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L-VALUES FOR BIQUADRATIC EXTENSIONS AND
THE FITTING IDEAL OF THE TAME KERNEL
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Dedicated to Paulo Ribenboim on the occasion of his 80th birthday.

RÉSUMÉ. Soit E/F une extension de Galois totalement réelle de corps de nombres
telle que le groupe de Galois G est isomorphe au groupe de Klein d’ordre 4 et suppo-
sons que la conjecture de Birch-Tate est vérifiée pour tous les corps compris entre F
et E , inclusivement. Soit S un ensemble fini de premiers de F contenant les premiers
infinis et tous ceux qui se ramifient dans E , soit SE l’ensemble des premiers de E au-
dessus de ceux de S, et soit OS

E l’anneau des SE -entiers de E . Lorsque E peut être
judicieusement plongé dans des extensions diédrales de F , nous montrons que l’idéal
de Fitting de K2(OS

E ) et un certain idéal de Stickelberger supérieur dans Z[G] sont
tous les deux d’indice un ou deux dans leur somme.

ABSTRACT. Fix a Galois extension E/F of totally real number fields such that the
Galois group G is isomorphic to the Klein four group and assume that the Birch-Tate
conjecture holds in all the intermediate fields between F and E , inclusive. Let S be a
finite set of primes of F containing the infinite primes and all those which ramify in
E , let SE denote the primes of E lying above those in S, and let OS

E denote the ring
of SE -integers of E . When E can be embedded in dihedral extensions of F in certain
ways, we show that the Fitting ideal of K2(OS

E ) and a higher Stickelberger ideal in
Z[G] both have index one or two in their sum.

1. Introduction

Fix an abelian Galois extension of number fields E/F and let G denote the Galois
group. Also fix a finite set S of primes of F which contains all of the infinite primes of
F and all of the primes which ramify in E . Associated with this data is a Stickelberger
function, θSE/F (s), a meromorphic function of s with values in the group ring C[G]. It
can be defined when the real part of s is greater than 1, as a product over the (finite)
primes p of F that are not in S. Let Np denote the absolute norm of the ideal p and
σp ∈ G denote the Frobenius automorphism of p. Then

θSE/F (s) =
∏

prime p/∈S

(
1− 1

Nps
σ−1

p

)−1

.
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This extends meromorphically to all of C. When E = F , the function θSF/F (s) is
simply the identity automorphism of F times ζSF (s), the Dedekind zeta-function of F
with Euler factors for the primes in S removed.

The function θSE/F (s) is connected with the arithmetic of the number fields E and
F in ways one would like to make as precise as possible. The ring of S-integers OSF
of F is defined to be the set of elements of F whose valuation is non-negative at every
prime not in S. Similarly, define the ringOSE of S-integers of E to be the set of elements
of E whose valuation is non-negative at every prime not in SE , the set of all primes of
E which lie above some prime in S. The function ζSF (s) may be viewed as the zeta-
function of the Dedekind domain OSF .

We will study the “higher Stickelberger element” θSE/F (−1), which lies in Q[G] by
the theorem of Klingen-Siegel [11], and is related to the algebraic K-group K2(OSE ).
Denoting the valuation at a finite prime p of E by vp, the group K2(OSE ) may be des-
cribed as the subgroup of K2(E) consisting of all elements whose image under the map
which sends {γ, α}E to the tame symbol

(γ, α)p = −1vp(γ)vp(α)γvp(α)/αvp(γ) (mod p)

is trivial in the residue field modulo p for every prime p not in SE . This group K2(OSE )
is known to be finite by [2] and [7], and will be called the S-tame kernel of E . It contains
the tame kernel K2(OE) as a subgroup.

