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VECTORIAL OPTIMIZATION PROGRAMS
WITH MULTIFUNCTIONS AND DUALITY

Vasile Postolica

Résumé

Nous définissons, dans le présent travail, les notions de sous-différen-
tielle et de conjuguée d'une multifonction définie sur un espace vectoriel réel
prenant ses valeurs dans un espace vectoriel ordonné réel. Nous &tudions (section
2) les premiBres propriétés de ces concepts, dans le but d'étendre une dualité pour
les probldmes d'optimisation vectorielle au cas oli les fonctions & traiter sont &es
multifonctions (section 3). Nous généralisons ainsi certains résultats de base de
Tanino et Sawaragi [8], en particulier pour le cas ol les fonctions i traiter pren-
nent leurs valeurs dans un espace localement convexe quasi-complet ordonné par un

cone fermé et nucléaire (supernormal).

1. Preliminaries

It is known that, in general, the set of solutions for an optimization
problem with point-to-point objective function is characterized by the subdifferen-
tial of a function and that the conjugate functions play important roles in the

duality theory for convex programs ([1]1, [6]).

Tanino and Sawaragi ([7], [81]) construct and develop a duality theory for
multi-objective optimization problems and Kawasaki ([2], [3]) extends their results,
using the concepts of "conjugate' and "subdifferential' for multifunctions from a
linear space to R: (the union of the n-dimensional Euclidian space R" and

two n-dimensional points consisting of +o and -®, respectively).
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In this paper, we define the subdifferential and the conjugate of a multi-
function defined on a real linear space and taking values in a real ordered linear
space and we investigate their immediate properties (Section 2), with the aim of
extending a duality of vectorial optimization problems in which the objective func-
tions are multifunctions, using the concept of vectorial conjugate, Lagrangian and
its saddle points (Section 3). Thus, we show some ways and new dual concepts for
the study of the vectorial coptimization programs with point-to-set objective maps,
generalizing basic results of [8], especially for the case when the objective multi-
functions take values in quasi-complete locally convex spaces ordered by a closed

and nuclear (supernormal) cones.

Let (Z,<) be a real ordered vector space, i.e., a real linear space en-
dowed with an order (or preorder) '"<" possibly induced by a cone. We add to Z
a smallest element denoted by -« and a largest element denoted by +», respective-
ly, we consider Z = Z U {-»,+»} and we extend the addition and the scalar multi-

plication of Z to Z wusing the following calculation conventions:

(@) + X = x + (-©) = -o, (40) + X = X + (+0) = +o for every x e Z;
(=) + (=) = -, (+%) + (+) = 4o

A e (30) =20 for X >0 and X * (#w) = o for A < 0.

Throughout the paper we denote by & the empty set and by P(Z) the family of all
subsets of Z. If A % 0,{+o} is an arbitrary subset of Z and p € Z, then
DEFINITION 1.1. We shall say that p e INF(A) iff there exists no a ¢ A

such that a < p.

DEFINITION 1.2. We shall say that p € INFl(A) iff p e INF(A) and for

every p' € Z with p < p', there exists a ¢ A such that a < p'.

It A=9 or A = {40}, we consider INF(A) = INFI(A) = {4}, In a si-

milar manner we define the sets SUP(A) and SUP,(A) for A # o, {-}.

DEFINITION 1.3. We shall say that p e SUP(A) iff there exists no a ¢ A

with p < a.
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DEFINITION 1.4. We shall say that p € SUPl(A) iff p e SUP(A) and for

every p' ¢ Z with p' < p, there exists a e€ A such that p' < a.

As for INF, if A =& or A = {-x}, we shall consider SUP(A) = SUPl(A)

REMARK 1.1. INFl(A) < INF(A), SUPI(A) c SUP(A), SUPtA) = -INF(-A) and
SUPl(A) = —INFl(—A) for every subset A of Z. Also we have SUP(B) 2 SUP(C)
and INF(B) > INF(C) for every non-void subsets B, C of Z with B < C and if
we denote by Z+ the cone which induces the relation '<", then it is easy to see

that INF (A) = INF (A+Z,) and SUP,(A) = SUP (A-Z).

2. The vectorial subdifferential and conjugate of a multifunction

Let X and Y be two real linear spaces.

DEFINITION 2.1. We call Z-duality between X and Y every bilinear

map (.,.): X x X > Z.

