
Ann. Sci. Math. Québec 34 (2010), no 1, 73–84

CYCLIC COBORDISM OF SURFACES AND THE
RELATIVE CLASS NUMBER

ROBERT D. LITTLE

Dedicated to Paulo Ribenboim on the occasion of his 80th birthday.

RÉSUMÉ. Soient p un nombre premier impair, n ≥ 1 et O2(Z/pnZ) le groupe de
cobordisme des applications de période pn sur une surface lisse, fermée et orientable.
Soit G(pn) l’image de O2(Z/pnZ) sous la signature équivariante. En vertu d’un théo-
rème de Ewing, l’indice de G(p) dans un groupe canonique d’entiers algébriques est
h−(p), où h−(p) est le nombre de classes relatif de p. Nous généralisons ce résultat et
montrons que l’indice de G(pn) divise p(pn−1−1)/2h−(pn), et qu’il y a égalité lorsque
n = 1.

ABSTRACT. Let p be an odd prime, n ≥ 1, and O2(Z/pnZ) the cobordism group
of maps of period pn on smooth, closed, orientable surfaces. LetG(pn) be the image of
O2(Z/pnZ) under the equivariant signature. A theorem of Ewing asserts that the index
ofG(p) in a canonical group of algebraic integers is h−(p), the relative class number of
p. We extend this result and show that the index of G(pn) divides p(pn−1−1)/2h−(pn)
with equality in the case n = 1.

1. Introduction

Let p be an odd prime, n ≥ 1, λ = e(2πi/p
n) and αj/pn = (λj + 1)(λj −1)−1, with

1 ≤ j ≤ pn−1. If J is a subset of the set {1, 2, . . . , pn−1}, let αJ = {αj/pn | j ∈ J}.
We identify two important subsets of J :

T (pn) = {j ∈ J | 1 ≤ j ≤ (pn − 1)/2} and S(pn) = {j ∈ T (pn) | (j, p) = 1}.
If Z/pnZ is the cyclic group of order pn, then the character of the Z/pnZ–signature
of a Z/pnZ action on a smooth, closed, orientable even dimensional manifold is an
element of Z[αT (pn)], the polynomial algebra generated by αT (pn) (see [1, Theorem
2.2]). The cobordism group of maps of period pn on smooth, closed, orientable sur-
faces, O2(Z/pnZ), is a free group of rank (pn − 1)/2 (see [3, p. 501]). Let G(pn) be
the image of O2(Z/pnZ) under the character of the Z/pnZ–signature mapping. The
group G(pn) is a subgroup of SpanZ αS(pn), the group of integral linear combinations
of elements in αS(pn) (see [3, p. 500]). A fundamental theorem of Ewing (see [4, The-
orem 3.2]) produces a canonical group of algebraic integers R2(Z/pZ) which contains
G(p) as a subgroup of index h−(p), the relative class number of p (see [8, Theorem
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4.10]). We offer an index formula for subgroups of G(pn) of finite index which con-
tains Ewing’s formula as a special case. We are able to explicitly compute the index of
an important subgroup of G(pn) which is equal to G(p) in the special case n = 1. If
εj/pn = kjα1/pn + αj/pn , with j ∈ S(pn), kjj ≡ −1 (mod pn), with 0 < kj < pn,
and E(pn) = SpanZ εS(pn), then E(pn) is a subgroup of G(pn) of finite index.

Theorem 1.1. If H is a subgroup of G(pn) of finite index, then the index of H in
SpanZ αS(pn) is finite and

[R2(Z/pnZ) : H] =
[
SpanZ αS(pn) : H

]
· p((pn−1−1)/2)−nh−(pn) .

In particular, the index of E(pn) in R2(Z/pnZ) is p(pn−1−1)/2h−(pn).

The subgroup E(pn) has been studied by many authors and E(p) = G(p) (see [1,
Theorem 5.2], [4, p. 59], [6, 3.1 Lemma] for instance) and so Ewing’s theorem is a
corollary of the second assertion in Theorem 1.1.