Another piece of the arithmetic interpretation of θSE/F (−1) involves a group of roots

of unity. Let µ∞ denote the group of all roots of unity in an algebraic closure Q of Q
containing E , and let G denote the Galois group of Q/Q. Define W2 = W2(Q) to be
the Z[G]-module whose underlying group is µ∞, with the action of γ ∈ G on ω ∈ W2

given by ωγ = γ2(ω). For any subfield L of Q, let W2(L) be the submodule fixed
under this action by the Galois group of Q over L. Then W2(E) naturally becomes
a Z[G]-module, where the action of G arises by lifting elements of G to G and then
using the action of G just defined. One easily sees that the G-fixed submodule W2(E)G
equals W2(F ). We use the notation w2(L) = |W2(L)|, which we note is finite for any
algebraic number field L.

Our approach makes use of the conjecture of Birch and Tate (see Section 4 in [12]),
which gives a precise arithmetic interpretation of ζSF (−1). We state a form of it for an
arbitrary finite set S which is easily seen to be equivalent to the original conjecture for
the set S containing just the infinite primes (see Corollary 3.3 of [10]).

Conjecture 1.1 (Birch-Tate). Suppose that F is totally real and that the finite set
S contains the infinite primes of F . Then

ζSF (−1) = (−1)|S|
|K2(OSF )|
w2(F )

·

Results on Iwasawa’s main conjecture in [6] and [14] lead to the following (see [4]).

Proposition 1.2. The Birch-Tate conjecture holds if F is abelian over Q, and the
odd part holds for all totally real F .
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Kolster [3] has shown that the 2-part of the Birch-Tate conjecture for F would
follow from the 2-part of Iwasawa’s Main conjecture for F .

For any module M over a commutative ring A, we let AnnA(M) denote the anni-
hilator ofM inA. IfM is a finitely generatedA-module, we denote the Fitting ideal of
M over A by FitA(M); it is the ideal of A generated by the determinants of all square
matrices representing relations among a set of generators of A. The following result is
proved in Theorem 1.3 of [8]. The notation G for the Galois group reflects that in later
applications this group will in fact be a homomorphic image of a group G.

Proposition 1.3. Let E/F be a relative quadratic extension of totally real number
fields, with Galois group G. Let S contain the infinite primes and those which ramify
in E/F . Assume that the 2-part of the Birch-Tate conjecture holds for E and for F .
Then the (first) Fitting ideal of K2(OSE) as a Z[G]-module is

FitZ[G](K2(OSE)) = AnnZ[G](W2(E))θSE/F (−1).

More specifically, this ideal equals its extension to the maximal order of Q[G] if and
only if it is not principal, and this happens exactly when E is not the first layer of the
cyclotomic Z2-extension of F . Without the assumption of the Birch-Tate conjecture,
the ideals FitZ[G](K2(OSE)) and AnnZ[G](W2(E))θSE/F (−1) have the same extension
to Z[1/2][G].

In this paper, we investigate the relationship between the Fitting ideal

FitSE/F (1) = FitZ[G](K2(OSE ))

and the corresponding higher Stickelberger ideal

StickSE/F (−1) = AnnZ[G](W2(E))θSE/F (−1)

when G is the Klein four group. The theorem of Deligne and Ribet [1] guarantees that
StickSE/F (−1) is an ideal in the integral group ring Z[G].

2. Biquadratic extensions

From now on, we let E/F be a biquadratic extension of totally real number fields
with intermediate fields E1, E2 and E3 and assume that E is contained in R.

One particular quadratic extension of F plays a special role, namely the first layer
F (1) of the cyclotomic Z2-extension of F . This extension may be described by setting
ζk = e2πi/k and choosing the largest positive integer n such that πF = 2 + ζ2n + ζ−1

2n

lies in F . Then F (1) = F
(√
πF
)
, and

√
πF = ζ2n+1 + ζ−1

2n+1 , whose absolute norm is
a power of 2.

