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RECIPROCITY LAWS FOR REPRESENTATIONS
OF FINITE GROUPS

SUNIL CHEBOLU, JÁN MINÁČ AND CLIVE REIS

Dedicated to Professor Paulo Ribenboim who inspired us to read the masters and to dream.

RÉSUMÉ. Beaucoup d’articles ont été écrits sur les lois de réciprocité de la théorie
des nombres et leurs liens avec les représentations des groupes. Dans cet article, nous
poursuivrons l’étude de ces liens. En complète analogie avec les lois classiques de ré-
ciprocité de la théorie des nombres, nous obtenons une « loi de réciprocité » pour cer-
taines représentations de produits semi-directs de deux groupes cycliques. En fait, nous
montrons que la célèbre loi de réciprocité quadratique est une conséquence directe de
notre théorème appliqué à un certain groupe spécifique. Une autre conséquence de
notre théorème principal est de recouvrer un théorème classique de Sylvester. Le fo-
cus principal de cet article porte sur les constructions explicites de représentations sur
des corps suffisamment petits. Nos recherches procurent une évidence supplémentaire
qu’il y a encore des zones grises à explorer sur les ponts qui existent entre la théorie
des nombres et les représentations des groupes, et ce, même à un niveau élémentaire.

ABSTRACT. Much has been written on reciprocity laws in number theory and
on their connections with group representations. In this paper we explore more on
these connections. We prove a “reciprocity law” for certain specific representations of
semidirect products of two cyclic groups which is in complete analogy with classical
reciprocity laws in number theory. In fact, we show that the celebrated quadratic reci-
procity law is a direct consequence of our main theorem applied to a specific group.
As another consequence of our main theorem we also recover a classical theorem of
Sylvester. Our main focus is on explicit constructions of representations over suffi-
ciently small fields. These investigations give further evidence that there is still much
unexplored territory in connections between number theory and group representations,
even at an elementary level.

1. Introduction

Let p and s be odd primes. Then the quadratic reciprocity law tells us how to find
all finite fields Fs of s elements for which

√
p ∈ Fs. (To anticipate the generalization

we have in mind, we might say that
√
p is realizable over Fs.) Remarkably, whether

or not
√
p is realizable over Fs can be decided modulo 4p thus reducing a question

concerning infinitely many fields to one which can be decided using only finitely many
operations, namely, squarings. (See [Gau], [Ser1] or [Ser2].)

Reçu le 15 octobre 2009 et, sous forme définitive, le 26 décembre 2009.
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It is known that reciprocity laws are intimately connected with representations of
finite groups (see for example [Art], [Lan], [Tat].) However, we were unable to find
in the literature a development of reciprocity laws for representations of finite groups
themselves. In a recent preprint [BH], an extremely interesting connection between
division algebras with involutions and automorphism groups associated with Shimura
varieties is uncovered and used. Certain constructions employed in this paper have a
similar flavor as in [BH]. Also, in [Lem], the field of definition of some representations
of finite groups was studied in order to deduce statements about the ranks of class
groups.

The main goal of this paper is to provide reciprocity laws for certain representations
of a restricted family of metacyclic groups. More precisely, we define certain specific
representations ρs : G → AutVs, where G is a fixed metacyclic group and Vs is a
vector space over Fs, the algebraic closure of Fs. We then show that the question of
the realizability of ρs over a given finite extension field of Fs can be decided entirely
in terms of the invariants of G and depends only on a finite number of computations.
This provides a straightforward analogy to the classical reciprocity laws. Indeed, in
Section 3 below, it will be seen that a judicious choice of group G and corresponding
representation ρ(G) yields the usual quadratic reciprocity law.

The connection between the representation ρ(G) and the quadratic reciprocity law
was discovered by D. R. Corro (see [Jac, pp. 320-325]). However this is used only
to evaluate the square of Gauss’s sum which is only part of the proof. To complete
that part of the proof in which the reduction to a finite number of primes is achieved, a
classical method due to Jacobi is used. This part is not difficult and is actually worked
out in a simple way in [Ser2]. However the evaluation of the square of Gauss’s sum
though important, does not, on its own, accomplish the reduction from infinitely many
to finitely many primes.

Some of the results we obtain could be arrived at using the notion of the Schur
index of a representation which is always 1 when the field in question is finite and of
characteristic coprime to |G| (see [Dor]). However our approach has the merit of being
quite elementary and, more importantly, constructive. Except for Section 4, the basic
notions of representation theory as can be found in [Ser1] are more than enough. For
Section 4 we refer the reader to [Rei]. All other background material concerning finite
fields, Vandermonde and companion matrices and characteristic polynomials should be
understandable to a good advanced undergraduate.

In this paper we believe that we have merely scratched the surface of a possibly
rather general theory of reciprocity in the representations of finite groups. The style of
this paper is influenced by Ribenboim’s writing, and after his urging to read Euler, also
writing of Euler which are full of examples, “naive questions” and exploration spirit.

2. Main results – Galois, Vandermonde and field of definition

Throughout we shall be concerned with split semidirect products of two cyclic
groups. Thus in terms of generators and relations

G = 〈a, b | am = 1 = bn, b−1ab = ak〉,
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where the order of k (mod m) divides n. Let s be an odd prime relatively prime to
m and let ζ be a primitive m-th root of unity in Fs, the algebraic closure of the field
Fs of s elements. We shall focus attention on the representation ρG induced from the
representation ρ : 〈a〉 → F∗s defined by ρ(a) = ζ. We first prove a simple proposition
which, among other things, tells us under what circumstances ρG is irreducible over Fs.

