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THE EULER-KRONECKER CONSTANT
OF A CYCLOTOMIC FIELD

V. KUMAR MURTY

To Paulo Ribenboim on his 80th birthday.

RÉSUMÉ. Lorsque K est un corps de nombres, il est bien connu que la fonction
zêta de Dedekind ζK(s) possède un pôle simple en s = 1, de sorte que l’on peut écrire
au voisinage de s = 1 le développement

ζK(s) = c−1(s− 1)−1 + c0 +O(s− 1).

Adoptant la définition de Ihara, nous appelons γK = c0/c−1, la constante de Euler-
Kronecker de K. Lorsque K est le corps cyclotomique Q(ζm), Ihara a conjecturé que
l’ordre de grandeur de cette constante est O(logm). Nous prouvons que ceci est vrai
en moyenne pour les entiers m premiers.

ABSTRACT. For a number field K, it is well-known that the Dedekind zeta func-
tion ζK(s) has a simple pole at s = 1 and so we may write the expansion near s = 1
as

ζK(s) = c−1(s− 1)−1 + c0 +O(s− 1).

Following Ihara, we call γK = c0/c−1 the Euler-Kronecker constant of K. When K
is the cyclotomic field Q(ζm), Ihara has conjectured that this constant is O(logm).
We prove that this holds on average for m prime.

1. Introduction

For a number field K, let us denote by ζK(s) the Dedekind zeta function of K. For
Re(s) > 1, it is defined by

ζK(s) =
∑
a

(Na)−s

where the sum is over integral ideals a ofK. It is well-known that ζK(s) has an analytic
continuation for all s with a simple pole at s = 1. In particular, we may write

ζK(s) = c−1(s− 1)−1 + c0 + O(s− 1) .

Let us set

γK = c0/c−1 .
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Following Ihara [4], we call γK the Euler-Kronecker constant of K. It can equivalently
be defined by

−
ζ ′K
ζK

(s) =
1

s− 1
− γK + O(s− 1) .

For K = Q, it is the usual Euler constant γ given by

lim
x→∞

(∑
n≤x

1

n
− log x

)
.

In [4], Theorem 1 and Proposition 3, Ihara proved that for K ̸= Q, the Riemann Hy-
pothesis for Dedekind zeta functions (GRH) implies that there are absolute constants
c1, c2 > 0 so that

(1.1) −c1 log dK ≤ γK ≤ c2 log log dK .

Here, dK is the absolute value of the discriminant of K/Q. As pointed out in [4],
the estimation of γK from below is related to the existence or non-existence of primes
ofK with small norm. Tsfasman [8] showed, assuming the GRH, that as we range over
number fields K with dK → ∞, we have

lim inf
γK

log dK
≥ −0.13024 . . .

In [5], the Euler-Kronecker constant is considered in more detail for certain families
of fields. Of special interest is the Euler-Kronecker constant of a cyclotomic field. Let
us set γm = γQ(ζm). Then, as a consequence of the factorization

ζQ(ζm)(s) =
∏

χ mod m

L(s, χ)

of the Dedekind zeta function of Q(ζm) into Dirichlet L-functions, we have

γm = γ +
∑
χ ̸=χ0

L′

L
(1, χ) .

Here χ0 denotes the principal character modulo m. From (1.1), we have for m = q
prime,

−c1q log q ≤ γq ≤ c2 log q .

In [6], Ihara, K. Murty and M. Shimura proved that under the GRH, we have

γq ≪ (log q)2.

In other words, there is an absolute constant c3 > 0 so that

(1.2) |γq| ≤ c3(log q)
2.

Unconditionally, they proved that

γq ≪ qϵ.

Badzyan [1] has shown that under the GRH, (1.2) can be improved to

γq ≪ (log q)(log log q) .

Ihara [5], Conjecture 1, has conjectured that there are positive constants 0 < c4, c5 ≤ 2
such that for any m sufficiently large (not necessarily prime), and any ϵ > 0 we have

(c4 − ϵ) logm < γm < (c5 + ϵ) logm.
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In this note, we prove that for m prime, the upper bound of Ihara’s conjecture holds
unconditionally on average. More precisely, we prove the following.

Theorem 1.1. We have ∑
1
2
Q<q≤Q

|γq| ≪ π∗(Q)(logQ)

where π∗(Q) denotes the number of primes in the interval (12Q,Q] and the sum is over
primes q in this interval.