The following two results appear in Theorem 4.5, Theorem 4.8 and Proposition 4.9
in [9]. Our goal will be to obtain new general applications of these. Here we let e0
be the idempotent in Q[G] corresponding to the trivial character of G, and let ei be
the idempotent corresponding to the non-trivial character whose kernel fixes Ei. Then
S = Ze0 + Ze1 + Ze2 + Ze3 is the maximal order of Q[G]. It is easy to compute that
4S has index 16 in Z[G], and hence Z[G] has index 16 in S. The symbol kS2 (F ) will
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denote the order of K2(OSF ), and kS2 (Ei)− will denote the order of the submodule of
elements in K2(OSEi

) that are inverted by the non-trivial automorphism of Ei over F .

Theorem 2.1 (Comparison Theorem for a biquadratic extension not contai-
ning F (1)). Suppose that E/F is biquadratic, and that E does not contain F (1). If
the intersection of the images in K2(OSE ) of K2(OSE1

) and K2(OSE3
) does not equal

the image of K2(OSF ), and likewise for the intersection of the images in K2(OSE ) of
K2(OSE1

) and K2(OSE2
), then either

(a) FitSE/F (1) = FitSE/F (1)S, or

(b) FitSE/F (1) has index 2 in FitSE/F (1)S .

Suppose further that the Birch-Tate conjecture holds for F and the E′is. Then

FitSE/F (1)S = StickSE/F (−1)S,

which contains StickSE/F (−1) of index 2. In case (a), StickSE/F (−1) is contained in
FitSE/F (1) with index 2. In case (b), StickSE/F (−1) and FitSE/F (1) both have index 2 in
FitSE/F (1)S = StickSE/F (−1)S, and thus have the same index in Z[G]. Assuming that
the Birch-Tate conjecture also holds for E , the index of StickSE/F (−1) in Z[G] equals
the order of K2(OSE) in both cases.

Theorem 2.2 (Comparison Theorem for a biquadratic extension containing
F (1)). Suppose that E/F is biquadratic, and that E1 = F (1).

(i) Then

FitSE/F (1) ⊃ 2FitSE/F (1)S

and
FitSE/F (1)

2FitSE/F (1)S
must be one of three F2-subspaces of

FitSE/F (1)S
2FitSE/F (1)S

· (We cannot say

that all three occur.) The bases for these subspaces are:

(a) {kS2 (F )e0 + kS2 (E1)−e1, kS2 (E2)−e2, kS2 (E3)−e3},
(b) {kS2 (F )e0 + kS2 (E1)−e1 + kS2 (E2)−e2, kS2 (E2)−e2 + kS2 (E3)−e3},
(c) {kS2 (F )e0 + kS2 (E1)−e1, kS2 (E2)−e2 + kS2 (E3)−e3}.
(ii) Now assume that the Birch-Tate conjecture holds for F and each E′is. Then

FitSE/F (1)S = StickSE/F (−1)S,

which contains StickSE/F (−1) of index 4. If case (a) occurs, StickSE/F (−1) lies in
FitSE/F (1) with index 2. If case (b) occurs, FitSE/F (1) = StickSE/F (−1) . If case (c)
occurs, StickSE/F (−1) and FitSE/F (1) have the same index in Z[G]. If the intersection of
the images inK2(OSE ) ofK2(OSE1

) andK2(OSE3
) does not equal the image ofK2(OSF ),

then case (c) does not occur.

(iii) If the Birch-Tate conjecture holds for E , then the index of StickSE/F (−1) in
Z[G] equals the order of K2(OSE) in all cases.
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Proposition 2.3. Suppose thatF is totally real andE = F
(√
d
)

for some non-zero,
totally positive d ∈ F . Then the kernel of the natural map ιE/F : K2(F ) → K2(E) is
generated by the symbol {−1, d}F .

Proof. Suppose that ω is in the kernel. So ιE/F (ω) = 1. Applying the transfer
TrE/F shows that ω2 = 1. Then by Theorem 6.1 in [13], ω = {−1, a}F for some
non-zero a ∈ F . Hence our assumption is that {−1, a}E = 1. Thus a ∈ F lies in
the Tate kernel of E. Since E is totally real, the Tate kernel of E is generated by the
squares in E× and πE for which E

(√
πE
)

is the first layer E(1) of the cyclotomic Z2

extension of E (see Proposition 2.4 in [5]). Thus F
(√
a
)
⊂ E(1) = F

(√
d,
√
πE
)
.