In this case, we shall say that (X,Y,(.,.)) is a Z-dual system. 1If,
in addition, for every x e X\{0}, there exists y ¢ Y such that (x,y) ¥ 0 and
for every y e Y\{0}, there exists x e¢ X such that (x,y) # 0, then we call
(X,Y,(.,.)) a separate Z-dual system. For example, if we denote by L(X,Z) the
real linear space of all linear operators T: X > Z, then we can define the follow-
ing Z-duality: (.,.): X x L(X,2) ~Z, (u,t) =Tu, ue X and T e L(X,Z). It
is clear that (X,L(X,Z),(.,.)) is a separate Z-dual system if and only if
L(X,Z) + {0} and it separates the points of X, i.e., for every x,y € X with

x # y, there exists T e L(X,Z) such that Tx % Ty.

With respect to this Z-duality we define the vectornial subdifferential of

e D(f) = {x e X: £(x) ¥ &} such

a multifunction f£: D(f) ¢ X -+ P(Z) at a point X,

that f£(x)) § {+=} by

(2.1) vi(xo) = {T e L(X,Z): there exists Yo € f(xo) such that

Tx, - Tu : Y, - Y for every u e D(f) and every y e f(u)}.
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Throughout the paper we shall consider that L(X,Z) contains only the linear and
continuous operators from X to Z whenever X and Z are 1ine#r topological
spaces. Every element of vi(xo) will be called the vectorial subgrnadient of f
at X, and it is clear that the existence of vectorial subgradients is closely re-

lated to the (pre)order relation in Z.

REMARK 2.1. This concept of subdifferential generalizes the notions in-
troduced by Definitions 3.1 and 5.1 from [8] and [2] respectively. We also notice
that there exists a strong connection between the vectorial subdifferential and the
classical subdifferential. Indeed, if X 1is a real linear topological space and

¢: X+ R is a function, then we can define the multifunction $: X > P(R) by

~ Mt t 2 0(x)}, x € D(o)
o(x) = {@, x € X\D(¢)

subdifferential of ¢ at a point X, € D(p) by Bw(xo), we shall prove that

where D(op) = {x € X: ¢o(x) < +°}. If we denote the

3,0(x) = do(x,).
We have

(2.2) av$(xo) = {T € L(X,R): there exists y = ®(x,) such that

o

Yo =Y €Tx - Tu for every u e X and every y 2 o(u)}

[0}

and

(2.3) d(x) = {T ¢ L(X,R): e(x,) - o) < Tx, - Tu for every u e X}.

Let T ¢ Bvq; (xo). Then there exists Yo 2 w(xo) such that Yo =¥V <
Txo - Tu for every u e X and every y > o¢(u). Therefore (p(xo) - o(u) <

Tx, - Tu for every u e X, that is, T ¢ Bw(xo).

Conversely, let T ¢ 8o(xo). Then we have w(xo) - ¢o(u) < Txo - Tu for
every u e X which implies that q;(xo) -y < <p(x0) - o(u) < Txo - Tu for every
Y 2 ¢(u). Thus we obtained the contrary inclusion aw(xo) E'B;$(xo) and the equa-

lity 8J3(x0) = aw(xo) is proved.

REMARK 2.2. It is easy to see that a multifunction £: D(f) ¢ X » P(Z) is
vectorial subdifferentiable at X, € D(f) with f(xo) # {+o}, i.e., vi(xo) + o,

if and only if there exist Yo € f(xo) and T € L(X,Z), such that Yo - Tx0 €
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INF{y - Tu: u e D(f) and y e f(u)} or equivalently, if and only if there exist

Yo € f(xo) and T e L(X,Z), such that y - Tx e INFl{y-Tu: ueD(f) and ye f(u)l.

REMARK 2.3. If for a nonempty subset M of a real linear space X we de-
fine its vectorial dual cone by M, = {T e L(X,2): Tx k 0 for every x ¢ M} and
for a multifunction f£: D(f) ¢ X »~ P(Z) we consider its graph Gf = {(x,y):

x € D(f) and y e f(x)}, then T ¢ vi(xo) if and only if (-T,I) € (Gf -

(xo,yo))V for some Yo € f(xo), where I: Z~+Z and I(z) =z for every z € Z.

