THE EULER-KRONECKER CONSTANT OF A CYCLOTOMIC FIELD

V. Kumar MURTY

To Paulo Ribenboim on his 80th birthday.

RÉSUMÉ. Lorsque K est un corps de nombres, il est bien connu que la fonction zêta de Dedekind $\zeta_{K}(s)$ possède un pôle simple en $s=1$, de sorte que l'on peut écrire au voisinage de $s=1$ le développement

$$
\zeta_{K}(s)=c_{-1}(s-1)^{-1}+c_{0}+\mathbf{O}(s-1)
$$

Adoptant la définition de Ihara, nous appelons $\gamma_{K}=c_{0} / c_{-1}$, la constante de EulerKronecker de K. Lorsque K est le corps cyclotomique $\mathbb{Q}\left(\zeta_{m}\right)$, Ihara a conjecturé que l'ordre de grandeur de cette constante est $\mathbf{O}(\log m)$. Nous prouvons que ceci est vrai en moyenne pour les entiers m premiers.

Abstract. For a number field K, it is well-known that the Dedekind zeta function $\zeta_{K}(s)$ has a simple pole at $s=1$ and so we may write the expansion near $s=1$ as

$$
\zeta_{K}(s)=c_{-1}(s-1)^{-1}+c_{0}+\mathbf{O}(s-1)
$$

Following Ihara, we call $\gamma_{K}=c_{0} / c_{-1}$ the Euler-Kronecker constant of K. When K is the cyclotomic field $\mathbb{Q}\left(\zeta_{m}\right)$, Ihara has conjectured that this constant is $\mathbf{O}(\log m)$. We prove that this holds on average for m prime.

1. Introduction

For a number field K, let us denote by $\zeta_{K}(s)$ the Dedekind zeta function of K. For $\operatorname{Re}(s)>1$, it is defined by

$$
\zeta_{K}(s)=\sum_{\mathfrak{a}}(N \mathfrak{a})^{-s}
$$

where the sum is over integral ideals \mathfrak{a} of K. It is well-known that $\zeta_{K}(s)$ has an analytic continuation for all s with a simple pole at $s=1$. In particular, we may write

$$
\zeta_{K}(s)=c_{-1}(s-1)^{-1}+c_{0}+\mathbf{O}(s-1)
$$

Let us set

$$
\gamma_{K}=c_{0} / c_{-1}
$$

Reçu le 8 septembre 2009 et, sous forme définitive, le 14 août 2010.

Following Ihara [4], we call γ_{K} the Euler-Kronecker constant of K. It can equivalently be defined by

$$
-\frac{\zeta_{K}^{\prime}}{\zeta_{K}}(s)=\frac{1}{s-1}-\gamma_{K}+\mathbf{O}(s-1)
$$

For $K=\mathbb{Q}$, it is the usual Euler constant γ given by

$$
\lim _{x \rightarrow \infty}\left(\sum_{n \leq x} \frac{1}{n}-\log x\right)
$$

In [4], Theorem 1 and Proposition 3, Ihara proved that for $K \neq \mathbb{Q}$, the Riemann Hypothesis for Dedekind zeta functions (GRH) implies that there are absolute constants $c_{1}, c_{2}>0$ so that

$$
\begin{equation*}
-c_{1} \log d_{K} \leq \gamma_{K} \leq c_{2} \log \log d_{K} \tag{1.1}
\end{equation*}
$$

Here, d_{K} is the absolute value of the discriminant of K / \mathbb{Q}. As pointed out in [4], the estimation of γ_{K} from below is related to the existence or non-existence of primes of K with small norm. Tsfasman [8] showed, assuming the GRH, that as we range over number fields K with $d_{K} \rightarrow \infty$, we have

$$
\lim \inf \frac{\gamma_{K}}{\log d_{K}} \geq-0.13024 \ldots
$$

In [5], the Euler-Kronecker constant is considered in more detail for certain families of fields. Of special interest is the Euler-Kronecker constant of a cyclotomic field. Let us set $\gamma_{m}=\gamma_{\mathbb{Q}\left(\zeta_{m}\right)}$. Then, as a consequence of the factorization

$$
\zeta_{\mathbb{Q}\left(\zeta_{m}\right)}(s)=\prod_{\chi \bmod m} L(s, \chi)
$$

of the Dedekind zeta function of $\mathbb{Q}\left(\zeta_{m}\right)$ into Dirichlet L-functions, we have

$$
\gamma_{m}=\gamma+\sum_{\chi \neq \chi_{0}} \frac{L^{\prime}}{L}(1, \chi) .
$$

