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SOME CONGRUENCE PROPERTIES
OF THE PELL EQUATION
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Dedicated to Professor Paulo Ribenboim on the occasion of his 80th birthday.

RÉSUMÉ. Nous considérons l’équation de Pell sous différents points de vue et
nous investiguons certaines congruences satisfaites par ses solutions.

ABSTRACT. In this paper we look at the Pell equation from various points of view
and study some congruence properties of its solutions.

1. Introduction

The number theoretic function ln(m), which is defined to be the order of the integer
n ̸= 0, 1 in the group (Z/mZ)×, appears to be very erratic and difficult to predict.
In particular, one would like to know when is ln(m) the maximum possible number
λ(m) = exp ((Z/mZ)×). For a finite group G, its exponent is defined by

exp(G) = max {ord(a) |a ∈ G} .

A well-known conjecture of E. Artin states that for a given integer n ̸= 0, 1, which has
no square factor, ln(p) = λ(p) = p − 1 for infinitely many primes p. C. Hooley [6]
proved it assuming GRH is true. Gupta and Murty [4] have proven this conjecture
unconditionally for infinitely many n (see also Heath-Brown’s paper [5]).

In this paper, we study this problem for groups defined by the Pell equation. We fix
a square-free integer N > 1, and consider the Pell equation

(1.1) x2 −Ny2 = 1 .

Its integer solutions form an abelian group

G =
{
(x, y) ∈ Z2

∣∣x2 −Ny2 = 1
}
,

which is an extension by {±1} of a cyclic group. This cyclic group is the subgroup of
G consisting of the elements (x, y) with x > 0, whose generator is its unique element
with the smallest y > 0. The group G may be realized as a group of 2 × 2 matri-
ces with integer entries. For an integer m > 1, the reduction mod m map from Z to
Z/mZ induces a homomorphism from G to its image in GL2(Z/mZ). The fundamen-
tal generator of G (the solution of (1.1) with smallest x, y > 0) and thus its image in
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GL2(Z/mZ) is hard to predict if N is arbitrary. We obtain some results on the size of
the image of G under the reduction mod m homomorphism.

The Pell equation has a long and rich history that goes at least as far back as the
time of Archimedes, whose famous cattle problem ([1, p. 151]) leads to the Diophantine
equation (1.1) with N = 4729494. A non-trivial solution, y ̸= 0, for this choice of N
was not found until two millenia later.

Lagrange was the first to prove that the Pell equation has a non-trivial solution,
from which it follows easily that it has infinitely many of them. The most obvious,
likely the most inefficient, way to find a solution is to plug y = 1, 2, 3, . . . in 1 +Ny2,
until the result is a perfect square x2. By Lagrange’s theorem, this is guaranteed to
happen sooner or later, but exactly when is a difficult question. A more efficient way,
called cakravāla ([8, p. 21]) was devised by the Indian school of mathematicians —
Aryabhata (c. 476–550), Brahmagupta (c. 598–665) and Bhaskara (c. 1114–1185).
Dirichlet gave the complete description of the integer solutions of the Pell equation.

In ancient times, the Pell equation was used to compute square roots of square-free
integers. Brahmagupta composed solutions. He called the composition bhavana and
used it to approximate

√
N . According to Weil, “to have developed the cakravāla and

to have applied it successfully to such difficult numerical cases as N = 61 or N = 67
had been no mean achievement” [9, p. 24]. In fact, Brahmagupta was already exploiting
what we call the group structure on the integer solutions of (1.1).

The “Pell equation” is named after John Pell, an Englishman who wrote to Eu-
ler, asking some questions about it. Euler later referred to equation (1.1) as the Pell
equation.

2. Pell’s equation from different perspectives

We now discuss some ways the Pell equation appears in disguise in mathematics.
The list is by no means complete. Complete treatment would certainly contain a treat-
ment of continued fractions.