DEFINITION 2.2. If G C¢ X is a nonempty subset, then an element g, € G
is said to be a best vectorial approximation of an element X, € X by the elements
of G with respect to a multifunction f: D(f) € X » P(Z} if there exists
Yo € f(go—xo) such that for every g ¢ G with g - X, € D(f) and every

y € f(g-x;) it follows that y {y_ .

If x, =0, then g = is called minimal elLement for the vectorial program
(G,f/G). It is clear that 8 is a best vectorial approximation of Xy by G if

and only if g, - X

o is minimal element for the vectorial program (G-xo,f/G_x ).
(o}

Also it is easy to see that g, € G 1is a best vectorial approximation of X, € X
by the elements of G with respect to a multifunction f if and only if
f(go-xo) N INFL U f(g-xo)] = f(go-xo) n INFl[ U f(g—xo)] $ 0.
geG geG
The following theorem establishes the characterization of the set of mini-
mal elements for a vectorial program by the vectorial subdifferential of a multi-

function.

THEOREM 2.1. TIf f£: D(f) ¢ X » P(Z U {+=}) s a mubtifunction, G c X

A5 a non-void set and we consider the multifunction 1 G D(f) » P(Z U {+}) de-

£,
§ined by

{0}, xe6

I x) =
£,6 {+=}, x e D(£)\G

then the following conditions are equivalent:
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(1) g
(ii) g e G A5 a minimal element for the vectorial program (D(f),f+If G);

o € G 44 a minimal elLement for the vectorial progham (G,£/3);

(iii) O € Bv(f+If,G)(go).
PROOF. It is an immediate consequence of the above considerations.

DEFINITION 2.3. For every multifunction f: D(f) ¢ X » P(Z), the point-

to-set map f*: D(f*) ¢ L(X,Z) » P(Z) defined by
(2.4) £%(T) = SUPl{Tu -y:ueD(f) and y e f(u)}

is called the vectorial conjugate of £, where D(f*) = {T e L(X,Z): SUPl{Tu -y:
ue D(f) and y e f(u)} # &}. The vectorial biconjugate of £, denoted with f£**

is defined by
(2.5) £4¢(x) = SUP {Tx - y*: T e D(£*) and y* e £%(T)}
for every x e D(f**) = {x ¢ X: SUPI{Tx - y*: T e D(f*) and y* e £*(T)} % 0}.

REMARK 2.4. We have f£*(0) = SUPl{-y: ueD(f) and y e f(W)} = —INFl{y:
ueD(f) and y e f(u)} which justifies the importance of the vectorial conjugate

in vectorial optimization problems with the objective maps multifunctions.

REMARK 2.5. 1If in the Definition 2.3 f is a real multivalued map, we
obtain the concept of conjugate map introduced by Definition 2.3 of [8] and if f
is a relation from X to R: , then we obtain the notion of conjugate relation in-
troduced by Definition 3.1 of [2], taking into account the following immediate
equality: £*(T) = SUPl{Tu -y-z,iue D(f), y e f(u) and z_e Z such that
0 < z+} for every T e D(f*). As in the case of the vectorial subdifferential,
there exists a strong connection between the vectorial conjugate and the classical
conjugate. Indeed, if X is a real linear topological space and ¢: X > R is a
function, then we can consider the multifunction $: X > P(R) defined by $(x) =
{t: t 2 o(x)} and if we denote the conjugate of ¢ by ¢*, we shall prove that

o* = {o*}.



Vasile Postolica 51

We have
(2.6) 9*(T) = SUP {Tx - y: x € X and y > ¢(x)}
and
(2.7) @*(T) = SUP{Tx - 0(x): x € X}

for every T e L(X,R).

Let pe $*(T). Then there exists no x € X such that p < Tx - ¢(x),
that is, p = Tx - ¢(x) for every x ¢ X and if € < p, it follows that there

exist X, € X and y 2 ¢(xe) such that € < Tx8 -y< TxE - ¢(x€). Therefore

©*(T) E_{w*(T)} for all T e L(X,R). Conversely, let p = ¢*(T). Then there

exists no x € X and y 2 ¢(x) such that p < Tx - y since, in the contrary
case, we have p < Tx - y < Tx - ¢(x) contradiction, and if € < p, there exists
X, € X such that € < sz - w(xe). Thus we obtained the contrary inclusion

{op*(T)} 5.5*(T) for every T e L(X,R) and the equality o* = {¢*}  is proved.

