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ON THE EQUATION Y 2 = X6 + k

ANDREW BREMNER AND NIKOS TZANAKIS

Dedicated with respect and admiration to Professor Paulo Ribenboim
on the occasion of his 80th birthday.

RÉSUMÉ. Nous trouvons explicitement toutes les solutions rationelles de l’équa-
tion du titre pour tous les entiers k avec |k| ≤ 50, sauf pour les valeurs k = −47,−39.
Pour la résolution, nous appliquons diverses méthodes qui, selon k, varient des mé-
thodes élémentaires, telles que la divisibilité ou des considérations de congruences,
jusqu’aux techniques dites « elliptiques à la Chabauty » et des calculs hautement com-
plexes dans des corps des nombres, ou des combinaisons de ces méthodes. Pour cer-
tains ensembles de valeurs de k, nous pouvons proposer une méthode de résolution
plus ou moins uniforme, qui pourrait être appliquée avec succès pour un ensemble im-
portant de valeurs de k, même au-delà des valeurs ci-dessus. Cependant, il s’avère que
six valeurs parmi celles que nous considérons nous mettent vraiment au défi, à savoir
k = 15, 43,−11,−15,−39,−47. Plus de la moitié de l’article traite de la résolution de
l’équation du titre pour les quatre premières valeurs. Pour les deux dernières valeurs,
la résolution de l’équation a résisté à tous nos efforts. La présence de ces six valeurs
de k est une indication qu’on ne peut pas espérer une méthode générale de résolution
applicable, même en principe, pour toutes les valeurs de k.

ABSTRACT. We find explicitly all rational solutions of the title equation for all
integers k in the range |k| ≤ 50 except for k = −47,−39. For the solution, a variety
of methods are applied, which, depending on k, may range from elementary, such as
divisibility and congruence considerations, to elliptic Chabauty techniques and highly
technical computations in algebraic number fields, or a combination thereof. For cer-
tain sets of values of k we can propose a more or less uniform method of solution,
which might be applied successfully for quite a number of cases of k, even beyond the
above range. It turns out, however, that in the range considered, six really challeng-
ing cases have to be dealt with individually, namely k = 15, 43,−11,−15,−39,−47.
More than half of the paper is devoted to the solution of the title equation for the first
four of these values. For the last two values the solution of the equation, at present, has
resisted all our efforts. The case with these six values of k shows that one cannot ex-
pect a general method of solution which could be applied, even in principle, for every
value of k.

1. Introduction

For a fixed integer k, there is a vast literature devoted to the integer solutions of the
Diophantine equation Y 2 = X3 + k (Mordell’s equation). It is well known that the
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equation has only finitely many integer solutions, and many individuals over the years
investigated this problem, starting with solving the equation for particular values of k.
There now exists a very satisfactory uniform method (the elliptic logarithm method, de-
veloped independently by Stroeker and Tzanakis [13] and Gebel, Pethő, Zimmer [11])
for explicitly computing all integer solutions on elliptic curves. See Gebel, Pethő, Zim-
mer [12] for a very successful application of this method to computing all integer points
on Mordell’s equation for a given k. When we consider rational solutions to Mordell’s
equation, then the whole theory of elliptic curves comes into play, and many questions
remain unresolved, which is not however the focus here. In this paper we shall study
rational solutions of the naturally arising Diophantine equation

(1) Ck : Y 2 = X6 + k

for a fixed integer k 6= 0, free of sixth powers. There are two rational points at infinity
onCk corresponding to Y = ±X3, and henceforth we shall consider only finite rational
points. Since Ck represents a curve of genus 2, Faltings’s theorem (“Mordell’s Con-
jecture”) [9], shows that Ck(Q) is finite. It is well known that both Falting’s proof and
the subsequent one by P. Vojta [14] are non-effective (though an effectively computable
bound for the number of rational points is accomplished), hence they cannot provide us
with a practical method for the explicit determination of all rational points on Ck. Thus
determination of rational points on Ck is a good challenge. We attack this challenge
by a series of approaches that start with elementary ideas and progress to being more
technical; we illustrate the ideas by applying them to k in the range |k| ≤ 50.

If the rank of the Jacobian Jk of Ck is at most equal to 1, then there are effective
“Chabauty” techniques that allow (at least in principle, but not provably) determination
of Ck(Q). However, the Jacobian Jk is isogenous to the product of the two elliptic
curves

(2) E1 : Y 2
1 = X3

1 + k, E2 : Y 2
2 = X3

2 + k2,

with maps from Ck to Ei, i = 1, 2, given by

(X1, Y1) = (X2, Y ), (X2, Y2) =

(
k

X2
,
kY

X3

)
·

Thus the rank of Jk is the sum of the ranks of E1 and E2. If Jk has rank at most 1, then
there is no need to use Chabauty techniques, for in such a case the rank of E1 or E2
is 0, and either there are no finite rational points on (1), or there are only the obvious
ones arising from non-zero torsion points on Ei (which occur for k a perfect square or
perfect cube).

The interesting cases therefore arise when both E1 and E2 have positive ranks. We
know of only one example in the literature where the set of rational points is determined
upon such a curve: Coombes and Grant [6] in an example show that the only rational
points on the curve y2 = x6− 972 (with covering elliptic curves both of rank 1) are the
points at infinity. This will also follow from the elementary arguments of section 2.2
below.

To deal with (1), we shall construct maps to Ck from curves having ternary equa-
tions of type ax6 + by6 = cz3. This is the particular form of a very natural generalized
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Fermat curve. Several important papers recently have been devoted to generalized Fer-
mat equations, and papers of Bennett and Skinner [2] and Darmon and Granville [7]
seem applicable when at least one of the exponents in the equation is large. However,
the specific equations ax6 + by6 = cz3 (and ax6 + by6 = cz2) seem poorly treated,
indeed, essentially absent, in the literature. We can find one paper by Dem’yanenko [8],
who inter alia discusses the equations x6 + y6 = az2 and x6 + y6 = az3. This dearth
is curious. For several decades in the early twentieth century, number theorists were
attracted to showing the impossibility of specific Diophantine equations by elementary
methods; we have here a class of such equations where impossibility may often be
shown by an argument involving an elliptic curve of rank 0, in other words, by a clas-
sical elementary infinite descent argument. This class of equations seems to have been
overlooked by earlier researchers. In any event, for a certain class of k’s, these curves
ax6 + by6 = cz3 of genus 4 may be shown by elementary means to have no non-trivial
rational points. This furnishes explicitly all solutions to (1) for the corresponding k’s;
see section 2. Within this class, there are values of k for which the descent argument,
while elementary, is not straightforward, and hence deserves some discussion; see sec-
tion 2.2.1. Some values of k may also be eliminated using the alternative elementary
ideas of section 2.2.2.

For many values of k, the above descent is inconclusive, and we turn to work-
ing over K = Q(θ), with θ3 = k. There arises the problem of solving a number
of Diophantine problems of the following type: for a certain elliptic curve E de-
fined over K such that the rank of E(K) is at most 2, explicitly determine those
points (x, y) ∈ E(K) satisfying a certain “rationality condition” q(x, y) ∈ Q where
q(X,Y ) ∈ K(X,Y ). Problems of this type are amenable to the elliptic Chabauty
method as implemented in a number of routines in Magma [4]. But we should stress
that the application of Magma is in general not a matter of button pushing, and is some-
times far from automatic; we note later some of the problems that can arise. For a
certain class of k’s, the elliptic Chabauty method applies more or less directly; and we
consider the corresponding equation (1) to be interesting but whose solution is “rela-
tively standard”. So few details are given; see section 3.

