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SURVIVAL OPTIMIZATION FOR A DYNAMIC SYSTEM 
Mario Lefebvre and Peter Whittle 

Abstract 

We consider a continuous time dyr,amic system which is subject to random 

perturbations. The state variable obeys a system of time-invariant linear differ- 

ential equations, and the random perturbations are taken to be white noise. Our 

aim is to maximize the time spent by the process in a continuation region, taking 

into account the quadratic control costs and the termination cost. The main re- 

sults of this paper are obtained by making use of Wald’s identity. 

Résumé -- 

Qn considère un système dynamique en temps continu qui est soumis à des 

perturbations aléatoires. Notre but est de maximiser le temps que le processus pas- 

se dans une certaine région de continuation, en prenant en considération les coûts 

de commande quadratiques et le coût de terminaison. Les résultats principaux de 

cet article sont obtenus en utilisant l’identité de Wald. 

1. Introduction 

Consider a continuous time dynamic system with state variable x (in R”), 

control variable u (in Rm) and process equation 

U-11 dx/dt = Ax t Ru t E, 



102 

where A, B are constant matrices and E is Gaussian white noise of zero mean and 

covariance rate N. Suppose that the initial value of the process, which we shall 

also denote by x, belongs to a certain set C and that we wish to choose the con- 

trol to minimize the expected value of the cost function 

(1.21 
r 

J(x) = Cu’Qu/2 - xl dt + KCx(-r:)l, 
0 

where Q is a symmetric positive definite matrix, x is a positive parameter, K 

is a general terminal loss function, and r is the first moment at which the 

process x(t) leaves the continuation set C, having started from x. The term 

4 in the integrand means that one is effectively trying to maximize survival time 

in C, account being taken of control costs u’Qu/Z and terminal cost K. 

IVe assume state observable, and have then the dynamic programming equation 

minWQu/2 - X t &+Bu) ‘F + tr(NFxx)/21 = 0 
X 

(Cl 
U 

is the minimal expected cost incurred from state value X, and 
FX 

are respectively the column vector of first derivatives and the matrix 

of second derivatives of F. 

((3 indicates that the equation holds in C, and we have correspond- 

ingly the boundary condition 

(14 F = K UV 

where D, the stopping region, is the complement of C in Rn. 

The minimizing value of u in (1.3)) 

WV u = -Q-‘BTFx, 

is the optimal value. 

Suppose now that the proportionality relation 

(1.6) N= -l aBQ B’ 



holds between noise power and control power matrices, a being the scalar propor- 

tionality factor. Substituting for u from (1.5) into (1.3) and making the change 

of variable 

(1.7) wd = expC -F (x) /a3 

we find that equation (1.3) transforms to the linear equation 

wher e 

W9) 

with terminal condition 

(1.10) 

0 t (Ax) I@X t tr (NQxx) /2 = 0 (Cl J 

0 = X/a, 

0 = expC -K/al (Dl . 

From (1.8), (1.10) one would make the identification 

(1.11) @ 00 = E{expC@r - K(x(T))/d [ x(0) = XI 

where the expectation is over the time T and coordinat e x(T) of first passage 

into D for the uncuti .Lbd process 

dx/dt = Ax t E. 

For this interpretation to be valid it is necessary that termination be 

certain and the expectation (1.11) he well-defined. For example, suppose we in- 

crease X in the cost function (1.2), i.e., give u greater weight to survival. 

The effect will be to increase 8 in expression (1 .ll); in most cases it Will be 

true that expression (1.11) diverges at some critical value of 9. This critical 

value of 8 corresponds just to the value of X for which E(r) becomes infinite 

in the original controlled problem. Note that one could well choose X, and SO 8, 

negative. The implication would then be that one was trying to encourage early de- 

parture from C, rather than delay it. 



The passage from (1.3) to the linear equation (1.8) with interpretation 

(1.11) is a slight generalization of that previously proved in Whittle and Gait [SI; 

see also Whittle C71, page 289. 

Note that the optimal control (1.5) is, in terms of Q, 

(1.12) U = .Q-lB?@ 
X 

/Ca. 

The particular problem we shall now consider is that for which 

interval 

(1.13) -d<x <d 1 

That is, one is trying to hold the component 

C is the 

in the interval 

x1 = td representing a height at which radar detection is likely. The craft is 

thus trying to hold height in such a way as to survive these opposing hazards for 

as long as possible. 