2.1. The Pell equation is a forerunner to Dirichlet’s Unit Theorem for number
fields, which states that the group O×

K of units (of the ring of integers OK) of a number
field K (where K is a subfield of C, whose dimension as a vector space over Q is
finite) is isomorphic to WK × Zr, where WK is the finite group of roots of unity in K
and where r = r1 + r2 − 1. Here r1 (resp. r2) is the number of real (resp. pairs of
imaginary) imbeddings of K into C.

For the sake of simplicity, we take the square-free positive integers N to be con-
gruent to 2, 3 (mod 4). In the special case of Q(

√
N), we have that OK = Z[

√
N ] and

O×
K consists of the algebraic integers α = x+ y

√
N in OK with norm

N (α) = αᾱ = x2 −Ny2 = ±1,

where ᾱ = x − y
√
N is the algebraic conjugate of α. (It turns out that Dirichlet

considered the algebraic integers of arbitrary algebraic number fields.)
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2.2. The Pell equation provides the best example to illustrate some aspects of the
theory of algebraic groups. An algebraic group G is the set of solutions of a finite set
of polynomial equations in n variables with coefficients in Q, together with a group
structure which is given by polynomial expressions [7, p. 51]. The standard examples
are GLn of n×nmatrices that are invertible and the algebraic group SLn defined by the
polynomial equation det(x) = 1 in n2 variables xij , the entries of x ∈ SLn. Clearly
matrix multiplication xy and x−1 are given by polynomial expressions in the entries of
x and y.

Let G be the group of solutions of the Pell equation on which we define a binary
operation by

(2.1) (x1, y1) ∗ (x2, y2) = (x1x2 +Ny1y2, x1y2 + x2y1)

with identity (1, 0), and (x, y)−1 = (x,−y). Clearly, G is an abelian algebraic group.

It is a standard fact that every algebraic group is linear, that is, it is isomorphic
(as an algebraic group) to a subgroup of GLn. In particular, the algebraic group G
defined by Pell’s equation is isomorphic to the algebraic group G′ of 2× 2 matrices of
determinant one, via the obvious isomorphism

(x, y) 7→
(
x y
Ny x

)
.

An algebraic group T is called a torus if T is isomorphic to a group of diagonal
matrices. We say T splits over an extension K of Q if this isomorphism is given by
polynomials with coefficients in K. As an example, G′ is a torus which splits over
Q(

√
N),

G′ ∼= g−1Gg =

{(
x+ y

√
N 0

0 x− y
√
N

)∣∣∣∣ x, y ∈ Z, x2 −Ny2 = 1

}
with

g =

(√
N 1

N −
√
N

)
.

2.3. Consider a conic section defined by a polynomial equation

(2.2) f(x, y) = 0

of degree two, that is, the set of points P = (a, b) with a, b real, whose coordinates
x = a, y = b satisfy (2.2). The classification of the conic sections into parabola,
ellipse, hyperbola, etc. has been known for at least two millennia. If we take them
in the standard form, say circle as x2 + y2 = a2 or parabola as y = ax2 (a > 0 an
integer), a number theoretic problem is to find all the integer solutions. Except in the
case of hyperbola, the problem is trivial. On the parabola y = ax2, all the integer
solutions are (t, at2) with t ∈ Z, whereas the only integer points on the unit circle are
(±1, 0) and (0,±1). Thus the Pell equation is rare among conic sections which have a
number theoritic significance.

The integer solutions of (1.1) with x > 0 form a subgroup H of the group G of all
integer solutions of (1.1) and the index [G : H] = 2. For a geometric interpretation,
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see Figure 1. As a group, H is isomorphic to the additive group Z. The solution
(x1, y1) ̸= (1, 0) of (1.1) in the first quadrant that is nearest to (1, 0) is a generator
of H . The isomorphism from Z to H is given by n 7→ (xn, yn) = (x1, y1)

n. This
generator (x1, y1) of H corresponds to the so-called fundamental unit x1 + y1

√
N of

the quadratic field Q(
√
N).