REMARK 2,6. The concept of vectorial biconjugate for multifunctions ex-
tends also the classical concept of biconjugate for extended real-valued functions.
Indeed, from the above considerations it follows that for every function ¢: X - R
and every x ¢ X we have @**(x) = SUPI{TX -y*: T e Dd;*) and y* € $*(T)} =

SUPI{Tx - y*: T e D(o*) and y* e {o*(T)}} = ¢**(x).

Strong relationships between the vectorial subdifferential, the vectorial
conjugate map and the vectorial biconjugate map are established in the following

theorems.

THEOREM 2.2. A multifunction f£: D(f) < X » P(Z) 4is vectorial subdif-
ferentiable at x e D(f) with £(x) b {1} 4if and only if there exist y_ e £(x)

and T e L(X,Z) Asuch that Tx, -y, € £*(T).

PROOF. If f: D(f) ¢ X ~» (23 is a multifunction vectorial subdifferentiable at

X, € D(f), then there exist Yy € f(xo) and T € L(X,Z) such that
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Tx0 - Y, € £*(T), because, in the contrary case, there exist ue X and y e f(u),
such that Txo - Y, < Tu - y, i.e., Txo - Tu < Yo =Y in contradiction with

T e avf(xo). Conversely, let X, € D(f), Yo € f(xo) and T e€ L(X,Z) such that
Txo - Y, € £*(T). If T ¢ vi(xo), then there exist u € D(f) and y e f(u) with

Txo - Tu < Yo =¥ i.e., Txo - Yy < Tu - y, in contradiction with TxO - Y, € £*(T)

and the theorem is proved.

THEOREM 2.3. 1If f: D(f) < X > P(Z) 4s a multifunction, then

(1) for every X, € D(f) with f(xo) $ {+=} and every T e L(X,Z) foxr
which there exist Yo € £(x.) and y* e £*(T) such that Yo tY* = Tx, we have
T € avf(xo);

(ii) gon every X, € D(f) with avf(xo) +d and every T e 3Vf(xo), there
exists y e £(x)) such that Tx, k Y, * y* and Yo *Y* ¥ Tx, for every

y* € £*(T).

PROOF. (i) follows directly from Theorem 2.2.

(ii) 1t is clear that for every X, € D(f), vy

o € f(xo) and T € vi(xo)

we have Yo y* & TxO for all y* e £f*(T). Assume now that for every Yo € f(xO),
there exists y* ¢ f*(T) such that Tx0 <Yyt y* , i.e., Txo =Yy < y*. Since
y* ¢ f*(T), it follows that there exist u ¢ D(f) and y e f(u), such that

Txo =Y < Tu - y, or equivalently, Txo - Tu < Yo = Vs in contradiction with

T e avf(xo). This completes the proof.

THEOREM 2.4. Every multifunction £: D(f) ¢ X » P(Z) has the following
properties:

(1) 44 £ 44 vectorial subdifferentiable at x, € D(f), Zthen
£(x,) N £4*(x ) N {Txo - y*: T e L(X,2) and y* e £*(T)} # ¢;

(ii) 44 f(xo) n f**(xo) n {Txo - y*: T e L(X,Z2) and y* ¢ £*(T)} # 9,
then there exist Y, € £x) and T e L(X,Z) such that Tx, - Yo € £*(T);

(iii) for every x_ e D(£) N D(£*%),

0 € f(xo) and y;* € f**(xo) we

have Yo ¥ yE*.
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PROOF. (i) By virtue of Theorem 2.2, if f: D(f) ¢ X ~» P(Z) 1is vectorial subdif-
ferentiable at X, € D(f), then there exist T e L(X,Z) and Yo € f(xo) such that

Tx, - ¥, € £*(T), that is, y e £(x)) n {Txo - y*: T e L(X,Z) and y* e £*(T)}.

Let us suppose that Yo ¢ f**(xo). Since Yo € {Txo -y*: T e L(X,Z) and
y* ¢ £*(T)}, it follows that there exist T' e L(X,Z) and y' e £*(T') with
Yo < T'xo - y', that is, y' < T'xo =Yy s in contradiction with y' € £*(T').
Therefore y_ e £(x)) N £**(x ) N {Txo - y*: T e L(X,Z) and y* e £*(T)} and (1)

is proved.