For several values of k in our considered range, the elliptic Chabauty method as
applied above does not succeed, as we explain in the first paragraph of section 4. This
happens for k = −47, −39, −15, −11, 15, 43. We surmounted obstacles that arise by
means of an alternative approach for the four cases k = 15, 43, −11, −15 (given in
decreasing order of difficulty, the first two being roughly comparable). We give details
on solving (1) for k = 15 in section 4.1, with brief details for k = 43 in section 4.2;
and for k = −11,−15 in sections 4.3, 4.4. These are the most technical sections of the
paper. We have been unable to develop a uniform method for the k’s of this section,
though believe the ideas will be useful for solving (1) for other specific “difficult” values
of k.

The remaining values k = −47,−39 in our range have resisted all our attacks.
These values give no indication of the difficulties that arise when trying to solve (1),
difficulties that may not be foreseen until after many hours of work. Finding all ratio-
nal points on (1) for these intractable values of k is indeed a challenging Diophantine
problem.
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2. General discussion

In this section we give some general discussion, the emphasis being on elemen-
tary arguments which often suffice to provide the complete solution of equation (1).
Our arguments will then be applied to solve a good number of equations (1) in the
range |k| ≤ 50. Of course, as one should expect, the equation (1) is not susceptible
to elementary treatment for all k, not even within the small range we consider. More
technical approaches are given in sections 3, 4, and 5 of this paper.

2.1. When at least one Ei has zero rank
If either of the curves E1 or E2 in (2) has rank zero, then the determination of

rational points on Ck is trivial. For if E1 has rank 0, the only possible rational points
on E1 are torsion points, and using, for example, Cassels [5, Theorem page 52], we
have on E1 for k = −432 the points (12,±36); for k = 1 the points (2,±3), (0,±1),
(−1, 0); for k = D3, D 6= 1, the point (−D, 0); and for k = B2, B 6= 1, the points
(0,±B). In other cases, the torsion group is trivial. It follows that the only (finite)
points on Ck occur when k = −1, with points (±1, 0); and when k = B2, with points
(0,±B). Similarly, if E2 has rank 0, the same Theorem shows that no (finite) points
arise on Ck. In the range |k| ≤ 50 at least one curve Ei has rank 0 when

k =± 1,±2,−3,±4,±5,±6,±7,±8,±9,−10,±12, 13,±14,±16,−17,

± 18,±19,±20, 21,±22,±23,−24, 25,±26,±27, 29,±30,−31,±32,

± 33,±34,−36,±37,±38,±40,±41,±42,±44, 45,−46, 49,±50 .

So, for the above k’s equation (1) is immediately solved.

2.2. Elementary arguments
Henceforth we shall assume that the ranks of both E1 and E2 are positive. In the

range |k| ≤ 50, this is the case for for the following values:

k = −49,−48,−47,−45,−43,−39,−35,−29,−28,−25,−21,−15,

−13,−11, 3, 10, 11, 15, 17, 24, 28, 31, 35, 36, 39, 43, 46, 47, 48 .(3)

Now, finding all finite points on (1) is equivalent to solving

(4) x6 + ky6 = z2, x, y, z ∈ Z, y 6= 0, (x, y) = 1,

where X = x/y and Y = z/y3. The factorization (z + x3)(z − x3) = ky6 of (4) is
easily seen to lead to a number of equations of type

(5) Ay61 +By62 = y33, A,B ∈ Z .

The curve (5) has maps to elliptic curves as follows, where the notation

E :=
[
a, b, c, d, e

]
means that E is the elliptic curve with Weierstrass coefficients a, b, c, d, e:

(6)
(
Ay3
y22

,
A2y31
y32

)
on E1 :=

[
0, 0, 0, 0,−A3B

]
,(

By3
y21

,
B2y32
y31

)
on E2 :=

[
0, 0, 0, 0,−AB3

]
;
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and

(7)
(
y63 −ABy61y62

y41y
4
2y

2
3

,
(Ay61 −By62)(2Ay61 +By62)(Ay61 + 2By62)

2y61y
6
2y

3
3

)
on E3 :=

[
0, 0, 0, 0,−27

4 A
2B2

]
.

If the rank of E1 or E2 is 0, then the solution of (5) is immediate. (The curve E3 is in
fact 3-isogenous to the curve E2, so by previous assumption has positive rank).

According as to the possibilities for k (mod 4), four distinct types of equation (5)
arise, which we denote by Types I, II, III, IV, as follows.

• Cases where k ≡ 1 (mod 2).

I : 2x3 = δ1y
6
1 + δ2y

6
2 y1y2 6= 0 , (A,B) = (4δ1, 4δ2) ,

y = y1y2, δ1δ2 = −k, δ2 > 0,(
δ1
δ
y1,

δ2
δ
y2

)
= 1, δ = (δ1, δ2), (2x, y1y2) = 1 .

II : x3 = 16δ1y
6
1 + δ2y

6
2 y1y2 6= 0 , (A,B) = (16δ1, δ2) ,

y = 2y1y2, δ1δ2 = −k, δ2 > 0,(
2δ1
δ
y1,

δ2
δ
y2

)
= 1, δ = (δ1, δ2), (x, 2y1y2) = 1 .

• Case where k ≡ 0 (mod 4).

III : x3 = δ1y
6
1 + δ2y

6
2 y1y2 6= 0 , (A,B) = (δ1, δ2) ,

y = y1y2, δ1δ2 = −k
4 , δ2 > 0,(

δ1
δ
y1,

δ2
δ
y2

)
= 1, δ = (δ1, δ2), (x, y1y2) = 1 .

• Case where k ≡ 2 (mod 4).

IV : x3 = 32δ1y
6
1 + δ2y

6
2 y1y2 6= 0 , (A,B) = (32δ1, δ2) ,

y = 2y1y2, δ1δ2 = −k
2 , δ2 > 0,(

2δ1
δ
y1,

δ2
δ
y2

)
= 1, δ = (δ1, δ2), (x, 2y1y2) = 1 .

Equation (4) is thus reduced to a set S(k) of equations of type I, II, III, IV. For the
following values of k at (3), all equations in S(k) are either impossible or have only the
obvious solutions:

k = −49,−48,−45,−13, 11, 28, 36, 39, 46, 47 .
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This is proved by showing that each equation in S(k) either is impossible modulo m,
where m ∈ {7, 8, 9, 13}, or corresponds to a curve Ei at (6) with zero rank for either
i = 1 or i = 2.

For the following values of k all equations in S(k) are also impossible; however, for
at least one element of S(k), more refined but still elementary arguments are required:

k = −43,−35,−29,−25,−21, 31 .

We choose to give in the following subsection some details of the proposed elementary
method when k = −35 which is a most characteristic case. Here, S(−35) consists of
two equations of type I and four equations of type II. Five out of the six equations are
impossible as congruences modulo 7 or 8 and only the equation (of type II)

(8) 16 · 35y61 + y62 = x3, y1y2 6= 0 ,

remains. This belongs to the more general class of equations

(9) DY 6
1 + Y 6

2 = X3, Y1 6= 0, (DY1, Y2) = 1 ,

where D is a sixth power free non-zero integer.

