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OPTIMAL STOCHASTIC CONTROL OF A CLASS OF PROCESSES
WITH AN EXPONENTIAL COST FUNCTION'

Mario Lefebvre

Summary

In this note, the optimal control of a class of processes with non-linear/
Gaussian dynamics and negative exponential cost criterion is given in terms of the
first-passage distribution over the terminal set for the uncontrolled processes.

The result is applied to the optimal control of a process with lognormal transitions.

Résumé

Dans cette note, la commande optimale d'une classe de processus avec dyna-
mique non lin€aire/gaussienne et cofits exponentiels est donnée en termes de la dis-
tribution de premier passage 3 1'intérieur de la région d'arrét pour les processus
non contrdlés. Le résultat est appliqué 3 la commande optimale d'un processus avec

transitions lognormales.

1. Introduction and theoretical results

In [6] Whittle and Gait considered processes with linear/Gaussian dynamics
and quadratic control costs, but with general terminal costs. They showed that, for
a class of cases, the optimal control of the processes can be obtained from an ex-

pectation over the coordinate of first entry of the uncontrolled processes into the
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termination region. Whittle has generalized this result to the case of processes
with non-linear dynamics. (See also Lefebvre [3] and [4].) In this note, a theo-
rem is established which relates the optimal control of processes with non-linear/
Gaussian dynamics and exponential cost criterion to an expectation for the uncon-

trolled processes.
So, consider the continuous time dynamic system with process equation
(D dx/dt = a + Bu + ¢,

where the state variable x 1is in Rn, the control variable u is in R, a is
an arbitrary n-vector function of & = (x,t) and € is Gaussian white noise of
zero mean and covariance rate N. The n-square matrix N and the n x m matrix
B may be £-dependent. The aim is to minimize the expected value of the negative
exponential cost function (see Jacobson [1])
T
(2) J(E) = -exlr)[—[t (u'Qu)/2 ds - K(x(1),1)7,
where the positive definite m-square matrix Q may possibly be &-dependent, and

T is the first moment at which x(t) enters a termination region D, having start-

ed from ¢.
THEOREM. Suppose that ultimate entry of the uncontrofled process
(3) dx/dt = a + ¢

into a prescribed termination negion D is certain, and that & = (x,t) and u

ane unmestricted. Then 4§ Q 4s chosen s0 that
) N = BQ B
the optimal controk is given by

(5) u = Q_lB'CI)x/Zcb,

where
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(6) ®(8) = Eglexp(-2K(x(1),T) ],

the expectation being over the time t and coordinate x(t) of §inst passage into
D fon the uncontrofled process (3), conditional on starnting ghom E.

PROOF. Let F(£) be the minimal expected cost incurred from position £&; that is,

T
(7 F(E) = inf Eg[-exp(-f (u'Qu)/2 ds)] <,
t

u
where the (C) indicates that the equation holds in the continuation region C, the
complement of D in the domain of definition of x(t). Correspondingly, we have

the boundary condition

(8 F(g) = -exp[-K(E)] (D).

Then we can write for &£ € C

T
F(£) = inf EE[-exp{—A(u'Qu)/Z - J (u'Qu)/2 ds + o(A)1}1.
u t+A

Using the principle of optimality and Taylor's formula in n variables we may write

F(E) = inf{[1-A(u'Qu)/2 +0(A) JIF(E) +A(a+Bu) 'F, +AF, + Mtx(NF_)/2+0(8)1[1+0(8) 1},
u

where FX and Fxx are the column vector of first derivatives and the matrix of

second derivatives of F, respectively. Hence we have
= 1 1 - 1
0 13f[(a+Bu) FX + tr(NFxx)/Z + Ft (u'Qu)F/21].
One finds that
-1
9 u=Q B'FX/F

and it follows that

-1
1 1] -
Ft +a Fx + tr(NFxx)/Z + (FXBQ B'F_)/2F = 0.

That is, since N = BQ—IB',

(10) F, +a'F + tr(NF )/2 + (FINF,)/2F = 0.
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Next, let
(11) o(8) = F(E).
Then, remembering that if A is nxp and B is p X n
tr(AB) = tr(BA),
we find that (10) is linearized to
(12) Qt + a'@x + tr(N@xx)/Z =0
and, from (8), with boundary condition

(13) ®(8) = expl-2K(£)1] (€ € D).

Now equation (12) is in fact the Kolmogorov backward equation that the ex-

pectation (6) satisfies and (13) is the appropriate boundary condition.

Finally, since we have assumed ultimate absorption to be certain, the solu-

tion of (12) and (13) is unique and the theorem follows. []

Suppose now that the vector function a is independent of t, and that
the matrices B, N and Q and the terminal cost function K are also time-inva-
riant. Let X be a real parameter and consider the cost function

T
(14) J(x) = -exp{-JO [(u'Qu)/2 + A1 dt - K(x(1))}.

We have the following result.

COROLLARY. Unden the same hypoitheses as in the theotrem above, the cptimal

contrnol is given by
(15) u=Qlpe /20,
where

(16) (x) = Ex{exp[—ZAT - 2K(x(T))1}.
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When the parameter X 1is greater than zero, the aim is to leave the con-
tinuation region as soon as possible, whereas when A is negative, one is trying
to maximize the time spent in the continuation region, taking into account the con-

trol costs (u'Qu)/2 and terminal cost K thus incurred in both cases. When A

[§1]

is equal to zero, one obviously takes u = 0.

2. An example
Consider the one-dimensional process equation
(17) dx/dt = x + bu + €,

where b 1is a constant and € is Gaussian white noise of zero mean and covariance
rate N = 2x2. Suppose that we wish to minimize the expected value of the cost

function (or maximize the expected reward)
T

(18) J(x) = -exp{—[ [(u'Qu)/2 + AJ dt},
0

where T 1is the first moment at which the process x(t) enters the termination
region D = [d,»), having started from x(0) in the interval (0,d). We take X
positive; so we encourage early departure from the region C = (0,d). Ultimate en-
try of the uncontrolled process into D being certain, we deduce from the Corol-

lary that if we choose
(19) Q = b¥/2x,

then the optimal control is

u = (b/Q)o,/2¢
i.e.,
(20 u = (xz/b)q:x/q: b+ 0.
The function ¢ can be obtained either by solving the equation
(21) 220+ x8 ¢ XD =0 x e (0,d),
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subject to
(22) o(d) = 1,
or by evaluating the mathematical expectation
Elexp(-22T) | x(0) = x].

Indeed, in this case the process x(t) has lognormal transitions and its first-

passage time density to the stopping region D is given by (see Kannan [2])

1/2n3/2

(23) g(d,T;x,0) = [log(d/x)/2n ]exp{[—logz(d/x)]/dr}

and ¢ 1is just the Laplace transform of g. One easily finds that

(24) o) = (/&) x e (0,43,
where
(25) 6 = (20?2,

Hence the optimal control is

(26) u

(6/b)x.

The optimal control is thus linear in x.

If the continuation region is the interval (d,~) and the stopping region

is (0,d], we find that

27 o) = (d/x)?  x e [d,®)
and
(28) u = (-8/b)x.
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