(ii) Suppose that there exists Yo € f(xo) n f**(xo) N {Tx0 -~ y*:
T e L(X,Z) and y* ¢ £*(T)} and f is not vectorial subdifferentiable at

b'e
X

m

nre that is, for evervy T ¢ L(X
2LT) Ior every 1 € L{A

such that Tx0 - Tu < Yo - ¥» OT equivalently, Txo -y < Tu -y which implies

)
that Tx_ -y, ¢ £*(T), i.e., Y, ¢ Tx, - £*(T) for all T e L(X,Z), contradiction,

and taking into account Theorem 2.2(ii) follows.

(iii) Assume that there exist X, € D(£) N D(£f**), Yo € f(xo) and
yg* € f**(xo) such that Yo < y;* . Then there exist T e L(X,Z) and yg e £*(T)
with Yo < Tx0 - y; that is, such that y; < Tx0 - Yo o contradiction, and theo-

rem is proved.

COROLLARY. A multifunction f£: D(f) € X > P(Z) 4s vectorial subdifferen-
tiable at x e D(f) with £(x,) £ {+o} .if and only if

(2.8) £(x,) N £4%(x ) N {Tx, - y*: T e L(X,2) and y* e £%(T)} % 0.
THEOREM 2.5. For every multifunction f£: D(f) € X » P(Z) we have

(2.9)  SUP/{Tx - 2: T € L(X,2), z 2 and z ¥ Tx - y for every x e D(£)
and every y e £(x)} N {Tx - y*: T e L(X,Z) and y* e £*(T)} € £**(x)
NA{Tx - 2z: TeL(X,2), zeZ and z & Tx -y f§or every x e D(f)

and every y e £(x)}

and
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(2.10) f**(x) = SUPI{Sx - z: S € L(X,Z) and there exists y* e £*(S) such
that y* < z}

x € X.

PROOF. (2.9) and (2.10) are immediate consequences of Definition 1.4 and of rela-

tion (2.5).

REMARK 2.7. 1Inclusion (2.9) offers a sufficient condition for the exis-
tence of f** and relation (2.10) generalizes Theorem 6.3.7 ([5], p. 343), proving
that for a multifunction f£: D(f) ¢ X » P(Z) we have f = f** if and only if
£f(x) = SU?I{SX - 2z: 8 € L{X,Z) and there exists y* e £*(S) such that y* < z}

for all x e D(f).

THEOREM 2.6. For every multifunction £: D(f) < X -~ P(Z) we have

(i) 44 x_ e D(£) with £(x ) t {+=} and T ¢ 3 _£(x), then
\=J U“O‘— \*~J \OJT“ ks LV\OI’
X, € vi*(T):
(i1) 4§ xj € D(£) N D(£**) and £(x), £**(x) $ {+=}, then
vi(xo) g_vi**(xo);
(ii1) 4§ xg € D(£) N D(£**), £**(x) bo{+}, £**(x) € £f(x) and for
every y e f(x), there exists y** ¢ £**(x) such that y** <y whenever x e D(f),
then 3 f(x)) =3 £**(x);
(iv) 4§ x, € D(£) and £(x)) $ {+=}, then 3, f(x;) + & implies

£xx(x) N £(x)) £ o.

PROOF. (i) If X, € D(f) and T e vi(xo), then, by virtue of Theorem 2.2, there

exists y_ € f(xo) such that Txo - Y, € £f*(T). Hence, from the definition of the

o
multifunction f* it follows that for every S e D(f*) and every y* e f*(S) we

- - - * 3 *
have TxO Sxo % (Tx° yo) y* , that is, X, € vi (m).

(ii) For every X, € D(f) N D(f**) and every T e vi(xo) from (i) we

obtain: T ¢ avf(xo) = X, € vi*(T) =T € vi**(xo).

(iii) is an immediate consequence of (ii) together with the definition of

the vectorial subdifferential.
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(iv) If X, € D(f) and f 1is vectorial subdifferentiable at Xgs then
taking into account Theorem 2.2 there exist T e L(X,Z) and Yy € f(xo) such that
Txo - Yy € £*(T). We shall prove that Yo € f**(xo). Indeed, for every S e L(X,Z)
and every z ¢ Z for which there exists y* e¢ f*(S) with y* <z we have

Yo ¢ Sx0 - z since, in the contrary case, Yy < SxO - z implies Yo < Sx - y*,

o
that is, y* < Sx0 =Yy s contradiction. On the other hand, if € < Yo then
€ < Txo - (Txo-yo) with Txo =Y, € £*(T). Hence, by virtue of the relation (2.10)

from Theorem 2.5 we have Yo € f**(xo) and (iv) is proved.