Proposition 2.1. (1) LetG, ρ and ρG be as above. Then ρG is irreducible over
Fs if and only if |k|m, the order of k in the multiplicative group of units mod m, is
equal to the order of b.

(2) If |k|m = t 6= n, n = tr and (r, s) = 1, then ρG ≈ ρ0 +ρ1 + · · ·+ρr−1, where
the ρi are irreducible pairwise inequivalent representations over Fs and, relative to an
appropriate basis Bi,

[ρi(a)]Bi =


ζ 0 . . . 0
0 ζk . . . 0
...

...
. . .

...
0 0 . . . ζk

t−1

 ; [ρi(b)]Bi =


0 0 0 · · · 0 η−1

i
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0

 .

Here ηi = ηi, with i = 0, 1, . . . , r − 1, and η is a primitive r-th root of unity in Fs.

Proof. Since a = b−nabn = ak
n

, it follows that kn ≡ 1 (mod m) and so |k|m | n.
Let M = Fs be the representation space of ρ and let H = 〈a〉. Then the representation
space of ρG is V = FsG⊗FsH M . The set

{bi ⊗ 1 | i = 0, 1, ..., n− 1}
is a basis of V . Setting ei = bi ⊗ 1, for i = 0, ..., n− 1, we have bei = ei+1, where the
indices are taken modulo n, and

aei = abi ⊗ 1 = bi ⊗ (ak
i · 1) = ζk

i
ei.

We prove the sufficiency of (1) first. Assume therefore that |k|m = n. Then
{ζ, ζk, ..., ζkn−1} is a set of n distinct elements. Let ζi = ζk

i
and let W be a nonzero

G-invariant subspace of V . Let

f = cvev + · · ·+ cn−1en−1,

with cv 6= 0, be a nonzero vector of W such that v is largest subject to cv 6= 0 and
c0 = c1 = · · · = cv−1 = 0. Then cn−1 6= 0, otherwise

bf = cvev+1 + · · ·+ cn−2en−1 ∈W − {0},
contradicting the maximality of v. Now

ζvf =
n−1∑
j=v

ζvcjej and af =
n−1∑
j=v

ζjcjej ,

and assume v < n− 1. Then

af − ζvf =
n−1∑
j=v+1

cj(ζj − ζv)ej
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is a nonzero vector of W since cn−1(ζn−1 − ζv) 6= 0, contradicting maximality of v.
Thus v = n− 1 and so en−1 ∈W . It follows that bien−1 ∈W for all i and so W = V ,
proving the irreducibility of V .

Next we prove (2) and indicate that the existence of one of the direct summands
constructed does not depend on the existence of a primitive r-th root of unity in Fs.
This will then also prove the necessity of (1).

Let B = {e0, e1, ..., en−1}, where the ei are defined as above. Then we have a
matrix of r blocks

[ρG(a)]B =


A 0 . . . 0
0 A . . . 0
...

...
. . .

...
0 0 . . . A

 with A =


ζ0 0 . . . 0
. . . ζ1 . . . 0

...
...

. . .
...

0 0 . . . ζt−1

 ;

moreover,

[ρG(b)]B =


0 0 · · · 0 1
1 0 · · · 0 0

0 1 · · ·
...

...
...

...
. . . 0 0

0 0 · · · 1 0

 .

Let η be a primitive r-th root of unity in Fs and, for 0 ≤ i ≤ r−1 and 0 ≤ j ≤ t−1,
let

vij =
r−1∑
`=0

ηi`ej+`t,

and set
Wi = span Bi, with Bi = {vi0, vi1, . . . , vi,t−1}.

Now, for 0 ≤ j ≤ t− 2, {
avij = ζjvij ,

bvij = vi,j+1,

and

bvi,t−1 =
r−1∑
`=0

ηi`bet−1+`t =
r−1∑
`=0

ηi`et(`+1) = η−i
r−1∑
`=0

ηi(`+1)et(`+1) = η−ivi0.

It follows that Wi is a G-invariant subspace of V and the matrix representation of
the restriction ρi of ρG to Wi relative to the basis Bi, is given by

[ρi(a))]Bi =


ζ0 0 . . . 0
0 ζ1 . . . 0
...

...
. . .

...
0 0 . . . ζt−1

 ; [ρi(b)]Bi =


0 0 · · · 0 η−i

1 0 · · · 0 0

0 1 · · ·
...

...
...

... 0 0
0 0 · · · 1 0

 .

There are n vectors in ∪Bi and so, if we can prove they are linearly independent
we shall have the decomposition V = W0 ⊕W1 ⊕ · · · ⊕Wr−1 into G-spaces.
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Let
∑
i,j

αijvij . Then

∑
i,j,`

αijη
i`ej+`t = 0.

For all j and `, we have
r−1∑
i=0

αij(η`)i = 0.

Fixing j and letting ` vary, we obtain a system of r equations in r unknowns with matrix
of coefficients the Vandermonde matrix

1 1 1 . . . 1
1 η η2 . . . ηr−1

1 η2 η4 . . . η2(r−1)

...
...