Firstly, if E = F (1), then E(1)/F is cyclic, being contained in the cyclotomic Z2-
extension of F . So F

(√
a
)
⊂ F

(√
d
)

= E = F (1) = F
(√
πF
)
, the only quadratic

extension of F in E(1). By Kummer theory, a and d must both equal a power of πF
times a square in F×. Thus they both lie in the Tate kernel of F , and

ω = {−1, a}F = 1 = {−1, d}F .
So the kernel of ιE/F is trivial and we are done in this case.

Secondly, if E 6= F (1), then we have πE = πF ∈ F . This time, Kummer theory
implies that a lies in the subgroup of F× generated by the squares, along with d and
πF . Since {−1, πF }F=1, we see that {−1, a}F is a power of {−1, d}F . �

Proposition 2.4. Let F be a totally real algebraic number field. Let E1 = F
(√
d1

)
and E3 = F

(√
d3

)
be distinct totally real quadratic extensions of F with composite E ,

and assume that E2 = F
(√
d1d3

)
6= F (1). If {−1, α1}E = {−1, α3}E = ιE/F (ω), for

some α1 ∈ E1, α3 ∈ E3 and ω ∈ K2(F ), then ω2 = 1.

Proof. Applying the transfer map TrE/E1
and using its standard properties gives

1 = {1, α1}E1 = {−1, α1}2E1
= {−1, α2

1}E1 = {−1,NE/E1
(α1)}E1

= TrE/E1
({−1, α1}E) = TrE/E1

(ιE/E1
(ιE1/F (ω))) = ιE1/F (ω)2 = ιE1/F (ω2).

Thus ω2 lies in the kernel of ιE1/F . By Proposition 2.3, ω2 is a power of {−1, d1}F .
The proof of Proposition 2.3 then also shows that ω2 = 1 if E1 = F (1), and we are
done in this case. By the same argument, ω2 is a power of {−1, d3}F , and we are done
if E3 = F (1). In the remaining case, assume by way of contradiction that ω2 6= 1.
Then we must have {−1, d1}F = ω2 = {−1, d3}F , so that d1d3 is in the Tate kernel of
F . As in the proof of Proposition 2.3, this implies that E2 = F

(√
d1d3

)
lies in F (1),

contradicting our assumptions. �

Lemma 2.5. Let E be a biquadratic extension of F , with intermediate subfields
E1, E2 and E3. If M is an extension of E which is Galois over E1 and E3, then M is
Galois over F .

Proof. Fix an automorphism σ3 of the normal closure of M over F which restricts
to the non-trivial automorphism of E/E3. Now if σ is any automorphism of the normal
closure ofM over F , the restriction of σ to E must fixEi for some i. If σ fixesE1 orE3,
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then σ(M) = M , since M is Galois over E1 and E3. Otherwise, σ must restrict to the
non-trivial automorphism of E/E2. In this case, σ3σ fixes E1, so that σ3σ(M) = M .
Thus σ(M) = σ−1

3 (M) = M , and hence the only conjugate of M over F is itself, and
M/F is Galois. �

For the next proposition, we denote the dihedral group of order 8 by D8.

Proposition 2.6. Let F be a totally real algebraic number field. Let E1 = F
(√
d1

)
and E3 = F

(√
d3

)
be distinct totally real quadratic extensions of F with composite

E , and assume that E 6= E
(1)
1 . Then there exists an element in K2(E) which is simul-

taneously the image of elements of order 2 in K2(E1) and K2(E3), but not the image
of an element in K2(F ), if and only if E lies in a D8 Galois extension M of F which
is biquadratic over E1, biquadratic over E3, and cyclic over E2 = F

(√
d1d3

)
. In par-

ticular, if such an element exists and is the image of {−1, α3}E3 , then we can choose
M = E

(√
α3

)
. Conversely, if such a field M = E

(√
α
)

exists, then {−1, α}E is an
element satisfying the specified description.