It is worth noting that for a number of D’s, equations (9) can be treated by quite
elementary means.

2.2.1. An approach to (9) with application to k = −43,−35,−21, 31
We distinguish two cases, depending on the divisibility of X − Y 2

2 by 3.

Case (i): X − Y 2
2 6≡ 0 (mod 3). In this case (X − Y 2

2 , X
2 + XY 2

2 + Y 4
2 ) = 1,

DY1 6≡ 0 (mod 3) and

X − Y 2
2 = d1Y

6
3 , X2 +XY 2

2 + Y 4
2 = d2Y

6
4 ,

where

d1d2 = D, d2 > 0, (2d1Y3, d2Y4) = 1,

Y1 = Y3Y4 6≡ 0 (mod 3), (X,Y2Y3Y4) = 1, (Y2, d2) = 1 .

Substitution of X from the first equation into the second gives

(10) 3Y 4
2 + 3d1Y

2
2 Y

6
3 + d21Y

12
3 = d2Y

6
4 .

Observe first that the following conditions are necessary for (10) to be solvable:

(a) (d2, d1) ≡ (1, 1), (1, 7), (1, 8), (4, 2), (4, 4), (4, 7), (7, 1), (7, 4), (7, 5) (mod 9),

(b)
(

3d2
p

)
= 1, for every odd prime divisor p of d1,

(c) p ≡ 1 (mod 3) for every odd prime divisor p of d2.

Note that in our example with k = −35, only equation (8) is left to treat, and
accordingly we take D = 16 · 35. It is straightforward to check that the first condition
above is satisfied for no pair (d2, d1) which means that (8) is impossible whenever
x 6≡ y22 (mod 3).
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Case (ii): X − Y 2
2 ≡ 0 (mod 3). In this case let

3τ ||D and ν =


5 if τ = 0,

6 if τ = 1,

τ − 1 if τ ≥ 2.

It is easy to see that

X − Y 2
2 = 3νd1Y

6
3 , X2 +XY 2

2 + Y 4
2 = 3d2Y

6
4

with
d1d2 = 3−τD, d2 > 0, Y1 = 3

ν+1−τ
6 Y3Y4,

and where

(2d1Y3, d2Y4) = 1, (X, 3ν+1−τY2Y3Y4) = 1, (Y2, d2) = 1 .

Substitution of X from the first equation into the second gives

(11) Y 4
2 + 3νd1Y

2
2 Y

6
3 + 32ν−1d21Y

12
3 = d2Y

6
4 .

Necessary conditions for the solvability of (11) are the following:

(a)
(
d2
p

)
= 1 for every odd prime divisor p of d1,

(b) p ≡ 1 (mod 3) for every odd prime divisor p of d2 .

In the case k = −35, D = 16 · 35, we have τ = 0, ν = 5, and the conditions above are
satisfied by no pair (d2, d1) except for (d2, d1) = (1, 16 · 35), for which equation (11)
has an obvious solution and hence cannot be excluded by congruence considerations.

To proceed further, however, we factor (11) over Q(ω), where ω2 + ω + 1 = 0,
obtaining (for all values of k):

(12) Y 2
2 + 3ν−1d1(2 + ω)Y 6

3 = (m+ nω)(a+ bω)6, m, n, a, b ∈ Z,

where
m2 −mn+ n2 = d2 , a2 − ab+ b2 = |Y4| , (a, b) = 1 .

Moreover, if τ 6= 2 we can assume without loss of generality that

m 6≡ 0, n ≡ 0 (mod 3) and ab is odd with a+ b 6≡ 0 (mod 3) .

From (12), on equating coefficients of ω, 1, we obtain

F1(a, b) = 3ν−1d1Y
6
3 ,(13)

F2(a, b) = Y 2
2 ,

where

F1(a, b) = na6 + 6(m− n)a5b− 15ma4b2 + 20na3b3

+ 15(m− n)a2b4 − 6mab5 + nb6,

F2(a, b) = (m− 2n)a6 − 6(2m− n)a5b+ 15(m+ n)a4b2 + 20(m− 2n)a3b3

− 15(2m− n)a2b4 + 6(m+ n)ab5 + (m− 2n)b6 .
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In our case k = −35, we have d2 = 1, so n = 0, and equation (13) becomes

ab(a− b)
2

(a+ b)(2a− b)(a− 2b)

2
= ±22 · 33 · 35Y 6

3

where the two factors on the left-hand side are relatively prime. Putting a/b = u ∈ Q
we obtain

(14) u(u− 1) = 2c1w
3
1 , (u+ 1)(2u− 1)(u− 2) = 2c2w

3
2 , w1, w2 ∈ Q ,

where c1, c2 are relatively prime positive integers with c1c2 = 140. It is easily checked
that for every such pair (c1, c2) at least one of the elliptic curves at (14) is of zero rank,
from which we easily conclude that equation (8) is impossible in case (ii).

Mutatis mutandis, for the remaining values of k of this subsection, namely

k = −43,−21, 31

(as well as for k = −972, the example considered by Coombes and Grant [6]), the set
S(k) contains equations that are either impossible or possess only trivial solutions.

2.2.2. Congruences on elliptic curves with application to k = −29,−25
If an equation in the set S(k) is everywhere locally solvable, yet is suspected of

having no rational solution, we can in some instances still prove impossibility by el-
ementary means using the following trick involving congruences with points on el-
liptic curves. For the remaining values of k in the range |k| ≤ 50, this applies to
k = −29,−25 (see also k = −15 in section 4.4).

The set S(−25) comprises two equations of type I and two equations of type II.
Three out of the four equations correspond to a zero rank elliptic curve Ei at (6) for
either i = 1 or i = 2. Only the equation 5y61 + 5y62 = 2x3 remains. It is not difficult
to prove that this equation is everywhere locally solvable. However, according to our
general discussion at the beginning of section 2, a solution (x, y1, y2) (y1y2 6= 0) gives
rise to a point Q1 = (10x/y21, 50y31/y

3
2) on E1 :=

[
0, 0, 0, 0,−4 · 54

]
. This elliptic

curve has rank 1, with E1(Q) generated by the point P = (50, 350) of infinite order.
Let Q1 = n · P . It is easily checked that

n · P ≡ O, (7,±6), (42,±6), (37,±6) (mod 43) .

Since the second coordinate of Q1 equals 50y31/y
3
2 , and the congruence

50Y 3 ≡ ±6 (mod 43)

is impossible, we conclude that the only possibility is Q1 ≡ O (mod 43). This means
that y2 is divisible by 43, and consequently

5y61 ≡ 2x3 (mod 43),

which is possible only if y1 is divisible by 43; this contradicts the fact that y1, y2 are
relatively prime.

The case k = −29 can be treated in complete analogy. The set S(−29) contains
exactly three equations, two of which furnish a zero rank elliptic curve Ei. Only the
equation 16y61 + 29y62 = x3 remains, which is everywhere locally solvable. A solution
(x, y1, y2) gives a point Q2 on E2 :=

[
0, 0, 0, 0,−16 · 293

]
of rank one and generator

P = (33085897/6062, 129969272827/6063) .
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The relation Q2 = (29x/y21, 29y32/y
3
1) = n ·P is proven impossible as above, working

modulo 19.

