L-VALUES FOR BIQUADRATIC EXTENSIONS AND THE FITTING IDEAL OF THE TAME KERNEL

Jonathan W. SANDS

Dedicated to Paulo Ribenboim on the occasion of his 80th birthday.

RÉSUMÉ. Soit \mathcal{E} / F une extension de Galois totalement réelle de corps de nombres telle que le groupe de Galois G est isomorphe au groupe de Klein d'ordre 4 et supposons que la conjecture de Birch-Tate est vérifiée pour tous les corps compris entre F et \mathcal{E}, inclusivement. Soit S un ensemble fini de premiers de F contenant les premiers infinis et tous ceux qui se ramifient dans \mathcal{E}, soit $S_{\mathcal{E}}$ l'ensemble des premiers de \mathcal{E} audessus de ceux de S, et soit $\mathcal{O}_{\mathcal{E}}^{S}$ l'anneau des $S_{\mathcal{E}}$-entiers de \mathcal{E}. Lorsque \mathcal{E} peut être judicieusement plongé dans des extensions diédrales de F, nous montrons que l'idéal de Fitting de $K_{2}\left(\mathcal{O}_{\mathcal{E}}^{S}\right)$ et un certain idéal de Stickelberger supérieur dans $\mathbb{Z}[G]$ sont tous les deux d'indice un ou deux dans leur somme.

Abstract

Fix a Galois extension \mathcal{E} / F of totally real number fields such that the Galois group G is isomorphic to the Klein four group and assume that the Birch-Tate conjecture holds in all the intermediate fields between F and \mathcal{E}, inclusive. Let S be a finite set of primes of F containing the infinite primes and all those which ramify in \mathcal{E}, let $S_{\mathcal{E}}$ denote the primes of \mathcal{E} lying above those in S, and let $\mathcal{O}_{\mathcal{E}}^{S}$ denote the ring of $S_{\mathcal{E}}$-integers of \mathcal{E}. When \mathcal{E} can be embedded in dihedral extensions of F in certain ways, we show that the Fitting ideal of $K_{2}\left(\mathcal{O}_{\mathcal{E}}^{S}\right)$ and a higher Stickelberger ideal in $\mathbb{Z}[G]$ both have index one or two in their sum.

1. Introduction

Fix an abelian Galois extension of number fields \mathcal{E} / F and let G denote the Galois group. Also fix a finite set S of primes of F which contains all of the infinite primes of F and all of the primes which ramify in \mathcal{E}. Associated with this data is a Stickelberger function, $\theta_{\mathcal{E} / F}^{S}(s)$, a meromorphic function of s with values in the group ring $\mathbb{C}[G]$. It can be defined when the real part of s is greater than 1 , as a product over the (finite) primes \mathfrak{p} of F that are not in S. Let Np denote the absolute norm of the ideal \mathfrak{p} and $\sigma_{\mathfrak{p}} \in G$ denote the Frobenius automorphism of \mathfrak{p}. Then

$$
\theta_{\mathcal{E} / F}^{S}(s)=\prod_{\text {prime } \mathfrak{p} \notin S}\left(1-\frac{1}{\mathrm{~Np}^{s}} \sigma_{\mathfrak{p}}^{-1}\right)^{-1} .
$$

Reçu le 24 avril 2009 et, sous forme définitive, le 10 décembre 2009.

This extends meromorphically to all of \mathbb{C}. When $\mathcal{E}=F$, the function $\theta_{F / F}^{S}(s)$ is simply the identity automorphism of F times $\zeta_{F}^{S}(s)$, the Dedekind zeta-function of F with Euler factors for the primes in S removed.

The function $\theta_{\mathcal{E} / F}^{S}(s)$ is connected with the arithmetic of the number fields \mathcal{E} and F in ways one would like to make as precise as possible. The ring of S-integers \mathcal{O}_{F}^{S} of F is defined to be the set of elements of F whose valuation is non-negative at every prime not in S. Similarly, define the ring $\mathcal{O}_{\mathcal{E}}^{S}$ of S-integers of \mathcal{E} to be the set of elements of \mathcal{E} whose valuation is non-negative at every prime not in $S_{\mathcal{E}}$, the set of all primes of \mathcal{E} which lie above some prime in S. The function $\zeta_{F}^{S}(s)$ may be viewed as the zetafunction of the Dedekind domain \mathcal{O}_{F}^{S}.

We will study the "higher Stickelberger element" $\theta_{\mathcal{E} / F}^{S}(-1)$, which lies in $\mathbb{Q}[G]$ by the theorem of Klingen-Siegel [11], and is related to the algebraic K-group $K_{2}\left(\mathcal{O}_{\mathcal{E}}^{S}\right)$. Denoting the valuation at a finite prime \mathfrak{p} of \mathcal{E} by $v_{\mathfrak{p}}$, the group $K_{2}\left(\mathcal{O}_{\mathcal{E}}^{S}\right)$ may be described as the subgroup of $K_{2}(\mathcal{E})$ consisting of all elements whose image under the map which sends $\{\gamma, \alpha\}_{\mathcal{E}}$ to the tame symbol

$$
(\gamma, \alpha)_{\mathfrak{p}}=-1^{v_{\mathfrak{p}}(\gamma) \mathfrak{v}_{\mathfrak{p}}(\alpha)} \gamma^{v_{\mathfrak{p}}(\alpha)} / \alpha^{v_{\mathfrak{p}}(\gamma)} \quad(\bmod \mathfrak{p})
$$

is trivial in the residue field modulo \mathfrak{p} for every prime \mathfrak{p} not in $S_{\mathcal{E}}$. This group $K_{2}\left(\mathcal{O}_{\mathcal{E}}^{S}\right)$ is known to be finite by [2] and [7], and will be called the S-tame kernel of \mathcal{E}. It contains the tame kernel $K_{2}\left(\mathcal{O}_{\mathcal{E}}\right)$ as a subgroup.