The proof closely follows the methods of [6]. Throughout this paper, we shall use
q to denote a prime number.

2. The sum Φχ(x) and its average

As in [6], we consider for x > 1 the sum

Φχ(x) =
1

x− 1

∫ x

1

(∑
n≤t

Λ(n)

n
χ(n)

)
dt.

We have

(2.1)
∑
χ ̸=χ0

Φχ(x) =
1

x− 1

∫ x

1

(
ϕ(q)

∑
n≤t

n≡1 (mod q)

Λ(n)

n
−

∑
n≤t

(n,q)=1

Λ(n)

n

)
dt.

As usual, let us set

ψ(x, q, a) =
∑
n≤x

n≡a (mod q)

Λ(n)

and
ψ(x) =

∑
n≤x

Λ(n) .

By partial summation, we have

(2.2)
∑
n≤t

n≡1 (mod q)

Λ(n)

n
=

1

t
ψ(t, q, 1) +

∫ t

1

ψ(u, q, 1)

u2
du.

On the other hand, we have for q prime

(2.3)
∑
n≤t

(n,q)=1

Λ(n)

n
=

∑
n≤t

Λ(n)

n
+ O

( log q
q

)
.

Moreover,

(2.4)
∑
n≤t

Λ(n)

n
=

ψ(t)

t
+

∫ t

1

ψ(u)

u2
du.
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Proposition 2.1. We have for x > 1 and Q ≥ 2,∑
1
2
Q<q≤Q

∣∣∣∣∣ ∑
χ ̸=χ0

Φχ(x)

∣∣∣∣∣ ≪ π∗(Q)(logQ)

where π∗(Q) denotes the number of primes in the interval (12Q,Q].

Proof. The contribution of the error term of (2.3) is∑
1
2
Q<q≤Q

log q

q
≪ 1 .

Now inserting (2.2) and (2.4) into (2.1) and rearranging, we get∑
1
2
Q<q≤Q

∣∣∣∣∣ ∑
χ̸=χ0

Φχ(x)

∣∣∣∣∣ ≪ x

x− 1

∫ x

1

∑
1
2
Q<q≤Q |ϕ(q)ψ(u, q, 1)− ψ(u)|

u2
du(2.5)

+O(1) .

We have

(2.6)
∑

1
2
Q<q≤Q

ϕ(q)ψ(u, q, 1) =
∑
n≤u

Λ(n)
∑

q|(n−1)
1
2Q<q≤Q

ϕ(q) .

Suppose that u ≤ Q3. Then in the inner sum, there can be at most four terms. Hence,
the contribution of prime powers to this sum is easily seen to be

≪ Q
∑
p≤

√
u

(log p)
log u

log p
≪ Q

√
u .

Hence, the contribution to (2.5) is

≪ Q

∫ Q3

1

du

u3/2
≪ π∗(Q) logQ.

Similarly, ∑
1
2
Q<q≤Q

ψ(u) ≪ π∗(Q)u.

Hence, the contribution of u ≤ Q3 to (2.5) is

≪ π∗(Q)(logQ) .

The contribution of primes to (2.6) is∑
p≤u

(log p)
∑

p−1=tq
1
2Q<q≤Q

ϕ(q) =
∑

t≤2u/Q

∑
p≤u,p−1=tq
1
2Q<q≤Q

ϕ(q) log p.

This is estimated by observing that ([2], Chapter 6, Exercise 13) given t, the number of
prime pairs p, q ≤ u with p− 1 = tq is

≪ u

ϕ(t) log2(u/t)
·
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We continue to assume that u ≤ Q3 and distinguish two cases. Suppose first that
u < Qt. Then, the contribution to (2.5) is

≪
∑

t≤2Q2

∫ Qt

Qt/2

Q

ϕ(t)

1

(logQ)2
log u

u
du

and this is

(2.7) ≪ Q

(logQ)2

∑
t≤2Q2

1

ϕ(t)

(
(logQt)2 − (logQt/2)2

)
.

Using the elementary fact (see, for example, [2], Chapter 8, Exercise 15) that for y > 2,
we have

(2.8)
∑
t≤y

1

ϕ(t)
≪ log y,

and the observation that (logQt)2 − (logQt/2)2 = O(logQt), we deduce that (2.7)
is

≪ Q ≪ π∗(Q) logQ.