Seeing that there Will be no overshoot into D, the boundary condition 

(1.4) may be written F(+d,x2,...,xn) = 0, SO that equation (1.10) becomes 

(1.14) @(+d,x2,. . .,x,) = 1. 

2. The first -order case 

Suppose that x is scalar, SO that xl 

(1.1) reduces simply to 

= x, and that the process equation 

(24 dx/dt = Bu t E . 

That is, the intended force Bu and the random force E affect height l*viscously’V 

(i. e., without inertial effects), and height remains constant when these forces are 

absent. 
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Equation (1.8) then reduces to 

(2-2) B@ t NO xx /2 = 0 

and the following theorem is easily established. 

THEOREM 1. ComdQtL AYze puceAn ecjution 

dx/dt = Bu + C, 

whcm x A a bcti. ?%Qn AYz I;uncLLsrn 0 d&Lnti in (1.11) ti gLv63fz by 

(23 @(xl = cos(kx)/cos(kd) (1x1 < dl 

whme 

(2 94) k= /BI/N i2A/Q+ 

(2 l  5) 
u  = 

PROOF. From (2.2) we have 

(24 

; -(sgnB)C2X/QI tan(kx). 

<p xx 
t (20/N)@ = 0. 

Equation (2.6) is solved by 

@ (xl = a cos(kx) t b sin(kx) 

with 

and using the boundary conditions 

k= C28,'N+, 

ia(td) = 1 (see (1.14)) we obtain 

Q(x) = cos(kx)/cos(kd). 

Now by (1.9) and (1.6) we have 

k = cZe/N+ = C2X/Nnld = C2hB2/N2Q1t, 

i.e., 
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k = IB~/N KW& 

Finally, relation (1.12) implies that 

u = -aQ -‘B sin(kx)/cos(kx) k 

= -NQ/B2Q-‘B tan(kx) IBI/N CNQJ % 

i = -c2X/Q! (sgnB) tan(kx). E 

We also have 

THEOREM 2. The ck0iLicae vaeue oh 8 La 

(2-V 8 
C 

= N.rr2/8d2. 

PROOF. Expression (2.3) becomes infinite as A (or 0) approaches the value such 

that kd = ~/2; thus 

(2-8) x 
C 

= Q/8 [rN/Bd12 

and using (1.6) we find that 

% 
= Xc/a = B2/NQ A 

C 
= Nn2/8d2. c 

Looking at expression (2.5) we see that, for X equal to Xc, the absolute 

value of the control u becomes infinite as x approaches the boundary values 

td. That is, when the premium given to survival increases t.o this critical value, 

then one is willing to use infinite control to ensure it. @ne ensures survival to 

the point that E(r) = 00; possibly, for X > A 
C' 

to the point that termination is 

uncertain, SO that survival is certain. Tt is difficult to analyse matters for X 

greater than or equal to Xc, however, because one is balancing infinite control 

costs against infinite survival time. 

3. The second-order case 

The minimal move towards realism would be to modify the treatment of the 

last section to include inertial effects, SO that it is acceleration rather than 



velocity which is proportional to force, This leads to a second-order formulation, 

in which we identify the components x1 and x2 as height and rate of change of 

height respect ively . Seeing that it is variants of this case that we shall consi- 

der from now on, it would be a simplification to Write (x 1 Bx2) as (x,v). That 

is, x now denotes height itself rather than the whole state vector, and v is 

the rate of change of height : vertical velocity. 

The plant equation Will be 

(3.1) 
dx/dt = v 

dv/dt = bu t E, 

SaY 9 if we suppose that control and process noise act as forces, and that these 

forces alone contribute to acceleration. The noise term E is scalar and we shall 

again denote its power rate by N, although it is properly 

[Z] and [o N] 
which correspond to the E N of the general formulation (1.1). 

Equation (1.8) now reduces to 

(34 @D t v@ t NQ 
X vv /2 = 0, 

where now @ 
X 

is simply the partial derivative of <p with respect to x and Qvv 

is the second partial derivative of 

-d < x < d. 

In the deterministic case 

with respect to v. This equation holds 

N=O equation (3.2) has solutions 

0 = est. expC -0x/vl. 

The solution that meets boundary conditions (1.14) at a11 boundary points at which 

there is a flux out of C is 

(3.3) I exp[te(d-x)/vl cv ’ OI 
@(x,v) = 

1 expC -8 (d+x) /VI (v < 0) . 
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At other boundary points there is a discontinuity in bp. 