Corollary 1.2. ([4, Theorem 3.2]) The index of G(p) in R2(Z/pZ) is h−(p).

If n ≥ 2, thenE(pn) is a subgroup ofG(pn) and so Theorem 1.1 provides an upper
bound for the index of G(pn) in R2(Z/pnZ) which we record in our next theorem.

Theorem 1.3. The index of G(pn) in SpanZ αS(pn) divides pn and the index of
G(pn) in R2(Z/pnZ) divides p(pn−1−1)/2h−(pn).

The index of G(pn) in SpanZ αS(pn) is p to a positive power since αj/pn is not an
algebraic integer by [7, Proposition 3.6] and so it follows from Theorem 1.1 that the
index of G(pn) in R2(Z/pnZ) is h−(pn) · p(pn−1−1)/2−k, where 0 ≤ k ≤ n − 1. The
exponent (pn−1 − 1)/2 − k is positive if p ≥ 5 and n ≥ 2 or p = 3 and n ≥ 3. It
is natural to conjecture that these index values are the same as in the case n = 1, that
is the index of G(pn) in SpanZ αS(pn) is pn and the index of G(pn) in R2(Z/pnZ) is
p(pn−1−1)/2h−(pn). It follows from Theorem 1.1 that these two conjectures are equi-
valent.

Our next two theorems offer another version of the index formula in Theorem 1.1.

Theorem 1.4. The index of SpanZ αS(pn) in SpanZ αT (pn) is p(pn−1−1)/2.

Theorem 1.5. If H is a subgroup of G(pn) of finite index, then the index of H in
SpanZ αT (pn) is finite and

[R2(Z/pnZ) : H] = [SpanZ αT (pn) : H] · p−nh−(pn) .

This paper is organized as follows. Section 2 contains some useful results about
generalized circulant matrices. Section 3 concerns the algebraic numbers αj/pn and
contains the proof of Theorem 1.4 (Theorem 3.6). Section 4 contains the proofs of The-
orem 1.1 (Theorems 4.2 and 4.3), Corollary 1.2 (Corollary 4.4), Theorem 1.3 (Corol-
lary 4.5) and Theorem 1.5 (Corollary 4.6).
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2. Circulant matrices

Let (Z/pnZ)∗ denote the group of units in Z/pnZ expressed in the canonical way,
that is (Z/pnZ)∗ = {j | 1 ≤ j < pn, (j, p) = 1}. If f is a complex valued function
defined on (Z/pnZ)∗ and φ is Euler’s totient, then the φ(pn)×φ(pn) matrix [f(kj−1)],
where j is the row counter and k the column counter, is called the generalized circulant
matrix associated with f (see [2, p. 421]). We will be interested in the function defined
by the equation

fpn(ω) = (2ω − pn)p−n,
with ω ∈ (Z/pnZ)∗. The upper left hand (φ(pn)/2)×(φ(pn)/2) corner of [fpn(kj−1)]
is denoted by B(pn).

Theorem 2.1. Let p be an odd prime, n ≥ 1 and µ = (p− 1)/2. Then

(1) h−(pn) = (−1)µpn2−(φ(pn)/2)+1 detB(pn) .

Proof. If B1,χ is the generalized Bernoulli number at level 1 associated with the
Dirichlet character χ (see [8, p. 30]), then the class number formula (see [8, Theorem
4.17]) asserts that for any m we have

(2) h−(m) = (−1)φ(m)/2Qam2−φ(m)/2
∏
χ odd

B1,χ

where

Q =
{

1 if m is a prime power,
2 otherwise, and a =

{
2 if m is odd,
1 if m is even.

The Bernoulli number B1,χ is equal to the first moment of χ by [8, p. 37]. It follows
from this fact and viewing circulant matrices in terms of a basis of translation functions
(see [2, p. 421]) that the determinant of B(pn) satisfies the equation

(3) detB(pn) =
∏
χ odd

B1,χ .