Proof. Let πE1 ∈ E1 be the canonical element such that E1

(√
πE1

)
= E

(1)
1 .

Under our assumption that E(1)
1 6= E , we have E(1) = E

(√
πE1

)
. Equivalently,

πE = πE1 .

Suppose that there exist elements {−1, α1}E1 and {−1, α3}E3 with the same non-
trivial image in K2(E). Then α1 and α3 are not in the Tate kernel of E , but α1/α3

is. We have seen that this Tate kernel is 〈πE〉 · (E×)2. So M = E
(√
α3

)
is a quadratic

extension of E , and is clearly biquadratic overE3 since α3 ∈ E3. Also since πE = πE1 ,
we see that α3 = πtE1

γ2α1 for some integer t and γ ∈ E×. Thus

M = E (
√
α3) = E

(√
πtE1

α1

)
,

with πtE1
α1 ∈ E1, so M is also biquadratic over E1. Then by Lemma 2.5, M is Galois

over F .

We now note that M is not abelian over F . If it were, then E3

(√
α3

)
/F would

be Galois with group isomorphic to Gal(M/E1), which is the Klein four group. Thus
we would have E3

(√
α3

)
= E3

(√
a
)

for some a ∈ F . Consequently, α3 = aη2

for some η ∈ E×3 . This would imply that {−1, α3}E3 = {−1, a}E3 , the image of
{−1, a}F ∈ K2(F ), so that {−1, α3}E = {−1, a}E . As we are assuming this is not
the case, we must conclude that M/F is a Galois extension of degree 8 containing the
non-Galois extension E3

(√
α3

)
/F of degree 4, and the only possible Galois group is

D8. This proves one implication of the proposition.

Conversely, suppose that an extension M = E
(√
α
)

of the specified type exists.
Since M is biquadratic over E3, we must have

M = E
(√
α3

)
,

for some α3 ∈ E3. By Kummer theory, α3 must be α times a square in E , so that
{−1, α}E = {−1, α3}E . We show that the element {−1, α3}E satisfies the desired
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conditions. First of all, it is the image of {−1, α3}E3 . At the same time, M is also
biquadratic over E1, so

M = E
(√
α1

)
,

for some α1 ∈ E1 and, as above, we have {−1, α}E = {−1, α3}E , which is clearly the
image of {−1, α1}E1 ∈ K2(E1). It remains to show that {−1, α3}E is not the image
of an element ω ∈ K2(F ). We proceed by contradiction. If such an ω existed, then by
Proposition 2.4 it would be of the form ω = {−1, a}F , for some a ∈ F . The condition
that E2 6= F (1) in that proposition is satisfied under our assumption that E 6= E

(1)
1 .

Then we would have {−1, a}E = {−1, α1}E , so that α1/a is in the Tate kernel of E .
This yields that α1 = aπtE1

η2, for some integer t and some η ∈ E . Thus

M = E
(√
α1

)
⊂ E

(√
a,
√
πE1

)
.

But this field is abelian over F , while M is not, and we obtain the desired contradiction
to complete the proof. �

Corollary 2.7. Let F be a totally real algebraic number field. Let E1 = F
(√
d1

)
and E3 = F

(√
d3

)
be distinct totally real quadratic extensions of F with composite E ,

and assume that E does not contain F (1). Then there is no element of order 2 in K2(E)
which is simultaneously the image of elements of order 2 in each of K2(E1), K2(E2)
and K2(E3).