If 0 > 0 then 0(x,0) = +a, reflecting the fact that ‘7: cari be made 

infinite in the deterministic case, and that the critical value of 8 in this case 

is in fact 8 = 0. 
C 

The control rule deduced from (1.12), (3.3), 

( -Xb/Qv2 (d-x) cv ’ 0) (34 u(x,v) = 2 Xb/Qv (d+x) cv < 0) Y 

with its infinite switch in value as v changes sign is also an indication of the 

form the problem takes when N=O but x > 0; not nonsensical, but ill-posed. 

That is, in the deterministic case we cannot use the cost criterion defined in (1.2) 

with x positive. 

The reason for using infinite control near v = 0 is, of course, that it 

cari ensure the zero-velocity state, implying infinite survival without further 

control. 

The problem of solving equation (3.2) in the general stochastic case 

N>O appears very difficult ; surprisingly SO, in view of the naturalness of the 

probl em as formulat ed . The difficulties of evaluating statistics of first-passage 

times for a second-order process are well-known and the literature on the subj ect 

contains few explicit results: in the case of the integrated Wiener process, see 

McKean Jr. [SI, Wong c91 and Goldman 1141; Buckholtz and Wasan c23 have obtained a 

first-passage time density for a two-dimensional Brownian motion. See also 

Matkowsky and Schuss NI and Buckholtz and Wasan 1[11. 

The fact that @ is discontinuous in v for N = 0, but continuous for 

N positive (except on the boundary), shows that approximations to 0 for small N 

are not at a11 evident, as they are not close in any uniform sense to the determi- 

nist ic solut ion. 

For this reason we shall consider a formulation of the problem in the next 

section in which velocity is discretized. 
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4. The process of order one-and-a-half 

Consider the uncontrolled process, and suppose process noise such that 

instead of velocity following a diffusion process, as in (3.1), it follows a dis- 

crete-state Markov process in which it adopts values v., and changes from 
3 7 t” 

Vk with probability intensity A. 
Jk’ 

Here j J k range over some set E of values 

which enumerates the possible velocity values, Then equation (3.2) becomes 

(4 l  1) e@(X,‘j) t Vj~x(X~Vj) ’  C X. 

k Jk 
~~(x,vk) - ~(X,Vj)I = 0. 

This equation holds of course for Ix1 < d and j in E, and is subj ect to the 

boundary condit ion 

(44 ~(+d,vi) = 1. 

In fact, there are again discontinuities at the boundary, and condition (4.2) Will 

be enforced on the solution of (4.1) only at those boundary points at which there 

is a flux out of C. That is, at x = d for j such that v. > 0, and at 
3 

x = -d for j such that v. < 0. 
J 

\qe shall term this the f’process of order one-and-a-half”, intermediate as 

it is between the processes of order one and two. Of course, in formulating it we 

have departed from the original motivation for considering the uncontrolled pro- 

cess that from it could be derived the optimal control and the evaluation of F 

for the controlled process. The process of order one-and-a-half cannot be thus ge- 

nerat ed. However , the process is of interest in itself, and some version of rela- 

tion (1.12) will generate a control which is presumably at least plausible. 

Ft’e shall denote Q>(x,vj) by Qj (x), or simply by ~j when there is no 

need to display the argument. If we try a solution 

(4 l  3) @j (‘1 
= Yj exp(aX) 

of (4.1) then we obtain the equation system 

(4.4) (“tvjC1)Y. 3 t c x-k(y’k-yj) = 0. 
k ’ 



This will have enough solutions for the eigenvalue a and eigenvector 

that one cari combine the corresponding solutions (4.3) to obtain an evaluation of 

Qj(x) which satisfies the effective boundary conditions. Rowever, even this solu- 

tion cari be made explicit in only a few cases, and in the remaining sections we 

shall approach this solution from another direction. 

We shall henceforth confine ourselves to the process of order one-and-a- 

half, and shall also uniformly make the assumptions: ( > i velocity distribution is 

symmetric, in that the mode1 is unchanged by a reversa1 of a11 velocity values, 

7 + -7 
for a11 j; (ii) velocity changes are local, in that if v. -+ v l  1 klSa 

transition for which 

2 
and v kg 

5. 

x 
jk > 0, then there is no 

Use of Wald 9 identitv 

7 intermediate in value between 

We confine ourselves to the mode1 of order one-and-a-half from now on. 