...
. . .

...
1 ηr−1 η2(r−1) . . . η(r−1)(r−1)

 .

Since η is a primitive r-th root of unity, this matrix is nonsingular, whence αij = 0
for all i. Letting j vary we obtain αij = 0 for all i and j. Observe that the FsG-module
W0 exists whether or not (r, s) = 1 and so the necessity of (1) is proved.

The irreducibility of each Wi is proved in a manner entirely similar to that used to
prove the sufficiency of (1). Finally, we observe that the characteristic polynomial of
ρi(b) is Xt − η−i, whence the elements ρ0, ρ1, . . . ρr−1 are mutually inequivalent. �

Using the notation established in the foregoing, we now proceed by a series of
lemmas to prove our main theorem.

Lemma 2.2. Let ζ be a primitivem-th root of unity in Fs and k be a positive integer
with |k|m = n. Then the Frobenius automorphism τ on Fs defined by τ(x) = xq,
where q is a power of s, permutes the elements of

P =
{
ζ, ζk, . . . , ζk

n−1
}

if and only if q ≡ ki (mod m) for some i, with 0 ≤ i ≤ n− 1.

Proof. If τ permutes the elements of P, then ζq ∈ P and so ζq = ζk
i

for some
i, 0 ≤ i ≤ n − 1. Hence q ≡ ki (mod m). Conversely, if q ≡ ki (mod m) then
(ζk

j
)q = ζk

i+j ∈ P whence τ permutes the elements of P. �

The following is the cornerstone of our main result.

Lemma 2.3. Let K be a field and let α be an automorphism of K with fixed field
F . Let a0, a1, . . . , an−1 be elements of K which are cyclically permuted by α, say

α(ai) = ai+1, where the indices are taken modulo n. Let f(x) =
n−1∏
i=0

(x− ai) ∈ F [x]
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and let C = (cij) be the n × n matrix with ci,i−1 = 1 if 2 ≤ i ≤ n, c1n = 1 and
cij = 0 otherwise. Let V be the n× n Vandermonde matrix defined by

V =


1 a0 a2

0 · · · an−1
0

1 a1 a2
1 · · · an−1

1
...

...
...

. . .
...

1 an−1 a2
n−1 . . . an−1

n−1

 .

Then V −1CV ∈Mn(F ), where Mn(F ) denotes the algebra of n×n matrices over F .

Proof. For i = 0, 1, . . . , n− 1, define

gi(x) =
f(x)

(x− ai)f ′(ai)
,

where f ′(ai) is the formal derivative of f evaluated at ai. Let

gi(x) = d0i + d1ix+ · · ·+ d(n−1)ix
n−1

and let

D =


d00 d01 . . . d0n−1

d10 d11 . . . d1n−1
...

...
. . .

...
dn−1,0 dn−1,1 . . . dn−1,n−1

 ,

i.e., D is the matrix whose columns are the coefficients of the gi′s. Since gi(aj) = δij ,
the Kronecker delta, we have V D = I and so D = V −1. Now

V −1C =


d01 d02 · · · d0n−1 d00

d11 d12 · · · d1n−1 d10
...

...
...

...
dn−1,1 dn−1,2 · · · dn−1,n−1 dn−1,0


and so it is easily seen that the (j+1)-st column of V −1CV consists of the coefficients
of the polynomial

hj(x) = (a0)jg1(x) + (a1)jg2(x) + · · ·+ (an−2)jgn−1(x) + (an−1)jg0(x).

Now gi(x) = f(x)
(x−ai)f ′(ai) and so applying the automorphism α and bearing in mind the

fact that f(x) ∈ F [x] we get, if 0 ≤ i ≤ n− 2,

α(gi(x)) =
f(x)

(x− ai+1)f ′(ai+1)
= gi+1(x)

while

α(gn−1(x)) =
f(x)

(x− a0)f ′(a0)
= g0(x).

Thus α(hj(x)) = (a1)jg2(x) + · · · + (an−1)jg0(x) + (a0)jg1(x) = hj(x). Since the
fixed field of α is F , it follows that V −1CV ∈Mn(F ). �
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Remark. The referee of our paper found the following nice, less computational
proof of Lemma 2.3. Let β = α−1. Then β naturally acts element-wise on the matrices
in Mn(K), and we have β(V ) = CV . Hence

β(V −1) = (β(V ))−1 = (CV )−1 = V −1C−1.

Thus
β(V −1CV ) = β(V −1)β(C)β(V ) = V −1C−1CCV = V −1CV

and again we can conclude that V −1CV ∈Mn(F ).

In the next lemma we use the hypothesis that the Frobenius automorphism τ on Fs
is transitive on the set P =

{
ζ, ζk, . . . , ζk

n−1
}

. Observe that this simply means that q
(mod m) and k (mod m) generate the same subgroups of (Z/mZ)∗.

Lemma 2.4. Let G =
〈
a, b | am = 1 = bn, b−1ab = ak

〉
, where |k|m = n. Let ζ

be a primitivem-th root of unity in Fs and let q be a power of s. Assume that the Frobe-
nius automorphism τ(x) = xq, with x ∈ Fs, is transitive on P =

{
ζ, ζk, . . . , ζk

n−1
}

and let ρ : 〈a〉 → F∗ be the representation defined by ρ(a) = ζ. Then the induced
representation ρG is realizable over Fq.

