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VECTORIAL OFHMIZATION PROGRAMS 
WITH MULTIFUNCTIONS AND DUALITY 

Vasile PostolM 

Nous définissons, dans le présent travail, les notions de sous-différen- 

tielle et de conjuguée d’une multifonction définie sur un espace vectoriel réel 

(section 

lité pour 

prenant ses valeurs dans un espace vectoriel ordonné réel. Nous étudions 

2) les premières propriétés de ces concepts, dans le but d’étendre une dua 

les problèmes d’optimisation vectorielle au cas où les fonctions à traiter 

multifonctions (section 3). Nous généralisons ainsi certains résultats de 

sont des 

base de 

Tanino et Sawaragi C81, en particulier‘pour le cas où les fonctions à traiter pren- 

nent leurs valeurs dans un espace 1ocaJement convexe quasi-complet ordonné par un 

cône fermé et nucléaire (supernormal). 

1. Preliminaries 

Pt is known that, in general, the set of solutions for an optimization 

problem with point-to-point objective function is characterized by the subdifferen- 

tial of a function and that the conjugate functions play important roles in the 

duality theory for convex programs (Cl], L-61). 

Tanino and Sawaragi (C71, [SI) construct and develop a duality theory for 

multi-objective optimization problems and Kawasaki (C21, [SI) extends their results, 

using the concepts of **conjugate*’ and %ubdifferential” for multifunctions from a 

linear space to Rfo (the union of the n-dimensional Euclidian space Rn and 

n-dimensional points consisting of and -m, respect ively) . 



In this paper, we define the subdifferential and the conjugate of a multi- 

function defined on a real linear space and taking values in a real ordered linear 

space and we investigate their immediate properties (Section 2)) with the aim of 

extending a duality of vectorial optimization problems in which the objective func- 

tions are multifunctions, using the concept of vectorial conjugate, Lagrangian and 

its saddle points (Section 3). Thus, we show some ways and new dual concepts for 

the study of the vectorial cptimization programs with point-to-set objective maps, 

generalizing basic results of [SI, especially for the case when the objective multi- 

functions take values in quasi-complete locally convex spaces ordered by a closed 

and nuclear (supernormal) cones. 

Let (Z,r) be a real ordered vector space, i.e., a real linear space en- 

dowed with an order (or preorder) Vr possibly induced by a cane. We add to Z 

a smallest element denoted by -00 and a largest element denoted by +, respective- 

ly, we consider z = Z U (-y-~) and we extend the addition and the scalar multi- 

plication of Z to 7 using the following calculation conventions: 

(-a) + x = x + (-03) = -00, cw + x = x t (-t-w) = -t-w for every x E Z; 

(-w) + (-CO) = -w, (t-) t (i-w) = -P; 

h l 
ewl 

= 200 for X > 0 and X l (+w) = +w for x < 0. 

Throughout the paper we denote by @ the empty set and by P(Z) the family of a11 

subsets of z. If A + @,b-d is an arbitrary subset of z and p E y, then 

DEFINITION 1.1. We shall say that p E INF(A) iff there exists no a E A . 

such that a < p. 

DEFINITION 1.2. We shall say that p E INFl(A) iff p E INF(A) and for 

every p’ E Z with p < p’, there exists acA suchthat a<p’. 

milar mann er we define the sets 

It A=@ A = b-w), we consider 

SUP (A) and 

INF (A) = INFl(A) = {tw}. 

for A + @,{-w). 

In a si- 

DEFINITION 1.3. We shall say that p E SUP(A) iff there exists no a E A 

with p<a. 



DEFINITION 1.4. We shall say that p E SUPl(A) iff p E SUP(A) and for 

p' E z P' < P, there exists acA such that pt < a. 

As for INF, if A = @ or A = (-ml, we shall consider SUP(A) = SUP1(A) 

= i-=4. 

REMARK 1.1. INF1(A) 5 INF(A), SUP1(A) 5 SUP(A), SUP(A) = -INF(-A) and 

SUP1(A) = -INF1(-A) for every subset A of z. Also we have SUP(B) 3 SUP(C) - 

and INF(B) 3 INF(C) for every non-void subsets B, C of z with B C C and if - - 

we denote by Z+ the cane which induces the relation Vt, then it is easy to see 

that INF1 (A) = INFl(A+Z+) and SUPl(A) = SUP1(A-Z+). 

2. The vectorial subdifferential and conjugate of a multifunction 

map 

Let X Y be two real linear spaces. 