More precisely we suppose that velocity is periodic: j belongs to 

E = {0,1,...,4r+3) and 

(S*U v. 
1 

= v sin(2Tj/(4r+4)). 

That is, we assume that the airplane cari take 2r+3 different vertical velocities. 

The periodicity assumption will be used in Section 6 in order to obtain an explicit 

expression for Yi . We also suppose that 

(5.2) 
X if Ij-k[ = 1 

x = jk 0 otherwise, 

with 0 = 4r-t.4, SO that 

4r+3 
. 

k-0 AJk 
= 2x for a11 j. 

change in 

Consider the moments of recurrence to V = 0, and let Ax 

At X and the change in t over a recurrence epoch (SO that 

At be the 

is just 
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the random recurrence time to v= 0). Define the moment-generating function 

(5-V M(a,6) = ECexp(aAxteAt)l. 

Now, the values of (Ax,At) for different recurrence epochs are identical- 

ly and independently distributed random variables, SO that one cari appeal to Wald's 

identity in the form 

(5-4) E{ expb (x (t,) -x)+6 t,lM(ol,6 ) -r) = 1. 

Here the expectation is conditional on initial conditions at t = 0: x(0) = x and 

v(0) = 0. The quantity ts is the Sth recurrence to v = 0, and t r is the 

first such recurrence time for which 1x1 2 d. That is, t r is the first value of 

t for which the combined event {v(t) = 0 and 1 x(t)! 2 d} occurs. 

and 

Relation (5.4) Will be valid for a11 

1 M(a 98 > 1 ’ p Y where the probability that Ix[ =c d 

such that M(a 90 1 is defined 

at each of the first S 

recurrences to v = 0 is of order for large s (see Cox and Miller C3l). 

(5*5> t 
r-l <rst r* 

PROOF. By definition, '1: 5 tr and 'I: # t r-l' If T<trl, then there must be a 

velocity reversa1 in 1x1 2 d before time t r-l' By assumption (ii) of the last 

section this Will imply v = 0, 1x1 2 d at some time before t r-l' against hypo- 

thesis. cf 

Relation (5.5) implies that and 5 differ by a term of the order of 

the recurrence time of v = 0. If this recurrence time is not large relative to 'I: 

(i.e., if one nay expect several velocity reversals before I I X first equals 

then the approximation r z tr (where the symbol z means is approximately equal 

to) is effectively a no-overshoot approximation. 

THEOREM 3. L.Qft a0 be a ftucd 06 amaLte& madu.tLs ad 
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(5.61 M(a,0) = 1 

0. 

(5.7) @(x,0) = Cexp(aox) + exp(-aox)l/Cexp(aod) t exp(-a d)l, 
0 

PROOF. If a = a0 is a root of (5.6) then SO is a = -a 
0 

by the assumption of 

symmetric velocity statistics. If we give a the values ?a0 and make the no- 

overshoot approximations T W t r and xlt,) M d or x(t,> W -d according as to 

which boundary is crossed on exit from bd < d we see that relation (5.4) becomes 

WV exp (ad) E+ t exp (-ad) E z exp (a~) (a = +ao) . 

Here 

Et = P(At)ECexp(BT) 1 A*I, I 

where A, is the event that 1x1 -c d is left first through the boundary x = td; 

correspondingly for E . Evaluating Et, Em and SO 

@ (x ¶ 0) = Et t E 

from the two relations (5.8), we deduce relation (5.7). 0 

Relation (5.6) Will in general have an infinite number of roots for a; we 

choose those of smallest modulus SO as to minimize the effect of the neglect of 

overshoot in the exponent of (5.4). In the case 0 < 0 we know from the convexity 

of M as a function of a and 8 that the roots of smallest modulus are the two 

real roots of relation (5.6) (Cox and Miller [3!). In the case 0 > 0 it turns 

out that a0 is purely imaginary. 

The root a0 of (5.6) turns out to be a root of the equation system (4.4). 

(5.9) rd. (a,e) 
3 

= E{expCax(t)t-OtJ 1 x(0) = 0, V(O) = vj), 
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@tavj)Mj t 1 X . (M 4.) = 0 
k Jk k 3 

PROOF. Note the distinction between M, respectively defined as expecta- 

tion for the first occurrence and first recurrence of v= 0. 