Another piece of the arithmetic interpretation of $\theta_{\mathcal{E} / F}^{S}(-1)$ involves a group of roots of unity. Let μ_{∞} denote the group of all roots of unity in an algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} containing \mathcal{E}, and let \mathcal{G} denote the Galois group of $\overline{\mathbb{Q}} / \mathbb{Q}$. Define $W_{2}=W_{2}(\overline{\mathbb{Q}})$ to be the $\mathbb{Z}[\mathcal{G}]$-module whose underlying group is μ_{∞}, with the action of $\gamma \in \mathcal{G}$ on $\omega \in W_{2}$ given by $\omega^{\gamma}=\gamma^{2}(\omega)$. For any subfield L of $\overline{\mathbb{Q}}$, let $W_{2}(L)$ be the submodule fixed under this action by the Galois group of $\overline{\mathbb{Q}}$ over L. Then $W_{2}(\mathcal{E})$ naturally becomes a $\mathbb{Z}[G]$-module, where the action of G arises by lifting elements of G to \mathcal{G} and then using the action of \mathcal{G} just defined. One easily sees that the G-fixed submodule $W_{2}(\mathcal{E})^{G}$ equals $W_{2}(F)$. We use the notation $w_{2}(L)=\left|W_{2}(L)\right|$, which we note is finite for any algebraic number field L.

Our approach makes use of the conjecture of Birch and Tate (see Section 4 in [12]), which gives a precise arithmetic interpretation of $\zeta_{F}^{S}(-1)$. We state a form of it for an arbitrary finite set S which is easily seen to be equivalent to the original conjecture for the set S containing just the infinite primes (see Corollary 3.3 of [10]).

Conjecture 1.1 (Birch-Tate). Suppose that F is totally real and that the finite set S contains the infinite primes of F. Then

$$
\zeta_{F}^{S}(-1)=(-1)^{|S|} \frac{\left|K_{2}\left(\mathcal{O}_{F}^{S}\right)\right|}{w_{2}(F)} .
$$

Results on Iwasawa's main conjecture in [6] and [14] lead to the following (see [4]).
Proposition 1.2. The Birch-Tate conjecture holds if F is abelian over \mathbb{Q}, and the odd part holds for all totally real F.

Kolster [3] has shown that the 2-part of the Birch-Tate conjecture for F would follow from the 2-part of Iwasawa's Main conjecture for F.

For any module M over a commutative ring A, we let $\operatorname{Ann}_{A}(M)$ denote the annihilator of M in A. If M is a finitely generated A-module, we denote the Fitting ideal of M over A by $\operatorname{Fit}_{A}(M)$; it is the ideal of A generated by the determinants of all square matrices representing relations among a set of generators of A. The following result is proved in Theorem 1.3 of [8]. The notation \bar{G} for the Galois group reflects that in later applications this group will in fact be a homomorphic image of a group G.

Proposition 1.3. Let E / F be a relative quadratic extension of totally real number fields, with Galois group \bar{G}. Let S contain the infinite primes and those which ramify in E / F. Assume that the 2-part of the Birch-Tate conjecture holds for E and for F. Then the (first) Fitting ideal of $K_{2}\left(\mathcal{O}_{E}^{S}\right)$ as a $\mathbb{Z}[\bar{G}]$-module is

$$
\operatorname{Fit}_{\mathbb{Z}[\bar{G}]}\left(K_{2}\left(\mathcal{O}_{E}^{S}\right)\right)=\operatorname{Ann}_{\mathbb{Z}[\bar{G}]}\left(W_{2}(E)\right) \theta_{E / F}^{S}(-1) .
$$

More specifically, this ideal equals its extension to the maximal order of $\mathbb{Q}[\bar{G}]$ if and only if it is not principal, and this happens exactly when E is not the first layer of the cyclotomic \mathbb{Z}_{2}-extension of F. Without the assumption of the Birch-Tate conjecture, the ideals $\mathrm{Fit}_{\mathbb{Z}[\bar{G}]}\left(K_{2}\left(\mathcal{O}_{E}^{S}\right)\right)$ and $\mathrm{Ann}_{\mathbb{Z}[\bar{G}]}\left(W_{2}(E)\right) \theta_{E / F}^{S}(-1)$ have the same extension to $\mathbb{Z}[1 / 2][\bar{G}]$.

In this paper, we investigate the relationship between the Fitting ideal

$$
\operatorname{Fit}_{\mathcal{E} / F}^{S}(1)=\operatorname{Fit}_{\mathbb{Z}[G]}\left(K_{2}\left(\mathcal{O}_{\mathcal{E}}^{S}\right)\right)
$$

and the corresponding higher Stickelberger ideal

$$
\operatorname{Stick}_{\mathcal{E} / F}^{S}(-1)=\operatorname{Ann}_{\mathbb{Z}[G]}\left(W_{2}(\mathcal{E})\right) \theta_{\mathcal{E} / F}^{S}(-1)
$$

when G is the Klein four group. The theorem of Deligne and Ribet [1] guarantees that $\operatorname{Stick}_{\mathcal{E} / F}^{S}(-1)$ is an ideal in the integral group ring $\mathbb{Z}[G]$.

2. Biquadratic extensions

From now on, we let \mathcal{E} / F be a biquadratic extension of totally real number fields with intermediate fields E_{1}, E_{2} and E_{3} and assume that \mathcal{E} is contained in \mathbb{R}.

One particular quadratic extension of F plays a special role, namely the first layer $F^{(1)}$ of the cyclotomic \mathbb{Z}_{2}-extension of F. This extension may be described by setting $\zeta_{k}=e^{2 \pi i / k}$ and choosing the largest positive integer n such that $\pi_{F}=2+\zeta_{2^{n}}+\zeta_{2^{n}}^{-1}$ lies in F. Then $F^{(1)}=F\left(\sqrt{\pi_{F}}\right)$, and $\sqrt{\pi_{F}}=\zeta_{2^{n+1}}+\zeta_{2^{n+1}}^{-1}$, whose absolute norm is a power of 2 .