Given N , a priori one cannot say how large the fundamental unit (meaning how
large y, or equivalently x) is going to be. One has to compute it, for which continued
fractions provide more or less the most efficient method.

y

(x, y)

e = (0, 1)

0
x

FIGURE 1

2.4. Computing square roots. As an example, take N = 2. Then y = 2 is the
smallest positive integer for which 1 + 2y2 is a perfect square (in fact it is the square
of 3). Thus from the generator (3, 2) of G, one obtains all the solutions of (1.1) by
using the group law (2.1):

(3, 2) ∗ (3, 2) = (17, 12),

(17, 12) ∗ (3, 2) = (99, 70),

(99, 70) ∗ (17, 12) = (3363, 2378).

Now if we write equation (1.1) as

N =
x2

y2
− 1

y2
,

the term 1/y2 is negligible for large y, hence
√
N ≈ x/y. In particular,

√
2 ≈ 3363

2378 ≈
1.4142136, is the same as given by a hand-held calculator.

3. Congruence properties

Finally, we come to the main theme of this article. For an integer m > 1, we
shall denote the reduction mod m map from Z to Z/mZ by redm and for x ∈ Z,
x̄ = redm(x). It is a ring homomorphism. For the remainder of the paper, let G be the
group of integer solutions of (1.1) with x > 0. The reduction mod m map induces a
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group homomorphism redm : G → GL2(Z/mZ), where the target group is finite. We
shall denote by gN (m) the order of the image, i.e.,

gN (m) = | redm(G)|.

The following theorems and the corollary sum up our main results.

Theorem 1. Let p be an odd prime. If p |N , then gN (p) | 2p. If p - N , then gN (p)
divides p− 1 or p+ 1 according as N̄ is or is not a square in the field Fp = Z/pZ.

Theorem 1 gives information about the order of the group redp(G), for each prime
p. Whenm > 1 is composite, redm(G) is also a finite cyclic group, so it is reasonable to
consider the order of this group as well. The order of redm(G) is given by Theorem 2,
which follows from Propositions 10 and 11.

Theorem 2. Let m = pϵ11 p
ϵ2
2 · · · pϵrr , where the pi’s are distinct primes and the ϵi’s

are positive integers. Then

gN (m) | pϵ1−1
1 gN (p1)p

ϵ2−1
2 gN (p2) · · · pϵr−1

r gN (pr).

Furthermore,
lcm(gN (p1), gN (p2), . . . , gN (pr)) | gN (m).

The following is an immediate consequence of Theorems 1 and 2.

Corollary 3. If m is as in Theorem 2, and
(
N
pi

)
= 1 for all odd pi’s, then gN (m)

divides ϕ(N).

Here
(
N
pi

)
denotes the Legendre symbol and ϕ(N), the Euler phi-function.

Without further conditions on N and m, these results (Theorems 1 and 2) are the
best possible (see examples below).

Example 4. Consider N = 7, i.e., x2 − 7y2 = 1. The smallest integer solution of
this equation, and therefore a generator of G, is (8, 3). We want to consider red5(G).
We will use bars to denote elements of Z/5Z. On reduction mod 5, the generator
becomes g = (3̄, 3̄). Now we know that red5(G) is cyclic, so to find the order of the
group, it suffices to find the smallest d with gd = (1̄, 0̄).

g2 = (3̄, 3̄) ∗ (3̄, 3̄) = (2̄, 3̄),

g3 = (3̄, 3̄) ∗ (2̄, 3̄) = (4̄, 0̄),

g4 = (3̄, 3̄) ∗ (4̄, 0̄) = (2̄, 2̄),

g5 = (3̄, 3̄) ∗ (2̄, 2̄) = (3̄, 2̄),

g6 = (3̄, 3̄) ∗ (3̄, 2̄) = (1̄, 0̄).

Therefore the order g7(5) of red5(G) is 6. By Theorem 1, g7(5) | (5 + 1) so g7(5)
attains the upper bound.