Proof. By assumption, ζ, ζq, . . . , ζq
n−1

are distinct and ζq
n

= ζ whence |q|m = n.
By Lemma 2.2, q ≡ ki (mod m) for some i. Since |q|m = |k|m, it follows that
(i, n) = 1. Hence, letting c = bi we haveG =

〈
a, c | am = 1 = cn, c−1ac = aq

〉
. The

induced representation ρG using the coset representatives 1, c, c2, . . . , cn−1 is given by

ρG(c) =


0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 ; ρG(a) =


ζ 0 0 . . . 0
0 ζq 0 . . . 0
0 0 ζ2q . . . 0
...

...
...

. . .
...

0 0 0 . . . ζq
n−1

 .

Set ρG(c) = C, ρG(a) = A and let

f(x) =
n−1∏
i=0

(x− ζqi).

Since τ(f(x)) = f(x) it follows that f(x) ∈ Fq[x], say f(x) = a0 + a1x+ · · ·+ xn.

Let W be an n-dimensional vector space over Fs and let

A = {v0, v1, v2, . . . , vn−1}
be a basis of W . Let L : W → W be the linear transformation with [L]A = A. Let
ζi = ζq

i
, 0 ≤ i ≤ n− 1 and let

w0 = v0 + v1 + · · ·+ vn−1,

w1 = ζ0v0 + ζ1v1 + · · ·+ ζn−1vn−1,

...
...

...

wn−1 = ζn−1
0 v0 + ζn−1

1 v1 + · · ·+ ζn−1
n−1vn−1.
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Then Lwi = wi+1, with 0 ≤ i ≤ n− 2 and

Lwn−1 = ζn0 v0 + ζn1 v1 + · · ·+ ζnn−1vn−1.

But a0 + a1ζi + a2ζ
2
i + · · ·+ ζni = 0 for all i and so

Lwn−1 = −a0w0 − a1w1 − · · · − an−1wn−1.

Let B = {w1, w1, . . . , wn−1}. Then

[L]B =


0 0 . . . 0 −a0

1 0 . . . 0 −a1

0 1 . . . 0 −a2
...

...
. . .

...
...

0 0 . . . 1 −an−1.

 ,

the companion matrix of f(x). Let V be the Vandermonde matrix

V =


1 ζ0 ζ2

0 . . . ζn−1
0

1 ζ1 ζ2
1 . . . ζn−1

1
...

...
...

. . .
...

1 ζn−1 ζ2
n−1 . . . ζn−1

n−1

 .

We have that
V −1AV = [L]B ∈Mn(Fq)

and by Lemma 2.3, since the fixed field of 〈τ〉 is Fq,

V −1CV ∈Mn(Fq).

Hence ρG is realizable over Fq. �

We are now ready to prove our main result.

Theorem 2.5. Let

G =
〈
a, b | am = 1 = bn, b−1ab = ak

〉
,

where |k|m = n. As above, let ρ be the representation of 〈a〉 defined by ρ(a) = ζ,
where ζ is a primitive m-th root of 1 in Fs, with (s,m) = 1. Let q be a power of s.
Then the induced representation ρG is realizable over Fq if and only if q ≡ ki (mod m)
for some i, with 0 ≤ i ≤ n− 1.

Proof. Assume that ρG is realizable over Fq. Then since

ρG(a) =


ζ 0 . . . 0
0 ζk . . . 0
...

...
. . .

...
0 0 . . . ζk

n−1

 ,

it follows that

f(x) =
n−1∏

0

(x− ζki),
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the characteristic polynomial of ρG(a), is in Fq[x]. Hence the Frobenius automorphism
τ defined above permutes the elements of the set

P =
{
ζ, ζk, . . . , ζk

n−1
}
.

By Lemma 2.2, q ≡ ki (mod m) for some i.

Conversely, assume q ≡ kj (mod m) for some j. Again by Lemma 2.2, τ per-
mutes the elements of

P =
{
ζ, ζk, . . . , ζk

n−1
}
.

Since 〈τ〉 acts regularly on P, the orbits of 〈τ〉 are all of the same size. Let there be u
orbits of size v each so that uv = n. Now |q|m = v and since q ≡ kj (mod m) we
have 1 ≡ qv ≡ kvj (mod m). Thus uv | vj whence u | j and so j = uα, say. Since
|ku|m = v = |q|m, it follows that (α, v) = 1. Therefore |buα| = v. Set c = buα and let
H = 〈a, c〉. Then c−1ac = ak

uα
= aq. Now 〈τ〉 acts transitively on

{
ζ, ζq, . . . , ζq

v−1
}

and so, by Lemma 2.4, ρH is realizable over Fq. Hence (ρH)G is realizable over Fq.
But, by transitivity of induction, (ρH)G is equivalent to ρG whence ρG is realizable
over Fq. �

We now proceed to give a specific example of what happens when |k|m 6= n (see
Theorem 2.1). It turns out that this example mirrors faithfully the situation which ob-
tains in the case of the class of generalized quaternion groups Q4m,m odd.

Example 2.6. Let

Q12 =
〈
a, b | a3 = 1 = b4, b−1ab = a2

〉
.