REMARK 2.8. The above theorems generalize for multifunctions basic re-
sults concerning the conjugate, the biconjugate and the subdifferential from [21],

[31, [5, Chapter 61, [7] and [81].

3. Duality

Let X and Y be two real linear spaces, f: D(f) c X~ P(Ej a multi-
function with D(f) = {x ¢ X: £(x) # ®}, F: D(F) € X x Y » P(Z) a point-to-set
map defined on D(F) = {(x,y) € X x Y: F(x,y) # &} such that F(x,0) = f(x) for
every x € D(f) and the Z-duality (.,.) between X X Y and L(X,Z) x L(Y,Z)

defined by
(3.1) ((x,y),(T,S)) = Tx + Sy, Vx e X, Vy eY, VT e L(X,Z), VS e L(Y,Z)

where by L(X,Z)(L(Y,Z)) we denote the real linear space of all linear operators
T: X>Z (S: Y ~>Z) with the remark that, as in the Section 2, we shall consider
L(X,Z)(L(Y,Z)) containing only the linear and continuous operators from X to Z

(from Y to Z) whenever X and Z (Y and Z) are linear topological spaces.

In accordance with the Definition 2.3, the vectorial conjugate of F with

respect to the above Z-duality is the multifunction F*: D(F*) » P(Z) defined by
(3.2) F*(T,S) = SUPI{Tx + 8y - z: (x,y) € D(F) and z e F(x,y)}

where D(F*) = {(T,S) e L(X,2) x L(Y,Z): SUPl{Tx + Sy - z: (x,y) € D(F) and

z € F(x,y)} 1is nonempty}.
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Therefore,

(3.3) F* = (0,y*) = SUPl{y*y - z: (x,y) € D(F) and z e F(x,y)}

for every y* ¢ L(Y,Z) with (0,y*) ¢ D(F*).

We consider the following vectorial problems:

™) INFl[ U fx)InilC U f(x)] = MIN(f)
xeD(£) xeD (f)
and
P*) SUP1[ U (-F*(0,y*))1 Nn [ U (-F*(0,y*))] = MAX[-F*(0,-)]
(p,y*)eD(F*) (0,y*)eD(F*)

The following theorem shows the immediate connections between the feasible

solutions of (P) and (P*).

THEOREM 3.1,

(i) INF [ U £(x)]1 c SUPL U (-F*(0,y*))1;
xeD(f) (p,y*)eD(F*)

(i1) sup,( U (-F*(0,y*))] ¢ INF[ U £f(x)1;
(p,y*)eD(F*) xeD(f)

(iii) 4§ every two elements in Z are "< comparable and forn every
x, € D(f) there exists (0,y¥) e D(F*) such that ye) <z -z, Y(x,y) € D(F),

Vz ¢ F(x,y), Vzo € F(xo,O), then

SUPL u (-F*(0,y*))1 < SuPL U  f£(x)1.
(0,y*)eD(F*) xeD(f)

PROOF. (i) Let p € INFl[ U f(x)] and assume that

xeD ()
p ¢ SUP[ U [(-F*(0,y*))]. Then there exist y*e L(Y,Z) and
(0,y*)eD(F*) ,
-f* ¢ -F*(0,y*) such that p < -f*, Since p ¢ INFl[ U f(x)], it follows that
xeD(£)

there exist x e D(f) and y e f(x) such that f£* < y*(0) - y, in contradiction

with the definition of F*(0,y*).

(ii) Let p € SUP1[ U (-F*(0,y*))] and suppose that

(0,y*)eD(F*)
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p ¢ INF[L U f(x)]. Then there exist x e D(f) and y e f(x) such that y < p.
xeD (£)

Since p e SUP.[ 0] (-F*(0,y*))] it follows that there exist y* e L(Y,Z)
(0,y*)eD(F*)

and -f* ¢ -F*(0,y*) with y < -f*, The result follows as in the proof of (i).