Example 5. Let N = 11. The generator for the group of solutions of equation
(1.1) is (10, 3). We compute gN (m) for some values of m. For example,

gN (3) = 1, gN (5) = 4, gN (7) = 3, gN (13) = 7.
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We see that gN (3) is as small as possible, whereas gN (5) = ϕ(5), the maximum possi-
ble, by Theorem 1. Furthermore,

gN (53 · 7 · 132) = 27300 = 52 · 13 · gN (5) · gN (7) · gN (13)

shows that the order of the group with N = 11 and m = 147875 has attained the upper
bound given by Theorem 2.

Example 6. Now let N = 17. The generator for G is (33, 8), and we can compute

gN (3) = 4, gN (5) = 6, gN (7) = 8,

so we have gN (p) = p+ 1 for these three primes. However, we have

gN (32 · 5 · 7) = 24 = lcm(4, 6, 8).

In this example, the order of the group attains the lower bound.

Corollary 3 does not hold in general if
(
N
pi

)
= −1 for any pi. Consider the follow-

ing example.

Example 7. Suppose N = 13. The generator for G with this choice of N is
(649, 180). It is not difficult to check that 13 ≡ 6 (mod 7) is not square in F7 and
13 (mod 19) is not square in F19. We have g13(7) = 8, and g13(19) = 20, and
g13(133) = 40. However, ϕ(133) = 6 · 18 = 108.

3.1. Proof of main result. For the proof we need the following techincal lemma
(containing a formula which is also given by Lagrange in [3], but with a different proof).

Lemma 8. If (x, y) ∈ G, then for any positive integer n, (x, y)n = (xn, yn), where
for n even, we have

xn =

(
n

0

)
xn +

(
n

2

)
Nxn−2y2 + · · ·

+

(
n

2k

)
Nkxn−2ky2k + · · ·+

(
n

n

)
N

n
2 yn,

yn =

(
n

1

)
xn−1y +

(
n

3

)
Nxn−3y3 + · · ·

+

(
n

2k + 1

)
Nkxn−2k−1y2k+1 + · · ·+

(
n

n− 1

)
N

n−2
2 xyn−1,

and where for n odd, we have

xn =

(
n

0

)
xn +

(
n

2

)
Nxn−2y2 + · · ·

+

(
n

2k

)
Nkxn−2ky2k + · · ·+

(
n

n− 1

)
N

n−1
2 xyn−1,

yn =

(
n

1

)
xn−1y +

(
n

3

)
Nxn−3y3 + · · ·

+

(
n

2k + 1

)
Nkxn−2k−1y2k+1 + · · ·+

(
n

n

)
N

n−1
2 yn.
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Proof. We proceed by induction. The lemma is obviously true for n = 1. The
inductive step is as follows. If n is even, then from (2.1),

xn+1 = xxn +Nyyn

= x

((
n

0

)
xn +

(
n

2

)
Nxn−2y2 + · · ·+

(
n

2k

)
Nkxn−2ky2k + · · ·+

(
n

n

)
N

n
2 yn

)
+Ny

((
n

1

)
xn−1y +

(
n

3

)
Nxn−3y3 + · · ·

+

(
n

2k + 1

)
Nkxn−2k−1y2k+1 + · · ·+

(
n

n− 1

)
N

n−2
2 xyn−1

)

= xn+1 +

((
n

1

)
+

(
n

2

))
Nxn−1y2 + · · ·

+

((
n

2k − 1

)
+

(
n

2k

))
Nkxn−2k+1y2k + · · ·+

((
n

n− 1

)
+

(
n

n

))
N

n
2 xyn

and

yn+1 = xny + xyn

=

((
n

0

)
xn +

(
n

2

)
Nxn−2y2 + · · ·+

(
n

2k

)
Nkxn−2ky2k + · · ·+

(
n

n

)
N

n
2 yn

)
y

+ x

((
n

1

)
xn−1y +

(
n

3

)
Nxn−3y3 + · · ·

+

(
n

2k + 1

)
Nkxn−2k−1y2k+1 + · · ·+

(
n

n− 1

)
N

n−2
2 xyn−1

)

=

((
n

0

)
+

(
n

1

))
xny + · · ·

+

((
n

2k

)
+

(
n

2k + 1

))
Nkxn−2ky2k+1 + · · ·+

(
n

n

)
N

n
2 yn+1.