Here χ_{0} denotes the principal character modulo m. From (1.1), we have for $m=q$ prime,

$$
-c_{1} q \log q \leq \gamma_{q} \leq c_{2} \log q
$$

In [6], Ihara, K. Murty and M. Shimura proved that under the GRH, we have

$$
\gamma_{q} \ll(\log q)^{2} .
$$

In other words, there is an absolute constant $c_{3}>0$ so that

$$
\begin{equation*}
\left|\gamma_{q}\right| \leq c_{3}(\log q)^{2} . \tag{1.2}
\end{equation*}
$$

Unconditionally, they proved that

$$
\gamma_{q} \ll q^{\epsilon} .
$$

Badzyan [1] has shown that under the GRH, (1.2) can be improved to

$$
\gamma_{q} \ll(\log q)(\log \log q) .
$$

Ihara [5], Conjecture 1, has conjectured that there are positive constants $0<c_{4}, c_{5} \leq 2$ such that for any m sufficiently large (not necessarily prime), and any $\epsilon>0$ we have

$$
\left(c_{4}-\epsilon\right) \log m<\gamma_{m}<\left(c_{5}+\epsilon\right) \log m .
$$

In this note, we prove that for m prime, the upper bound of Ihara's conjecture holds unconditionally on average. More precisely, we prove the following.

Theorem 1.1. We have

$$
\sum_{\frac{1}{2} Q<q \leq Q}\left|\gamma_{q}\right| \ll \pi^{*}(Q)(\log Q)
$$

where $\pi^{*}(Q)$ denotes the number of primes in the interval $\left(\frac{1}{2} Q, Q\right]$ and the sum is over primes q in this interval.

The proof closely follows the methods of [6]. Throughout this paper, we shall use q to denote a prime number.

2. The sum $\Phi_{\chi}(x)$ and its average

As in [6], we consider for $x>1$ the sum

$$
\Phi_{\chi}(x)=\frac{1}{x-1} \int_{1}^{x}\left(\sum_{n \leq t} \frac{\Lambda(n)}{n} \chi(n)\right) d t
$$

We have

$$
\begin{equation*}
\sum_{\chi \neq \chi_{0}} \Phi_{\chi}(x)=\frac{1}{x-1} \int_{1}^{x}\left(\phi(q) \sum_{\substack{n \leq t \\ n \equiv 1(\bmod q)}} \frac{\Lambda(n)}{n}-\sum_{\substack{n \leq t \\(n, q)=1}} \frac{\Lambda(n)}{n}\right) d t . \tag{2.1}
\end{equation*}
$$

As usual, let us set

$$
\psi(x, q, a)=\sum_{\substack{n \leq x \\ n \equiv a(\bmod q)}} \Lambda(n)
$$

and

$$
\psi(x)=\sum_{n \leq x} \Lambda(n) .
$$

By partial summation, we have

$$
\begin{equation*}
\sum_{\substack{n \leq t \\ n \equiv 1(\bmod q)}} \frac{\Lambda(n)}{n}=\frac{1}{t} \psi(t, q, 1)+\int_{1}^{t} \frac{\psi(u, q, 1)}{u^{2}} d u . \tag{2.2}
\end{equation*}
$$

On the other hand, we have for q prime

$$
\begin{equation*}
\sum_{\substack{n \leq t \\(n, q)=1}} \frac{\Lambda(n)}{n}=\sum_{n \leq t} \frac{\Lambda(n)}{n}+\mathbf{O}\left(\frac{\log q}{q}\right) \tag{2.3}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\sum_{n \leq t} \frac{\Lambda(n)}{n}=\frac{\psi(t)}{t}+\int_{1}^{t} \frac{\psi(u)}{u^{2}} d u \tag{2.4}
\end{equation*}
$$