In this case |k|3 = 2 6= |b|. The conjugacy classes of Q12 are

{1}, {b2}, {a, a2}, {b, ab, a2b}, {b3, ab3, a2b3} and {ab2, a2b2}.

Hence, over Fs, there are six irreducible representations, of which there are clearly four
of degree one and two of degree two. Letting i be one of the square roots of −1 we
obtain the following character table:

1 a b2 b b3 ab2

χ1 1 1 1 1 1 1
χ2 1 1 −1 i −i −1
χ3 1 1 −1 −i i −1
χ4 1 1 1 −1 −1 1
χ5 2 −1 2 0 0 −1
χ6 2 −1 −2 0 0 1

.

It happens that χ5 is afforded by the representation

ρ5(a) =
(

0 −1
1 −1

)
, ρ5(b) =

(
1 −1
0 −1

)
,

while χ6 is afforded by

ρ6(a) =
(
ζ 0
0 ζ2

)
, ρ6(b) =

(
0 −1
1 0

)
.
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The representation ρG which is induced by ρ : 〈a〉 → 〈ζ〉, where ζ is a primitive
third root of 1, verifies

ρG(a) =


ζ 0 0 0
0 ζ2 0 0
0 0 ζ 0
0 0 0 ζ2

 and ρG(b) =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 ,

and this is easily seen to be equivalent to ρ5 + ρ6, defined by

a 7→


0 −1 0 0
1 0 0 0
0 0 ζ 0
0 0 0 ζ2

 and b 7→


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 .

Thus to find an explicit matrix representation of ρG over some Fq, we need only realize
ρ6 over Fq. We do this in full generality for Q4m, m odd.

Proposition 2.7. Let

Q4m =
〈
a, b | am = 1 = b4, b−1ab = a−1

〉
and let ρ : 〈a〉 → Fs be the representation defined by ρ(a) = ζ, where ζ is a primitive
m-th root of unity. Then ρG is the direct sum of the representations σ and τ , where

σ(a) =
(
ζ 0
0 ζ−1

)
, σ(b) =

(
0 1
1 0

)
and

τ(a) =
(
ζ 0
0 ζ−1

)
, τ(b) =

(
0 −1
1 0

)
.

Proof. The elements σ and τ are both irreducible since σ(a) and σ(b) (respectively,
τ(a) and τ(b)) have no common eigenvector. Also, by Frobenius reciprocity,

(ρG, σ) = (ρ, σ〈a〉)

=
1
m

[
2 + ζ(ζ + ζ−1) + ζ2(ζ2 + ζ−2) + · · ·+ ζm−1(ζm−1 + ζ−(m−1))

]
= 1,

since
〈
ζ2
〉

= 〈ζ〉 (because m is odd). Similarly, (ρG, τ) = 1. Thus, since

deg σ = deg τ = 2 and deg ρG = 4,

it follows that ρG = σ + τ . �

Remark. The representation σ is a representation of

Q4m/
〈
b2
〉
≈
〈
a, c | am = 1 = c2, c−1ac = a−1

〉
and can be dealt with using Theorem 2.5 (see also Theorem 3.6). We are thus left
with the computation of an explicit form for τ over Fq, where, as usual, q is a power
of the prime s. Naturally, if τ is realizable over Fq, then ζ + ζ−1 ∈ Fq. Moreover,
ζ + ζ−1 ∈ Fq if and only if q ≡ ±1 (mod m) (see Theorem 3.6). Thus, given that
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θ = ζ + ζ−1 ∈ Fq, we construct an explicit representation over Fq which is equivalent
to τ .

We may assume ζ /∈ Fq, otherwise τ itself is an Fq-representation. Clearly the
irreducible polynomial of ζ over Fq is f = x2− θx+ 1 and so ζ = θ+

√
θ2−4
2 where we

have taken a specific square root of θ2 − 4 in Fq.
Choose α, β ∈ Fq such that α2 + β2 = θ2 − 4. Since ζ /∈ Fq it follows that β 6= 0.

Let

A =
(
α β
β −α

)
and Ã =

θ

2
+

1
2
A.

By our choice of α and β, we have A2 = (θ2 − 4)I and so the minimum polynomial
of Ã is f = x2 − θx + 1 since Ã is not diagonal. The mapping ϕ : Fq[ζ] → M2(Fq)
defined by

ϕ(g(ζ)) = g(Ã)

is well-defined since the irreducible polynomial of ζ over Fq is the same as the mini-
mum polynomial of Ã, and so embeds Fq[ζ] in M2(Fq).

Let B =
(

0 −1
1 0

)
. Then B−1AB = −A and so B−1ÃB = θ

2I −
1
2A = Ã−1.

The map µ : Q4m →M2(Fq) defined by

µ(a) = Ã and µ(b) = B

is clearly a faithful irreducible representation of Q4m. We show that trÃt = ζt + ζ−t.
Define γ1 = θ, γ0 = 1 and, for j ≥ 2, let γj = θγj−1 − γj−2. We claim that
ζt = γt−1ζ−γt−2 for all t ≥ 2. Indeed, when t = 2, ζ2 = θζ−1 = γ1ζ−γ0. Assume
the result true for t. Then

ζt+1 = γt−1ζ
2−γt−2ζ = γt−1(θζ−1)−γt−2ζ = (θγt−1−γt−2)ζ−γt−1 = γtζ−γt−1.