The following two results appear in Theorem 4.5, Theorem 4.8 and Proposition 4.9 in [9]. Our goal will be to obtain new general applications of these. Here we let e_{0} be the idempotent in $\mathbb{Q}[G]$ corresponding to the trivial character of G, and let e_{i} be the idempotent corresponding to the non-trivial character whose kernel fixes E_{i}. Then $\mathcal{S}=\mathbb{Z} e_{0}+\mathbb{Z} e_{1}+\mathbb{Z} e_{2}+\mathbb{Z} e_{3}$ is the maximal order of $\mathbb{Q}[G]$. It is easy to compute that $4 \mathcal{S}$ has index 16 in $\mathbb{Z}[G]$, and hence $\mathbb{Z}[G]$ has index 16 in \mathcal{S}. The symbol $k_{2}^{S}(F)$ will
denote the order of $K_{2}\left(\mathcal{O}_{F}^{S}\right)$, and $k_{2}^{S}\left(E_{i}\right)^{-}$will denote the order of the submodule of elements in $K_{2}\left(\mathcal{O}_{E_{i}}^{S}\right)$ that are inverted by the non-trivial automorphism of E_{i} over F.

Theorem 2.1 (Comparison Theorem for a biquadratic extension not containing $\boldsymbol{F}^{(1)}$). Suppose that \mathcal{E} / F is biquadratic, and that \mathcal{E} does not contain $F^{(1)}$. If the intersection of the images in $K_{2}\left(\mathcal{O}_{\mathcal{E}}^{S}\right)$ of $K_{2}\left(\mathcal{O}_{E_{1}}^{S}\right)$ and $K_{2}\left(\mathcal{O}_{E_{3}}^{S}\right)$ does not equal the image of $K_{2}\left(\mathcal{O}_{F}^{S}\right)$, and likewise for the intersection of the images in $K_{2}\left(\mathcal{O}_{\mathcal{E}}^{S}\right)$ of $K_{2}\left(\mathcal{O}_{E_{1}}^{S}\right)$ and $K_{2}\left(\mathcal{O}_{E_{2}}^{S}\right)$, then either
(a) $\operatorname{Fit}_{\mathcal{E} / F}^{S}(1)=\operatorname{Fit}_{\mathcal{E} / F}^{S}(1) \mathcal{S}$, or
(b) $\mathrm{Fit}_{\mathcal{E} / F}^{S}(1)$ has index 2 in $\mathrm{Fit}_{\mathcal{E} / F}^{S}(1) \mathcal{S}$.

Suppose further that the Birch-Tate conjecture holds for F and the $E_{i}^{\prime} s$. Then

$$
\operatorname{Fit}_{\mathcal{E} / F}^{S}(1) \mathcal{S}=\operatorname{Stick}_{\mathcal{E} / F}^{S}(-1) \mathcal{S},
$$

which contains $\operatorname{Stick}_{\mathcal{E} / F}^{S}(-1)$ of index 2. In case (a), $\operatorname{Stick}_{\mathcal{E} / F}^{S}(-1)$ is contained in $\mathrm{Fit}_{\mathcal{E} / F}^{S}(1)$ with index 2 . In case (b), $\operatorname{Stick}_{\mathcal{E} / F}^{S}(-1)$ and $\mathrm{Fit}_{\mathcal{E} / F}^{S}(1)$ both have index 2 in $\mathrm{Fit}_{\mathcal{E} / F}^{S}(1) \mathcal{S}=\operatorname{Stick}_{\mathcal{E} / F}^{S}(-1) \mathcal{S}$, and thus have the same index in $\mathbb{Z}[G]$. Assuming that the Birch-Tate conjecture also holds for \mathcal{E}, the index of $\operatorname{Stick}_{\mathcal{E} / F}^{S}(-1)$ in $\mathbb{Z}[G]$ equals the order of $K_{2}\left(\mathcal{O}_{E}^{S}\right)$ in both cases.

Theorem 2.2 (Comparison Theorem for a biquadratic extension containing $\boldsymbol{F}^{(1)}$). Suppose that \mathcal{E} / F is biquadratic, and that $E_{1}=F^{(1)}$.
(i) Then

$$
\operatorname{Fit}_{\mathcal{E} / F}^{S}(1) \supset 2 \operatorname{Fit}_{\mathcal{E} / F}^{S}(1) \mathcal{S}
$$

and $\frac{\operatorname{Fit}_{\mathcal{E} / F}^{S}(1)}{2 \operatorname{Fit}_{\mathcal{E} / F}^{S}(1) \mathcal{S}}$ must be one of three \mathbb{F}_{2}-subspaces of $\frac{\operatorname{Fit}_{\mathcal{E} / F}^{S}(1) \mathcal{S}}{2 \operatorname{Fit}_{\mathcal{E} / F}^{S}(1) \mathcal{S}}$. (We cannot say that all three occur.) The bases for these subspaces are:
(a) $\left\{k_{2}^{S}(F) e_{0}+k_{2}^{S}\left(E_{1}\right)^{-} e_{1}, k_{2}^{S}\left(E_{2}\right)^{-} e_{2}, k_{2}^{S}\left(E_{3}\right)^{-} e_{3}\right\}$,
(b) $\left\{k_{2}^{S}(F) e_{0}+k_{2}^{S}\left(E_{1}\right)^{-} e_{1}+k_{2}^{S}\left(E_{2}\right)^{-} e_{2}, k_{2}^{S}\left(E_{2}\right)^{-} e_{2}+k_{2}^{S}\left(E_{3}\right)^{-} e_{3}\right\}$,
(c) $\left\{k_{2}^{S}(F) e_{0}+k_{2}^{S}\left(E_{1}\right)^{-} e_{1}, k_{2}^{S}\left(E_{2}\right)^{-} e_{2}+k_{2}^{S}\left(E_{3}\right)^{-} e_{3}\right\}$.
(ii) Now assume that the Birch-Tate conjecture holds for F and each $E_{i}^{\prime} s$. Then