1

(iii) Let p e SUPL U (-F*(0,y*))] and let us assume that
(0,y*)eD(F*)
p & SUPL U f(x)]. Then there exist X, € D(f) and Yo € f(xo), such that
xeD(£f)
P<Yy, - By virtue of the hypotheses, there exists y; e L{(Y,Z) such that

yg(y) -z <y <P for every (x,y) € D(F) and every z e¢ F(x,y), which implies
z; < “2, < <P, Vzo € F(xo,O), Vz; € F*(O,y;), that is, p < —z; , in contradic-

tion with our assumption.

COROLLARY. MIN(f) £ &, MAX[-F*(0,)] + & and MIN(f) N MAX[-F*(0,+)] § @

if and only if there exist X, € D(f), vy

o € £(x)), ¥* e L(Y,2) and £* e F*(0,y%)

Auch that Y, + £* = 0.

The proof follows the same line as the proof of the above theorem and for

this reason we have omitted it.

Now we introduce the concepts of vectorial Lagrangian and saddle point for
the problem (P) in order to show that these notions are closely connected with the
solutions of problems (P) and (P*) especially for the case when the objective mul-
tifunction f takes values in a quasi-complete locally convex space ordered by a

closed and nuclear cone.

DEFINITION 3.1. We shall call the vectorial Lagrangian map of problem (P)

the multifunction L: D(f) x L(Y,Z) - P(Z) defined by

(3.4) L(x,T) = INFl{z - Ty: (x,y) € D(F) and z e F(x,y)}

N{z - Ty: (x,y) € D(F) and z e F(x,y)}.

DEFINITION 3.2. A point (i,f) e D(f) x L(Y,Z) will be called a saddle

point of L if

(3.5) LD nsup,[ U L(x,T)1 N INF, [ U L(x,T)] #'0.

L reney,z) xeD(£)
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REMARK 3.1. As in the case of vectorial subdifferential and vectorial con-
jugate it is easy to see that the notions of vectorial Lagrangian and saddle point

generalize the classical similar concepts.

Before stating the theorem which gives the connection between the solu-
tions of problems (P), (P*) and the saddle points of L(.,.), we recall a few de-

finitions and we establish some lemmas which will be used in the proof.

DEFINITION 3.3. A linear topological space is said to be quasi-complete

if every non-void subset closed and bounded is complete.

Let E be a Hausdorff locally convex space with the topology induced by

a family Q = {qu]'OLEI of semi-norms and the dual space E'.

<~

DEFINITION 3.4 [4]. A convex cone K C E is said to be supernommal (nu-

clear) if for every qa e Q, there exists ﬁx e E' such that

(3.6) q](x) < ﬁl(x), Vx € K.

REMARK 3.2. The importance of the nuclear cones for the existence of the
solution for vectorial problems in locally convex spaces was emphasized for the

first time in [4].

Let K be a convex cone and A c E a nonempty set. Following [8], we
say that A is K-bounded if there exists a e E such that Aca + K and A
is said to be K-closed if A + K is closed. Moreover, A is called K-compact

if it is K-bounded and K-closed.

The following theorem and its corollary generalizes in locally convex
spaces the result established by Tanino and Sawaragi in Lemma 2.1 and Lemma 2.2 of
[8] concerning the existence of the efficient points for nonempty sets in finite

dimensional Euclidian spaces and it is fundamental for our purpose.

THEOREM 3.2 [4]. For every nonempty and K-compact set A 0f a quasi-

complLete Locally convex space ordered by a closed and nuclear cone K we have
INF,(A) N A $ 0.
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COROLLARY. I§ A 44 a set which satisfies the above conditions then

A C INFJ(A) N A + K.

In all our further considerations we suppose that Z is a quasi-complete

locally convex space ordered by a closed and nuclear cone Z_ .