DEFINITION 2.1. We cal1 Z-duality between X and Y every bilinear 

(.,.): x x x -+ z. 

In this case, we shall say that cw,L*)> is a Z-du& AYME~~. If, 

in addition, for every x E X\(O), there exists YEY such that (~,y) # 0 and 

for every y E Y\(O), there exists x E X such that (~,y) # 0, then we cal1 

(LL L *Il a aepatttie Z-dual ~yh&n. For example, if we denote by L(X,Z) the 

real linear space of a11 linear operators T: X + Z, then we cari define the follow- 

ing Z-duality: (.,.): x x L(X,Z) -f z, (u,t) = Tu, u E X and T E L(X,Z). It 

is clear that (X,L(X,Z),(.,.)) is a separate Z-dual system if and only if 

L(X,Z) + {O) and it separates the points of X, i.e., for every x,y E X with 

x # y, there exists T E L(X,Z) such that TX + Ty. 

With respect to this Z-duality we define the ve&oG.& ~ubcLL&(etmCat of 

a multifunction f: D(f) c X + P(y) at a point x0 E WI = {x E x: f(x) + @) such - 

that f(xo) t bd by 

(2.1) y(x,) = (T E L(X,Z): there exists y, E f(xo) such that 

Txo - Tu j Y, - y for every u E D(f) and every y E f(u)). 
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Throughout the paper we shall consider that 

cent inuous operators from X to Z whenever X 

contains only the linear and 

Z are linear topological 

spaces. Every element of avf(xo) Will be called the vecX~hCcLe aubgtradieti of f 

X 
0 

and it is clear that the existence of vectorial subgradients is closely re- 

lated to the (pre)order relation in Z. 

REMARK 2.1. This concept of subdifferential generalizes the notions in- 

troduced by Definitions 3.1 and 5.1 from [SI and [21 respectively. We also notice 

that there exists a strong connection between the vectorial subdifferential and the 

classical subdifferential. Indeed, if X is a real linear topological space and 

cp: X-d is a function, then we cari define the multifunction G: X + P(E) by 

ho = 
I 

It’ t ’ q(x)‘j ’ ’ D(q) where D(q) = (x E Xe q(x) @ x E X\II((p) 
. < f-1. If we denote the 

9 

subdifferential of cp at a point x0 E D(q) by %p(xo) , we shall prove that 

avaxol = w~ol l  

We have 

(2.2) aviho) = (T E L(X,R): there exists y, 2 cp(x ) 
0 such that 

yO 
- y 5 TX 

0 
- Tu for every ucX andevery y2cp(u)) 

(2.3) a(P (x0> = (T E L(X,R) : V(X ) 
0 

- C~(U) i TX - Tu for every u E X). 
0 

Let T E av$(xo) . Then there exists y, 2 cp(xo) such that y, - y 5 

TxO 
- Tu for every u E X and every y 2 C~(U). Therefore cp (x0) - q(u) 5 

TxO 
- Tu for every u E X, that is, T E &p(xo). 

Conversely, let T E &p(xo). Then we have 9(x0) - C~(U) -’ Txo - TU for 

every u E X which implies that g(xo) - y 5 cp(xo) - q(u) < Txo - Tu for every 

Y 2 cp  CU> l  
Thus we obtained the contrary inclusion %p(xo) 5 avG(xo) and the equa- 

lity av;~xol = &p(xo) is proved. 

REMARK 2.2. It is easy to see that a multifunction f: D(f) f, X + P(z) is 

vectorial subdifferentiable at x0 E D(f) with f(xo) f (~1, i.e., a f(x ) t @, 
v 0 

if and only if there exist y0 E f(xo) and T E L(X,Z), such that y, - Txo 6 



INF{y - Tu: u E D(f) Y E f(u)) or equivalently, if and only if there exist 

y, E f(xo) and T E L(X,Z), such that y, - TX E INFl(y-Tu: uED(f) and y~f(u)). 
0 

REMARK 2.3. If for a nonempty subset M of a real linear space ? we de- 

fine its vec&kiae du& COIW by Mv = (T E L(?,Z): TX 1: 0 for every x E Ml and 

for a multifunction f: D(f) 5 X + P(Z) we consider its graph Gf = ((~,y): 

x E D(f) and y E f(x) 1, then T E avf(xo) if and only if (-T,I) E (Gf - 

(xo’yo))v for some y, E f(xo), where 1: 2 -+ 2 and I(z) = z for every z E 2. 

