IMPROVING REGULARITY OF WEAK SOLUTIONS OF ABSTRACT DIFFERENTIAL EQUATIONS1

S. Zaidman

Résumé

Dans ce travail, on indique comment obtenir des solutions régulières fortes) de l'équation différentielle opérationnelle $v^{\prime}-A v=\theta$ dans l'intervalle $(a, b) \subset \mathbb{R}$ (A étant un opérateur non borné dans l^{\prime} espace de Banach X), en partant des solutions faibles continues $u(t)$ de la même équation, moyennant la formule $v(t)=\left(\lambda_{0}-A\right)^{-1} u(t)$, où l'opérateur $\left(\lambda_{0}-A\right)^{-1} \in L(x)$ existe pour un $\lambda_{0} \in \mathbb{C}$.

Introduction

In this note we continue previous investigations on the weak solutions of differential equations with unbounded operators in Banach spaces (see [3], [4], [5], [6]). The result which will be explained here consists in the following: if $u(t)$ is a continuous weak solution of an equation of the form $u^{\prime}(t)-A u(t)=\theta$ on the interval (a, b) $\subset \mathbb{R}, A$ being a linear densely defined operator in the Banach space X, and if $v(t)=R\left(\lambda_{0}, A\right) u(t)$ where λ_{0} is a regular point of the operator A, then $v(t)$ is a regular (strong) solution of the same equation: $v^{\prime}(t)-A v(t)=\theta$ on (a,b). Precise statements and the proof are given below.

1. Let X be a Banach space and A be a linear operator with dense domain $D(A) \subset X$ and with range in X too. Consider the dual (or adjoint)

[^0]operator A^{*} acting on $D\left(A^{*}\right) \subset X^{*}$ and with range in X^{*} - the dual space to X. If (a, b) is an interval of the real line, we define $K_{A *}(a, b)$ to be the class of all functions $\phi^{*}(t) \in C^{1}\left[(a, b) ; X^{*}\right]$, which are θ near a and b, such that $\phi^{*}(t) \in D\left(A^{*}\right)$ for all $t \in(a, b)$ and $A^{*} \phi^{*} \in C^{0}\left[(a, b) ; X^{*}\right]$; the elements of $K_{A *}(a, b)$ are vector-valued test-functions.

A strongly continuous function $u(t),(a, b) \rightarrow X$ is called weak solution of the differential equation: $u^{\prime}(t)-A u(t)=\theta$, if the integral identity

$$
\begin{equation*}
\int_{a}^{b}<\frac{d}{d t} \phi^{*}(t)+A^{*} \phi^{*}(t), u(t)>d t=0 \tag{1.1}
\end{equation*}
$$

is satisfied, for all $\phi^{*} \in \mathrm{~K}_{\mathrm{A}}(\mathrm{a}, \mathrm{b})$ (here $<$, > means duality between X and $\left.X^{*}\right)$. Our aim is to establish the following:

THEOREM. Let $u(t)$ be a continuous weak solution on the interval $(a, b) \subset \mathbb{R}$ of the differential equation $u^{\prime}(t)-A u(t)=\theta$, and assume that the operator A has a least one regular point λ_{0}. Then the function $v(t)=$ $\left(\lambda_{0}-A\right)^{-1} u(t)$ belongs to $C^{1}[(a, b) ; X]$ and verifies the differential equation: $v^{\prime}(t)-A v(t)=\theta$ on (a,b) in the strong sense.

2. The proof

LEMMA 1. The above defined function $v(t)$ is again a continuous weak solution on (a, b) of the same differential equation: $v^{\prime}(t)-A v(t)=\theta$.

$$
\text { Consider isi fact any test-function } \phi^{*}(t) \in K_{A *}(a, b) \text {. It readily follows }
$$ that

$$
\begin{equation*}
\int_{a}^{b}<\frac{d}{d t} \phi^{*}+A^{*} \phi^{*}, v>d t=\int_{a}^{b}<\frac{d}{d t} \phi^{*}+A^{*} \phi^{*}, R\left(\lambda_{0} ; A\right) u>d t \tag{2.1}
\end{equation*}
$$