LEMMA 3.1. If F;: D(F)) € X~ P(Z), F,: D(F)) < X>P(2) are multi-
functions with D(F,) N D(F,) $ 0, there exists Fi(x) + Fy(x) for all x from

D(Fl) N D(F and such that the set F,(x) A5 z+—c0mpact forn every x e D(Fl) n

)
D(F,), then

(3.7) INF [ u [F) (x)+F,(x)] = INF, U [F) (x)+F,(x) INF| F,(x)].
xeD(F1)ND(F,) xeD(F)ND(F,)

PROOF. By virtue of Remark 1.1 together with the above Corollary, we have:

INF U [Fl(x)+F2(x)]
XED(Fl)ﬂD(FZ)

INF U [F. (x)+F,(x)+Z. ]
! xeD(F))ND(E,) 1 27

= INF U [F, (x)+(F,(x)+2,)]
xeD(F)ND(F,)

INF U [F, (x) +(F,(ONINF, F.(x)+Z.)]
xeD(F))ND(F,) 2 127

- INF u [F, (x)+E, ()NINF, F. (x)+Z ]
xeD(F,)ND(F,) 1 2 172 +

INF u [F, (x)+F,(x)NINF} F,(x)] .
xeD(F,)ND(F,)

LEMMA 3.2. 1§ S e L(Y,Z) and the set {z - Sy: (x,y) ¢ D(F) and
z € F(x,y)} 44 Z+—compac/t forn every x e D(f) for which there exists y e Y such

that (x,y) e D(F), then

(3.8) -F*(0,8) = INF;[ U L(x,8)].
xeD(£)

PROOF. It follows from the relations (3.3), (3.4) and Lemma 3.1 applied for

Fi(x) = {0} and Fo(x) = {z - Sy: (x,y) ¢ D(F) and z e F(x,y)}, VYx e D(f).

REMARK 3.3. In the conditions of Lemma 3.2 we have
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(3.9) SUPl[ U (-F*(0,y*))] = SUP.[ U INF.[ U L(x,T)1].

(0,y*)eD(F*) Vpwerey,z) ! xed(d)

LEMYA 3.3, Tf f):

CXx Y P@) 4s amultifunction such that

D(£) € X~ 7 is a point-to-point map and Fi: D(F))

(a) zhe set {t: £,(x) <t} + F(x,y) A& nonempty for every x e D(£))
and every (x,y) e D(F{)s

(b) F(x,y) s Z+-c0mpact forn every (x,y) e D(F), Zthen

(3.10) INF, U [{t:fl(x)st}+Fl(x,y)]]={f1(x)}+F1(x,y)ﬂINFl[ U Fl(x,y)]
yeY yeY
(x,y)eD(F;) (x,y)eD(F{)

forn every x e D(fl).
PROOF. It follows from Definition 1.2 and Lemma 3.1.

REMARK 3.4. By the definition of.vectorial Lagrangian and Lemma 3.3 we
conclude that if the perturbation multifunction F 1is of the form F(x,y) = {t:

fl(x) <t} + Fl(x,y) with fl and F, satisfying the conditions (a) and (b), then

1

(3.11) Lx,T = {£,()} - F} (D

where le: D(le) €Y > P(Z) is the multifunction defined by le(y) = FI(X’Y)

for every (x,y) € D(Fl).

REMARK 3.5. If, in addition, le coincides with its vectorial biconju-

gate and {fl(x)} + Fl(x,O) = f(x) for every x e D(f), then taking into account

Lemma 3.1, Lemma 3.3 and the relation (3.11) we have

sup,L U L(x,T)] = suP,[ U [{fl(x)} - F2 (M)
TeL(Y,2Z) TeD(F},) X
= {fl(x)} + SUP, L U (-F$, (M) ]

*
TeD(le)

i

(£, + Fyx(0) = {£;,(x)} + F (x,0) = £(x),

Yx ¢ D(f).
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Therefore

(3.12) INF1[ U f(x)] = INF.L U sup.L U L(x,T)1].

xeD(£) 1 xeD(£) 1 TeL(Y,Z)

The next result is an immediate consequence of the above discussions and

generalizes the Theorem 5.1 of [8].

THEOREM 3.3. Under the assumption which assure the validity o4 the above
Lemmas and remarks, the following conditions are equivalent:

(i) (X,T) 4s a saddle point for the vectorial Lagrangian;

(ii) X 48 a sokution of (P), T 4is a solution of (P*) and -F(X,0) N

F*(0,T) # o.

REMARK 3.6. The Theorem 3.2 and its corollary (therefore, all our results
of Section 3) remain valid if we consider that a nonempty set A is K-bounded
when A C A  + K with A bounded. I observed this immediately after the accept-
ance of the paper and I communicated it to Professor G. Isac to which I thank for

helpful discussions and comments on this and related subjects.
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