DEFINITION 2.2. If G c X is a nonempty subset, then an element go E G - 

is said to be a best vectorial approximation of an element x 
0 

E X by the elements 

of G with respect to a multifunction f: D(f) 5 X + P(y) if there exists 

Y, E fk*-X*l such that for every g E G with g - xo E D(f) and every 

Y E f(g-x*) it follows that y + y, : 

(G,f/G) l  
It is clear that go is a best vectorial approximation of xo by G if 

and only if go - xo is minimal element for the vectorial program (G-xo,f/ 1 G-x0 ' 

Also it is easy to see that go E G is a best vectorial approximation of x E X 
0 

by the elements of G with respect to a multifinction f if and only if 

f(go-xo) n INFC U f(g-xo)] 
CG 

= f(go-xo) n INF$ u f(g-x0)1 # a. 
FG 

The following theorem establishes the characterization of the set of mini- 

mal elements for a vectorial program by the vectorial subdifferential of a multi- 

function. 

THEOREM 2.1. 16 f: D(f) 5 X + P(Z U bd) cin a mulXX&tnction, GcX - 

i.~ a non-void a& and we cunQid4h X/ze rnu&ti&Uztin If G: D(f) + P(Z U bd) de- 9 
&ined by 

ml Y x E G 

'f,GCX) = l+ooj 
9 x E D(f)\G 



PROOF. 

(iii) 0 E av(f+lf G)(go)* 
9 

It is an immediate consequence of the above considerations. 

DEFINITION 2.3. For every multifunction f: D(f) c X -+ P(z), the point- - 

to-set map f*: D(f*) 5 L(X,Z) -+ P(y) defined by 

(2.4) f* CU = SUPl{Tu - y: u E D(f) and y E f 

is called the v~~u/ci~ conjuga& of f, where D(f*) = {T E 

u E D(f) and y E f(u)} + a). The v~&ahiae bicanjugab of 

is defined by 

( 1) U 

L(X,Z): SUPl{Tu - y: 

f, denoted with f** 

(2 l  51 
f**(x) = SUPl{Tx - y*: T E D(f*) and y* E f*(T)) 

for every x E D(f**) = (x E X: SUPl{Tx - y*: T E D(f*) and y* E f*(T)} # Q). 

REMARK 2.4. We have f*(O) = SUPl(-y: u E D(f) and y E f(u)} = -INFl{y: 

u E D(f) and y E f(u)) which justifies the importance of the vectorial conjugate 

in vectorial optimization problems with the objective maps multifunctions. 

REMARK 2.5. If in the Definition 2.3 f is a real multivalued map, we 

obtain the concept of conjugate map introduced by Definition 2.3 of [SI and if f 

is a relation from X to RE, then we obtain the notion of conjugate relation in- 

troduced by Definition 3.1 of [2], taking into account the following immediate 

equality: f* (Tl = SUPl{Tu - y - z+: u E D(f), y E f(u) and z+ c Z such that 

0 < z+) for every T E O(f*). As in the case of the vectorial subdifferential, 

there exists a strong connection between the vectorial conjugate and the classical 

conjugate. Indeed, if X is a real linear topological space and <p: X -+ R is a 

function, then we cari consider the multifunction G: X + P(E) defined by T(x) = 

{t: t 2 q(x)) and if we denote the conjugate of cp by cp*, we shall prove that 

Iv* = (cp*>. cp 
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We have 

(2.61 T”(T) = SUPl{Tx - y: x E X and y 2 C~(X)> 

and 

(2.71 cP*w = SUPITx - q(x) : x E xl 

for every T E L(X,R). 

Let p E G*(T). Then there exists no x E X such that p < TX - p(x), 

that is, p 2 TX - q(x) for every x E X and if E < p, it follows that there 

exist x E X E and Y 2 <p(x,> such that E < Tx~ - y 5 TX, - V(X~). Therefore 

T*(T) c {p*(T)} for a11 T E L(X,R). Conversely, let p = q*(T). Then there - 

exists no x E X and y 2 C~(X) such that p < TX - y since, in the contrary 

case, we have p < TX - y 2 TX - cp(x) contradiction, and if E < p, there exists 

X 
EEX 

such that E < TX E - CPCX,) * Thus we obtained the contrary inclusion 

{<p*(T)) = G*(T) - for every T E L(X,R) and the equality T* = {cp*) is proved. 

REMARK 2.6. The concept of vectorial biconjugate for multifunctions ex- 

tends also the classical concept of biconjugate for extended real-valued functions. 