Now for u > Qt, we proceed as follows. Given p − 1 = tq, we have p ≤ tQ + 1.
Hence, the number of prime pairs p, q ≤ tQ+ 1 with p− 1 = tq is

≪ Qt

ϕ(t)(logQ)2
·

Hence, the contribution to (2.5) is∫ Q3

1

( ∑
t≤u/Q

∑
p≤tQ+1, 12Q<q≤Q

p−1=tq

ϕ(q) log p

)
du

u2

which is
≪

∑
t≤Q2

Q(logQt)
Qt

ϕ(t)(logQ)2

∫ ∞

Qt

du

u2
·

This is
≪

∑
t≤Q2

Q logQt

(logQ)2
1

ϕ(t)
·

Again using (2.8), it follows that the above quantity is

≪ Q ≪ π∗(Q) logQ.

For u > Q3, we use the Bombieri-Vinogradov theorem (see [2], §9) to deduce that∑
1
2
Q<q≤Q

|ϕ(q)ψ(u, q, 1)− ψ(u)| =
∑

1
2
Q<q≤Q

ϕ(q)

∣∣∣∣ψ(u, q, 1) − ψ(u)

ϕ(q)

∣∣∣∣
is

≪ Qu/(log u)3.

Hence, the contribution of the range Q3 ≤ u ≤ x to the integral in (2.5) is

≪ Q

∫ ∞

Q3

du

u(log u)3
≪ Q

(logQ)2
≪ π∗(Q)

logQ
·

This proves the result. �
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3. Application of zero density estimates

In this section, we prove the following.

Proposition 3.1. For x ≥ Q25 and Q ≥ 2, we have∑
1
2
Q<q≤Q

∑
χ̸=χ0

∣∣∣∣L′

L
(1, χ) + Φχ(x)

∣∣∣∣ ≪ π∗(Q)(logQ) .

We remark that in [6], Lemma 2, a similar result is proved without the averaging
over q. Also, we remark that the proof below shows that if there are no “exceptional”
zeros (defined below), then the contribution from (3.1) need not be included and thus,
the estimate of the proposition above may be replaced with (logQ)14.

Proof. Denote by N(σ, T, q) the number of zeros ρ = β + iγ of the product∏
χ0 ̸=χ mod q

L(s, χ)

with β ≥ σ and |γ| ≤ T . (Recall that q is prime and so the nontrivial characters are
primitive.) Let us also set

N(σ, T,Q) =
∑

1
2
Q<q≤Q

N(σ, T, q) .

The proof proceeds exactly as in the proof of [6], Lemma 2, except that we use the
zero-density estimate of Montgomery [7] that for σ ≥ 4/5, we have

N(σ, T,Q) ≪ (Q2T )
5
2
(1−σ)(logQ2T )13

uniformly for Q ≥ 1 and T ≥ 2. We begin with the equality (5.4.1) of [6], namely

L′

L
(1, χ) + Φχ(x) =

1

x− 1

∑
ρ

xρ − 1

ρ(1− ρ)
+ O

( log x
x

)
,

valid for any χ ̸= χ0.

Let χ1 = χ1,q ̸= χ0 denote the unique quadratic character modulo q. It is
well-known (see, for example, [3], §14) that there is an effective and absolute constant
c6 > 0 such that for any χ (mod q), L(s, χ) has at most one zero ρ = β + iγ with

β ≥ 1− c6
log q

, |γ| ≤ 2 .

Moreover, if such a zero exists, then χ = χ1 and this zero is real and simple. Let us
call such a zero exceptional and denote it by β1 = β1,q. By a theorem of Page (see for
example [3], p. 95), there is a positive constant c7 so that there is at most one quadratic
character χ to a prime modulus q ≤ Q for which L(s, χ) has a real zero β satisfying

β > 1 − c7
logQ

·
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From Sublemma 5.4.3, (5.4.4) and (5.4.6) of [6], we note that if the sum over zeros
is truncated to zeros ρ with |γ| ≤ T , we get an inequality

L′

L
(1, χ) + Φχ(x) ≪ 1

x− 1

∑
|γ|≤T

∣∣∣∣ xρ − 1

ρ(1− ρ)

∣∣∣∣ +
log qT

T
+

(log q)2

x
+

log x

x
·

Summing this over χ ̸= χ0 modulo q and then over prime moduli q ∈ (12Q,Q], the
error terms contribute an amount which is

≪ Qπ∗(Q)

{
logQT

T
+

(logQ)2

x
+

log x

x

}
·

If we choose T > Q2 and x > Q2(logQ), this amount is bounded.