Proof. The hypothesis on F (1) implies that E(1)
1 6= E 6= E

(1)
2 . If such an element

existed, it would be of the form {−1, α3}E , with α3 ∈ E3. By Proposition 2.6, E
(√
α3

)
would be both biquadratic and cyclic over E2, a contradiction. �

Now let S2 denote the set of dyadic primes of F , i.e., the primes lying above 2.
Note that the tame symbol (−1, α)p is trivial for all α ∈ E when p is dyadic, since −1
is congruent to 1 modulo any dyadic prime. Thus K2(OSE) = K2(OS∪S2

E ).

Theorem 2.8 (Main Theorem for E containing F (1)). Suppose that E/F is a bi-
quadratic extension of totally real number fields with the Birch-Tate conjecture holding
for F and the three relative quadratic extensions of F in E . Assume that one of these
intermediate fields is E1 = F (1). Let S contain the infinite primes of F and the primes
that ramify in E . Suppose that E can be embedded in a D8 extension M of F which is
biquadratic over E1 and unramified over F outside of S ∪ S2. Then StickSE/F (−1) is
contained in FitSE/F (1) with index 1 or 2.

Proof. We let E2 and E3 be the other relative quadratic extensions of F in E with
M cyclic over E2 and biquadratic over E3. Note that E 6= E

(1)
1 , for then E would be

cyclic over F . The conditions of Proposition 2.6 are met, so there exists an element
{−1, α}E ∈ K2(E) which is the image of some {−1, α1}E1 ∈ K2(E1) and of some
{−1, α3}E1 ∈ K2(E3), but not in the image of K2(F ). Since we have M = E

(√
α
)

unramified over F outside of S ∪ S2, α has even valuation at all primes above those
not in S ∪ S2. This implies that {−1, α}E lies in the S-tame kernel K2(OSE ) of E .
Since E/Ei is unramified outside the primes above S for each i, we also find that
{−1, α1}E1 ∈ K2(OSE1

) and {−1, α3}E3 ∈ K2(OSE3
). Now Theorem 2.2 applies to

give the result. �
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Theorem 2.9 (Main Theorem for E not containing F (1)). Suppose that E/F
is a biquadratic extension of totally real number fields with the Birch-Tate conjecture
holding for F and the relative quadratic extensions E1, E2 and E3 of F in E . Assume
that F (1) is not contained in E . Let S contain the infinite primes of F and the primes
that ramify in E . Suppose that E can be embedded in a D8 extension M of F which
is cyclic over E2 and unramified over F outside of S ∪ S2, and also in a D8 extension
M ′ of F which is cyclic over E3 and unramifed over F outside of S ∪ S2. Then
either StickSE/F (−1) is contained in FitSE/F (1) with index 1 or 2, or StickSE/F (−1) and
FitSE/F (1) are both of index 2 in StickSE/F (−1) + FitSE/F (1).

Proof. Proposition 2.6 implies that there is an element {−1, α}E in the intersection
of the images in K2(E) of K2(E1) and K2(E3) but not in the image of K2(OSF ). As in
the proof of Theorem 2.8, the fact thatM is unramified outside S implies that {−1, α}E
lies in the intersection of the images in K2(OSE ) of K2(OSE1

) and K2(OSE3
) but not in

the image of K2(OSF ). The same argument with M replaced by M ′ then shows that we
may apply Theorem 2.1 and obtain the desired conclusion. �

3. Applications

For easy reference, we first record some standard facts in a lemma.

Lemma 3.1. Suppose that E/F is a relative quadratic extension and that α and β
lie in E×. Then

(a) E
(√
α
)

= E
(√
β
)

if and only if αβ is a square in E;

(b) E
(√
α
)
/F is a Galois extension if and only if the relative norm of α is a square

in E;

(c) E
(√
α
)
/F is a biquadratic extension if and only if α is not a square in E and

the relative norm of α is a square in F .

Proof. First, (a) follows from Kummer theory or an easy exercise, while (b) follows
from (a) upon taking β to be the conjugate of α over F .