By induction, the result follows. In a similar fashion we have ζ−t = γt−1ζ
−1 − γt−2.

Now Ãt = γt−1Ã − γt−2I , and so tr(Ãt) = θγt−1 − 2γt−1, since tr(Ã) = θ. But
ζt + ζ−t = θγt−1 − 2γt−1 = trÃt.

It is easily checked that tr(ÃtBj) = 0 if j is odd and tr(ÃtB2) = −ζt − ζ−t.
Hence the character afforded by µ is identical to that afforded by τ . Since each is
irreducible, it follows that µ and τ are equivalent.

Returning again to the case Q12 =
〈
a, b | a3 = 1 = b4, b−1ab = a−1

〉
, let Fq =

F5. Since 5 ≡ −1 (mod 3), it follows that ζ + ζ−1 ∈ F5 where ζ is a primitive third
root of unity. Indeed, since x2 + x + 1 is the irreducible polynomial of ζ over F5, we
have ζ + ζ−1 = −1 = θ. Hence θ2− 4 = −3. Choose α2 + β2 = −3, say α = 1 = β.
Then

A =
(

1 1
1 −1

)
and

Ã =
−I
2

+
1
2

(
1 1
1 −1

)
= 2I + 3

(
1 1
1 −1

)
=
(

0 3
3 −1

)
.
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It now follows from the general theory above that the representation

a 7→
(
ζ 0
0 ζ−1

)
, b→

(
0 −1
1 0

)
,

is equivalent to

a 7→
(

0 3
3 −1

)
, b→

(
0 −1
1 0

)
.

3. Applications related to the quadratic reciprocity law

By choosing special groups in Theorem 2.5 we are able to obtain some interes-
ting number-theoretic relations. In particular, we shall recover the classical quadratic
reciprocity laws as well as an interesting property concerning “values of cosine” . (See
[Syl]. This property was also re-discovered and generalized in [M-R].) It is clear that
many other interesting facts can be established by choosing appropriate groups. This is
left to the interested reader, and authors who are certainly interested.

Example 3.1 (The quadratic reciprocity law). Let p and s be distinct odd primes,
g be a primitive root modulo p and ζ be a primitive p-th root of unity in Fs. Let

G = G(p) =
〈
a, b | ap = 1 = b

p−1
2 , b−1ab = ag

2
〉

(see [Jac, Section 5.15]). Since |g2|p = |b|, we are in a position to apply Theorem 2.5.
Thus let ρ = ρ(p) : 〈a〉 → Fs be defined by ρ(a) = ζ and let (s/p) be the usual
Legendre symbol. Then we have the following three results.

Theorem 3.2. ρG is realizable over Fs if and only if
(
s

p

)
= 1.

Proof. By Theorem 2.5, ρG is realizable over Fs if and only if s ≡ g2i (mod p)
for some i, with 0 ≤ i ≤ p−3

2 . That is, ρG is realizable over Fs if and only if s is a
square modulo p. �

Theorem 3.3. Let p∗ = (−1)
p−1
2 p. Then ρG is realizable over Fs if and only if(

p∗

s

)
= 1.

Proof. By Theorem 3.2, if ρG is realizable over Fs, then the Frobenius automor-
phism x→ xs on Fs permutes the elements of the set {ζ, ζg2 , . . . , ζgp−3}. But then

(p−3)/2∑
i=0

ζg
2i ∈ Fs.

Otherwise, by [Jac, Section 5.15], we have
(p−3)/2∑
i=0

ζg
2i

=
−1±

√
p∗

2
,

whence
√
p∗ ∈ Fs and so

(
p∗

s

)
= 1.
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Conversely, assume that
(
p∗

s

)
= 1. Then, as above,

(p−3)/2∑
i=0

ζg
2i ∈ Fs.

We show that the Frobenius automorphism ϕ : x→ xs on Fs permutes the elements of
the set {

ζ, ζg
2
, ζg

4
, . . . , ζg

p−3
}
.

Then using Theorem 2.5 we conclude that ρG is realizable over Fs.

To do this, it is sufficient by Lemma 2.2 to show that ϕ(ζ) = ζg
2j

for some j in{
0, 1, . . . , p−3

2

}
. Now

1 +
(p−3)/2∑
i=0

ζg
2i

+
(p−3)/2∑
i=0

ζg
2i+1

= 0.

If φ(ζ) = ζg
2j+1

, then
(p−3)/2∑
i=0

ζg
2i

=
(p−3)/2∑
i=0

ζg
2i+1

,

whence

1 + 2
(p−3)/2∑
i=0

ζg
2i

= ±
√
p∗ = 0.

Thus p∗ = 0, contradicting the hypothesis that p and s are distinct primes. Therefore,
ρG is realizable over Fs and Corollary 3.4 follows immediately. �

Corollary 3.4 (The quadratic reciprocity law [Gau]). We have(
s

p

)
=
(
p∗

s

)
.

Remark.The realizability of ρG over Fs depends entirely on s (mod p).