Indeed, from the above considerations it follows that for every function cp: X + R 

-* and every x E X we have T**(x) = SUP1(Tx - y*: T E D(cp ) and y* E cp (T)} = -* 

SUP+Tx - y*: T E D(cp*) and y* E &p*(T))) = C~**(X). 

Strong relationships between the vectorial subdifferential, the vectorial 

conjugate map and the vectorial biconjugate map are established in the following 

theorems. 

THEOREM 2.2. A mti&4ncAkon f: D(f) c X -+ P(z, ti YeG&kk& AUbdi& - 

@~~b.lk ti x0 E D(f) w.h f(xo) # Gi-4 &$ and on& k6 Zheke e.z&k y0 6 f(xo) 

and T E L(X,Z) &..~h tctdz: Txo - y, E f*(T). ' 

PROOF. If f: D(f) 5 X + (z, is a multifunction vectorial subdifferentiable at 

X 
0 

E D(f), then there exist y0 E f(xo) and T E L(X,Z) such that 
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Tx* - y, E f*(T), because, in the contrary case, there exist u E X and y E f(u), 

such that Txo - y, < Tu - y, i.e., Txo - Tu < Y, - y in contradiction with 

T E avf(xo). Conversely, let x0 E D(f), y, E 'f(xo) and T E L(X,Z) such that 

TxO 
- y, E f*(T). If T 4 avf(xo), then there exist u E D(f) and y E f(u) with 

TxO 
- Tu < y, - y i.e., Txo - y, < Tu - y, in contradiction with Txo - y, E f*(T) 

and the theorem is proved. 

THEOREM 2.3. 15 f: D(f) c X -+ P(z> ti a mul%~unctian, Xhen - 

(i) bu& evtiy x0 E D(f) wtih, f(xo) t (~1 and evehy T E L(X,Z) 60tr 

wkich thehe e.x~~ y, E f(xo) and y* E f*(T) 4uck kha;t y, t y* = Txo we have 

T (2 apo> ; 
(ii) 6oh eveky x o E D(f) Wh, avf(xo) + @ and eveky T E avf(xo), XCzcstLe 

uLH% y, E f(xo) Auch ZhaX Txo # y, t y* and y, t y* # Txo Bah evehy 

y* E f*(T). 

PROOF. (i) follows directly from Theorem 2.2. 

(ii) It is clear that for every x0 E D(f), y, E f(x,) and T E avf(xo) 

we have y, t y* j Txo for a11 y* E f*(T). Assume now that for every y, E f(xo), 

there exists y* E f*(T) such that Txo < y, + y* , i.e., TX - y 
0 

Since o < Y"* 

y* E f*(T), it follows that there exist u E D(f) and y E f(u), such that 

Txo - y, < Tu - y, or equivalently, Txo - Tu < y, - y, in contradiction with 

T E avf(xo). This completes the proof. 

THEOREM 2.4. Evmy vnuLZi6untian f: D(f) ( X -+ P(r) d ;the 6oiXawing 

(i) 45 f ti vetiutial ~ubdi66~enLLabLe aX x0 E D(f), ;then 

f(xo) fl f**(xo) fl {Txo - y*: T E L(X,Z) and y* E f*(T)) # @; 

(ii) i6 f(xo) fl f**(xo) fl (TX 
0 

- y*: T E L(X,Z) and y* E f*(T)} # 0, 

;the.n XhetLe e.G& y 
0 

E f(x ) 
0 

and T E L(X,Z) Auch XhuX TX - y 
0 0 

E f*(T); 

(iii) @h twehy x 
0 

E D(f) r) D(f**), y, E f(xo) and y~;* E f**(xo) we 

bave  Y, + Y;* l  



PROOF. (i) By virtue of Theorem 2.2, if f: D(f) c X + P(z) is vectorial subdif- - 

ferentiable at x0 E D(f), then there exist T E L(X,Z) and y, E f(xo) such that 

TxO 
- y, E f*(T), that is, y, E f(xo) n (Txo - y*: T E L(X,Z) and y* E f*(T)). 

Let us suppose that y, 4 f**(xo). Since y, E ITxo - y*: T E L(X,Z) and 

y* E f*(T)), it follows that there exist T' E L(X,Z) and y' E f*(T') with 

YO 
< T'x - y', that is, y' < T1x - y 

0 0 0 ' in contradiction with y' E f*(T*). 

Therefore y, E f(xo) I-I f**(xo) n (Txo - y*: T E L(X,Z) and y* E f*(T)) and (i) 

is proved. 