By the Binomial Theorem, (
n

k

)
+

(
n

k + 1

)
=

(
n+ 1

k + 1

)
,

so

xn+1 =

(
n+ 1

0

)
xn+1 +

(
n+ 1

2

)
Nxn−1y2 + · · ·

+

(
n+ 1

2k

)
Nkxn+1−2ky2k + · · ·+

(
n+ 1

n

)
N

n
2 xyn,

yn+1 =

(
n+ 1

1

)
xny +

(
n+ 1

3

)
Nxn−2y3 + · · ·

+

(
n+ 1

2k + 1

)
Nkx(n+1)−2k−1y2k+1 + · · ·+

(
n+ 1

n+ 1

)
N

n
2 yn+1,
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as desired. The n odd case can be handled in a similar manner. �

Proof of Theorem 1. The fact gN (2) = 1 or 2 is obvious. If the odd p |N , then
redp(G) is isomorphic to a subgroup of{(

x y
0 x

)
: x, y ∈ Fp, x

2 = 1

}
.

This group has order 2p. This proves the first statement.

We now consider the case when p is not a factor of N , and p ̸= 2. To fix notation,
we recall some standard facts from basic number theory found, for example, in [2]. Re-
call that for x ∈ Fp, xp = x. Consider the group homomorphism ψ : F×

p → F×
p defined

by ψ(x) = x̄ (p−1)/2, F×
p being the multiplicative group of non-zero elements of the fi-

nite field Fp. The image of the map is {±1}: If a ∈ F×
p is a square, then there exists

t ∈ Fp so that a = t2. Thus, ψ(a) = (t2)(p−1)/2 = 1. So we have (F×
p )

2 ⊂ kerψ.
On the other hand, there exists b ∈ F×

p such that ψ(b) = −1, otherwise the polyno-
mial x(p−1)/2 − 1 has more roots than its degree. Therefore F×

p / ker(ψ)
∼= {±1} and

(F×
p )

2 = kerψ.

To summarize, consider N̄ = redp(N) as an element of Fp. If N̄ is a square then
N̄ (p−1)/2 = 1, and if N̄ is not a square, then N̄ (p−1)/2 = −1.

Suppose N̄ is a square. Since p is odd, Lemma 8 gives

(x̄, ȳ)p =

(
x̄p + · · ·+

(
p

p− 1

)
N̄

p−1
2 x̄ȳp−1,

(
p

1

)
x̄p−1ȳ + · · ·+ N̄

p−1
2 yp

)
= (x̄p, N̄

p−1
2 ȳ)

= (x̄, ȳ).

The second equality follows because p |
(
p
k

)
whenever k is not equal to 0 or p. This

shows that (x̄, ȳ)p−1 = (1, 0). Therefore gN (p) |(p− 1).

Now suppose N̄ is not a square. Then we have N̄ (p−1)/2 = −1, and consequently
N̄ (p+1)/2 = −N̄ . Since p+ 1 is even, Lemma 8 shows that

(x̄, ȳ)p+1 =

(
x̄p+1 + · · ·+ N̄

p+1
2 ȳp+1,

(
p+ 1

1

)
x̄pȳ + · · ·+

(
p+ 1

p

)
N̄

p−1
2 x̄ȳp

)
=

(
x̄2 − N̄ ȳ2, x̄ȳ − x̄ȳ

)
= (1, 0).

The second equatity follows because p |
(
p+1
k

)
whenever k is not equal to 0, 1, p or p+1.

Since this is true for any (x̄, ȳ) ∈ redp(G), we have gN (p) |(p+ 1). �

The following corollary gives the divisibility properties of the integer solutions of
the Pell equation.