Formula (1) follows from (2) in the case m = pn and (3). �

Note that detB(pn) 6= 0 since B1,χ 6= 0 if χ is odd (see [8, p. 37]). It is clear
from (1) that B(pn) will play a role in our index formulas. Another invertible φ(pn)/2
by φ(pn)/2 matrix will play a role and we will relate its determinant to detB(pn). We
begin with a lemma followed by an immediate corollary.

Lemma 2.2. If n ≥ 2 and ω0 ∈ (Z/pn−1Z)∗, then

(4)
∑

ω≡ω0(mod pn−1)

fpn(ω) = fpn−1(ω0) .

Proof. Since ω0 ∈ (Z/pn−1Z)∗, we have

(5)
∑

ω≡ω0(mod pn−1)

fpn(ω) = (2ω0 − pn)p−n +
p−1∑
`=1

(
2
(
ω0 + `pn−1

)
− pn

)
p−n .

Formula (4) follows from (5). �
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Corollary 2.3. Let n ≥ 2, k ∈ S(pn), k0 ∈ S(pn−1) and k ≡ k0 (mod pn−1).
Then, for j0 ∈ S(pn−1), we have

(6)
∑

j≡j0(mod pn−1)

fpn
(
kj−1

)
= fpn−1

(
k0j
−1
0

)
.

The next step is to record the effect of (6) on certain column sums of B(pn). This
will help us relate detB(pn) to detB(pn−1) if n ≥ 2. Recall that B(pn) is the upper
left φ(pn)/2× φ(pn)/2 corner of [fpn(kj−1)]. We will denote the entry of B(pn) with
row counter j and column counter k by bjk(pn), for j, k ∈ S(pn) where S(pn) is the
set of integers between 1 and (pn − 1)/2, inclusive, which are prime to p. We will
continue the convention started in Corollary 2.3 of distinguishing counters in S(pn−1)
by a subscript of zero. It will help with bookkeeping to recall that S(pn) is the union
of S(pn−1) with the union of the sets {j = `pn−1 ± j0 | 1 ≤ ` ≤ µ} as j0 varies
over S(pn−1). Our next lemma shows that if the entries in a column of B(pn) with row
counters congruent to ±j0 modulo pn−1 are summed in a certain way, the result is an
entry of B(pn−1) up to sign.

Lemma 2.4. Let n ≥ 2, k ∈ S(pn), k0 ∈ S(pn−1) and k ≡ ±k0 (mod pn−1).
Then, for j0 ∈ S(pn−1), we have

(7) bj0k(p
n) +

µ∑
`=1

(
b`pn−1+j0k(p

n)− b`pn−1−j0k(p
n)
)

= ±bj0k0(pn−1) .

Proof. This follows from (6) and the fact that fpn(kj−1) is odd when restricted to
a fixed column or row, since fpn is an odd function. �

We will now use (7) to transform B(pn) using elementary row/column operations.
Recall that a Type I row/column operation is a switch of two rows/columns, a Type II
is multiplication of a row/column by a constant, and a Type III row/column operation
replaces a row/column by itself plus a multiple of another row/column. We will trans-
form B(pn) using only Type III operations and so the determinant is unchanged. First,
we use Type III row operations and (7) to transform B(pn) into a new matrix B′(pn)
which is the same as B(pn) save in the first φ(pn−1)/2 rows. In these rows, B′(pn)
can be described, looking left to right, as B(pn−1), followed by −B(pn−1) with the
order of the columns reversed, with this pattern repeated, finishing with B(pn−1). We
continue our convention of distinguishing counters in S(pn−1) with a zero subscript in
our next lemma.

Lemma 2.5. If n ≥ 2, thenB(pn) is Type III row equivalent toB′(pn) = [b′jk(p
n)]

where

(8) b′jk(p
n) =

{
±bj0k0(pn−1) if j = j0 and k ≡ ±k0 (mod pn−1),

bjk(pn) otherwise.

