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OPTIMAL STOCHASTIC CONTROL OF A CLASS OF PROCESSES 
WITH AN EXPONENTIAL COST FUNCTION' 

Mario Lefebvre 

Summary 

In this note, the optimal control of a class of processes with non-linear/ 

Gaussian dynamics and negative exponential cost criterion is given in terms of the 

first-passage distribution over the terminal set for the uncontrolled processes. 

The result is applied to the optimal control of a process with lognormal transitions. 

Résumé 

Dans cette note, la commande optimale d’une classe de processus avec dyna- 

mique non linéaire/gaussienne et coûts exponentiels est donnée en termes de la dis- 

tribution de premier passage à 1 ‘intérieur de la région d’arrêt pour les processus 

non contrôlés. Le résultat est appliqué à la commande optimale d’un processus avec 

transit ions lognormales. 

1. Introduction and theoretical results 

In [61 Whittle and Gait considered processes with linear/Gaussian dynamics 

and quadrat ic control cost s, but with general terminal costs. They showed that, for 

a class of cases, the optimal control of the processes cari be obtained from an .ex- 

pectation over the coordinate of first entry of the uncontrolled processes into th’e 
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termination region. Whittle has generalized this result to the case of processes 

with non-linear dynamics. (See also Lefebvre C33 and C41.) In this note, a theo- 

rem is established which relates the optimal control of processes with non-linear/ 

Gaussian dynamics and exponew cost criterion to an expectation for the uncon- 

trolled processes. 

SO, consider the continuous time dynamic system with process equation 

(11 dx/dt = a t Bu t E, 

where the state variable x isin R n, the control variable u is in m R , a is 

an arbitrary n-vector function of 5 = (x,t) and E is Gaussian white noise of 

zero mean and covariance rate N. The n-square matrix N and the n x m matrix 

B may be c-dependent. The aim is to minimize the expected value of the negative 

exponential cost function (see Jacobson Cl]) 

(2) 
I 

r 
J(c) = -expC- (u'Qu)/2 ds - w4-r) Jll, 

t 

where the positive definite m-square matrix Q may possibly be c-dependent, and 

'2: is the first moment at which x(t) enters a termination region D, having start- 

ed from 5. 

THEOREM. 

(3) 

Suppaae &Ut lA/tthtie ent4y 06 ;the uncmum~ed pmc4m 

dx/dt = a t E 

itiu a pk~tibed X~mLnaLLun ttcgion D ti ceMc&, and Chat 5 = (x,t) and u 

(4) N = BQ-'B' 

(5) u = Q-lBVx/2@, 
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(6) WI = E$exp(-2K(x(T) ,T) 1, 

r and cuutrdinake x(t) 

D f$utr 4% uncon.hu.U~ p&3ctib (3), cantiuna~ un a-g @mn 5 . 

PROOF, Let F(c) be the minimal expected cost incurred from position È;; that is, 

'1: 
(7) F(S) = inf E$-exp(- (u’Qu)/2 ds)l cc> > 

U t 

where the (C) indicates that the equation holds in the continuation region C, the 

complement of D in the domain of definition of x(t). Correspondingly, we have 

the boundary condition 

18) F(5) = -expC-K(S) 1 (Dl . 

Then we cari Write for 5 E C 

r 
WI = inf E$-exp{-A(ulQu)/2 - (u’Qu)/2 ds t o(A) 

U ttA 

Using the principle of optimality and Taylor% formula in n variables we may Write 

F(S) = inf~[l-A(u~Qu)/2to(A)][F(~)tA(atBu)*FxtAFttAtr(NFxx)/2to(A)J[lto(A)]}, 
U 

where F and F 
X xx are the column vector of first derivatives and the matrix of 

second derivatives of F, respectively. Hence we have 

0 = infC(atBu)'Fx t tr(NFxx)/2 t Ft - (u'Qu)F/21. 
U 

One finds that 

(9) u = Q-lBIFx/F 

and it follows that 

Ft t a'Fx t tr(NFxx)/2 t (FxBQ-'B1Fx)/2F = 0. 

That is, since N = BQ -1 B*, 

(10) Ft t a*Fx t tr(NFxx)/2 t (FiNFx)/2F = 0. 
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Next, let 

(111 @(Cl l F*Kl. 

Then, remembering that if A is n x p and B is p x n 

tr(AB) = tr(BA), 

we find that (10) is linearized to 

(12) ot t a’ox t tr(Noxx)/2 = 0 

and, from (8), with boundary condit ion 

(13) o(c) l exp[-*K(c)1 (c c B). 

Now equation (12) is in fact the Kolmogorov backward equation that the ex- 

pectation (6) satisfies and (13) is the appropriate boundary condition. 

Finally, since we have assumed ultimate absorption to be certain, thc solu- 

tion of (12) and (13) is unique and the theorem follows. 0 

Suppose 

the matrices B, 

now that the vector function a is independent of t, and that 

N and Q and the terminal cost function K are also time-inva- 

riant . Let A be a real parameter and consider the cost function 

1 

1 
(14) J(x) = -exp{- [(u’Qu)/2 t Al dt - K(x(T))}. 

0 

We have the following result. 

u = Q-1B10x/2C’, 

(16) o(x) l Exiexp[-2Ar - ~K(x(T)) 1). 
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When the parameter A is greater than zero, the aim is to leave the con- 

tinuation region as soon as possible, whereas when A is negative, one is trying 

to maximize the time spent in the continuation region, taking into account the con- 

trol costs (u’Qu)/Z and terminal cost K thus incurred in both cases. When I 

is equal to zero, one obviously takes LlE 0. 

2. An example 

Consider the one-dimensional process equation 

(17) dx/dt = x + bu + E, 

where b is a constant and E is Gaussian white noise of zero mean and covariance 

rate N = 2x2. Suppose that we wish to minimize the expected value of the cost 

function (or maximise the expected reward) 

1 

1 
(18) J(x) l -exp(- [(u’Qu)/2 + Al dt), 

0 

where r is the first moment at which the process x(t) ent ers the t erminat ion 

region D l [d,m), having started from x(O) in the interval (0,d). We take A 

positive; SO we encourage early departure from the region C = (0,d). Ultimate en- 

try of the uncontrolled process into D being certain, we deduce from the Corol- 

lary that if we choose 

(1% 

then the optimal control is 

Q = b2/2xz, 

i.e., 

The function @ cari be obtained either by solving the equation 

-2A0 •t x0x + x20xx = 0 x c (O,d), 
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