Corollary 9. Let p ̸= 2 be a prime number. If (x, y) is a solution of the Pell
equation (1.1), then p does not divide x unless p - N . Furthermore, there exists a
solution (x, y) of equation (1.1) with p |x if and only if 4 | gN (p).
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Proof. Suppose (x, y) is a solution of (1.1). If p | N , then on reduction mod p,
equation (1.1) becomes x̄2 = 1. Clearly p - x in this case. So suppose p does not
divide N .

If p | x, then redp(G) has an element of the form (0, ȳ) with ȳ ̸= 0 in Fp. But
(0, ȳ)2 = (Ny2, 0) = (−1, 0), since x̄2− N̄ ȳ2 = 1, and (−1, 0)2 = (1, 0). Thus (0, ȳ)
has order 4 in redp(G). But if redp(G) contains an element of order 4, then 4 | gN (p).

To prove the converse, it suffices to check that elements of the form (0, ȳ) are the
only elements of order 4 in redp(G).

Suppose (x̄, ȳ) has order 4. Then

(x̄, ȳ)4 = (x̄4 + 6N̄ x̄2ȳ2 + N̄2ȳ4, 4x̄ȳ(x̄2 + N̄ ȳ2))

= (1, 0).

The second coordinate is zero only if one of the factors is zero. If x̄ ̸= 0, then either
ȳ = 0 or (x̄2+N̄ ȳ2) = 0. In the former case, x̄2 = 1, and so (x̄, ȳ) has order at most 2.
In the latter case, since (x̄, ȳ)2 = (x̄2 + N̄ ȳ2, 2x̄ȳ) = (0, ȳ), the order of (x̄, ȳ)2 is 4,
so (x̄, ȳ) has order 8. �

Proposition 10. Let m = pk, where k is a positive integer. Then

gN (m)
∣∣ pk−1gN (p) .

Proof. If k = 1, the statement is trivial. So we may assume k ≥ 2. Consider
the map φ : redpk(G) → redpk−1(G) induced by redpk−1 . In other words, reduce the
entries of elements of redpk(G), by pk−1. This is a surjective map, so we have

redpk(G)/ kerφ
∼= redpk−1(G),

or in other words, gN (pk) = gN (pk−1) · | kerφ|. We will use the bar notation to denote
elements of Z/pkZ, i.e., if x ∈ Z, then x̄ is its image in Z/pk/Z.

To compute the order of kerφ, let (x̄, ȳ) ∈ kerφ. Then the element (x̄, ȳ) has the
form (1 + apk−1, bpk−1), where a, b ∈ Z/pkZ. But we know that

(3.1) x̄2 − N̄ ȳ2 = 1 + 2apk−1 + b2 p̄2k−1 − N̄b2 p̄2k−1 = 1.

Since k ≥ 2, 2(k − 1) ≥ k, and so pk | p2k−1. Now equation (3.1) shows that a = 0.
Therefore (x̄, ȳ) has the form (1, bpk−1).

If p ̸= 2 we have

(x̄, ȳ)p =

(
1 +

(
p

2

)
N̄(bpk−1)2 + · · ·+

(
p

p− 1

)
N̄

p−1
2 (bpk−1)p−1 ,

(
p

1

)
bpk−1 + · · ·+ N̄

p−1
2 (bpk−1)p

)
= (1, 0).

The second equality follows because a power of pk shows up in every term except the
first term of the first entry.
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If p = 2, then we have

(x̄, ȳ)2 =
(
1 + N̄(b(2k−1))2, 2b(2k−1)

)
= (1, 0).

Thus | kerφ| divides p. Then by induction, gN (pk) | pk−1gN (p). �
Proposition 11. Suppose m = qr, with gcd(q, r) = 1. Then

gN (m) |
(
gN (q) · gN (r)

)
.

Proof. The Chinese Remainder Theorem gives an isomorphism of rings

Φ : Z/mZ ∼= Z/qZ× Z/rZ.
Consider the obvious group homomorphism

ψ : redm(G) → redq(G)× redr(G).

Since Φ is bijective, so is ψ and we see that gN (m) |
(
gN (q) · gN (r)

)
. �
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