Proof. For j0 ∈ S(pn−1), replace Rowj0B(pn) by

(9) Rowj0B(pn) +
µ∑
`=1

(
Row`pn−1+j0B(pn)− Row`pn−1−j0B(pn)

)
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in a series of Type III row operations. Formula (8) follows from (7). �

It is clear from (8) that we can use Type III column operations to transform the first
φ(pn−1)/2 rows of B′(pn) into a copy of B(pn−1) in the upper left hand corner and
then all zeros. This will not change the first φ(pn−1)/2 columns of the remaining rows,
but it will produce a square matrix in the lower right hand corner which will be useful
later because of the specific Type III column operations used in the transformation.

Lemma 2.6. If n ≥ 2, then B′(pn) is Type III column equivalent to another matrix
B′′(pn) = [b′′jk(p

n)] such that there is a (φ(pn)−φ(pn−1))/2 by (φ(pn)−φ(pn−1))/2
matrix A(pn) = [ajk(pn)] with

(10) b′′jk(p
n) =


bjk(pn−1) if j, k ∈ S(pn−1),

0 if j ∈ S(pn−1) and k ∈ S(pn) \ S(pn−1),

bjk(pn) if j ∈ S(pn) \ S(pn−1)and k ∈ S(pn−1),

ajk(pn) if j, k ∈ S(pn) \ S(pn−1).

Proof. If k = `pn−1±k0, with k0 ∈ S(pn−1) and 1 ≤ ` ≤ µ, then Type III column
operations are performed on Colk B′(pn) as follows: Col`pn−1±k0 B

′(pn) is replaced
by Col`pn−1±k0 B

′(pn)∓ Colk0 B
′(pn). Formula (10) follows from (8). �

Corollary 2.7. If n ≥ 2, then

(11) detB(pn) = detB(pn−1) detA(pn) .

Proof. Type III operations do not change the determinant and so

detB(pn) = detB′(pn) = detB′′(pn).

Formula (11) follows since (10) implies that detB′′(pn) = detB(pn−1) detA(pn).
�

3. The algebraic numbers αj/pn

In this section, we study the numbers αj/pn = (λj + 1)(λj − 1)−1. They are
algebraic numbers with minimal polynomial equal to a transform of the cyclotomic
polynomial Φpn(x) but they are not algebraic integers (see [7, Propositions 3.3 and
3.6]). We will prove Theorem 1.4 in this section. We begin with a result which relates
the algebraic numbers αj/pn to B(pn) and the algebraic integers vj/pn = λj − λ−j .

Proposition 3.1. If p is an odd prime and n ≥ 1, then

(12) [αj/pn | j ∈ S(pn)]T = B(pn)[vj/pn | j ∈ S(pn)]T + [αj/pn−1 | j ∈ S(pn)]T .

Proof. A formula in the literature (see [1, Lemma 4.4]) and a bit of computation
yield

(13) αj/pn = p−n
∑

k∈S(pn)

(2k − pn)vkj/pn + αj/pn−1 .

Formula (12) is just (13) written using column vectors. �
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We remark that (12) in the case n = 1 is in the literature (see [4, p. 59]). In this
special case, the algebraic integers vj/p, with j ∈ S(p), are rationally independent, but
if n ≥ 2, the algebraic integers vj/pn , j ∈ S(pn), are not rationally independent. They
satisfy certain relations which we describe in the next lemma in a slightly generalized
form. We expand our bookkeeping to T (pn) = {j | 1 ≤ j ≤ (pn− 1)/2} and note that
T (pn) is the union of S(pn) and the union of the sets {pkj | j ∈ S(pn−k)} as k varies
from 1 to n − 1. Our next lemma expresses vj/pn with counter j ∈ T (pn−1), in terms
of vj/pn with counter j in T (pn) \ T (pn−1).

Lemma 3.2. If j ∈ S(pn−k), with 1 ≤ k ≤ n− 1, then

(14) vpk−1j/pn =
µ∑
`=1

(vpk−1(`pn−k−j)/pn − vpk−1(`pn−k+j)/pn) .

Proof. Formula (14) will follow if we can show that, for j0 ∈ S(pn−1), we have

(15) vj0/pn =
µ∑
`=1

(v(`pn−1−j0)/pn − v(`pn−1+j0)/pn) .