(ii) Suppose that there exists y 
0 

E f(xo) fl f**(xo) n {Txo - y*: 

T E L(X,Z) and y* E f*(T)) and f is not vectorial subdifferentiable at 

X o E D(f), that is, for every T E L(X,Z), there exist u E D(f) and y E f(u), 

such that Txo - Tu < y, - y, or equivalently, Txo - y, < Tu - y which implies 

that Txo - y, 4 f*(T), Le., y, 4 Txo - f*(T) for a11 T E L(X,Z), contradiction, 

and taking into account Theorem 2.2(ii) follows. 

(iii) Assume that there exist x0 E D(f) fI D(f**), Y, 6 f(xo) and 

y;* E f**(xo) such that y, < y;S* . Then there exist T E L(X,Z) and y: E f*(T) 

with y, < Txo - y: that is, such that yo < TX, - y, , contradiction, and theo- 

rem is proved. 

COROLLARY. A rnWduntian f: D(f) c x -f P(z> ti vetiatticte nubdi.&mn- - 

tib.te at x0 E D(f) W,WZ f(xo) 1 ($00) ib aficf atiy i6 

(24 f(xo) n f**(xo) n {Txo - y*: T E L(X,Z) and y* E f*(T)) + 0. 

THEOREM 2.5. Fa& evtiy mu.&X&n~on f: D(f) c X + P(y) we hve - 

(2*9) SUP$Tx - z: T E L(X,Z), z E Z and z + TX - y &tt evett~ x E D(f) 

and evt%y y E f(x)) fl {TX - y*: T E L(X,Z) and y* E f*(T)) 5 f**(x) 

n (TX - Z: T E WJL z E Z and z + TX - y 60h evu~y x E D(f) 

and we~y y E f(x) 1 

and 
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(2.10) 

x E x. 

PROOF. 

f**(x) = SUPlISX - 2: S E L(X,Z) and dzehe exibt4 y* E f*(S) Auch 

Rha.x y*<21 

(2.9) and (2.10) are immediate consequences of Definition 1.4 and of rela- 

tion (2.5). 

REMARK 2.7. Inclusion (2.9) offers a sufficient condition for the exis- 

tence of f** and relation (2.10) generalizes Theorem 6.3.7 ([SI, p. 343), proving 

that for a multifunction f: D(f) ( X + P(r) we have f = f** if and only if 

f(x) = SUPlISX - 2: S E L(X,Z) and there exists y* E f*(S) such that y* 5 z) 

for a11 x E D(f). 

THEOREM 2.6. fott evtil~j mu.&@ntion f: D(f) c X -+ P(T) we hdv~ - 

(il 44 x0 6 D(f) wfih f(xo) 1 {tm) ancf T E 8,f(xo), Jthen 

x0 E a,f*(T): 

(ii) ib x0 E D(f) n D(f**) ancf f(xo), f**(xo) + (+03), xhm 

Qf(x,) E, avf**(xo> ; 

(iii) kd x0 E D(f) n D(f**), f**(xo) f bd, f**(x) c f(x) and &Y& - 

C.VC?Ay y E f(x), thc%e exinti y** E f**(x) Auch /thcct y** 5 y wheneveh x E D(f), 

Rhen avf(xo) = 3vf**(xo) ; 

(iv) id x0 E D(f) and f(xo) 1 b-4, Zen 3,f(xo) + @ hpfiti 

f**(xo) n f(xo) + Q. 

PROOF. (i) If x0 E D(f) and T E 8,f(xo), then, by virtue of Theorem 2.2, there 

exists y, E f(xo) such that Txo - y, E f*(T). Hence, from the definition of the 

multifunction f* it follows that for every S E D(f*) and every y* E f*(S) we 

have Txo - Sxo 1: (Txo-y,) - y* , that is, x0 E avf*(T). 

(ii) For every x o E D(f) fl D(f**) and every T E 3$x0) from (i) we 

obtain: T E avf(xo) => x0 E a,fX(T) => T E avf**(xo). 

(iii) is an immediate consequence of (ii) together with the definition of 

the vectorial subdifferential. 



(iv) If xo E D(f) and f is vectorial subdifferentiable at xo9 then 

taking into account Theorem 2.2 there exist T E L(X,Z) and Y, E f(x,) such that 

TxO 
- y, E f*(T). We shall prove that y, E f**(xo). Indeed, for every S E L(X,Z) 

and every z E Z for which there exists y* E f*(S) with y* 5 z we have 

y, + Sxo - z since, in the contrary case, y <sx -z 
0 0 

implies y 
0 

<sx -y*, 
0 

that is, y* < Sxo - y, , contradiction. On the other hand, if E: < y0 , then 

E < TX 
0 

- (Txo-yo) with Txo - y, E f*(T). Hence, by virtue of the relation (2.10) 

from Theorem 2.5 we have y, E f**(xo) and (iv) is proved. 