For (c), suppose that the extension is biquadratic. Then E
(√
α
)

= E
(√
a
)

for
some a ∈ F . The implication follows upon applying (a) and taking the norm. For the
converse, let c2 be the norm of α. The automorphisms sending

√
α to its conjugates

±c/
√
α both have order two, so cannot lie in a cyclic group. �

Proposition 3.2. Let E1 be a totally real number field which is a relative quadratic
extension of F . Let r be a totally positive non-square element of F , which is the norm
of an integral element α1 ∈ E1 such that E3 := F

(√
r
)

is not contained in E(1)
1 . Set

E = E1

(√
r
)
, and let S contain all of the infinite primes of F , all of the primes that

ramify in E1, and all of the primes dividing r. Then M = E
(√
α1

)
is a D8 extension

of F which is unramified outside of S ∪ S2 and cyclic over E2.

Proof. The hypotheses clearly guarantee that E3 is a relative quadratic extension
of F , distinct from E1. Thus E is a biquadratic extension of F , and we denote the
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third relative quadratic extension of F in E by E2. Since F
(√
r
)

is not contained in

E
(1)
1 , it is clear that E 6= E

(1)
1 , and since α1 ∈ E1, M is biquadratic over E1. Because

the relative norm of α1 from E to E3 is r, which is a square in E3, M is biquadratic
over E3, by Lemma 3.1. The relative norm of α1 from E to E2 is again r, which
is a square in E , but not a square in E2. For this would imply that

√
r ∈ E2, and

consequently E2 = F
(√
r
)

= E3, a contradiction. Thus M is a cyclic extension of
E2. By Lemma 2.3, we conclude that M is a Galois extension of F . By Lemma 3.1
again, the extension E1

(√
α1

)
is not Galois over F , and one finds that M must be a D8

extension of F . Since α1 is integral of norm r, the ramified primes of M = E
(√
α1

)
over E are divisors of 2r, and thus lie above primes in S ∪ S2. �

The following corollary strengthens and generalizes Corollary 5.3 of [9]. By Propo-
sition 1.2, all of the assumptions of the Birch-Tate conjecture in both of these corollaries
are satisfied when E is absolutely abelian, for example if F = Q.

Corollary 3.3. Let F be a totally real field and let E1 = F (1). Also let α1 be an
integral element of E1 whose norm to F is a totally positive non-square element r such
that E3 = F

(√
r
)
6= E1. Put E = E1 · E3, and let S contain all of the infinite primes

of F , and all of the primes that ramify in E/F . Assume that the Birch-Tate conjecture
holds for F and that the quadratic extensions of F in E. Then we have

StickSE/F (−1) ⊂ FitSE/F (1),

and the index is 1 or 2.

Proof. This follows from Proposition 3.2 and Theorem 2.8. �

Corollary 3.4. Let F be a totally real field and d ∈ F be a totally positive integral
element such that there is a unit ε1 ∈ E1 = F

(√
d
)

whose relative norm to F is -1.
Fix an integral element α1 ∈ E1 whose relative norm r in F is totally positive, and not
a square in E1. Set E3 = F

(√
r
)

and E = E1 · E3, so E2 = F
(√
rd
)
, and suppose

that F (1) is not contained in E . Let S contain all of the infinite primes of F , all of the
primes that divide rd, and all of the dyadic primes that ramify in E/F . Assume that
the Birch-Tate conjecture holds for F and for the quadratic extensions of F in E. Then
either StickSE/F (−1) is contained in FitSE/F (1) with index 1 or 2, or StickSE/F (−1) and
FitSE/F (1) are both of index 2 in StickSE/F (−1) + FitSE/F (1).

Proof. By Proposition 3.2, M = E
(√
α1

)
is a D8 extension of F which is unra-

mified outside of S ∪ S2 and cyclic over E2. Now consider α′1 = α1ε1
√
d. The norm

of α′1 is r(−1)(−d) = rd, and E2 = F
(√
rd
)
. This time, Proposition 3.3 shows that

M ′ is a D8 extension of F which is cyclic over E3 and unramified outside of S ∪ S2.
The result follows from Theorem 2.9. �
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