Proposition 2.1. We have for $x>1$ and $Q \geq 2$,

$$
\sum_{\frac{1}{2} Q<q \leq Q}\left|\sum_{\chi \neq \chi_{0}} \Phi_{\chi}(x)\right| \ll \pi^{*}(Q)(\log Q)
$$

where $\pi^{*}(Q)$ denotes the number of primes in the interval $\left(\frac{1}{2} Q, Q\right]$.
Proof. The contribution of the error term of (2.3) is

$$
\sum_{\frac{1}{2} Q<q \leq Q} \frac{\log q}{q} \ll 1
$$

Now inserting (2.2) and (2.4) into (2.1) and rearranging, we get

$$
\begin{aligned}
(2.5) \sum_{\frac{1}{2} Q<q \leq Q}\left|\sum_{\chi \neq \chi_{0}} \Phi_{\chi}(x)\right| \ll & \frac{x}{x-1} \int_{1}^{x} \frac{\sum_{\frac{1}{2} Q<q \leq Q}|\phi(q) \psi(u, q, 1)-\psi(u)|}{u^{2}} d u \\
& +\mathbf{O}(1) .
\end{aligned}
$$

We have

$$
\begin{equation*}
\sum_{\frac{1}{2} Q<q \leq Q} \phi(q) \psi(u, q, 1)=\sum_{n \leq u} \Lambda(n) \sum_{\substack{q \left\lvert\,(n-1) \\ \frac{1}{2} Q<q \leq Q\right.}} \phi(q) . \tag{2.6}
\end{equation*}
$$

Suppose that $u \leq Q^{3}$. Then in the inner sum, there can be at most four terms. Hence, the contribution of prime powers to this sum is easily seen to be

$$
\ll Q \sum_{p \leq \sqrt{u}}(\log p) \frac{\log u}{\log p} \ll Q \sqrt{u}
$$

Hence, the contribution to (2.5) is

$$
\ll Q \int_{1}^{Q^{3}} \frac{d u}{u^{3 / 2}} \ll \pi^{*}(Q) \log Q
$$

Similarly,

$$
\sum_{\frac{1}{2} Q<q \leq Q} \psi(u) \ll \pi^{*}(Q) u .
$$

Hence, the contribution of $u \leq Q^{3}$ to (2.5) is

$$
\ll \pi^{*}(Q)(\log Q)
$$

The contribution of primes to (2.6) is

$$
\sum_{p \leq u}(\log p) \sum_{\substack{p-1=t q \\ \frac{1}{2} Q<q \leq Q}} \phi(q)=\sum_{t \leq 2 u / Q} \sum_{\substack{p \leq u, p-1=t q \\ \frac{1}{2}, Q<q \leq Q}} \phi(q) \log p .
$$

This is estimated by observing that ([2], Chapter 6, Exercise 13) given t, the number of prime pairs $p, q \leq u$ with $p-1=t q$ is

$$
\ll \frac{u}{\phi(t) \log ^{2}(u / t)} .
$$

We continue to assume that $u \leq Q^{3}$ and distinguish two cases. Suppose first that $u<Q t$. Then, the contribution to (2.5) is

$$
\ll \sum_{t \leq 2 Q^{2}} \int_{Q t / 2}^{Q t} \frac{Q}{\phi(t)} \frac{1}{(\log Q)^{2}} \frac{\log u}{u} d u
$$

and this is

$$
\begin{equation*}
\ll \frac{Q}{(\log Q)^{2}} \sum_{t \leq 2 Q^{2}} \frac{1}{\phi(t)}\left((\log Q t)^{2}-(\log Q t / 2)^{2}\right) . \tag{2.7}
\end{equation*}
$$

Using the elementary fact (see, for example, [2], Chapter 8, Exercise 15) that for $y>2$, we have

$$
\begin{equation*}
\sum_{t \leq y} \frac{1}{\phi(t)} \ll \log y \tag{2.8}
\end{equation*}
$$

and the observation that $(\log Q t)^{2}-(\log Q t / 2)^{2}=\mathbf{O}(\log Q t)$, we deduce that (2.7) is

$$
\ll Q \ll \pi^{*}(Q) \log Q
$$

Now for $u>Q t$, we proceed as follows. Given $p-1=t q$, we have $p \leq t Q+1$. Hence, the number of prime pairs $p, q \leq t Q+1$ with $p-1=t q$ is

$$
\ll \frac{Q t}{\phi(t)(\log Q)^{2}} .
$$

Hence, the contribution to (2.5) is

$$
\int_{1}^{Q^{3}}\left(\sum_{\substack{t \leq u / Q}} \sum_{\substack{p \leq t Q+1, \frac{1}{2} Q<q \leq Q \\ p-1=t q}} \phi(q) \log p\right) \frac{d u}{u^{2}}
$$

which is

$$
\ll \sum_{t \leq Q^{2}} Q(\log Q t) \frac{Q t}{\phi(t)(\log Q)^{2}} \int_{Q t}^{\infty} \frac{d u}{u^{2}} .
$$