REMARK 2.8. The above theorems generalize for multifunctions basic re- 

sults concerning the conjugate, the biconjugate and the subdifferential from C21, 

C31, C5, Chapter 61, C73 and C81. 

3. Duality 

Let X and Y be two real linear spaces, f: D(f) c X -+ P(y) a multi- - 

function with D(f) = Ix E X: f(x) # @), F: D(F) C X X Y + P(r) a point-to-set - 

map defined on D(F) = {(x,y) E x x Y: F(x,y) # @) such that F(x,O) = f(x) for 

every x E D(f) and the Z-duality (.,.) between X x Y and L(X,Z) x L(Y,Z) 

defined by 

(3.1) mLYMLS1) = TX + SY, Vx E X, Vy E Y, VT E L(X,Z), VS E L(Y,Z) 

where by L(X,Z)(L(Y,Z)) we denote the real linear space of a11 linear operators 

T: X + Z (S: Y + Z) with the remark that, as in the Section 2, we shall consider 

L(X,Z)(L(Y,Z)) containing only the linear and continuous operators from X to Z 

(from Y to Z) whenever X and Z (Y and Z) are linear topological spaces. 

In accordance with the Definition 2.3, the vectorial conjugate of 

respect to the above Z-duality is the multifunction F*: D(F*) + P(z, 

(34 F*uis) = SUPl{Tx + Sy - z: (~,y) E D(F) and z E F(x,y)) 

F with 

defined by 

where D(F*) = ((T,S) E L(X,Z) x L(Y,Z): SUPl{Tx t Sy - z: (~,y) E D(F) and 

z E F(x,y)) is nonempty). 



Therefore, 

(3.31 F* = (O,Y"l = SUPl{y*y - z: (~,y) E D(F) and z E F(x,y)) 

for every y* E L(Y,Z) with (0,~") E D(F*). 

We consider the following vectorial problems: 

CPI INFlC U f(x)1 n c u f(x)] = MIN(f) 
xED(f) xt:D(f) 

and 

(P*I SUPlL U (-F*(O,y*))l n c u (-F*(o,Y*H J = MAX[-F*(O,*)I 
(p,y*kD(F*) (o,Y*ww*) 

The following theorem shows the immediate connections between the feasible 

solutions of Cp) and (P*). 

THEOREM 3.1. 

(i) INFlC U f(x)1 c SUPC U 
x<D(f) - 

w*(o,Y*lll; 
(p,y*kD(F*) 

(ii) SUP C U 
l (p,y*kD(F*) . 

(-F*(O,y*))l c INFC U - f(x) 1; 
xED(f) 

(iii) Z II <?l 

x0 E D(f) Zhem u&& (0,~;) E D(F*) Auch Zti y*(y) 5 z - z 
0 0 ' W,Yl E D(F) 9 

vz (2 WLYI, Vzo E F(xo,O), ZCzen 

SUPC 1J (-F*(O,y*))l c suPC U f(x) 1. 
(&Y*) EDF*) 

- 
xcD(f) 

PROOF. (i) Let p E INFlC U f(x) 1 and assume that 
xcD(f) 

p 8 swc U L-(-F*(O,y*)) 1. 
(O,Y"l WF") 

Then there exist y*~ L(Y,Z) and 

I 
-f* E -F*(O,y*) such that p < -f*. Since p c INFlC U f(x)], it follows that 

xcD(f) 

there exist x E D(f) Y E f(x) such that f* < y*(O) - y, in contradiction 

with the definition of F*(O,y*). 

(ii) Let p E SUPl1: U w*uLY*)) 1 and suppose that 
ULY") mF*l 
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p 4 INFC U f(x)]. Then there exist x E D(f) and y E f(x) such that y < p. 
xcD(f) 

Since p E SUPl[ U (-F*(o,Y*))l it follows that there exist y* E L(Y,Z) 
vLY*kw*) 

and -f* E -F”uLY”) y < -f*. The result follows as in the proof of (i). 

