ul, ~2, . . . , Uk, k = 1, 2, . . . , n, we have (v, Wk) 5 0, 

k = 1, 2, . . . , n. 
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Assume that we have in (5.2) dk > 0 for some k. Multiplying this relation with WI, 
we obtain 

‘0 2 (v,wk) = dk (wk,wk) > 0 

The obtained contradiction shows that dk < 0, k = 1, 2, . . . , n 
tit we put in (5.2) the representations of Lk, k = 1, 2, . . . , n as linear combinations 

OfUj,j = 1,2 ,... , n. Since the coefficients in these representations are nonnegative and 
dk, k = 1, 2, . . . , n are nonpositive, we get a representation of v as a linear combination 
of u1, u2, . . . , u, with nonpositive coefficients. But the resulting coefficients must be 
the coefficients cl, c2, . . . , c, in (5.1) and the assertion (a) is proved. 

(b). Let ul, u2, . . . , u, be linearly independent vectors in the set {ui 1 i CE 1) 
considered in assertion (iv) of the theorem. 

We shall show that they are the only nonzero vectors of this set, 
Indeed, if v would be another nonzero vector in {u; 1 i f I}, then by the condition 

in (iv) and by assertion (a) we would obtain the representation (5.1) with c; < 0. - 
But then -v E cane{ u1, ~2, . . . ,u,} c cone{ui 1 i f I}, that is, v and -v would be 

both in cone{u; 1 i E 1) and hence K would be contained in the hyperplane perpendicular 
to v, contradicting the hypothesis on K to be generating. T~US we must have in fact that 

K = {x CE Rn 1 (X,I 

relation together with the 

(c). TO see that K 
EpF(K) c F- 

From representation 
independent vectors el , 

.Li> 2; 0, i 

is correc 

(5.3) ded uced above and from Lemma 3, there exist the linearly 
e2, l  ** 9  

en such that 

- - 12 , 1”‘) TUl,U2,*** , un linearly independent}, 
(5.3) 

theorem of Youdine shows that K is latticial. 

t we shall prove first that if F = (ker Un) n K then 

K - - cone{el,e2,*~* yen}7 

tei7 uj> = Oif i # j and 

(ei,Ui) < 0, i,j = 1,2,. l  l  ,n. 

Hence, we have that keru, = sp F = sp{el, e2,. . . , en-i} 
The condition Psp F(K) C F is then equivalent with Psp F( en) E F, since for an 

arbitrary x E K we have 

X = c ie l  + l  l  l  + Cn-len-1 + Cnen 

with cj > 0, j = 1, 2, . . . , n and hence - 

psp dx) = ciel +-a + %-1%-l + cncp F(en) 

by the linearity of Psp F. 
We cari suppose without loss of generality, that un is a unit vector and, then 

Psp F(en) = en - (en, Un) un- 

One has further, 
(Epd&&uj) = - (en, Un) (Un)Uj> 5 0, 
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for j = 1, 2, . . . , n - 1 (since (en, un> < 0 and (u,, uj) 5 0 by hypothesis). 
Since obviously ( Psp F( e n), un) = 0, it follows that 

(d). Let us see next that 
is, 

F - - espF 

PspF(en) E KnspF = F. 

F has in sp F the property similar to those of K in Rn, that 

(X, Vj) < 0, j = 1,2,. . . , n - 1 

Vl,V27*.*7Vn- 1 linearly independent in sp F (5.3 

and(v;,vj) 5 0, i #j, i,j = 1,2 ,... ,n-1 

Indeed, let us take 

9 = % - (Uj,Un)U,, j=1,2 ,..., n-l. (5.6) 

Then the vector vj are obviously linearly independent and 

(ViFj) = (U; - (Ui,Un) Un,Uj - (Ujy Un) Un> = (Ui, Uj> - (Uj, Un> (Ui, Un> Y 

since 1IUnll = 1. 
Because (ui,uj), ( ui, Un-) and (u j , Un) are a11 nonpositive if i # j , we conclude that 

in this case (vi, vj) 5 0. 
We have the representation 

F = (z E Rn 1 {x, Un) = Oand (x,uj) 5 0, j = 1,2,. . . ,n - 1) 

and hence taking into account the representations (5.6) of vj and the relations proved 
above, we arrive to (5.5). 

(e). Denote by G the face 

G = K n (keru,) n (kerun-1). 