$$
\operatorname{Fit}_{\mathcal{E} / F}^{S}(1) \mathcal{S}=\operatorname{Stick}_{\mathcal{E} / F}^{S}(-1) \mathcal{S},
$$

which contains $\operatorname{Stick}_{\mathcal{E} / F}^{S}(-1)$ of index 4. If case (a) occurs, $\operatorname{Stick}_{\mathcal{E} / F}^{S}(-1)$ lies in $\operatorname{Fit}_{\mathcal{E} / F}^{S}(1)$ with index 2. If case (b) occurs, $\operatorname{Fit}_{\mathcal{E} / F}^{S}(1)=\operatorname{Stick}_{\mathcal{E} / F}^{S}(-1)$. If case (c) occurs, $\operatorname{Stick}_{\mathcal{E} / F}^{S}(-1)$ and $\operatorname{Fit}_{\mathcal{E} / F}^{S}(1)$ have the same index in $\mathbb{Z}[G]$. If the intersection of the images in $K_{2}\left(\mathcal{O}_{\mathcal{E}}^{S}\right)$ of $K_{2}\left(\mathcal{O}_{E_{1}}^{S}\right)$ and $K_{2}\left(\mathcal{O}_{E_{3}}^{S}\right)$ does not equal the image of $K_{2}\left(\mathcal{O}_{F}^{S}\right)$, then case (c) does not occur.
(iii) If the Birch-Tate conjecture holds for \mathcal{E}, then the index of $\operatorname{Stick}_{\mathcal{E} / F}^{S}(-1)$ in $\mathbb{Z}[G]$ equals the order of $K_{2}\left(\mathcal{O}_{E}^{S}\right)$ in all cases.

Proposition 2.3. Suppose that F is totally real and $E=F(\sqrt{d})$ for some non-zero, totally positive $d \in F$. Then the kernel of the natural map $\iota_{E / F}: K_{2}(F) \rightarrow K_{2}(E)$ is generated by the symbol $\{-1, d\}_{F}$.

Proof. Suppose that ω is in the kernel. So $\iota_{E / F}(\omega)=1$. Applying the transfer $\operatorname{Tr}_{E / F}$ shows that $\omega^{2}=1$. Then by Theorem 6.1 in [13], $\omega=\{-1, a\}_{F}$ for some non-zero $a \in F$. Hence our assumption is that $\{-1, a\}_{E}=1$. Thus $a \in F$ lies in the Tate kernel of E. Since E is totally real, the Tate kernel of E is generated by the squares in E^{\times}and π_{E} for which $E\left(\sqrt{\pi_{E}}\right)$ is the first layer $E^{(1)}$ of the cyclotomic \mathbb{Z}_{2} extension of E (see Proposition 2.4 in [5]). Thus $F(\sqrt{a}) \subset E^{(1)}=F\left(\sqrt{d}, \sqrt{\pi_{E}}\right)$.

Firstly, if $E=F^{(1)}$, then $E^{(1)} / F$ is cyclic, being contained in the cyclotomic $\mathbb{Z}_{2^{-}}$ extension of F. So $F(\sqrt{a}) \subset F(\sqrt{d})=E=F^{(1)}=F\left(\sqrt{\pi_{F}}\right)$, the only quadratic extension of F in $E^{(1)}$. By Kummer theory, a and d must both equal a power of π_{F} times a square in F^{\times}. Thus they both lie in the Tate kernel of F, and

$$
\omega=\{-1, a\}_{F}=1=\{-1, d\}_{F} .
$$

So the kernel of $\iota_{E / F}$ is trivial and we are done in this case.
Secondly, if $E \neq F^{(1)}$, then we have $\pi_{E}=\pi_{F} \in F$. This time, Kummer theory implies that a lies in the subgroup of F^{\times}generated by the squares, along with d and π_{F}. Since $\left\{-1, \pi_{F}\right\}_{F}=1$, we see that $\{-1, a\}_{F}$ is a power of $\{-1, d\}_{F}$.

Proposition 2.4. Let F be a totally real algebraic number field. Let $E_{1}=F\left(\sqrt{d_{1}}\right)$ and $E_{3}=F\left(\sqrt{d_{3}}\right)$ be distinct totally real quadratic extensions of F with composite \mathcal{E}, and assume that $E_{2}=F\left(\sqrt{d_{1} d_{3}}\right) \neq F^{(1)}$. If $\left\{-1, \alpha_{1}\right\}_{\mathcal{E}}=\left\{-1, \alpha_{3}\right\}_{\mathcal{E}}=\iota_{\mathcal{E} / F}(\omega)$, for some $\alpha_{1} \in E_{1}, \alpha_{3} \in E_{3}$ and $\omega \in K_{2}(F)$, then $\omega^{2}=1$.

Proof. Applying the transfer map $\operatorname{Tr}_{\mathcal{E} / E_{1}}$ and using its standard properties gives

$$
\begin{aligned}
1 & =\left\{1, \alpha_{1}\right\}_{E_{1}}=\left\{-1, \alpha_{1}\right\}_{E_{1}}^{2}=\left\{-1, \alpha_{1}^{2}\right\}_{E_{1}}=\left\{-1, N_{\mathcal{E} / E_{1}}\left(\alpha_{1}\right)\right\}_{E_{1}} \\
& =\operatorname{Tr}_{\mathcal{E} / E_{1}}\left(\left\{-1, \alpha_{1}\right\}_{\mathcal{E}}\right)=\operatorname{Tr}_{\mathcal{E} / E_{1}}\left(\iota_{\mathcal{E} / E_{1}}\left(\iota_{E_{1} / F}(\omega)\right)\right)=\iota_{E_{1} / F}(\omega)^{2}=\iota_{E_{1} / F}\left(\omega^{2}\right) .
\end{aligned}
$$

Thus ω^{2} lies in the kernel of $\iota_{E_{1} / F}$. By Proposition 2.3, ω^{2} is a power of $\left\{-1, d_{1}\right\}_{F}$. The proof of Proposition 2.3 then also shows that $\omega^{2}=1$ if $E_{1}=F^{(1)}$, and we are done in this case. By the same argument, ω^{2} is a power of $\left\{-1, d_{3}\right\}_{F}$, and we are done if $E_{3}=F^{(1)}$. In the remaining case, assume by way of contradiction that $\omega^{2} \neq 1$. Then we must have $\left\{-1, d_{1}\right\}_{F}=\omega^{2}=\left\{-1, d_{3}\right\}_{F}$, so that $d_{1} d_{3}$ is in the Tate kernel of F. As in the proof of Proposition 2.3, this implies that $E_{2}=F\left(\sqrt{d_{1} d_{3}}\right)$ lies in $F^{(1)}$, contradicting our assumptions.