3. Application of elliptic Chabauty

In the range |k| ≤ 50 we are left with the following values

(15) k = −47,−39,−28,−15,−11, 3, 10, 15, 17, 24, 35, 43, 48 .

A natural approach to equation (4) is to factorize it over the field K = Q(θ), where
θ3 = k. The maximal orderOK of K has one fundamental unit ε(θ) which we normal-
ize by sign to satisfy ε(k1/3) > 0 for the real cube root k1/3 of k. For k 6≡ ±1(mod 9),
the ideal 〈3〉 factors as 〈3〉 = p33; and when k ≡ ±1(mod 9), then 〈3〉 = p3p

′2
3 . We

deduce from (4) the following ideal equations

(16) 〈x4 − θx2y2 + θ2y4〉 = ca2, 〈x2 + θy2〉 = cb2, 〈z〉 = cab

for ideals a, b, c of OK , where

c = 〈x4 − θx2y2 + θ2y4 , x2 + θy2〉 = 〈x2 + θy2 , 3θ2〉 .
If the highest power of every rational prime dividing k is odd, then

c =

{
OK if k 6≡ 8 (mod 9),

p3p
′
3 if k ≡ 8 (mod 9).

If there exist rational primes whose highest power dividing k is 2 or 4, then c is as
before, times an ideal c0 which is divisible only by prime ideals over such rational
primes with exponents bounded by a small explicit integer.

In general, the equations at (16) are equivalent to a system of element equations

(17) x4 − θx2y2 + θ2y4 = cw2, x2 + θy2 = cv2, z = cwv,

for finitely many c ∈ K. We focus on the quartic curve C defined by the first equation
in (17). If this quartic represents an elliptic curve over K (so in practice, if we can find
a solution (x, y, w) in K), then we seek points (x/y, w/y2) on the curve subject to the
rationality condition x/y ∈ Q. We make extensive use of the Magma routines (inter
alia) PseudoMordellWeilGroup, with parameter IndexBound:=2, to compute
a subgroup of odd finite index in C(K), and Chabauty for computing the K-points
on C with prescribed rationality condition.

As a characteristic example, consider k = −28. Here, K = Q(θ) with θ3 = −28;
the fundamental unit is ε = (−2+2θ+θ2)/6, the class number ofOK is 3 and we have
four quartics Ci corresponding to c = 1, ε, 4 + θ, ε(4 + θ), respectively. Both quartics
C2 and C4 are unsolvable at the prime ideal 〈2, (4 + 2θ + θ2)/6〉. For C1, Magma
routines show that there are no solutions with y 6= 0. As for C3, it has several points
over K, the “simplest” one being

(x/y,w/y2) = (−2, 6/(4 + θ)) .

Chabauty reveals x/y = ±2 as the only possibility with y 6= 0, which returns
(±X,±Y ) = (2, 6) as the only finite points on (1). In an analogous manner, we
solve equation (4) and hence (1) when k = 3, 10, 17, 24, 35, and 48; see the table in
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section 6. Note that these values of k do not cover the full list (15). Why not? This is
discussed in sections 4 and 5.

4. The difficult cases k = 15, 43,−11,−15

We were unable to apply directly methods of the previous section for the values
k = −47, −39, −15, −11, 15, 43. In most cases, for at least one value of c in (17),
our machines were unable to compute the relevant Mordell-Weil groups over the cu-
bic number field K. Oftentimes the Selmer bound on the rank was equal to 3, but at
most one non-torsion point could be found, indicating the possible presence of a non-
trivial Shafarevic-Tate group (of course, if the rank is actually equal to 3, then elliptic
Chabauty arguments over a cubic number field must fail). It is possible that a standard
descent could be carried out by hand in such cases, but the calculations are rather daunt-
ing. Such an example of Selmer rank bound 3 occurs for instance when k = 15 with
c = ε = 1− 30θ + 12θ2, θ3 = 15 (ε being a fundamental unit in Q(θ)). In such cases
we also investigated the quartic cover obtained by eliminating x at (17), which results
in the curve

(18) cv4 − 3θv2y2 +
3θ2

c
y4 = w2.

Here, and in several other cases, the K-rank of the curve (18) could be computed ex-
actly but turned out to equal 3 (and in one case, 4), so not strictly less than the degree
of Q(θ); hence Chabauty is not applicable.

We adopt an alternative approach, which is successful for four of the values, namely
k = 43, 15, −11, −15. This approach involves factorization over an appropriate qua-
dratic number field of the equation of type I, II, III, IV that is causing the difficulty.

4.1. Case k = 15
Here, the finite points are (±1,±4), (±1/2,±31/8).

We have to solve the equation x6 + 15y6 = z2, and following the approach of
section 2.2.1 we are left with solving each of the two equations

(19) −5y61 + 3y62 = 2x3, y1, y2 odd, (5y1, 3y2) = 1

and

(20) −16y61 + 15y62 = x3, (2y1, 15y2) = 1.

We work in K = Q(φ), φ2 = 15, with maximal order OK . The ideal 〈2〉 = p22,
p2 = 〈2, 1+φ〉, and the ideal classgroup ofOK is of order 2, generated by p2. We have
〈3〉 = p23, p3 = 〈3, φ〉; 〈5〉 = p25, p5 = 〈5, φ〉. A fundamental unit is ε = 4− φ.

4.1.1. Equation (19)
We have

(y31φ+ 3y32)(y31φ− 3y32) = −6x3,

and the gcd of the two factors on the left is precisely p2p3 = 〈−3 + φ〉. Thus

〈y31φ+ 3y32〉 = 〈−3 + φ〉A3,
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for an ideal A prime to p2p3p5 of OK . Since A3 is principal and the class-number of
K is 2, A is principal. So there exists y3 ∈ OK satisfying

(21) y31φ+ 3y32 = εi(−3 + φ)y33, i = 0,±1.

Equation (21) represents a curve of genus 1 over K, which is locally unsolvable at p3
when i = 1; further, since ε−1(−3 +φ) = (3 +φ), the curve with i = −1 is simply the
conjugate of the curve with i = 0. It suffices therefore to find all points with rational
y1 : y2 on

(22) y31φ+ 3y32 = (−3 + φ)y33,

which is an elliptic curve since it possesses the point (y1, y2, y3) = (1,−1, 1). The
Magma routine PseudoMordellWeilGroup tells us that the curve has rank 3 over
K, however, exceeding the degree of K, and so we cannot directly use the elliptic
Chabauty method and Magma’s relevant routines. We overcome this difficulty as fol-
lows. In (22), put y3 = a + bφ, where (a, 15) = 1, a + b ≡ 1 (mod 2), and where,
changing the sign of each yi if necessary, we may assume a ≡ 1 (mod 3). Then

(23)

 a3 − 9a2b+ 45ab2 − 45b3 = y31,

− a3 + 15a2b− 45ab2 + 75b3 = y32,

defining rational elliptic curves of rank 1, 2, respectively. The cubics at (23) factor
over the field L = Q(ψ), ψ3 − 3ψ + 8 = 0. A fundamental unit in the ring of
integers OL = Z[1, ψ, ψ2] is η = 5 + 2ψ. We have 〈2〉 = P2P

′2
2 with P2 = 〈2, ψ〉,

P′2 = 〈2, 1 + ψ〉; 〈3〉 = P3
3 with P3 = 〈3, 2 + ψ〉; and the classgroup is of order 3

generated by P2, with P3
2 = 〈ψ〉. From (23), (a+ (ψ2 + ψ − 5)b)(a2 + (−ψ2 − ψ − 4)ab+ (3ψ2 − 3ψ + 9)b2) = y31,

(a+ (−ψ2 + ψ − 3)b)(a2 + (ψ2 − ψ − 12)ab+ (−5ψ2 − 5ψ + 25)b2) = −y32.