Then G is a face of F of codimension one in sp F and since (d) we cari apply the 
assertion proved in (c) for K replaced by F and Rn replaced by sp F. 

Denote p = EpF ad q = EpG* With these notations we have 

-&dsp F cF) = d,, F cF) c Ge 
Let us show now that 

4= 41 sp F ’ p” 

TO verify this, consider an arbitrary element x E Rn and put it in the form x = u + v 
with u E sp F and v f (sp F)‘. 

Assume further that u = w+zwithw~spGandz~(spG)~nspF. 
Then x = w + z + v. Since sp G c sp F, it follows that (sp F)’ c (sp G)O and 

thus x + v f (spG)O, whence q(x) = w, p(x) = w + z and qlspF (w + z) = w, that is 

dx) = Q(sp F (P(x>>o 
If we apply twice (c) and. use the above conclusions, it follows that q(K) = ( (II,, F o 

p)(K) C QI,, F (F) c G tkxit is fipG(K) c G. 
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(f). If H is an arbitrary face of K then we cari include it in a chain 

H c HI c Hz C l  l  . c Hk 

such that HI, Hz, . . . , Hk have the property in their spans similar to those of K in Rn 
stated at (iv) of our theorem and SO that H is a face of codimension one of Hi, with 
respect to sp H 1, Hi is a face of codimension one of Hi+l with respect to sp Hi+i if 
i < k - 1 and & is a face of codimension one of K. 

Repeating step by step the process just described in (c), (d) and (e) we conclude that 
Psp H(K) c H, that is K is correct. 

The proof of the implications (iv) ti (ii) is hence completed. 

6. Proof of the implications (i) and (ii) q (v) + (iv). If (ii) holds, then K is 
latticial. 

Since =I: < z+ with Z+ = - x V 0, from (i) it follows that PK(x) 5 PK(x+) = xf and 
we have (v). 

We shall verify the implication (v) * (iv) by contradiction. That is, we assume 
that, K is latticial, that is, it cari be represented in the form: 

K = {x 1 (x, u;> 5 0, i = 1,2, . . . , n, ~1, . . . un linearly independent} 

and that for each x f Rn we have that PK(x) 2 x +, but there are some vectors, say u1 
and u2 in the above representation such that (Q, u2) > 0. 

We shall suppose in what follows that ul, 2~2, . . . , u, are unit vectors. 

(a). If n = 2, then we consider an element x f K with (x,q) = 0, (x,u2) < 0. 

Since -x 5 0 we must have by (v) that PK(-X) < (-x)+ = 0, that is PK(-X) = 0. 

Consider now the vector z = -x + (x+2) 1.42. Then (z,uz) = 0 and 

b4 = (-x+ (x,uz)u2+1) = (x42) (u2,u1) < 0. (6.1) 

Thus z f K. We have further, 

( -X -z,z-w) = (-x - (-x + (x,uz) UP), (-x + ( x+2) u2) - w) 

= (- (x+2) 7-42, (x+2) u2 - (x + w)) 

= - (2, u2)2 + (x, us) (Uzr x + w) 

= (x,uz) (u2,w) > 0, - 

Vw f K, since (x, ~2) < 0 and (~2, w) < 0, Vw E K. 
By the characterization (2.6) of the projection we have then that PK( -x) = x. But 

by (6.1) it must be z # 0. 
The obtained contradiction shows that in this case we cannot have (~1 , 2~2) > 0. 

(b). Suppose that n > 3. Let us show first that under the above hypothesis there - 
exists an element w in Rn such that 

tw) uz> = 0, (W,Uj> < 0, j 2 3 and &(w) f rint F, (6.2) 
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where F = K n (ker ~1). Consider the cane 

K1 = {J: f Rn 1 ( 2,~~) > O,(x,uj) 5 0,j =2,...,n}. 

By Lemma 1 there exist some elements y and z in K such that 

(Y74 > 07 (Y+2) = 0, (Y,Uj) < 0, j = 3,. . . ,n, 

and 
(&Ul) = (qu2) = 0, (Z,Uj) < 0, j =3 ,... ,n. 