Lemma 2.5. Let \mathcal{E} be a biquadratic extension of F, with intermediate subfields E_{1}, E_{2} and E_{3}. If M is an extension of \mathcal{E} which is Galois over E_{1} and E_{3}, then M is Galois over F.

Proof. Fix an automorphism σ_{3} of the normal closure of M over F which restricts to the non-trivial automorphism of \mathcal{E} / E_{3}. Now if σ is any automorphism of the normal closure of M over F, the restriction of σ to \mathcal{E} must fix E_{i} for some i. If σ fixes E_{1} or E_{3},
then $\sigma(M)=M$, since M is Galois over E_{1} and E_{3}. Otherwise, σ must restrict to the non-trivial automorphism of \mathcal{E} / E_{2}. In this case, $\sigma_{3} \sigma$ fixes E_{1}, so that $\sigma_{3} \sigma(M)=M$. Thus $\sigma(M)=\sigma_{3}^{-1}(M)=M$, and hence the only conjugate of M over F is itself, and M / F is Galois.

For the next proposition, we denote the dihedral group of order 8 by D_{8}.
Proposition 2.6. Let F be a totally real algebraic number field. Let $E_{1}=F\left(\sqrt{d_{1}}\right)$ and $E_{3}=F\left(\sqrt{d_{3}}\right)$ be distinct totally real quadratic extensions of F with composite \mathcal{E}, and assume that $\mathcal{E} \neq E_{1}^{(1)}$. Then there exists an element in $K_{2}(\mathcal{E})$ which is simultaneously the image of elements of order 2 in $K_{2}\left(E_{1}\right)$ and $K_{2}\left(E_{3}\right)$, but not the image of an element in $K_{2}(F)$, if and only if \mathcal{E} lies in a D_{8} Galois extension M of F which is biquadratic over E_{1}, biquadratic over E_{3}, and cyclic over $E_{2}=F\left(\sqrt{d_{1} d_{3}}\right)$. In particular, if such an element exists and is the image of $\left\{-1, \alpha_{3}\right\}_{E_{3}}$, then we can choose $M=\mathcal{E}\left(\sqrt{\alpha_{3}}\right)$. Conversely, if such a field $M=\mathcal{E}(\sqrt{\alpha})$ exists, then $\{-1, \alpha\}_{\mathcal{E}}$ is an element satisfying the specified description.

Proof. Let $\pi_{E_{1}} \in E_{1}$ be the canonical element such that $E_{1}\left(\sqrt{\pi_{E_{1}}}\right)=E_{1}^{(1)}$. Under our assumption that $E_{1}^{(1)} \neq \mathcal{E}$, we have $\mathcal{E}^{(1)}=\mathcal{E}\left(\sqrt{\pi_{E_{1}}}\right)$. Equivalently,

$$
\pi_{\mathcal{E}}=\pi_{E_{1}}
$$

Suppose that there exist elements $\left\{-1, \alpha_{1}\right\}_{E_{1}}$ and $\left\{-1, \alpha_{3}\right\}_{E_{3}}$ with the same nontrivial image in $K_{2}(\mathcal{E})$. Then α_{1} and α_{3} are not in the Tate kernel of \mathcal{E}, but α_{1} / α_{3} is. We have seen that this Tate kernel is $\left\langle\pi_{\mathcal{E}}\right\rangle \cdot\left(\mathcal{E}^{\times}\right)^{2}$. So $M=\mathcal{E}\left(\sqrt{\alpha_{3}}\right)$ is a quadratic extension of \mathcal{E}, and is clearly biquadratic over E_{3} since $\alpha_{3} \in E_{3}$. Also since $\pi_{\mathcal{E}}=\pi_{E_{1}}$, we see that $\alpha_{3}=\pi_{E_{1}}^{t} \gamma^{2} \alpha_{1}$ for some integer t and $\gamma \in \mathcal{E}^{\times}$. Thus

$$
M=\mathcal{E}\left(\sqrt{\alpha_{3}}\right)=\mathcal{E}\left(\sqrt{\pi_{E_{1}}^{t} \alpha_{1}}\right)
$$

with $\pi_{E_{1}}^{t} \alpha_{1} \in E_{1}$, so M is also biquadratic over E_{1}. Then by Lemma $2.5, M$ is Galois over F.

We now note that M is not abelian over F. If it were, then $E_{3}\left(\sqrt{\alpha_{3}}\right) / F$ would be Galois with group isomorphic to $\operatorname{Gal}\left(M / E_{1}\right)$, which is the Klein four group. Thus we would have $E_{3}\left(\sqrt{\alpha_{3}}\right)=E_{3}(\sqrt{a})$ for some $a \in F$. Consequently, $\alpha_{3}=a \eta^{2}$ for some $\eta \in E_{3}^{\times}$. This would imply that $\left\{-1, \alpha_{3}\right\}_{E_{3}}=\{-1, a\}_{E_{3}}$, the image of $\{-1, a\}_{F} \in K_{2}(F)$, so that $\left\{-1, \alpha_{3}\right\}_{\mathcal{E}}=\{-1, a\}_{\mathcal{E}}$. As we are assuming this is not the case, we must conclude that M / F is a Galois extension of degree 8 containing the non-Galois extension $E_{3}\left(\sqrt{\alpha_{3}}\right) / F$ of degree 4 , and the only possible Galois group is D_{8}. This proves one implication of the proposition.