Remarks. (1) The method of evaluation

p−3
2∑
i=0

ζg
2i

given in [Jac, Section 5.15]

can be simplified and clarified as follows: letQ be the set of nonzero quadratic residues
modulo p and let N be the set of nonquadratic residues modulo p. If ζ is a primitive
p-th root of unity in Fs we have:

(i) For p ≡ 1 (mod 4),∑
x∈Q

ζ−x =
∑
x∈Q

ζx and
∑
x∈N

ζx =
∑
x∈N

ζ−x.

(ii) For p ≡ −1 (mod 4),∑
x∈Q

ζ−x =
∑
x∈N

ζx and
∑
x∈N

ζ−x =
∑
x∈Q

ζx.
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Now let c =
∑
x∈Q

ζx and let G =
〈
a, b | ap = 1 = b

p−1
2 , b−1ab = ag

2
〉

, where g is

a primitive root modulo p. Let ρ1 and ρ2 be the representations of H = 〈a〉 defined by
ρ1(a) = ζ and ρ2(a) = ζg and let χ1 and χ2 denote their respective characters. Since
|g2|p = p−1

2 = |b|, it follows by Proposition 2.1 (1) that ρG1 and ρG2 are irreducible.
Moreover, since ρG1 (a) and ρG2 (a) have different eigenvalues, they are inequivalent.
Hence by Schur’s Lemma and Frobenius reciprocity we have

0 =
(
χG2 , χ

G
1

)
=
(
χ2, (χG1 )H

)
.

But

(χ2, (χG1 )H) =

1
|H|

p− 1
2

+ ζg
∑
x∈Q

ζ−x + ζg
2
∑
x∈N

ζ−x + ζg
3
∑
x∈Q

ζ−x + · · ·+ ζg
p−1
∑
x∈N

ζ−x

)
.

Case (i). Let p ≡ 1 (mod 4). By (i) above we have

0 =
p− 1

2
+ ζgc+ ζg

2
(−1− c) + ζg

3
c+ · · ·+ ζg

p−1
(−1− c).

Hence
1− p

2
= c(−1− c) + c(−1− c)

and so
4c2 + 4c+ 1− p = 0.

Therefore

c =
−1±√p

2
·

Case (ii). Let p ≡ −1 (mod 4). By (ii) above we have

0 =
p− 1

2
+ ζg(−1− c) + ζg

2
c+ · · ·+ ζg

p−1
c.

Hence
p− 1

2
+ (−1− c)2 + c2 = 0,

yielding
4c2 + 4c+ p+ 1 = 0.

Therefore

c =
−1±

√
−p

2
·

We may combine the two solutions by setting p∗ = (−1)p−1/2p. Then c = −1±
√
p∗

2 .

(2) Assume that p is an odd prime such that p ≡ 1 (mod n). Let g be a primitive
root modulo p and let

G(p, n) =
〈
a, b | ap = 1 = b(p−1)/n, b−1ab = ag

n
〉
.

The group G(p) of the previous example is the group G(p, 2) in this notation. Observe
that |gn|p = p−1

n = |b| and so, once again, Theorem 2.5 is applicable. We find imme-
diately that the representation ρG(p,n) is realizable over Fs if and only if s has an n-th
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root in Fp. In this case again we see a connection with higher reciprocity laws (see, for
example [I-R] and [Ank]) which we plan to investigate in a subsequent paper.

Example 3.5. In [Syl], Sylvester discovered that if ζ is a primitive m-th root of
unity in Fs, (s,m) = 1, then 2cos2π

m := ζ + ζ−1 belongs to Fs if and only if s ≡ ±1
(mod m). Sylvester’s formulation of his result differs somewhat from that just stated,
but is equivalent to it. In the paper [M-R] this result was re-discovered, generalized and
applied to some questions concerning extensions of degree 2l.

Here we shall strengthen Sylvester’s result by applying our Theorem 2.5 to the
dihedral group. As usual, set D2m =

〈
a, b | am = 1 = b2, b−1ab = a−1

〉
, with m ∈ N

and m ≥ 3. Then | − 1|m = 2 = |b| and so our theorem is applicable.

Theorem 3.6. The 2-dimensional representation ρ of D2m given by

ρ(a) =
(
ζ 0
0 ζ−1

)
and ρ(b) =

(
0 1
1 0

)
,

where ζ is a primitive m-th root of unity is realizable over the field Fq, with q a power
of the odd prime s, if and only if q ≡ ±1 (mod m). Moreover, in the case when ρ is
realizable over Fq, we can write the corresponding matrices with entries in Fq explicitly.
Indeed, we have:

(1) If q ≡ 1 (mod m), then ζ ∈ Fq and the original matrices lie in Fq;
(2) If q ≡ −1 (mod m), then ζ /∈ Fq, but t = ζ + ζ−1 ∈ Fq and ρ is equivalent

to the representation θ given by

θ(a) =
(

0 1
1 t

)
and θ(b) =

(
1 t
0 −1

)
.

One can find the matrices over Fq following the proof of Theorem 2.5. From the
explicit form of the matrices we deduce immediately that ζ + ζ−1 ∈ Fq if and only if
q ≡ ±1 (mod m) which is indeed a generalization of Sylvester’s result. This theorem
does give us additional information, namely, that if q ≡ ±1 (mod m), then, not only
is ζ + ζ−1 ∈ Fq, but the whole representation ρ is realizable over Fq and moreover,
explicit formulas for the matrices ρ(g) and g in D2m can be computed.