Take wt = ty + (1 - t>z with t E (0, 11. 
Then wt E K1 and since ]]ui]] = 1 we have 

Psp&lJ1) = wt - (w,w) WY 

with sp F = kerul. Let us sec that for a sufficiently small t we have Psp F(W) E rint F. 
We have for j > 3 that - 

(Wt7 uj> =t(y,Uj) +(l- t> (Z,"j) 5 maX{(Y+j) 7 (Guj)} 

Put S = max{ (y, Uj) , (2, Uj) ,j 2 3). 
Then 6 > 0 and we cari take t SO small in (0, l] to have 0 < (wt,ul) < S. 
Then for j > 3 one has - 

(PS, F(wt>,uj) = (wt,ui) - (wt,ul 

< (WtlUj) + I ( 

> h 4 

- Wt~Ul)(Ul,Uj)I <-S+(Wt,Uj) <-J+b=O 

(p~Pdwt),u2) = (20t,UZ) - (w,w) (w,u2) = - (wt,u1) (U@2) > 0, 

since (wt, 212) = 0, (~1, ~2) > 0 and (wt,ul) > 0. 
Since obviously, (PS, F(*&), IL~) = 0, the obtained relation shows that for a such t 

we have Psp F(wt) f rint F’, whence it follows implicitly that Psp F(wt) = PK(wt). 
Take w = wt and observe that is satisfies the requirements in (6.2). 

(c). We shall see next that w+ is contained in the face FI,2 of K given 

F1,2 = {x E K 1 (x+1) = (x,u2) = O}. 

Since (w, ~2) = 0 we have by Lemma 2 that (ws, 2~2) = 0. Assuming that 

( WS ,w) < 0 (6.3) 

consider the element vt = tjw+ + (1 - t)w. For any t in (0, 1) one has 
-t w<vt<w ) (where x < y means x 5 y and x # y). (6.4 

This follows from conditions (6.2) which imply that w < w+. 
Since w+ - w f K, we .have (W - w+,uj) < 0, that is, (w+,uj) 5 (w, uj) whence - 

( W+, Uj) 5 0; for j _ > 2 by the conditions (6.2). Hence, 

('Ut,Uj) =t(W+,Uj)-t(l-t)(W,Uj) 5 0, j 2 2, for any t f (0,l). (6.5) 

From the hypothesis (6.3), taking into account that (vt , ul ) = t (w+ , ui> + (1 - 
t) (w, ul) it follows that for t sufficiently close to 1 in (0,l) we have also (vt,ul) 5 0. 

But this relation together with (6.5) show that vt f K, that is vt > 0. Hence - 

W+ = w V 0 < vt and we have got a contradiction with (6.4). 
Thus the assertion (c) is proved. 



G. Isac and A. B. Németh 51 

(d). Since FI ,2 is a face of K, the relation PK( w) < w+ would imply that PK( w) f 
F1,2, in contradiction with (6.2). 

The obtained contradiction shows that the inequality (ur,u2) > 0 cannot hold, that 
is, (ul,uj) 5 0 for i # j! i, j = 1, 2, . . . , 72. That is, we have the condition (iv) 
fulfilled. Cl 

Résumé subsantiel en français. Soit K un cône convexe fermé dans l’espace euclidien 
Rn. On note par PK la projection sur K. Le cône K estavec projection isotone si, pour 
tous J:, y E Rn , la relation ~4 - z implique PK( X) - PK (y) E K. 

Nous étudions dans ce papier la caractérisation des cônes avec projection isotone dans 
les espaces euclidiens. 

On note par <( < >> l’ordre défini par le cône K et par A0 le polaire d’un ensemble - 
A c Rn. On dit qu’un sous-ensenble F 2 K est une face de K si : 

(i) F est un sous-cône; 
(ii) x E F, y E K et y _ < x impliquent que y f F. 

Le cône K est correct si, pour chaque face F Ç K, on a que PSp F(K) C F, où sp F 
est le sous-espace vectoriel engendré par F. 

Le but de ce papier est de démontrer le résultat suivant : 

Théorème. Soit K 
sont équivalentes : 

un cône convexe qui engendre 1 ‘espace Rn. Les afJirmations suivantes 

(i) K est un cône avec projection isotone; 
(ii) K est correct et Rn est un treillis; 

(iii) K est polyédrique et correct; 
(iv) il existe un ensemble de vecteurs (u; 1 i E I) avec la propriété que (ui, uj> < 0 - 

Vi, j E 1, i #j et K = ({ui 1 i E I})“; 
(v) Rn est un treillis et PK(x) 5 x+ pour chaque x E Rn, où x+ = x V 0. 

Les cônes avec projection isotone sont importants pour les méthodes numériques de 
type projection en optimisation et pour l’étude de la complémentarité. 
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