Use now a well-known result (see for instance [1], p. 14, Lemma 4.6) to derive that $\lambda_{0} \in \rho\left(A^{*}\right)$ (resolvent set of A^{*}) and the equality $R\left(\lambda_{0} ; A^{*}\right)=\left(R\left(\lambda_{0} ; A\right)\right.$). Thus we get the relation

$$
\begin{aligned}
\int_{a}^{b}<\frac{d}{d t} \phi^{*}+A^{*} \phi^{*}, v>d t & =\int_{a}^{b}\left\langle R\left(\lambda_{o} ; A^{*}\right)\left(\frac{d}{d t} \phi^{*}+A^{*} \phi^{*}\right), u\right\rangle d t \\
& =\int_{a}^{b}<\frac{d}{d t} R\left(\lambda_{o} ; A^{*}\right) \phi^{*}+A^{*} R\left(\lambda_{o} ; A^{*}\right) \phi^{*}, u>d t \\
& \left.=\int_{a}^{b}<\frac{d}{d t} \psi^{*}(t)+A^{*} \psi^{*}(t), u(t)\right\rangle d t
\end{aligned}
$$

where $\psi^{*}(t)=R\left(\lambda_{0} ; A^{*}\right) \phi^{*}(t)$. It is quite obvious that the new function $\psi^{*}(t)$ belongs also to our test-functions space $K_{A *}(a, b)$ (for instance, one sees that $A^{*} \psi^{*}=\left(A^{*}-\lambda_{0} I+\lambda_{0} I\right) R\left(\lambda_{0} ; A^{*}\right) \phi^{*}=-\phi^{*}(t)+\lambda_{0} R\left(\lambda_{0} ; A^{*}\right) \phi^{*}(t)$ which belongs to $\left.C\left[(a, b) ; X^{*}\right]\right)$. Therefore, the last integral in (2.2) vanishes, as desired. Next, we prove the simple

LEMMA 2. The function $v(t)$ belongs to $D(A)$ for all $t \in(a, b)$ and $A v(t)$ is a continuous function from (a, b) into x.

In fact, we have:

$$
A v(t)=\left(A-\lambda_{0} I+\lambda_{0} I\right)\left(\lambda_{0}-A\right)^{-1} u(t)=-u(t)+\lambda_{0} R\left(\lambda_{0} ; A\right) u(t)
$$

which is strongly continuous on (a,b).

We are now ready for the final part of the proof of the Theorem. Using Lemma 1 and the equality: $\left\langle\phi^{*}(t), A v(t)\right\rangle=\left\langle A * \phi^{*}(t), v(t)\right\rangle$ we obtain the relation

$$
\begin{equation*}
\int_{a}^{b}\left\langle\frac{d}{d t} \phi^{*}, v\right\rangle d t=-\int_{a}^{b}\left\langle\phi^{*}(t), A v(t)\right\rangle d t, \quad \forall \phi^{*} \in K_{A^{*}}(a, b) \tag{2.3}
\end{equation*}
$$

We shall use this equality for a special sequence of functions in $K_{A^{*}}(a, b)$; precisely, let us take a sequence of (scalar-valued) functions $\left\{\alpha_{m}(t)\right\}_{1}^{\infty} \subset C_{0}^{1}(\mathbb{R})$, such that $\alpha_{m}(t)=0$ for $|t| \geq 1 / m, \alpha_{m}(t) \geq 0, \int \alpha_{m}(\sigma) d \sigma=1$. Next, 1et us fix any point t_{0} in (a,b) and then consider the X^{*}-valued function $\phi_{m}^{*}(\tau)=$ $\alpha_{m}\left(t_{0}-\tau\right) x^{*}$ where x^{*} is an arbitrary element in $D\left(A^{*}\right)$. It is obvious that for m sufficiently large (depending on t_{o}), the above function ϕ_{m}^{*} is a test-function-it belongs to $K_{A^{*}}(a, b)$. At this stage we can infer from the above formula (2.3) the new identity

$$
\begin{equation*}
\int_{a}^{b} \alpha_{m}^{\prime}\left(t_{o}-\tau\right)<x *, v(\tau)>d \tau=\int_{a}^{b} \alpha_{m}\left(t_{o}-\tau\right)<x *, A v(\tau)>d \tau \tag{2.4}
\end{equation*}
$$

for all $x^{*} \in D\left(A^{*}\right)$ and $m \geq m_{0}\left(t_{0}\right)$ and therefore also the equality

$$
\begin{equation*}
\left\langle x *, \int_{a}^{b} \alpha_{m}^{\prime}\left(t_{o}-\tau\right) v(\tau) d \tau\right\rangle=\left\langle x *, \int_{a}^{b} \alpha_{m}\left(t_{o}-\tau\right)(A v)(\tau) d \tau\right\rangle \tag{2.5}
\end{equation*}
$$

again for all $x^{*} \in D\left(A^{*}\right)$ and $m \geq m_{0}$. Use now the fact that A has a regular point; it follows that it is a closed linear operator with dense domain, and accordingly, the domain of its adjoint, $D\left(A^{*}\right)$ is a total set in X^{*} (see [2] for definition and result on total sets). We may derive therefore the equality in X

$$
\begin{equation*}
\int_{a}^{b} \alpha_{m}^{\prime}\left(t_{o}-\tau\right) v(\tau) d \tau=\int_{a}^{b} \alpha_{m}\left(t_{o}-\tau\right)(A v)(\tau) d \tau, \quad m \geq m_{o} \tag{2.6}
\end{equation*}
$$