By the assumptions on a, b, it is straightforward to verify in each equation that the two
factors on the left, considered as principal ideals, are coprime, and hence equal to ideal
cubes. Now an ideal equation 〈u〉 = B3 implies one of the principal ideal equations

〈u〉 = 〈v〉3, 〈ψ2〉〈u〉 = 〈v〉3, 〈ψ〉〈u〉 = 〈v〉3,

according asB ∼ 1,P2,P
2
2. So without loss of generality we deduce element equations

(24)

ψi1(a+ (ψ2 + ψ − 5)b) = ηj1c31,

ψi2(a2 + (−ψ2 − ψ − 4)ab+ (3ψ2 − 3ψ + 9)b2) = η−j1c32,

with i1 + i2 ≡ 0 (mod 3), j1 = 0,±1, and

(25)

ψi3(a+ (−ψ2 + ψ − 3)b) = ηj2c33,

ψi4(a2 + (ψ2 − ψ − 12)ab+ (−5ψ2 − 5ψ + 25)b2) = η−j2c34,

with i3 + i4 ≡ 0 (mod 3), j2 = 0,±1; and ci, i = 1, . . . , 4, in OL.
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We denote the P3-adic (additive) valuation of an element α ∈ OL by ν(α), the
highest power of P3 dividing 〈α〉, and for reference list here the valuations of certain
elements of OL (the coefficients of the polynomials occurring at equations (24), (25)):

ν(ψ2 + ψ − 5) = 2, ν(−ψ2 − ψ − 4) = 2, ν(3ψ2 − 3ψ + 9) = 4,

ν(−ψ2 + ψ − 3) = 1, ν(ψ2 − ψ − 12) = 1, ν(−5ψ2 − 5ψ + 25) = 2;

further,

ν(η − 1) = 1, ν(ψ − 1) = 1,

so that ψ3 ≡ 1 (mod 3). Thus (24) and (25) imply that c3i ≡ 1 (modP3), i = 1, . . . , 4,
so that ci ≡ 1 (modP3), whence c3i ≡ 1 (mod 3), i = 1, . . . , 4. We consider the first
equations at (24) and (25) modulo 3, distinguishing cases according as to the residue
class of b modulo 3.

Subcase (i): b ≡ 0 (mod 3). Then

ψi1 ≡ ηj1 , ψi3 ≡ ηj2 ,

which forces (i1, i3, j1, j2) = (0, 0, 0, 0), and (i2, i4) = (0, 0).

Subcase (ii): b ≡ 1 (mod 3). Then

ψi1(ψ2 + ψ − 4) = ηj1 , ψi3(−ψ2 + ψ − 2) = ηj2 ,

which forces (i1, i3, j1, j2) = (1, 2, 2, 2) and (i2, i4) = (2, 1).

Subcase (iii): b ≡ −1 (mod 3). Then

ψi1(−ψ2 − ψ + 6)) = ηj1 , ψi3(ψ2 − ψ + 4)) = ηj2 ,

which forces (i1, i3, j1, j2) = (2, 0, 1, 2) and (i2, i4) = (1, 0).

Consequently, when we form the following equation using factors from (24), (25),

ψi1+i4(a+ (ψ2 + ψ − 5)b)(a2 + (ψ2 − ψ − 12)ab

+ (−5ψ2 − 5ψ + 25)b2) = ηj1−j2c3,

we have the three possibilities:
(a+ (ψ2 + ψ − 5)b)(a2 + (ψ2 − ψ − 12)ab+ (−5ψ2 − 5ψ + 25)b2) = c3,

ψ2(a+ (ψ2 + ψ − 5)b)(a2 + (ψ2 − ψ − 12)ab+ (−5ψ2 − 5ψ + 25)b2) = c3,

ψ2(a+ (ψ2 +ψ− 5)b)(a2 + (ψ2−ψ+ 12)ab+ (−5ψ2 − 5ψ+ 25)b2) = η−1c3,

each representing an elliptic curve over L having no L-torsion and of rank 2 over L.
Note that now the rank is less than the degree of L which permits us to attempt the
elliptic Chabauty method using the Magma routines. And indeed, these routines show
the following. The only point with rational a : b on the first curve is when a : b = 1 : 0,
returning (X,Y ) = (1, 4) on (1). Further, there are no such points on the second and
third curves.
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4.1.2. Equation (20)
We have

(y32φ+ 4y31)(y32φ− 4y31) = x3,

and the two factors on the left are coprime, so that

〈y32φ+ 4y31〉 = A3,

for some ideal A prime to p2p3p5 of OK . Then as above, there exists y3 ∈ OK satisfy-
ing

(26) y32φ+ 4y31 = εiy33, i = 0,±1.

Equation (26) is not locally solvable at p3 when i = 0, and the curves corresponding to
i = ±1 are conjugate; so it suffices to consider only the case i = 1:

(27) y32φ+ 4y31 = (4− φ)y33,

which is an elliptic curve since it possesses the point (y1, y2, y3) = (1,−1, 1). The
K-rank of the curve is 3.

In (27), put y3 = a+ bφ, with (a, 15) = 1, a+ b ≡ 1 (mod 2), and where, without
loss of generality, a ≡ 1 (mod 3), to give

(28)

 − a
3 + 12a2b− 45ab2 + 60b3 = y32,

4a3 − 45a2b+ 180ab2 − 225b3 = 4y31,

defining rational elliptic curves of ranks 2, 1, respectively. Note that the second equa-
tion implies b(a2 + b2) ≡ 0 (mod 4), so that necessarily a is odd, b ≡ 0 (mod 4).

In (28) we factor over L:
(a+ (ψ − 4)b)(a2 + (−ψ − 8)ab+ (ψ2 + 4ψ + 13)b2) = −y32,

(a+ 1
4(−ψ2 − 4ψ − 13)b)(a2 + 1

4(ψ2 + 4ψ − 32)ab+ 15
4 (−ψ + 4)b2) = y31,

and again in each equation the two factors on the left, considered as principal ideals,
are coprime and hence ideal cubes. Just as above, we deduce element equations

(29)

ψi1(a+ (ψ − 4)b) = ηj1c31,

ψi2(a2 + (−ψ − 8)ab+ (ψ2 + 4ψ + 13)b2) = η−j1c32,

with i1 + i2 ≡ 0 (mod 3), j1 = 0,±1, and

(30)


ψi3(a+ 1

4(−ψ2 − 4ψ − 13)b) = ηj2c33,

ψi4
(
a2 + 1

4(ψ2 + 4ψ − 32)ab+ 15
4 (−ψ + 4)b2

)
= η−j2c34,

with i3 + i4 ≡ 0 (mod 3), j2 = 0,±1, and ci, i = 1, . . . , 4, in OL.