To see that (15) holds, write Φpn(λ) = 0 as

(16)
µ∑
`=0

λ`p
n−1

+
µ∑
`=1

λ−`p
n−1

= 0 .

Formula (15) is obtained by multiplying (16) by λj0 to obtain a first equation, then
multiplying (16) by λ−j0 to obtain a second equation and then subtracting the second
equation from the first. Formula (14) is (15) at level j ∈ S(pn−k). �

The numbers αj/pn satisfy relations like (14), where j ∈ T (pn). They reflect the
fact that αS(pn) is a maximal set of rationally independent numbers in the set αT (pn)

(see [3, (3.3) Lemma]). If j0 ∈ S(pn−1), then the numbers αj0/pn−1 satisfy relations in
SpanZ αS(pn) which are presented next in a generalized form.

Lemma 3.3. If j ∈ S(pn−k), with 1 ≤ k ≤ n− 1, then

(17) pαpkj/pn =
µ∑
`=0

αpk−1(`pn−k+j)/pn −
µ∑
`=1

αpk−1(`pn−k−j)/pn .

Proof. As in the proof of (14), (17) follows if we can show that for j0 ∈ S(pn−1),
n ≥ 2,

(18) pαj0/pn−1 =
µ∑
`=0

α(`pn−1+j0)/pn −
µ∑
`=1

α(`pn−1−j0)/pn .

Formula (18) follows by taking alternating column sums in (12) over rows congruent to
±j0 (mod pn−1), with ± sign chosen accordingly, and then appealing to (7) and (15).
Formula (17) is (18) at level j ∈ S(pn−k). It is interesting to note that (18) also follows
from the identity iαj/pn = cot(πj/pn) (see [5, 29.1.3, p. 202]). �
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The next step is a study of SpanZ αT (pn)/ SpanZ αS(pn) and the proof of Theo-
rem 1.4. It follows from (17) that if [αpkj/pn ] is the image of αpkj/pn in this quotient
group, then the order of [αpkj/pn ] divides pk. The completeness of the relations (17)
established next will imply that this order is pk.

Lemma 3.4. Suppose that n − 1 ≥ k1 ≥ k2 ≥ · · · ≥ ks ≥ 1. Let jι ∈ S(pn−kι),
with 1 ≤ ι ≤ s, and assume that if any of the inequalities are equalities, then the
corresponding j values are distinct. If there is a relation

(19)
s∑
ι=1

nιαpkιjι/pn =
∑

k∈S(pn)

akαk/pn

in SpanZ αT (pn), where nι ∈ Z, with 1 ≤ ι ≤ s, and ak ∈ Z, with k ∈ S(pn), then

(20) nι ≡ 0 (mod pkι),with 1 ≤ ι ≤ s .

Proof. It follows from (17) that pkαpkj/pn , with j ∈ S(pn−k) and 1 ≤ k ≤ n− 1,
is a sum of pk numbers in αS(pn) each with coefficient ±1. If (19) holds under the
above conditions, then

(21)
s∑
ι=1

pk1−kιnιAι =
∑

k∈S(pn)

pk1akαk/pn

where Aι is a sum of pkι numbers in αS(pn) each with coefficient ±1. We will use
induction on ι to establish (20). Formula (20) at the initial value ι = 1 holds because
our assumptions guarantee that there is at least one term in A1 which does not occur
in Aι, with ι > 1, and so (21) implies that n1 ≡ 0 (mod pk1) in view of the rational
independence of αS(pn) (see [3, (3.3) Lemma]). Inductively, assume that for ι ≥ 2 we
have nη ≡ 0 (mod pkη), with η < ι. There is at least one term in Aι which does not
occur in Aκ, where κ > ι, and so (21) and the rational independence of αS(pn) imply
that

pk1−kιnι + pk1−kι−1nι−1 + · · ·+ n1 ≡ 0 (mod pk1).
It follows from the inductive hypothesis that nι ≡ 0 (mod pkι) and so the inductive
proof of (20) is complete. �

Corollary 3.5. If j ∈ S(pn−k), with 1 ≤ k ≤ n− 1, then the order of [αpkj/pn ] is
pk.