Consider now the convolution:

$$
\left(v \alpha_{m}\right)(t)=\int_{a}^{b} \alpha_{m}(t-\tau) v(\tau) d \tau
$$

which has a strong derivative

$$
\left(v^{*} \alpha_{m}\right)^{\prime}(t)=\int_{a}^{b} \alpha_{m}^{\prime}(t-\tau) v(\tau) d \tau
$$

Accordingly, the relation (2.6) can be written as

$$
\begin{equation*}
\left(v^{*} \alpha_{m}\right)^{\prime}(t)=\left((A v)^{*} \alpha_{m}\right)(t), \quad \forall t \in(a, b) \quad \text { and } \quad m \geq m_{0}(t) \tag{2.7}
\end{equation*}
$$

At this point we take again a fixed t_{o} in (a, b), and consider $\delta>0$ in such a way that $\left(t_{o}-\delta, t_{o}+\delta\right) \subset(a, b)$. It is now obvious that the above (2.7) will hold for all t in $\left(t_{0}-\delta, t_{0}+\delta\right)$ as soon as m is greater than some m_{0} depending on t_{0} and $\delta>0$ only. (For in this case all functions $\alpha_{m}(t-\tau)$ belong to
$C_{0}^{1}(a, b)$ as necessary.) We shall now integrate (2.7) between a fixed $\overline{\mathrm{t}} \in\left(\mathrm{t}_{\mathrm{o}}-\delta, \mathrm{t}_{\mathrm{o}}+\delta\right)$ and an arbitrary t chosen in the same interval and shall derive

$$
\begin{equation*}
\left(v * \alpha_{m}\right)(t)=\left(v * \alpha_{m}\right)(\bar{t})+\int_{\bar{t}}^{t}\left((A v) * \alpha_{m}\right)(\sigma) d \sigma \tag{2.8}
\end{equation*}
$$

When $m \rightarrow \infty$, using continuity and uniform continuity of v and $A v$, as well as the
δ-function properties of the sequence $\left\{\alpha_{m}\right\}_{1}^{\infty}$ we deduce the equality

$$
\begin{equation*}
v(t)=v(\bar{t})+\int_{\bar{t}}^{t}(A v)(\sigma) d \sigma, \text { for all } t \text { in }\left(t_{o}-\delta, t_{o}+\delta\right) \tag{2.9}
\end{equation*}
$$

Using strong continuity of the function (Av) (σ) one may derive from (2.9) the strong derivability of $v(t)$ in $\left(t_{0}-\delta, t_{0}+\delta\right)$-hence in all (a,b)-, and the equa1ity

$$
\begin{equation*}
v^{\prime}(t)=A v(t) \tag{2.10}
\end{equation*}
$$

in this same interval. Finally from continuity of $A v$ we deduce that $v(t) \epsilon$ $C^{1}[(a, b) ; X]$ and the theorem is proved completely.

References

[1] FATTORINI, H.O., The Cauchy problem (Encyclopedia of Mathematics and its Applications), Addison-Wesley Publishing, London, Amsterdam, Tokyo, 1983.
[2] GOLDBERG, S., Unbounded Linear Operators, Theory and Applications, McGrawHill Book Co, New York-San Francisco-London, 1966.
[3] ZAIDMAN, S., Remarks on weak solutions of differential equations in Banach spaces, Boll. U.M.I. (4) 9(1974), 638-643.
[4] ZAIDMAN, S., The weak Cauchy problem for abstract differential equations, Rend. Sem. Mat. Univ. Padova, Vo1. 56 (1977), 1-21.
[5] ZAIDMAN, S., Remarks on the well-posed weak Cauchy problem, Boll. U.M.I. (5) $17-\mathrm{B}(1980), 1012-1022$.
[6] ZAIDMAN, S., Some remarks concerning regularity of solutions for abstract differential equations, Rend. Sem. Mat. Univ. Padova, Vol. 62 (1980), 47-64.

> Département de mathématiques et de statistique
> Université de Montréal
> Montréal, Québec, Canada
> Manuscrit reçu le 3 juin 1985 . Revision le 16 septembre 1985.

[^0]: ${ }^{1}$ We acknowledge financial support of the Natural Science and Engineering Research Council Canada during the preparation of this work.