(iii) Let p E SUPC U (-F*(o,Y*) > 1 and let us assume that 
(O,Y*W(F*) 

p 8 SUPC u f(x)]. Then there exist 
xcD(f) 

x0 E D(f) and y, E f(xo), such that 

P<Y,* By virtue of the hypotheses, there exists Yo* E wm such that 

Y:, (Y) - z 5 -y 
0 

< -p for every (~,y) E D(F) and every z E F(x,y), which implies 

z*c-z < 
o- 0 -P 9 'dz0 6 F(xo,O), Vzg E F*(O,yo), that is, p < -z* , in contradic- 

0 

tion with our assumption. 

COROLLARY. MIN(f) + a, MAX[-F*(O/)I + @ and MIN(f) n MAX[-F*(O/)I + @ 

;i( ami only id #me e.x.i.dX x0 c D(f) 9 y0 6 f(xo) 9 y* E L(Y,Z) ad f* E F*(O,y*) 

auch~Cta;t y,tf*=O. 

The proof follows the same line as the proof of the above theorem and for 

this reason we have omitted it. 

Now we introduce the concepts of vectorial Lagrangian and saddle point for 

the problem (P) in order to show that thesenotions are closely connected with the 

solutions of problems (P) and (P*) especially for the case when the objective mul- 

tifunction f takes values in a quasi-complete locally convex space ordered by a 

closed and nuclear cane. 

DEFINITION 3.1. We shall cal1 the vectorial Lagrangian map of problem (P) 

the multifunction L: D(f) x L(Y,Z) -+ P(z) defined by 

(34 UXJ) = INF1{z - Ty: (~,y)‘ E D(F) and z E F(x,y)) 

n 12 - Ty: (~,y) E D(F) and z E F(x,y)). 

DEFINITION 3.2. A point (ii,?) E D(f) x L(Y,Z) Will be called a aad& 

(3.51 L(X,?) n suplc u L&T)] n INy u L(x,?) 1 *‘a). 
TeL(Y,Z) xeD(f) 



REMARK 

jugate it 

3.1. As in t 

sy to see that 

he case 0 f vectorial subdifferential and vectorial con- 

the not i ons of vectorial Lagrangian and saddle point 

generalize the classical similar concepts. 

Before stating the theorem which gives the connection between the solu- 

tions of problems Cp), Cp*) and the saddle points of L( ., .), we recall a few de- 

finitions and we establish some lemmas which Will be used in the proof. 

DEFINITION 3.3. A linear topological space is said to be qua-h-camp&& 

if every non-void subset closed and bounded is complete. 

Let E be a Hausdorff locally convex space with the topology induced by 

a family 4 = (901)aCI of semi-norms and the dual space E* . 

DEFINITION 3.4 c41. A convex cane K c E is said to be dupehnuhncd (nu- _ 

c&u.&) if for every \ E 2, there exists fo E E * such that 

REMARK 3.2. The importance of the nuclear cones for the existence of the 

solution for vectorial problems in locally convex spaces was emphasized for the 

first time in C41. 

Let K be a convex cane and A c, E a nonempty set. Following C81, we 

say that 

is said to be 

is K-bouncfed if there exists 

K-&abecf if 

if it is K-bounded and 

AtK 

K-closed. 

is closed. 

such that 

Moreover, A 

AcaotK - and A 

is called K-cumpad 

The following theorem and its corollary generalizes in locally convex 

spaces the result established by Tanino and Sawaragi in Lemma 2 .l and Lemma 2.2 of 

GSI concerning the existence of the efficient points for nonempty sets in finite 

dimensional Euclidian spaces and it is fundamental for our purpose. 



COROLLARY. 16 A ti a 4'eZ wkich ac&~&U ;the abowe cond&Uoti ;then 

A c INF~(A) n A + K. - 

In a11 OUT further considerations we suppose that 

locally convex space ordered by a closed and nuclear cane 

z 

% l  

is a quasi-complete 

LEMA 3.1. 76 F1: D(F1) 5 X + ?(y), F2: D(F2) 5 X + P(y) tic mti- 

~unc&ia~ ccli/th D(F~) n D(F~) + @, xhette ULMA F1(x) t F$x) 604 m x &om 

D(F~) n D(F~) WC! mch X!I& xhe na F$X) iA Z+-compact &?tt ewty x E D(F1) n 

D(F~), ;then 

(3.7) INF+ U CFl(x)+F2(x)I = INF1 II CF (x)+F (x) INF 
xcD(Fl)nD(F2) ' 2 

F (x)1. 
x~wlYw2) 

12 

By virtue of Remark 1.1 together with the above Corollary, we have: 

INF1 U CF1~(x)tF2(x)I = INFl U 

xmpwF2) xwpw2) 
CFl(x)+F2(x)+Z 0 t 

= INF1 U 

=qlnw2) 
CF1(x)+(F2(x)nINFl F2(x)+Zt)l 

= INF1 U [F (x)tF2(x)nINF 
xÉD(Fl)nD(F2) ' 

12 F (x)+Ztl 

= INF1 U 
x~D(FpuF9 

CFl(x)+F2(x)nINF1 F2(x)I . 