Conversely, suppose that an extension $M=\mathcal{E}(\sqrt{\alpha})$ of the specified type exists. Since M is biquadratic over E_{3}, we must have

$$
M=\mathcal{E}\left(\sqrt{\alpha_{3}}\right)
$$

for some $\alpha_{3} \in \mathcal{E}_{3}$. By Kummer theory, α_{3} must be α times a square in \mathcal{E}, so that $\{-1, \alpha\}_{\mathcal{E}}=\left\{-1, \alpha_{3}\right\}_{\mathcal{E}}$. We show that the element $\left\{-1, \alpha_{3}\right\}_{\mathcal{E}}$ satisfies the desired
conditions. First of all, it is the image of $\left\{-1, \alpha_{3}\right\}_{E_{3}}$. At the same time, M is also biquadratic over E_{1}, so

$$
M=\mathcal{E}\left(\sqrt{\alpha_{1}}\right)
$$

for some $\alpha_{1} \in E_{1}$ and, as above, we have $\{-1, \alpha\}_{\mathcal{E}}=\left\{-1, \alpha_{3}\right\}_{\mathcal{E}}$, which is clearly the image of $\left\{-1, \alpha_{1}\right\}_{E_{1}} \in K_{2}\left(E_{1}\right)$. It remains to show that $\left\{-1, \alpha_{3}\right\}_{\mathcal{E}}$ is not the image of an element $\omega \in K_{2}(F)$. We proceed by contradiction. If such an ω existed, then by Proposition 2.4 it would be of the form $\omega=\{-1, a\}_{F}$, for some $a \in F$. The condition that $E_{2} \neq F^{(1)}$ in that proposition is satisfied under our assumption that $\mathcal{E} \neq E_{1}^{(1)}$. Then we would have $\{-1, a\}_{\mathcal{E}}=\left\{-1, \alpha_{1}\right\}_{\mathcal{E}}$, so that α_{1} / a is in the Tate kernel of \mathcal{E}. This yields that $\alpha_{1}=a \pi_{E_{1}}^{t} \eta^{2}$, for some integer t and some $\eta \in \mathcal{E}$. Thus

$$
M=\mathcal{E}\left(\sqrt{\alpha_{1}}\right) \subset \mathcal{E}\left(\sqrt{a}, \sqrt{\pi_{E_{1}}}\right) .
$$

But this field is abelian over F, while M is not, and we obtain the desired contradiction to complete the proof.

Corollary 2.7. Let F be a totally real algebraic number field. Let $E_{1}=F\left(\sqrt{d_{1}}\right)$ and $E_{3}=F\left(\sqrt{d_{3}}\right)$ be distinct totally real quadratic extensions of F with composite \mathcal{E}, and assume that \mathcal{E} does not contain $F^{(1)}$. Then there is no element of order 2 in $K_{2}(\mathcal{E})$ which is simultaneously the image of elements of order 2 in each of $K_{2}\left(E_{1}\right), K_{2}\left(E_{2}\right)$ and $K_{2}\left(E_{3}\right)$.

Proof. The hypothesis on $F^{(1)}$ implies that $E_{1}^{(1)} \neq \mathcal{E} \neq E_{2}^{(1)}$. If such an element existed, it would be of the form $\left\{-1, \alpha_{3}\right\}_{\mathcal{E}}$, with $\alpha_{3} \in E_{3}$. By Proposition 2.6, $\mathcal{E}\left(\sqrt{\alpha_{3}}\right)$ would be both biquadratic and cyclic over E_{2}, a contradiction.

Now let S_{2} denote the set of dyadic primes of F, i.e., the primes lying above 2 . Note that the tame symbol $(-1, \alpha)_{\mathfrak{p}}$ is trivial for all $\alpha \in \mathcal{E}$ when \mathfrak{p} is dyadic, since -1 is congruent to 1 modulo any dyadic prime. Thus $K_{2}\left(\mathcal{O}_{E}^{S}\right)=K_{2}\left(\mathcal{O}_{\mathcal{E}}^{S \cup S_{2}}\right)$.

Theorem 2.8 (Main Theorem for \mathcal{E} containing $\boldsymbol{F}^{(1)}$). Suppose that \mathcal{E} / F is a biquadratic extension of totally real number fields with the Birch-Tate conjecture holding for F and the three relative quadratic extensions of F in \mathcal{E}. Assume that one of these intermediate fields is $E_{1}=F^{(1)}$. Let S contain the infinite primes of F and the primes that ramify in \mathcal{E}. Suppose that \mathcal{E} can be embedded in a D_{8} extension M of F which is biquadratic over E_{1} and unramified over F outside of $S \cup S_{2}$. Then $\operatorname{Stick}_{\mathcal{E} / F}^{S}(-1)$ is contained in $\mathrm{Fit}_{\mathcal{E} / F}^{S}$ (1) with index 1 or 2 .

Proof. We let E_{2} and E_{3} be the other relative quadratic extensions of F in \mathcal{E} with M cyclic over E_{2} and biquadratic over E_{3}. Note that $\mathcal{E} \neq E_{1}^{(1)}$, for then \mathcal{E} would be cyclic over F. The conditions of Proposition 2.6 are met, so there exists an element $\{-1, \alpha\}_{\mathcal{E}} \in K_{2}(\mathcal{E})$ which is the image of some $\left\{-1, \alpha_{1}\right\}_{E_{1}} \in K_{2}\left(E_{1}\right)$ and of some $\left\{-1, \alpha_{3}\right\}_{E_{1}} \in K_{2}\left(E_{3}\right)$, but not in the image of $K_{2}(F)$. Since we have $M=\mathcal{E}(\sqrt{\alpha})$ unramified over F outside of $S \cup S_{2}, \alpha$ has even valuation at all primes above those not in $S \cup S_{2}$. This implies that $\{-1, \alpha\}_{\mathcal{E}}$ lies in the S-tame kernel $K_{2}\left(\mathcal{O}_{\mathcal{E}}^{S}\right)$ of \mathcal{E}. Since \mathcal{E} / E_{i} is unramified outside the primes above S for each i, we also find that $\left\{-1, \alpha_{1}\right\}_{E_{1}} \in K_{2}\left(\mathcal{O}_{E_{1}}^{S}\right)$ and $\left\{-1, \alpha_{3}\right\}_{E_{3}} \in K_{2}\left(\mathcal{O}_{E_{3}}^{S}\right)$. Now Theorem 2.2 applies to give the result.