Proof. We have remarked that (17) implies that the order of [αpkj/pn ] divides pk.
Formulas (19) and (20) in the case s = 1 imply that pk divides the order of [αpkj/pn ].

�

Lemma 3.3 and Corollary 3.5 suggest that SpanZ αT (pn)/ SpanZ αS(pn) is related
to the group

C(pn) =
n−1∐
k=1

∐
j∈S(pn−k)

(Z/pkZ)j

where the notation means that for each k, with 1 ≤ k ≤ n − 1, a direct sum of
|S(pn−k)| = (pn−k − pn−k−1)/2 copies of Z/pkZ is included as a summand. The
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generator of (Z/pkZ)j will correspond to [αpkj/pn ]. If 2 ≤ k ≤ n−1 and j ∈ S(pn−k),
letDk,j be the cyclic subgroup of C(pn) of order pk−1 generated by the left side of (17)
minus the right side (17) under the correspondence described in the previous sentence.
Let D(pn) be the subgroup of C(pn) defined by

D(pn) =
n−1∐
k=2

∐
j∈S(pn−k)

Dk,j .

Theorem 3.6 below contains Theorem 1.4.

Theorem 3.6. The groups SpanZ αT (pn)/SpanZ αS(pn) and C(pn)/D(pn) are
isomorphic via the rule which sends [αpkj/pn ] to the generator of (Z/pkZ)j , with
j ∈ S(pn−k) and 1 ≤ k ≤ n − 1. In particular, the index of SpanZ αS(pn) in
SpanZ αT (pn) is p(pn−1−1)/2.

Proof. The rule described in the statement of the theorem is well defined because of
Corollary 3.5. It is onto by definition and injective because of (17) and Lemma 3.4. The
assertion about the index of SpanZ αS(pn) in SpanZ αT (pn) follows from the formulas

|C(pn)| = expp

(
n−1∑
k=1

k
∣∣∣S(pn−k)

∣∣∣)
and

|D(pn)| = expp

(
n−1∑
k=1

(k − 1)
∣∣∣S(pn−k)

∣∣∣) ,

where expp(x) = px. �

Our next observation is that (12) can be simplified if B(pn) is replaced by another
matrix B∗(pn). There is a connection with Theorem 3.6. We will see that up to sign,
the determinant of B∗(pn) is p(pn−1−1)/2 times the determinant of B(pn).

Lemma 3.7. The algebraic integers in the set

vT (pn)\T (pn−1) =
{
vj/pn | j ∈ T (pn) \ T (pn−1)

}
are rationally independent and there is a φ(pn)/2 by φ(pn)/2 rational matrix B∗(pn)
such that

(22)
[
αj/pn | j ∈ S(pn)

]T = B∗(pn)
[
vj/pn | j ∈ T (pn) \ T (pn−1)

]T
.

Proof. The set vT (pn)\T (pn−1) is rationally independent since a nontrivial depen-
dency would contradict the minimality of the cyclotomic polynomial. The existence of
B∗(pn) and (22) follows from (12), (15), and induction. �

It follows from (22) and the independence of αS(pn) and vT (pn)\T (pn−1) thatB∗(pn)
is invertible. Note that B∗(p) = B(p) since (12) and (22) are the same in the case
n = 1. Our next lemma will lead to the computation of the determinant of B∗(pn).
It relates detB∗(pn) to detB∗(pn−1) and detA(pn), where A(pn) is the matrix in
Lemma 2.6 and Corollary 2.7.
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Lemma 3.8. If n ≥ 2, then

(23) detB∗(pn) = ±det(pB∗(pn−1)) detA(pn) .