We have the following valuations:

ν(ψ − 4) = 1, ν(−ψ − 8) = 1, ν(ψ2 + 4ψ + 13) = 2,

ν(ψ2 + 4ψ − 32) = 2, ν(15(−ψ + 4)) = 4,
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so that as before, c3i ≡ 1 (mod 3). We consider modulo 3 the first equations in (29) and
(30), distinguishing cases according as to the residue class of b modulo 3.

Subcase (i): b ≡ 0 (mod 3). Then

ψi1 ≡ ηj1 , ψi3 ≡ ηj2 ,

forcing (i1, i3, j1, j2) = (0, 0, 0, 0) and (i2, i4) = (0, 0).

Subcase (ii): b ≡ 1 (mod 3). Then

ψi1(ψ − 3) = ηj1 , ψi3(−ψ2 − 4ψ − 9) = ηj2 ,

forcing (i1, i3, j1, j2) = (2, 2, 0, 1) and (i2, i4) = (1, 1).

Subcase (iii): b ≡ −1 (mod 3). Then

ψi1(−ψ + 5) = ηj1 , ψi3(ψ2 + 4ψ + 17)) = ηj2 ,

forcing (i1, i3, j1, j2) = (0, 1, 1, 2) and (i2, i4) = (0, 2).

Consequently, when we form the equation below using factors from (29), (30),

ψi1+i4
(
a+ (ψ − 4)b

) (
a2 + 1

4(ψ2 + 4ψ − 32)ab+ 15
4 (−ψ + 4)b2

)
= ηj1−j2c3,

we have the three possibilities:
(a+ (ψ − 4)b)

(
a2 + 1

4(ψ2 + 4ψ − 32)ab+ 15
4 (−ψ + 4)b2) = c3,

(a+ (ψ − 4)b)(a2 + 1
4(ψ2 + 4ψ − 32)ab+ 15

4 (−ψ + 4)b2) = η−1c3,

ψ2(a+ (ψ − 4)b)(a2 + 1
4(ψ2 + 4ψ − 32)ab+ 15

4 (−ψ + 4)b2) = η−1c3,

again each representing an elliptic curve of rank 2 over L. Working 13-adically, hav-
ing shown that the group index is prime to 3 (actually we need it prime to 6, but the
construction of the routine PseudoMordellWeilGroup guarantees that the index
is odd), we find that the first curve has a point with rational a : b only at a : b = 1 : 0,
returning (X,Y ) = (−1/2, 31/8). Working 13-adically, with auxiliary prime 43, we
find there are no points with rational a : b on the second curve (where we needed to
show the group index is prime to 3); and working 13-adically, with auxiliary prime 17,
we find there are no points with rational a : b on the third curve (where we needed to
show the group index is prime to 3). In summary, the only finite points on (1) are given
by (±X,±Y ) = (1, 4), (1/2, 31/8).

4.2. Case k = 43
Here, the finite points are (±3/2,±59/9), (±7/3,±386/27).

This case is similar to the previous one. The set S(43) derived in section 2.2 con-
tains the three globally solvable equations:

(31) 2x3 = −y61 + 43y62, x3 = −16y61 + 43y62, x3 = −688y61 + y62.

We factor the first two equations over the field Q(φ), where φ2 = 43. As before, we
are led to working in a cubic field Q(ψ), where now ψ3 − ψ2 + ψ − 9 = 0. In analogy
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to the equations at the end of sections 4.1.1 and 4.1.2, we obtain the equations:(
(−ψ2 − ψ − 3)a+ (6ψ2 + 6ψ + 17)b

)
×
(

(−10ψ2 − 13ψ − 34)a2 + (124ψ2 + 163ψ + 417)ab

+ (−387ψ2 − 516ψ − 1290)b2
)

= ε`(−ψ2 + ψ + 3)(2− ψ)2c3,

where ` = 0, 1, 2, and(
(5ψ2 + 6ψ + 20)a+ 1

2(−ψ2 − 2ψ − 5)b
)

(32)

×
(
1
2(−ψ2 − 4ψ − 5)a2 + 1

2(ψ2 − 2ψ + 1)ab− b2
)

= 1
2(−5ψ2 + 4ψ + 17)ε`c3,

where ` = 0, 1, 2. Just as before, these equations are amenable to the computer routines,
and deliver precisely the two known finite solutions. It is worth mentioning that the
relevant Mordell-Weil group on this latter curve of rank 2 over Q(ψ) could not be
computed directly with Magma because of the large height of one of the generators:
the generators on (32) may be taken as (a, b, c) = (0,−7ψ + 16, 1) and

(a, b, c) =(
1
2(−24963589ψ2 + 48373018ψ + 20008291),

18015880ψ2 − 132297936ψ + 209249791,

31418694ψ2 + 46376736ψ + 127224108
)
.

It was necessary to consider a 3-isogenous curve where by luck the relevant group
could be computed directly. This gives rise to a full rank subgroup on (32), successfully
feeding into the Chabauty routine.

For the third equation in (31), the solution is accomplished by the elementary meth-
ods of section 2.2.

4.3. Case k = −11
Here, the finite points are (±3/2,±5/8).

We have to solve x6 − 11y6 = z2, where x, 11y, z are pairwise relatively prime.
Following the approach of (2.2.1), we are left with solving

(33) x3 = 16y61 + 11y62,

where y = 2y1y2 and (2y1, 11y2) = 1. Considering equation (33) modulo 9 shows that,
if either y1 or y2 is divisible by 3, then both y1 and y2 are divisible by 3, a contradiction;
hence y1y2 6≡ 0 (mod 3). We factorize equation (33) as(

4y31 +
√
−11y32

) (
4y31 −

√
−11y32

)
= x3,

where the two factors on the left hand side are coprime in the ring of integers of
Q
(√
−11

)
, a field of class number 1. It follows that

4y31 +
√
−11y32 =

(
a+ b

(1 +
√
−11)

2

)3
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with a, b ∈ Z, and hence that

(34) b(3a2 − 3ab− 2b2) = 2y32, (2a− b)(a2 − ab− 8b2) = (2y1)
3

with (a, b) = 1. These equations define elliptic curves of ranks 2 and 1, respectively.
Note that the second equation modulo 9 shows that b 6≡ 0 (mod 3).

Since (b, 3a) = 1, the two factors on the left-hand side of the first equation at (34)
are coprime. We also have

(2a− b, a2 − ab− 8b2) = (2a− b, 33) = 1,

since (y1, 33) = 1. It follows that

b = 2i × cube, 3a2 − 3ab− 2b2 = 21−i × cube (i = 0, 1),

2a− b = cube, a2 − ab− 8b2 = cube.

If i = 1, then we deduce

b = 2β3, 2a− b = 8α3, a2 − ab− 8b2 = γ3,

so that
16α6 − 33β6 = γ3.

This is an equation of type (5), and taking (A,B) = (16,−33), we discover that the
corresponding elliptic curve E3 at (7) has rank 0; and no solutions arise for a, b. Thus
i = 0, and we have

b = cube, 2a− b = cube,(35)
a2 − ab− 8b2 = cube, 3a2 − 3ab− 2b2 = 2× cube.

Note that, in the above equations, a2 − ab − 8b2 is not divisible by 11 because it is
a factor of y1. Also, 3a2 − 3ab − 2b2 is not divisible by 11 for, otherwise, it would
be divisible by 112, which implies b ≡ 0 (mod 11), hence also a ≡ 0 (mod 11), a
contradiction. These observations will be needed below, when we calculate greatest
common divisors.