Theorem 2.9 (Main Theorem for \mathcal{E} not containing $\boldsymbol{F}^{(\mathbf{1})}$). Suppose that \mathcal{E} / F is a biquadratic extension of totally real number fields with the Birch-Tate conjecture holding for F and the relative quadratic extensions E_{1}, E_{2} and E_{3} of F in \mathcal{E}. Assume that $F^{(1)}$ is not contained in \mathcal{E}. Let S contain the infinite primes of F and the primes that ramify in \mathcal{E}. Suppose that \mathcal{E} can be embedded in a D_{8} extension M of F which is cyclic over E_{2} and unramified over F outside of $S \cup S_{2}$, and also in a D_{8} extension M^{\prime} of F which is cyclic over E_{3} and unramifed over F outside of $S \cup S_{2}$. Then either $\operatorname{Stick}_{\mathcal{E} / F}^{S}(-1)$ is contained in $\mathrm{Fit}_{\mathcal{E} / F}^{S}(1)$ with index 1 or 2 , or $\operatorname{Stick}_{\mathcal{E} / F}^{S}(-1)$ and Fit $_{\mathcal{E} / F}^{S}(1)$ are both of index 2 in Stick $_{\mathcal{E} / F}^{S}(-1)+$ Fit $_{\mathcal{E} / F}^{S}(1)$.

Proof. Proposition 2.6 implies that there is an element $\{-1, \alpha\}_{\mathcal{E}}$ in the intersection of the images in $K_{2}(\mathcal{E})$ of $K_{2}\left(E_{1}\right)$ and $K_{2}\left(E_{3}\right)$ but not in the image of $K_{2}\left(\mathcal{O}_{F}^{S}\right)$. As in the proof of Theorem 2.8, the fact that M is unramified outside S implies that $\{-1, \alpha\}_{\mathcal{E}}$ lies in the intersection of the images in $K_{2}\left(\mathcal{O}_{\mathcal{E}}^{S}\right)$ of $K_{2}\left(\mathcal{O}_{E_{1}}^{S}\right)$ and $K_{2}\left(\mathcal{O}_{E_{3}}^{S}\right)$ but not in the image of $K_{2}\left(\mathcal{O}_{F}^{S}\right)$. The same argument with M replaced by M^{\prime} then shows that we may apply Theorem 2.1 and obtain the desired conclusion.

3. Applications

For easy reference, we first record some standard facts in a lemma.
Lemma 3.1. Suppose that E / F is a relative quadratic extension and that α and β lie in E^{\times}. Then
(a) $E(\sqrt{\alpha})=E(\sqrt{\beta})$ if and only if $\alpha \beta$ is a square in E;
(b) $E(\sqrt{\alpha}) / F$ is a Galois extension if and only if the relative norm of α is a square in E;
(c) $E(\sqrt{\alpha}) / F$ is a biquadratic extension if and only if α is not a square in E and the relative norm of α is a square in F.

Proof. First, (a) follows from Kummer theory or an easy exercise, while (b) follows from (a) upon taking β to be the conjugate of α over F.

For (c), suppose that the extension is biquadratic. Then $E(\sqrt{\alpha})=E(\sqrt{a})$ for some $a \in F$. The implication follows upon applying (a) and taking the norm. For the converse, let c^{2} be the norm of α. The automorphisms sending $\sqrt{\alpha}$ to its conjugates $\pm c / \sqrt{\alpha}$ both have order two, so cannot lie in a cyclic group.

Proposition 3.2. Let E_{1} be a totally real number field which is a relative quadratic extension of F. Let r be a totally positive non-square element of F, which is the norm of an integral element $\alpha_{1} \in E_{1}$ such that $E_{3}:=F(\sqrt{r})$ is not contained in $E_{1}^{(1)}$. Set $\mathcal{E}=E_{1}(\sqrt{r})$, and let S contain all of the infinite primes of F, all of the primes that ramify in E_{1}, and all of the primes dividing r. Then $M=\mathcal{E}\left(\sqrt{\alpha_{1}}\right)$ is a D_{8} extension of F which is unramified outside of $S \cup S_{2}$ and cyclic over E_{2}.

Proof. The hypotheses clearly guarantee that E_{3} is a relative quadratic extension of F, distinct from E_{1}. Thus \mathcal{E} is a biquadratic extension of F, and we denote the
third relative quadratic extension of F in \mathcal{E} by E_{2}. Since $F(\sqrt{r})$ is not contained in $E_{1}^{(1)}$, it is clear that $\mathcal{E} \neq E_{1}^{(1)}$, and since $\alpha_{1} \in E_{1}, M$ is biquadratic over E_{1}. Because the relative norm of α_{1} from \mathcal{E} to E_{3} is r, which is a square in E_{3}, M is biquadratic over E_{3}, by Lemma 3.1. The relative norm of α_{1} from \mathcal{E} to E_{2} is again r, which is a square in \mathcal{E}, but not a square in E_{2}. For this would imply that $\sqrt{r} \in E_{2}$, and consequently $E_{2}=F(\sqrt{r})=E_{3}$, a contradiction. Thus M is a cyclic extension of E_{2}. By Lemma 2.3, we conclude that M is a Galois extension of F. By Lemma 3.1 again, the extension $E_{1}\left(\sqrt{\alpha_{1}}\right)$ is not Galois over F, and one finds that M must be a D_{8} extension of F. Since α_{1} is integral of norm r, the ramified primes of $M=\mathcal{E}\left(\sqrt{\alpha_{1}}\right)$ over \mathcal{E} are divisors of $2 r$, and thus lie above primes in $S \cup S_{2}$.