Relation (5.10) is easily established for HO from the definition (5.9) 

and the Kolmogorov backward equation. Correspondingly, we have 

(5.11) i: expC (8 -A oItlX okbgk} dt , 

(5.12) (Ao-e)M = 1 ~,k”k’ 
k 

where 

The integration in relation (5.11) is over the time t at which velocity changes 

from v = 0. But equation (5.12) with the condition M = 1 = Mo is just the re- 

maining relation of (5.10): that for j = 0. n 

It may seem that, since we return to equation (4.4), the problem has not 

been reduced. However, it has, in that we now seek a particular solution of (4.4), 

rather than a11 solutions. 

\$e have now to try to extend the evaluation (5.7) to the case of non-zero 

initial velocity: 

is natural. 

THEOREM 5. 

an evaluation of Q(&v;), to whatever degree of approximation 

+d 
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(5.13) @ (x,v. 1 1 z CY j (“,> exp ((X,X) t 'j C~o)expC-aox)l/yo(~*)R, 

R = C exp (a,d) -t exp (-a$) 1, 

u?? dme (a0 ‘Yj ) 4Ul.V~ (4.4), a = a* b&Lng Ahe /Su&tiun ufj mLn/imum rnUcfU.eub. 

PROOF. Suppose that an expected reward exp(axt0t) is incurred if one starts at 

time t with x(t) = X, v(t) = 0. The expected reward starting from x(0) = x, 

v(0) = v. is then 
J 

exp(ax)E{expCa(x(t)-x)t0tl 1 X(O) = X, V(O> = vjI = exp(ax)hlj (a,8), 

where t is the time of first occurrence of v(t) = 0. So, using expression (5.7) 

we have 

Q(x,vj) 
N ELexp(0t)Q(x(t),O) 1 x(0j = x, V(0) = Vjl 

(5.14) * CMj (cto,O)exp(aox) t 1\1. (-ao,6)exp(-aox)l/R. 
1 

NO~, the normalization Mo = 1 implies that M. = Yj/Yo, and expression 
3 

(5.13) thus follows from (5.14). r 

Note that we have assumed the event v = 0 to occur before the event 

1 XI 2 d in carrying out the expectation of (5.14) ; this implies the assumption 

made in the enunciation of the theorem. 

Finally we have 

THEOREM 6. 

exp (a,d) t exp (-aod) = 0 

(5.15) B(e) = -ir/Zd. 

PRO@F. Ry relation (5.14) p 0 is such that 
C 
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exp(aod) t exp(-aod) = 0. 

Hence if ao = iB(8) we may Write 

2 cosCB(e)dl = 0, 

from which we deduce relation (5.15). E 

In the next section we shall complete the analysis by estimating a0 and 

‘ j  Ca01 l  

6. Determination of cl,(e) and Yj (ao) 

Theorem 4 tells us that a0 and the M. 
J 

satisfy the equation system 

(et"vj)Mj t ~ X. (FI -~~.) = 0 
k lkkJ 

with the normalization M 
0 

= 1. This normalization implies that M. = Yj/Yo, and 
3 

it follows that 

+ c x.,(ru,-Yj) = 0 
k' 

for a11 j in E. 

For our choice of A 
jk 

and v. 
J 

(see (5.2), (5.1)) the system (6.1) takes the fogn, 

writing a 
0 

= a, 

(6.2) (0 + W sinC2nj/(4r+4)3)Yj t X(YjtltYj 1-2Y.) = 0 
J 

for j in E. 

TO solve (6.2), write 

(6.3) 

where z = exp(BG/m) 

SO if we suppose that 

Y. = 
3 

m = 4rt4. 

m-l . 
c ckz' k 9 

k=O 

Next, notice that 

. 
7 = V sin(2Trj/m) = v[(zJ-z-' ')/2i3. 

a = iB, f3 E R, (6.2) becomes 

m-l m-l 
retBV(Zj-z-3/21 1 ChZjk t x 1 ckzjk(zk-2+z-5 = 0, 

k=O * k=O 
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which implies that 

(6.4) BCk -l- l3m (Ck l-ck+l) -f X(z w -z -442 2 ) Ck = 0 

for k = O,.,.,m-1. 

The usual method employed to obtain an approximate solution of (6.4) is to 

assum.e that ck = 0 for 1 kl > p, with c = c -k m-k' The approximate solutions ob- 

tained Will be valid if 8 is small . For example, if p equals 1 then (6.4) is 

simply 

(1) %l - f3v/2 c t A(z-z-zi)2 Cwl = 0 
0 

(2) eco t 842 (cal-ctl) = 0 

(3) ectl 
' 2 t Bv/2 CO t x(zi-z-‘) 

c+1 = 0. 