Proof. Start with the sequence of Type III elementary row operations described in
(9) with B(pn) replaced by B∗(pn) on Rowj0 B

∗(pn), with j0 ∈ S(pn−1). The j0-th
row of the new matrix has zeros in every column except those with counter divisible
by p where the entry is the corresponding entry of Rowj0(pB∗(pn−1)) because of (18),
(22) and the independence of vT (pn)\T (pn−1) established in Lemma 3.7. A sequence of
Type I column operations transforms this matrix into a matrix with pB∗(pn−1) in the
upper left hand φ(pn−1)/2 by φ(pn−1)/2 square, a φ(pn−1)/2 by (φ(pn)−φ(pn−1))/2
rectangle of zeros upper right, untouchedB∗(pn) lower left andA(pn) in the lower right
hand (φ(pn)−φ(pn−1))/2 by (φ(pn)−φ(pn−1))/2 square. To see that the lower right
square is A(pn), recall that A(pn) is constructed using the column operations dictated
by the relations (15) which led to the columns in B∗(pn) with counters prime to p.
Formula (23) follows from the fact that operations of Types I and III only effect the
sign of the determinant. �

Corollary 3.9. If n ≥ 1, then

(24) det
(
B∗(pn)B(pn)−1

)
= ±p(pn−1−1)/2 .

Proof. Formula (24) follows from (11), (23), the facts that B(pn) is invertible and
B∗(p) = B(p), and induction. �

Note that the right hand side of (24) is the index of SpanZ αS(pn) in SpanZ αT (pn)

up to sign by Theorem 3.6. We will exploit this fact in the next section.

4. The index formulas

If p is an odd prime and n ≥ 1, let R2(Z/pnZ) be the subgroup of SpanZ vT (pn)

defined by

R2(Z/pnZ) =

 ∑
k∈T (pn)

nkvk/pn

∣∣∣∣∣∣ nk ≡ nk′ (mod 2)

 .

It follows from the properties of the Z/pnZ–signature that G(pn) ⊂ R2(Z/pnZ) (see
[4, p. 56]). It will be useful to reformulate R2(Z/pnZ) in terms of the set of inde-
pendent algebraic integers vT (pn)\T (pn−1). It is not hard to see that (14) implies that
R2(Z/pnZ) satisfies the equation below where ordp k is the exponent of p in the prime
factorization of k:

R2(Z/pnZ) =


∑

k∈T (pn)\T (pn−1)

nkvk/pn

∣∣∣∣∣∣∣∣∣∣

nk ≡ 0 (mod 2),

ordp k < n− 1,

nk ≡ nk′ (mod 2),

ordp k = ordp k′ = n− 1.


Lemma 4.1. The index of R2(Z/pnZ) in SpanZ vT (pn)\T (pn−1) is 2(φ(pn)/2)−1.
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Proof. Let a(pn) =
∣∣{k ∈ T (pn) \ T (pn−1) | ordp k = n − 1

}∣∣. The quotient
of SpanZ vT (pn)\T (pn−1) by R2(Z/pnZ) is isomorphic to the direct sum of two groups.
The first is a direct sum of (φ(pn)/2) − a(pn) copies of Z/2Z coming from values of
k with ordp k < n− 1 and the second is a group of order 2a(p

n)−1 coming from those
values of k with ordp k = n− 1 (see [4, p. 59]). �

Theorem 4.2. If H is a subgroup of G(pn) of finite index, then the index of H in
SpanZ αS(pn) is finite and

(25)
[
R2(Z/pnZ) : H

]
=
[

SpanZ αS(pn) : H
]
· p((pn−1−1)/2)−nh−(pn) .

Proof. Consider the diagram below where all the maps are inclusion and the top
horizontal map follows from (22):

SpanQ αS(pn)
B∗(pn)−−−−→ SpanQ vT (pn)\T (pn−1)x x

SpanZ αS(pn) SpanZ vT (pn)\T (pn−1)x x
H −−−−→ R2(Z/pnZ) .

The index of H in SpanZ αS(pn) is finite because the index E(pn) in SpanZ αS(pn)

is finite (proof of Theorem 4.3). The independence of αS(pn) (see [3, (3.3) Lemma])
implies that E(pn) has maximal rank. It follows that G(pn) has maximal rank. We
may therefore assume that H has maximal rank and so the equation below follows
from Lemma 4.1 and some linear algebra (see [4, p. 59] for instance):

(26)
[
R2(Z/pnZ) : H

]
=
[

SpanZ αS(pn) : H
]
·
(
2−(φ(pn)/2)+1

)
detB∗(pn) .