This is

$$
\ll \sum_{t \leq Q^{2}} \frac{Q \log Q t}{(\log Q)^{2}} \frac{1}{\phi(t)} .
$$

Again using (2.8), it follows that the above quantity is

$$
\ll Q \ll \pi^{*}(Q) \log Q
$$

For $u>Q^{3}$, we use the Bombieri-Vinogradov theorem (see [2], §9) to deduce that

$$
\sum_{\frac{1}{2} Q<q \leq Q}|\phi(q) \psi(u, q, 1)-\psi(u)|=\sum_{\frac{1}{2} Q<q \leq Q} \phi(q)\left|\psi(u, q, 1)-\frac{\psi(u)}{\phi(q)}\right|
$$

is

$$
\ll Q u /(\log u)^{3} .
$$

Hence, the contribution of the range $Q^{3} \leq u \leq x$ to the integral in (2.5) is

$$
\ll Q \int_{Q^{3}}^{\infty} \frac{d u}{u(\log u)^{3}} \ll \frac{Q}{(\log Q)^{2}} \ll \frac{\pi^{*}(Q)}{\log Q} .
$$

This proves the result.

3. Application of zero density estimates

In this section, we prove the following.
Proposition 3.1. For $x \geq Q^{25}$ and $Q \geq 2$, we have

$$
\sum_{\frac{1}{2} Q<q \leq Q} \sum_{\chi \neq \chi_{0}}\left|\frac{L^{\prime}}{L}(1, \chi)+\Phi_{\chi}(x)\right| \ll \pi^{*}(Q)(\log Q)
$$

We remark that in [6], Lemma 2, a similar result is proved without the averaging over q. Also, we remark that the proof below shows that if there are no "exceptional" zeros (defined below), then the contribution from (3.1) need not be included and thus, the estimate of the proposition above may be replaced with $(\log Q)^{14}$.

Proof. Denote by $N(\sigma, T, q)$ the number of zeros $\rho=\beta+i \gamma$ of the product

$$
\prod_{\chi_{0} \neq \chi} L(s, \chi)
$$

with $\beta \geq \sigma$ and $|\gamma| \leq T$. (Recall that q is prime and so the nontrivial characters are primitive.) Let us also set

$$
N(\sigma, T, Q)=\sum_{\frac{1}{2} Q<q \leq Q} N(\sigma, T, q)
$$

The proof proceeds exactly as in the proof of [6], Lemma 2, except that we use the zero-density estimate of Montgomery [7] that for $\sigma \geq 4 / 5$, we have

$$
N(\sigma, T, Q) \ll\left(Q^{2} T\right)^{\frac{5}{2}(1-\sigma)}\left(\log Q^{2} T\right)^{13}
$$

uniformly for $Q \geq 1$ and $T \geq 2$. We begin with the equality (5.4.1) of [6], namely

$$
\frac{L^{\prime}}{L}(1, \chi)+\Phi_{\chi}(x)=\frac{1}{x-1} \sum_{\rho} \frac{x^{\rho}-1}{\rho(1-\rho)}+\mathbf{O}\left(\frac{\log x}{x}\right)
$$

valid for any $\chi \neq \chi_{0}$.
Let $\chi_{1}=\chi_{1, q} \neq \chi_{0}$ denote the unique quadratic character modulo q. It is well-known (see, for example, [3], §14) that there is an effective and absolute constant $c_{6}>0$ such that for any $\chi(\bmod q), L(s, \chi)$ has at most one zero $\rho=\beta+i \gamma$ with

$$
\beta \geq 1-\frac{c_{6}}{\log q},|\gamma| \leq 2
$$

Moreover, if such a zero exists, then $\chi=\chi_{1}$ and this zero is real and simple. Let us call such a zero exceptional and denote it by $\beta_{1}=\beta_{1, q}$. By a theorem of Page (see for example [3], p. 95), there is a positive constant c_{7} so that there is at most one quadratic character χ to a prime modulus $q \leq Q$ for which $L(s, \chi)$ has a real zero β satisfying