To estimate the sum over zeros, we first consider the contribution of exceptional
zeros. By Page’s theorem, with at most one exception, we have

1

β1,q(1− β1,q)
≪ logQ

for all q ≤ Q. By Siegel’s theorem, for any ϵ > 0, we have
1

β1,q(1− β1,q)
≪ qϵ

for every q. Using the second estimate for the possible exception to Page’s theorem, we
deduce that the contribution of exceptional zeros to the sum is

(3.1) ≪ π∗(Q)(logQ) + Qϵ.

We remark that in place of the bound qϵ given by Siegel’s theorem, we could also use
the effective bound q

1
2 (log q).

To estimate the sum over non-exceptional zeros, we consider the related sum

S̃(x,Q, T ) =
∑

1
2
Q<q≤Q

∑
ρ∈Zq
|γ|≤T

xβ

where Zq denotes the set of non-exceptional zeros of the product∏
χ0 ̸=χ mod q

L(s, χ)

with real part β in [0, 1]. The contribution of terms with β ≤ 4/5 to S̃(x,Q, T ) is

(3.2) ≪ x4/5Q2T log(Q2T ) ≪ x

provided x ≥ (Q2T )6. The sum over remaining zeros is

−
∫ 1

4/5
xσdσN(σ, T,Q) = x4/5N(4/5, T,Q) +

∫ 1

4/5
(xσ log x)N(σ, T,Q)dσ .

As in (3.2), the first term is O(x). The second term is

≪ (log x)(Q2T )5/2(logQ2T )13
x

(Q2T )5/2
1

log x/Q2T

and for x ≥ (Q2T )6, this gives

(3.3) S̃(x,Q, T ) ≪ x(logQ2T )13.
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Now, we return to the estimation of the original sum over non-exceptional zeros

1

x− 1

∑
1
2
Q<q≤Q

∑
ρ∈Zq
|γ|≤T

∣∣∣∣ xρ − 1

ρ(1− ρ)

∣∣∣∣ ·
By [6], (5.4.4), we have

1

x− 1

∑
1
2
Q<q≤Q

∑
ρ∈Zq
|γ|≤T

∣∣∣∣ 1

ρ(1− ρ)

∣∣∣∣ ≪ π∗(Q)Q(logQ)2/x ≪ 1

for x ≥ Q2 logQ. Thus, it remains to consider∑
1
2
Q<q≤Q

∑
ρ∈Zq
|γ|≤T

xβ−1

|ρ(1− ρ)|
·

We see that the contribution of zeros with real part β ≤ 4/5 is

O(π∗(Q)Q(logQ)2/x1/5) .

Assume x ≥ (Q2T )6. From (3.3), we see that the contribution of zeros with imaginary
part |γ| ≤ 2 is

≪ 1

x
(logQ)S̃(x,Q, 2) ≪ (logQ)14.

The contribution of zeros with imaginary part satisfying 2j < |γ| ≤ 2j+1 is

≤ 1

x

1

22j
S̃(x,Q, 2j+1) .

Summing this over j with 2 ≤ 2j+1 ≤ T , and using (3.3), we see that the entire sum is

≪ (logQ)13.

Now choosing T = Q2(logQ) (say), and x ≥ Q25, the result follows. �

4. Proof of the Theorem

We have

γq = γ −
∑
χ ̸=χ0

Φχ(x) +
∑
χ ̸=χ0

(
L′

L
(1, χ) + Φχ(x)

)
.

Taking the absolute value of both sides and using the triangle inequality, we have

|γq| ≤ γ +

∣∣∣∣ ∑
χ ̸=χ0

Φχ(x)

∣∣∣∣ +

∣∣∣∣ ∑
χ ̸=χ0

(
L′

L
(1, χ) + Φχ(x)

) ∣∣∣∣ .
Now summing both sides over q and using Proposition 2.1 and Proposition 3.1, the
result follows.
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