Formula (25) follows from (1), (24) and (26). �

Theorem 4.2 coincides with the first assertion in Theorem 1.1. We will offer next an
important example of the subgroup H in Theorem 4.2, and prove the second assertion
in Theorem 1.1 and Corollary 1.2. If j ∈ S(pn), let Sj be the surface defined by

(27) Sj =
{[
z0, z1, z2

]
∈ CP 2

∣∣∣ zpn0 − zpn1 + z
pn−kj
1 z

kj
2 = 0

}
.

In (27), kj is defined by the conditions kjj ≡ −1 (mod pn) and 0 < kj < pn. A
map of period pn is defined in Sj by fj([z0, z1, z2]) =

[
λz0, z1, z2

]
. The fixed point

set of fj is the set
{

[0, η, 1] | ηkj = 1
}

together with the point [0, 0, 1]. The character
of the equivariant signature of the cobordism class [fj , Sj ] satisfies the equation sign
([fj , Sj ]) = εj/pn , where

(28) εj/pn = kjα1/pn + αj/pn

(see [1, Theorems 5.2], [4, p. 59], [6, 3.1 Lemma]). If E(pn) = SpanZ εS(pn), then
E(pn) ⊂ G(pn). We will see that the index of E(pn) in SpanZ αS(pn) is finite and we
will compute the index of E(pn) in R2(Z/pnZ) explicitly in our next theorem.

Theorem 4.3. The index of E(pn) in R2(Z/pnZ) is p(pn−1−1)/2h−(pn).
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Proof. It follows from formula (28) that SpanZ αS(pn)/E(pn) is cyclic with gen-
erator [α1/pn ] and that pn[α1/pn ] = 0, that is the order of [α1/pn ] divides pn. If
q[α1/pn ] = 0, then

qα1/pn =
∑

j∈S(pn)

nj(kjα1/pn + αj/pn),

with nj ∈ Z. The set αS(pn) is rationally independent by [3, (3.3) Lemma], and so
nj = 0, j 6= 1, and q = pnn1. This means that the order of [α1/pn ] is pn, so
SpanZ αS(pn)/E(pn) is cyclic of order pn. In particular

[
SpanZ αS(pn) : E(pn)

]
= pn

and so Theorem 4.3 follows from (25). �

Corollary 4.4. ([4, Theorem 3.2]) The index of G(p) in R2(Z/pZ) is h−(p).

Proof. Corollary 4.4 follows from Theorem 4.3 in the special case n = 1 since
E(p) = G(p) (see [4, p. 59]). �

Theorem 4.3 and Corollary 4.4 are the same as the second assertion in Theorem 1.1
and Corollary 1.2, respectively. Theorem 4.2 is the first assertion in Theorem 1.1 and
Theorem 3.6 contains Theorem 1.4. It remains to establish Theorems 1.3 and 1.5.

Corollary 4.5. The index of G(pn) in SpanZ αS(pn) divides pn and the index of
G(pn) in R2(Z/pnZ) divides p(pn−1−1)/2h−(pn).

Proof. The assertions follow from Theorem 4.3 and (25) with H = G(pn). �

Corollary 4.6. If H is a subgroup of G(pn) of finite index, then the index of H in
SpanZ αT (pn) is finite and[

R2(Z/pnZ) : H
]

=
[

SpanZ αT (pn) : H
]
· p−nh−(pn) .

Proof. The assertions follow immediately from Theorems 3.6 and 4.2. �

Corollary 4.5 is Theorem 1.3 and Corollary 4.6 is Theorem 1.5. This completes
the proofs of the theorems in the introduction since Theorem 1.1 is contained in The-
orems 4.2 and 4.3, Corollary 1.2 is Corollary 4.4, and Theorem 1.4 is contained in
Theorem 3.6.
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