$$
\beta>1-\frac{c_{7}}{\log Q}
$$

From Sublemma 5.4.3, (5.4.4) and (5.4.6) of [6], we note that if the sum over zeros is truncated to zeros ρ with $|\gamma| \leq T$, we get an inequality

$$
\frac{L^{\prime}}{L}(1, \chi)+\Phi_{\chi}(x) \ll \frac{1}{x-1} \sum_{|\gamma| \leq T}\left|\frac{x^{\rho}-1}{\rho(1-\rho)}\right|+\frac{\log q T}{T}+\frac{(\log q)^{2}}{x}+\frac{\log x}{x}
$$

Summing this over $\chi \neq \chi_{0}$ modulo q and then over prime moduli $q \in\left(\frac{1}{2} Q, Q\right]$, the error terms contribute an amount which is

$$
\ll Q \pi^{*}(Q)\left\{\frac{\log Q T}{T}+\frac{(\log Q)^{2}}{x}+\frac{\log x}{x}\right\}
$$

If we choose $T>Q^{2}$ and $x>Q^{2}(\log Q)$, this amount is bounded.
To estimate the sum over zeros, we first consider the contribution of exceptional zeros. By Page's theorem, with at most one exception, we have

$$
\frac{1}{\beta_{1, q}\left(1-\beta_{1, q}\right)} \ll \log Q
$$

for all $q \leq Q$. By Siegel's theorem, for any $\epsilon>0$, we have

$$
\frac{1}{\beta_{1, q}\left(1-\beta_{1, q}\right)} \ll q^{\epsilon}
$$

for every q. Using the second estimate for the possible exception to Page's theorem, we deduce that the contribution of exceptional zeros to the sum is

$$
\begin{equation*}
\ll \pi^{*}(Q)(\log Q)+Q^{\epsilon} \tag{3.1}
\end{equation*}
$$

We remark that in place of the bound q^{ϵ} given by Siegel's theorem, we could also use the effective bound $q^{\frac{1}{2}}(\log q)$.

To estimate the sum over non-exceptional zeros, we consider the related sum

$$
\tilde{S}(x, Q, T)=\sum_{\frac{1}{2} Q<q \leq Q} \sum_{\substack{\rho \in Z_{q} \\|\gamma| \leq T}} x^{\beta}
$$

where Z_{q} denotes the set of non-exceptional zeros of the product

$$
\prod_{\chi_{0} \neq \chi} L(s, \chi)
$$

with real part β in $[0,1]$. The contribution of terms with $\beta \leq 4 / 5$ to $\tilde{S}(x, Q, T)$ is

$$
\begin{equation*}
\ll x^{4 / 5} Q^{2} T \log \left(Q^{2} T\right) \ll x \tag{3.2}
\end{equation*}
$$

provided $x \geq\left(Q^{2} T\right)^{6}$. The sum over remaining zeros is

$$
-\int_{4 / 5}^{1} x^{\sigma} d_{\sigma} N(\sigma, T, Q)=x^{4 / 5} N(4 / 5, T, Q)+\int_{4 / 5}^{1}\left(x^{\sigma} \log x\right) N(\sigma, T, Q) d \sigma
$$

As in (3.2), the first term is $\mathbf{O}(x)$. The second term is

$$
\ll(\log x)\left(Q^{2} T\right)^{5 / 2}\left(\log Q^{2} T\right)^{13} \frac{x}{\left(Q^{2} T\right)^{5 / 2}} \frac{1}{\log x / Q^{2} T}
$$

and for $x \geq\left(Q^{2} T\right)^{6}$, this gives

$$
\begin{equation*}
\tilde{S}(x, Q, T) \ll x\left(\log Q^{2} T\right)^{13} \tag{3.3}
\end{equation*}
$$

Now, we return to the estimation of the original sum over non-exceptional zeros

$$
\frac{1}{x-1} \sum_{\substack{\frac{1}{2} Q<q \leq Q}} \sum_{\substack{\rho \in Z_{q} \\|\gamma| \leq T}}\left|\frac{x^{\rho}-1}{\rho(1-\rho)}\right|
$$