From (1) and (3) we obt ain 
: 

( 6'. 53 c-l = -c+l = f3v/2 [&A(zf-z-+2,-1 c 
0 

and subst ituting into (2) we f ind that (CO * 0) 

(6.61 B2 = 20/V2 [2X(1 - cos(27T/m)) - 81. 

Furthermore if we set c. equal to 1, then we deduce from relation (6.5) that 

(6.7) Yi = 1 + i#3v [2X(1 - COS (2-rr/m)) - CI -1 sin(2rrj /m 1 j = O,...,m-1. 

If P is equal to 2 we obtain 

(6-8) fy- = (46ZlZ2)/V%X(1 - COS(kT/m)) - 361, 

where 

(6.9) 

where 

'j = 2X(1 - cos(2Tj/m)) - 0, 

Y. 2 2 = 
3 

1 t 2f3 v /Dl cos(4nj/m) t i14f3vz2/Dl sin(2rj/m)l, 

Dl 2 2 = 6 v f kl.z2. 
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If p= 3, we have 

(6.10) p2v2 = ii -z t Iz2 + 86z1zp3} 9 

z = 2z2z3 - Vz1fz339 

(6.11) Y. = 
3 

1 + 2B2V2z3/D2 cos(4nj/m) 

+ i[BV(B2V2+4z2z3) sin(2rj/m) + fi3 sin(6rj/m) I/D,, 

where 

D2 = 82v2(zltz3) + 4z1z2z3. 

Looking at the three expressions that we have for B2 , we see that 0 must 

not be greater than 2X(1 - cos(2r/m)) since we want B to be real. Actually x 

depends on r, SO that 2X(1 - cos(2n/m)) tends to a positive limit as r in- 

creases. 

PROPOSITION 1. X if d&tant enough Q’tam 

(6.12) '(xtvj) z CYj exp(aox) + Y m-j exp(-aox) l/CYoW, 

G= exp (aod) + exp (-aod) 9 

(ao,Yj) au~v~ (4.4), a0 being &t m&.kLun 06 mb.i.mum muduk’ti, and a0 = a = iB 

L3 given &/r amalI 8 bq eith~h (6.6), (6.8) utt (6.10) and Xhe cuntttipunding Y. 
3 

bq f&e.mda (6.Y)) (6.9) utt (6.11) /~tape&vdy. 

This proposition is a direct consequence of Theorem 5 since, under the sym- 

metry hypothesis, 'j Caao3 = Y-j (a,, = Y* j (a,>. c . - 
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For example if we use formulae (6.6) and (6.7)) that is if we take p 

equal to 1, we obtain 

(6.13) 
@(x,vj > = tcos(~x) - (2*/z,+ sin(2nj /m) sin(E;x) 3/cos(cd) , 

Also, note that our approximation fails when Bd = 7T/2 (as indicated in Theorem 6) 

and this gives us 0 
C. 

In the case p = 1, again, we have 

2ezp 2 2 = r /4d 2 

and we deduce that 

(6.14) 
% 

= cxr - (A 2-n2v2/2d2)1 1/2, r 

where 

x r = 2X(1 - cos(2T/m)). 

Finally, from (1.12) and (3.1) we deduce that the control in the second- 

order case that we considered is proportional to @JO. Ne define, correspondingly, 

(6.15) 
u(x9v j  > = est .C(ia.-0. 

3 J-l M vj-vj-l)t!~j+l-~j)/(vj+l-vj)l 

for a11 j in E. The control function u should be equal to zero at x = d for 

j such that v. 
J 

is positive; that is, for j = 1,. . . ,2r+l. Looking at formula 

(6.15) we see that this is the case, except for J = 1 and j = 2r+l. We could 

modify (6.15) to 

u(x>vj  1  
= 2 cst.l(@ j+l-~j)/(vj+i-vj)l 

for j = 1 in order to have u(dJq = 0, whenever r is greater than zero. How- 

ever, we are interested in the case of large r and therefore this modification and 

the corresponding one for j = 2rtl (and j = 2rt3, Grt.3 to obtain u(-d,vi) = 0, 

vj < OI are unnecessary since @(d,O) ought to be near 1, and SO u(d,vl) near 

0, when r is large. 
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