LEMMA 3.2. 16 s E L(Y,Z) and the A& Iz - ~y: (~,y) 6 D(F) and 

z E F(x,y)) ti Zt-compact do& eve~y x E D(f) ba/r wkich Jthme titi y E Y Auch 

;th.uX (~,y) E D(F), xhen 

WV -F*(O,S) = INF$ u L(x,S)I. 
x<D(f) 

PROOF. It follows from the relations (3.3), (3.4) and Lemma 3.1 applied for 

Fi(x) = 10) and F2(x) = (z - Sy: (~,y) E D(F) and z E F(x,y)), Vx E D(f). 

REMARK 3,3. In the conditions of Lemma 3.2 we have 



(3.9) SUPlC u (-F*(O,y*))l = SUPlC U 
(o,Y*l mF*) T"EL(Y,Z) 

INFlC U L(x,T)ll. 
XED(f) 

LEMMA 3.3. 16 fl: D(f1) c X -+ z d a’poivtt-;ta-paid map ad - F1: Wll 

c X x Y + P(T) ih a muhti~untion huch /that - 

(a) /the a& {t: fi(x) 5 t} + Fl(x,y) ti nunmpxy do& evQhy x E D(f1) 

and evehy (~,y) E D(F1); 

(b) Fl(x,y) LA Z+-compati 6urt evehy (~,y) E D(Fl), Xh_en 

(3.10) INFl U 
YCY 

C(t:fl(x)~t~tFl(x,y)ll=~fl(X))+Fl(x,y)~INFl~ U 
YCY 

F1(X'Yll 

(&Y) mF1) (x,y)ED(F1) 

,$m evehy x E D(f1). 

PROOF. It follows from Definition 1.2 and Lemma 3.1. 

REMARK 3.4. By the definition of.vectorial Lagrangian and Lemma 3.3 we 

conclude that if the perturbation multifunction F is of the form F(x,y) = it: 

fi(x) I t] + Fl(x,y) with fl and Fl satisfying the conditions (a) and (b), then 

(3.11) LbLTl = If+)) - Fîx(T) 

where F lx: Wlxl 5 Y -f P@I is the multifunction defined by Flx(y) = Fl(x,y) 

for every (~,y) E D(F1). 

REMARK 3.5. If, in addition, Flx coincides with its vectorial biconju- 

gate and {f,(x)) t Fl(x,O) = f(x) for every x E D(f), then taking into account 

Lemma 3.1, Lemma 3.3 and the relation (3.11) we have 

SUPl[ u L(x,T)l = SUPlC U 
TcL(Y,Z) TWîx) 

CIfl(X)1 - Fîx(T) Il 

= (fi(X)} + SUPlC u 
Td (Fîx> 

(-FixCT) 11 

= {fi(x)] t F;;(O) = ffl(x)j + Fl(x,O) = f(x), 

Vx E D(f). 
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Therefore 

(3.12) INFlC u f(x) 1 = INFlC u 
xcD(f) xéD(f) 

SUPlC u L(x,T)II. 
TEL(Y,Z) 

The next result is an immediate consequence of the above discussions and 

generalizes the Theorem 5.1 of Ml. 

THEOREM 3.3. Undti %he mau.m@an ~tich C~~~AUX /the VUY 06 /the abave 

4kmma.d and Wmahkh, the @Yawhftg contiam am eqtiva&utt: 

(i) (G,?) L5 a aaddte paiti @rr. Hze vec.tudat LagtLangLan; 

(ii) X iA a buh.Uun u6 (P), ? LA a huhLh 06 (P*) and -F(ff,O) fl 

F*(O,@ + @, 

REMARK 3.6. The Theorem 3.2 and its corollary (therefore, a11 our results 

of Section 3) remain valid if we consider that a nonempty set A is K-bounded 

when A c A0 + K with A0 bounded. - 1 observed this immediately after the accept- 

ance of the paper and 1 communicated it to Professor G. Isac to which 1 thank for 

helpful discussions and cosnments on this and related subjects. 
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