We work in the field Q(ξ), ξ2 − ξ − 8 = 0. The class-number is 1, a fundamental
unit is η = 19 + 8ξ, and we have the prime factorization 2 = (2 + ξ)(−3 + ξ).

The latter two equations in (35) may be written as follows:

(a− ξb) (a+ (−1 + ξ)b) = cube,

((5 + 2ξ)a+ (2 + ξ)b)((7− 2ξ)a+ (3− ξ)b) = 2× cube.

The greatest common divisor

(a− ξb, a+ (−1 + ξ)b) = (a− ξb, 1− 2ξ) = (a− ξb,
√

33) = 1,

since (y2, 33) = 1. Thus

a− ξb = ηj × cube, a+ (−1 + ξ)b = η−j × cube, j = 0,±1.

Further, the greatest common divisor

((5 + 2ξ)a+ (2 + ξ)b, (7−2ξ)a+ (3− ξ)b)
= ((5 + 2ξ)a+ (2 + ξ)b, 1− 2ξ) = 1,
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as before. Thus

(5 + 2ξ)a+ (2+ξ)b = ηk π × cube,

(7− 2ξ)a+ (3− ξ)b = η−k π̄ × cube, k = 0,±1,

for π and π̄ equal to the two prime factors of 2. Summing up, we have

b = cube, 2a− b = cube,

a+ (−1 + ξ)b = η−j × cube, (5 + 2ξ)a+ (2 + ξ)b = ηk π × cube,

for π = 2 + ξ or −3 + ξ. We form the elliptic cubic

b (a+ (−1 + ξ)b) ((5 + 2ξ)a+ (2 + ξ)b) = η` π × cube, ` = −j + k,

where without loss of generality, ` = 0,±1.

Consider first π = 2 + ξ. For each value of ` = 0,±1, the corresponding elliptic
curve has rank 1 over Q(ξ), and we can apply the elliptic Chabauty method. For ` = 0,
we find that the only solutions are a : b = 1 : 0 ,−7 : 3 which are rejected in view of (34).
For ` = 1, the only solutions are a : b = 1 : 0 , 0 : 1 and only the second satisfies (34),
giving y1 = 1, y2 = −1, hence y = −2, x = 3, z = ±5, which returns the points
(±X,±Y ) = (3/2, 5/8) on (1). For ` = −1, the only solution is a : b = 1 : 0 which is
rejected in view of (34).

Second, take π = 3 − ξ. Again, each ` = 0,±1 results in a rank 1 elliptic curve.
If ` = 0, application of Chabauty shows the only solutions to be a : b = 1 : 0 , 1 : 1.
In view of (34) the first is rejected, and the second gives y1 = −1, y2 = −1, hence
y = 2, x = 3, z = ±5, again returning the points (±X,±Y ) = (3/2, 5/8) on (1). If
` = 1, the only solutions are a : b = 1 : 0 , 10 : 3 which by (34) we reject. If ` = −1, the
only solutions are a : b = 1 : 0, which by (34) we reject.

4.4. Case k = −15
Here, the finite points are (±2,±7).

We have to solve x6 − 15y6 = z2, where x, 15y, z are pairwise relatively prime.
Following the approach of section 2.2.1, we are left with solving the pair of equations

(36) 80y61 + 3y62 = x3 , (10y1, 3y2) = 1, y = 2y1y2,

and

(37) y61 + 15y62 = 2x3 , (y1, 15y2) = 1, y1y2 odd .

To deal with (36), we use ideas of section 2.2.2. On the corresponding curve

E1 : Y 2 = X3 − 375, (X,Y ) =

(
5x

y22
,

100y31
y32

)
,

the torsion is trivial, the rank is 1, and a generator P is given by P = (10, 25). We
check that if n ≡ 1, 2, 4, 5 (mod 6) then the Y -coordinate of n · P has odd numerator
and denominator. Indeed, for n = 1, 2, 4, 5 this is straightforward; further, a symbolic
computation shows that if we add to 6 ·P a point (u/t2, v/t3), where u, v, t are integers
with vt odd, then the resulting point has Y -coordinate with odd numerator and denom-
inator. Hence for n ≡ 1, 2, 5, 6 (mod 6), the Y -coordinate of n · P cannot have the
required shape 100y31/y

3
2 with y2 odd. It remains to check the cases n ≡ 0, 3 (mod 6).

But if n is a multiple of 3, the following are the possibilities for the Y -coordinate of
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n ·P : either it is congruent to±9 modulo 19, or its denominator is divisible by 19. The
first alternative is impossible because it implies that 100(y1/y2)

3 ≡ ±9 (mod 19); and
the second implies y2 ≡ 0 (mod 19), but then the initial equation 80y61 + 3y62 = x3 is
impossible modulo 19 when (y1, y2) = 1.

Now we focus our attention on equation (37). We work in the field Q(θ), where
θ2 + θ + 4 = 0, with class-number 2 and integral basis 1, θ. We have the ideal factor-
izations

〈2〉 = p2p
′
2 , p2 = 〈2, 1 + θ〉 , p′2 = 〈2, 2 + θ〉 .

The ideal-class p2 generates the classgroup, and p22 = 〈1 + θ〉. After an appropriate
choice of signs for y1, y2, the ideal factorization of (37) implies without loss of gener-
ality

〈y31 + (2θ + 1)y32〉 = p2a
3

for some integral ideal a such that p2a is principal. This results in an equation

(θ + 1)y31 + (θ − 7)y32 = y33

for some y3 ∈ Z[θ], which represents an elliptic curve over Q(θ) (note that it contains
the point (1,−1, 2)). The Q(θ)-rank is 1, and Magma routines (but see the Remark
below) show that (y1, y2, y3) = (1,−1, 2) is the only point over Q(θ) with rational
y1 : y2. This gives y = −1, and by (37), x = 2. Returning to (1), the only finite points
are (±X,±Y ) = (2, 7).

Remark. We had to resort to setting IndexBound:=3 in order for Chabauty
to return a result. But it is straightforward to check that the subgroup (in this case, of
rank 1) returned by PseudoMordellWeilGroup has index in the full Mordell-Weil
group which is prime to 3.

5. The unsolved equations

In the considered range of k, we are left with k = −47,−39. If we try to apply
the ideas of section 3, then relevant Mordell-Weil groups could not be computed. For
example, at k = −47, c = 1, the quartic curve at (17) has Selmer rank 3, with only
one point of infinite order found. The curve in (18) has K-rank 4. Trying to apply
the ideas of section 4 for k = −39 leads to curves with bound on the rank 2, but
where we are unable to find any points; and similar obstructions arise for k = −47.
We have tried various further attacks on these equations, so far without success. It has
been suggested to us that the computations of this paper be automated to extend the
calculations for k in a range “somewhere in the thousands”; but without a mechanized
2-descent algorithm for elliptic curves over number fields, at the very least, even a
range into the hundreds is well beyond our abilities. In exploring the unsolved cases
of this section, we have resorted to much manual intervention in Magma programming,
primarily choosing appropriate models for curves and their isogenies to replace the ones
returned by the routine EllipticCurve, which can have huge coefficients, possibly
greatly increasing the running time of the algorithms. When the number field has class-
number exceeding 1, we know of no uniform method for choosing models that are
potentially better suited as input to PseudoMordellWeilGroup.
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For interest we searched the curves (1) for rational points with height at most 20000
in the range |k| < 250000. The maximum number of points found was 22, at k = 1025
with the finite points

(±X,±Y ) =
(

2, 33
)
,

(
1

4
,

2049

64

)
,

(
5

2
,

285

8

)
,
(

8, 513
)
,

(
20

91
,

24126045

913

)
,

and at k = 110160, with finite points (all integral)

(±X,±Y ) = (2, 332), (3, 333), (6, 396), (9, 801), (14, 2764) .