By [6], (5.4.4), we have

$$
\frac{1}{x-1} \sum_{\substack{\frac{1}{2} Q<q \leq Q}} \sum_{\substack{p \in Z_{q} \\|\gamma| \leq T}}\left|\frac{1}{\rho(1-\rho)}\right| \ll \pi^{*}(Q) Q(\log Q)^{2} / x \ll 1
$$

for $x \geq Q^{2} \log Q$. Thus, it remains to consider

$$
\sum_{\substack{\frac{1}{2} Q<q \leq Q}} \sum_{\substack{\rho \in Z_{q} \\|\gamma| \leq T}} \frac{x^{\beta-1}}{|\rho(1-\rho)|} .
$$

We see that the contribution of zeros with real part $\beta \leq 4 / 5$ is

$$
\mathbf{O}\left(\pi^{*}(Q) Q(\log Q)^{2} / x^{1 / 5}\right)
$$

Assume $x \geq\left(Q^{2} T\right)^{6}$. From (3.3), we see that the contribution of zeros with imaginary part $|\gamma| \leq 2$ is

$$
\ll \frac{1}{x}(\log Q) \tilde{S}(x, Q, 2) \ll(\log Q)^{14}
$$

The contribution of zeros with imaginary part satisfying $2^{j}<|\gamma| \leq 2^{j+1}$ is

$$
\leq \frac{1}{x} \frac{1}{2^{2 j}} \tilde{S}\left(x, Q, 2^{j+1}\right)
$$

Summing this over j with $2 \leq 2^{j+1} \leq T$, and using (3.3), we see that the entire sum is

$$
\ll(\log Q)^{13} .
$$

Now choosing $T=Q^{2}(\log Q)$ (say), and $x \geq Q^{25}$, the result follows.

4. Proof of the Theorem

We have

$$
\gamma_{q}=\gamma-\sum_{\chi \neq \chi_{0}} \Phi_{\chi}(x)+\sum_{\chi \neq \chi_{0}}\left(\frac{L^{\prime}}{L}(1, \chi)+\Phi_{\chi}(x)\right) .
$$

Taking the absolute value of both sides and using the triangle inequality, we have

$$
\left|\gamma_{q}\right| \leq \gamma+\left|\sum_{\chi \neq \chi_{0}} \Phi_{\chi}(x)\right|+\left|\sum_{\chi \neq \chi_{0}}\left(\frac{L^{\prime}}{L}(1, \chi)+\Phi_{\chi}(x)\right)\right| .
$$

Now summing both sides over q and using Proposition 2.1 and Proposition 3.1, the result follows.

Acknowledgments. We would like to thank John Friedlander for a very helpful conversation regarding Proposition 2.1 and the referee for a careful reading and for thoughtful questions. This research was partially supported by a grant from NSERC.

References

[1] A. Badzyan, Euler-Kronecker constant (in Russian), Mat. Zametki 87 (2010), no. 1, 3547.
[2] A. Cojocaru and M. Ram Murty, An introduction to sieve methods and their applications, London Mathematical Society Student Texts, 66, Cambridge University Press, 2006.
[3] H. Davenport, Multiplicative Number Theory, Third Edition, Revised and with a preface by Hugh L. Montgomery, Graduate Texts in Mathematics, 74, Springer-Verlag, New York, 2000.
[4] Y. Ihara, On the Euler-Kronecker constants of global fields and primes with small norms, in Algebraic geometry and number theory, 407-451, Progr. Math., 253, Birkhäuser Boston, Boston, MA, 2006.
[5] Y. Ihara, The Euler-Kronecker invariants in various families of global fields, in Arithmetic, Geometry and Coding Theory (AGCT 2005), Séminaires et Congrès 21, Société mathématique de France, Paris.
[6] Y. Ihara, V. Kumar Murty and M. Shimura, On the logarithmic derivatives of Dirichlet L-functions at $s=1$, Acta Arith. 137 (2009), no. 3, 253-276.
[7] H. Montgomery, Zeros of L-functions, Invent. Math. 8 (1969), 346-354.
[8] M. A. Tsfasman, Asymptotic behaviour of the Euler-Kronecker constant, in Algebraic geometry and number theory, 453-458, Progr. Math., 253, Birkhäuser Boston, Boston, MA, 2006.
V. K. Murty, Dept. of Math., U. of Toronto, 40 St. George Street, Toronto, On, M5S

2E4, CANADA
murty@math.toronto.edu