The following corollary strengthens and generalizes Corollary 5.3 of [9]. By Proposition 1.2, all of the assumptions of the Birch-Tate conjecture in both of these corollaries are satisfied when \mathcal{E} is absolutely abelian, for example if $F=\mathbb{Q}$.

Corollary 3.3. Let F be a totally real field and let $E_{1}=F^{(1)}$. Also let α_{1} be an integral element of E_{1} whose norm to F is a totally positive non-square element r such that $E_{3}=F(\sqrt{r}) \neq E_{1}$. Put $\mathcal{E}=E_{1} \cdot E_{3}$, and let S contain all of the infinite primes of F, and all of the primes that ramify in \mathcal{E} / F. Assume that the Birch-Tate conjecture holds for F and that the quadratic extensions of F in E. Then we have

$$
\operatorname{Stick}_{\mathcal{E} / F}^{S}(-1) \subset \operatorname{Fit}_{\mathcal{E} / F}^{S}(1)
$$

and the index is 1 or 2 .
Proof. This follows from Proposition 3.2 and Theorem 2.8.
Corollary 3.4. Let F be a totally real field and $d \in F$ be a totally positive integral element such that there is a unit $\epsilon_{1} \in E_{1}=F(\sqrt{d})$ whose relative norm to F is -1 . Fix an integral element $\alpha_{1} \in E_{1}$ whose relative norm r in F is totally positive, and not a square in E_{1}. Set $E_{3}=F(\sqrt{r})$ and $\mathcal{E}=E_{1} \cdot E_{3}$, so $E_{2}=F(\sqrt{r d})$, and suppose that $F^{(1)}$ is not contained in \mathcal{E}. Let S contain all of the infinite primes of F, all of the primes that divide $r d$, and all of the dyadic primes that ramify in \mathcal{E} / F. Assume that the Birch-Tate conjecture holds for F and for the quadratic extensions of F in E. Then either $\operatorname{Stick}_{\mathcal{E} / F}^{S}(-1)$ is contained in $\mathrm{Fit}_{\mathcal{E} / F}^{S}(1)$ with index 1 or 2 , or $\operatorname{Stick}_{\mathcal{E} / F}^{S}(-1)$ and Fit $_{\mathcal{E} / F}^{S}(1)$ are both of index 2 in $\operatorname{Stick}_{\mathcal{E} / F}^{S}(-1)+\mathrm{Fit}_{\mathcal{E} / F}^{S}(1)$.

Proof. By Proposition 3.2, $M=\mathcal{E}\left(\sqrt{\alpha_{1}}\right)$ is a D_{8} extension of F which is unramified outside of $S \cup S_{2}$ and cyclic over E_{2}. Now consider $\alpha_{1}^{\prime}=\alpha_{1} \epsilon_{1} \sqrt{d}$. The norm of α_{1}^{\prime} is $r(-1)(-d)=r d$, and $E_{2}=F(\sqrt{r d})$. This time, Proposition 3.3 shows that M^{\prime} is a D_{8} extension of F which is cyclic over E_{3} and unramified outside of $S \cup S_{2}$. The result follows from Theorem 2.9.

REFERENCES

[1] P. Deligne and K. A. Ribet, Values of abelian L-functions at negative integers over totally real fields, Invent. Math. 59 (1980), no. 3, 227-286.
[2] H. Garland, A finiteness theorem for K_{2} of a number field, Ann. of Math. (2) 94 (1971), 534-548.
[3] M. Kolster, A relation between the 2-primary parts of the main conjecture and the Birch-Tate-conjecture, Canad. Math. Bull. 32 (1989), no. 2, 248-251.
[4] M. Kolster, Cohomological version of the Lichtenbaum conjecture at the prime 2 (Appendix to Two-primary algebraic K-theory of rings of integers in number fields, by J. Rognes and C. Weibel), J. Amer. Math. Soc. 13 (2000), no. 1, 1-54.
[5] M. Lescop, Sur les 2-extensions de \mathbb{Q} dont la 2-partie du noyau sauvage est triviale, Ph.D. thesis, University of Limoges, 2003.
[6] B. Mazur and A. Wiles, Class fields of abelian extensions of Q, Invent. Math. 76 (1984), no. 2, 179-330.
[7] D. Quillen, Finite generation of the groups K_{i} of rings of algebraic integers, In Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 179-198. Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973.
[8] J. W. Sands, L-values and the Fitting ideal of the tame kernel for relative quadratic extensions, Acta Arith. 131 (2008), no. 4, 389-402.
[9] J. W. Sands,Values at $s=-1$ of L-functions for multi-quadratic extensions of number fields, and the Fitting ideal of the tame kernel, Int. J. Number Theory 5 (2009), no. 3, 383-405.
[10] J. W. Sands and L. D. Simons, Values at $s=-1$ of L-functions for multi-quadratic extensions of number fields and annihilation of the tame kernel, J. Lond. Math. Soc. (2) 76 (2007), no. 3, 545-555.
[11] C. L. Siegel, Über die Fourierschen Koeffizienten von ModulFormen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1970 (1970), 15-56.
[12] J. Tate, Symbols in arithmetic, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, pp. 201-211, Gauthier-Villars, Paris, 1971.
[13] J. Tate, Relations between K_{2} and Galois cohomology, Invent. Math. 36 (1976), 257-274.
[14] A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), no. 3, 493-540.
J. W. Sands, Dept. of Mathematics and Statistics, 16 Colchester Ave., U. of Vermont, Burlington, VT 05401, USA.
Jonathan.Sands@uvm.edu