The point of largest height that we observed in this range occurs for k = −212860, with
point (3866/427, 45259682826/4273). Increasing the search range and decreasing the
height bound finds the curve at k = 7547408 with 26 points, the finite points occurring
at

(±X,±Y ) =
(

4, 2748
)
,

(
1

6
,

593407

63

)
,

(
7

5
,

343407

53

)
,(

16, 4932
)
,

(
28

3
,

77356

33

)
,

(
139

10
,

3841869

103

)
.

Note that the curve

y2 = x6 +

(
1

4
a12 + 1

)
automatically contains the points

(±X,±Y ) =

(
1

a2
,

1

a2
+

1

2
a6
)
,

(
a, 1 +

1

2
a6
)

and
(

1

2
a4 ,

1

8
a12 + 1

)
.

For the curve at k = 2089 only 14 points were found, but the (finite) points comprise

(±X,±Y ) =

(
96

11
,

886825

113

)
,

(
162

85
,

28389097

853

)
and

(
289

90
,

41143681

903

)
,

remarkable for their large heights.

6. All rational solutions to (1) in the range |k| ≤ 50

We summarize the computations of the previous sections in the following table,
in which the ∗ symbol means that the given set of points has not been proved to be
complete.

TABLE 6.1 All rational solutions (±X,±Y ) to Y 2 = X6 + k, 1 ≤ |k| ≤ 50.

k Solutions Ref. section k Solutions Ref. section

−50 ∅ 2.1 50 ∅ 2.1
−49 ∅ 2.2 49 (0, 7) 2.1
−48 (2, 4) 2.2 48 (1, 7) 3
−47

(
63
10
, 249953

1000

)∗ 5 47 ∅ 2.2
−46 ∅ 2.1 46 ∅ 2.2

(continued)
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TABLE 6.1 (continued)

k Solutions Ref. section k Solutions Ref. section

−45 ∅ 2.2 45 ∅ 2.1
−44 ∅ 2.1 44 ∅ 2.1
−43 ∅ 2.2.1 43

(
3
2
, 59
9

)
,
(
7
3
, 386
27

)
4.2

−42 ∅ 2.1 42 ∅ 2.1
−41 ∅ 2.1 41 ∅ 2.1
−40 ∅ 2.1 40 ∅ 2.1
−39 (2, 5)∗ 5 39 ∅ 2.2
−38 ∅ 2.1 38 ∅ 2.1
−37 ∅ 2.1 37 ∅ 2.1
−36 ∅ 2.1 36 (0, 6), (2, 10) 2.2
−35 ∅ 2.2.1 35 (1, 6) 3
−34 ∅ 2.1 34 ∅ 2.1
−33 ∅ 2.1 33 ∅ 2.1
−32 ∅ 2.1 32 ∅ 2.1
−31 ∅ 2.1 31 ∅ 2.2.1
−30 ∅ 2.1 30 ∅ 2.1
−29 ∅ 2.2.2 29 ∅ 2.1
−28 (2, 6) 3 28 ∅ 2.2
−27 ∅ 2.1 27 ∅ 2.1
−26 ∅ 2.1 26 ∅ 2.1
−25 ∅ 2.2.2 25 (0, 5) 2.1
−24 ∅ 2.1 24 (1, 5),

(
5
2
, 131

8

)
3

−23 ∅ 2.1 23 ∅ 2.1
−22 ∅ 2.1 22 ∅ 2.1
−21 ∅ 2.2.1 21 ∅ 2.1
−20 ∅ 2.1 20 ∅ 2.1
−19 ∅ 2.1 19 ∅ 2.1
−18 ∅ 2.1 18 ∅ 2.1
−17 ∅ 2.1 17 (2, 9),

(
1
2
, 33
8

)
3

−16 ∅ 2.1 16 (0, 4) 2.1

−15 (2, 7) 4.4 15 (1, 4) 4.1
−14 ∅ 2.1 14 ∅ 2.1
−13 ∅ 2.2 13 ∅ 2.1
−12 ∅ 2.1 12 ∅ 2.1
−11

(
3
2
, 5
8

)
4.3 11 ∅ 2.2

−10 ∅ 2.1 10
(
3
2
, 37
8

)
3

(continued)



A. Bremner and N. Tzanakis 173

TABLE 6.1 (continued)

k Solutions Ref. section k Solutions Ref. section

−9 ∅ 2.1 9 (0, 3) 2.1
−8 ∅ 2.1 8 (1, 3) 2.1
−7 ∅ 2.1 7 ∅ 2.1
−6 ∅ 2.1 6 ∅ 2.1
−5 ∅ 2.1 5 ∅ 2.1
−4 ∅ 2.1 4 (0, 2) 2.1
−3 ∅ 2.1 3 ∅ 3
−2 ∅ 2.1 2 ∅ 2.1
−1 (1, 0) 2.1 1 (0, 1) 2.1

REFERENCES

[1] M. A. Bennett, Recipes for ternary Diophantine equations of signature (p, p, k), Proc.
RIMS Kokyuroku (Kyoto) 1319 (2003), 51–55.

[2] M. A. Bennett and C. M. Skinner, Ternary Diophantine equations via Galois representa-
tions and modular forms, Canad. J. Math. 56 (2004), no. 1, 23–54.

[3] M. A. Bennett, V. Vatsal and S. Yazdani, Ternary Diophantine equations of signature
(p, p, 3), Compos. Math. 140 (2004), no. 6, 1399-1416.

[4] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language.
Computational algebra and number theory (London, 1993), J. Symbolic Comput., 24
(1997), no. 3-4, 235–265.

[5] J. W. S. Cassels, Lectures on Elliptic Curves, London Mathematical Society Student Texts
24, Cambridge University Press, 1991, vi+137 pp.

[6] K. R. Coombes and D. A. Grant, On heterogeneous spaces, J. London Math. Soc. (2) 40
(1989), no. 3, 385–397.

[7] H. Darmon and A. Granville On the equations zm = F (x, y) and Axp + Byq = Czr,
Bull. London Math. Soc. 27 (1995), no. 6, 513–543.

[8] V. A. Dem’janenko, The indeterminate equations x6+y6 = az2, x6+y6 = az3, x4+y4 =
az4, in Twelve papers in Algebra, 27–34, Amer. Math. Soc. Transl., ser. 2, vol. 119,
American Mathematical Society, Providence, RI, 1983, iv+139 pp.

[9] G. Faltings Endlichkeitssätze für abelsche Varietäten über Zahlkörpen, Invent. Math. 73
(1983), no. 3, 349-366. Erratum: ibid. 75 (1984), no. 2, 381.

[10] E. V. Flynn and J. L. Wetherell, Covering collections and a challenge problem of Serre,
Acta Arith. 98 (2001), no. 2, 197–205.
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