4. Connections with cross-products

The methods used in the previous sections are of an elementary nature but may ap-
pear somewhat mysterious to the reader. The veil of mystery lifts however and we gain
considerable insight into our computations once we establish a connection with cross-
products (see for example [Her] or [Rei]). Moreover, guided by this connection with
cross-products we are able to obtain a stronger result concerning complete realizability
(cf. Definition 4.5).

Roughly speaking, cross-products intervened in the following manner. We consider
a finite field F = Fq over which we want to construct a representation module M for
our group G which realizes a given component ρi, with i = 0, 1, . . . , r − 1 of ρG (see
Proposition 2.1). More precisely, we want to verify that for L = F (ζ), where ζ is a



52 RECIPROCITY LAWS FOR REPRESENTATIONS OF FINITE GROUPS

primitive m-th root of unity, the action of a, b ∈ G on L ⊗F M has the required form
described in Proposition 2.1 (2) with respect to a suitable basis of L⊗F M .

Now a hint on how to construct the required representation module M is obtained
via the cross-product A = (L/F,G, f) with a trivial factor set f (see [Her, Chapter 4]
and Example 4.1 below) in the case where [L : F ] = t, q ≡ k (mod m), q ≡ 1
(mod r), and (r,m) = 1 (in the notation of Proposition 2.1).

Then the idea is to choose M ∼= L as F -vector spaces and use two facts:

(1) We can embed our group G into A.

(2) There exists an isomorphism ϕ : A→ HomF (L,L).

Then using ϕ restricted to G embedded in A, we obtain a representation G on M .
Thus we can say that our cross-product A guides us to make the specific representation
of G on M described in the first paragraph of our proof of Theorem 4.5.

We should point out, however, that we only use the cross-product construction as a
guide for building a representation M , and our further exposition is logically indepen-
dent of this construction. Nevertheless it seems to us worthwhile to include at least this
idea, and to explain it in a detailed way in Example 4.1 below. One could say that if we
were to follow C. F. Gauss’s style of exposition, we would dismantle the scaffolding
upon completion of the building. We have instead tried to follow L. Euler, by leaving
the scaffolding intact.

We begin with an example which points the way in the general case.

Example 4.1. Let G =
〈
a, b | a7 = 1 = b9, b−1ab = a2

〉
. Let F be a finite field

with q elements where q ≡ 2 (mod 7) and q ≡ 1 (mod 3) (for example, q = 37
would do). Let ζ be a primitive seventh root of unity in F . In this case |2|7 = 3 and so,
using the notation established in Proposition 2.1, r = t = 3 and ρG is the direct sum of
the representations

a→

 ζ 0 0
0 ζ2 0
0 0 ζ4

 and b→

 0 0 η
1 0 0
0 1 0


as η varies over the third roots of unity in F . Let L = F (ζ). Then

G = Gal(L/F ) = 〈σ〉 ,

where σ(ζ) = ζ2. Form the cross-product A = (L/F,G, f) with trivial factor set f
(cf. [Her, Chapter 4]). Recall that A is a 3-dimensional algebra over L with basis
{1 = u1, uσ, uσ2} and multiplication defined according to the following:

(i) uτuν = uτν ;

(ii) uτ ` = τ(`)uτ .

It is easily checked ([Rei, Chapter 7, Section 29]) that the map ϕ : A → HomF (L,L)
defined by

[ϕ(`0 + `1uσ + `2uσ2)](λ) = `0λ+ `1σ(λ) + `2σ
2(λ)

for all λ ∈ L is an F -algebra isomorphism.
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Now let η be a third root of unity in F and choose z ∈ L such that NL/F (z) = η.
Here NL/F is the norm map from L down to F . Let ψ : G→ A be the homomorphism
defined by

ψ(a) = ζ and ψ(b) = zuσ2 .

Since ζ7 = 1, (zuσ2)3 = η and (zuσ2)ζ(zuσ2)−1 = ζ4 it follows that ψ is a well-
defined homomorphism. (From the last identity it follows that (zuσ2)−1ζ(zuσ2) = ζ2.)

Let f = (x− ζ)(x− ζ2)(x− ζ4) ∈ F [x]. Then f is irreducible polynomial since
G acts transitively on {ζ, ζ2, ζ4}. Hence L is isomorphic with M := F [x]

(f) , where we
send ζ to x̄, the class of x (mod f). We now define an action of G on M via ψ by{

ag(x) = xg(x),

bg(x) = z(x)g(x4),

where z(x) corresponds to z. This clearly turns M into an FG-module since ψ is a
homomorphism.

Let

ML = L⊗F
F [x]
(f)

=
L[x]
(f)
·

We show that relative to an appropriate basis, ML affords the matrix representation

a 7→

 ζ 0 0
0 ζ2 0
0 0 ζ4

 and b 7→

 0 0 η
1 0 0
0 1 0

 .

Indeed, let

g0 =
(x− ζ2)(x− ζ4)
(ζ − ζ2)(ζ − ζ4)

, g1 =
z(x)(x− ζ)(x− ζ4)

(ζ2 − ζ)(ζ2 − ζ4)

and

g2 =
z(x)z(x4)(x− ζ)(x− ζ2)

(ζ4 − ζ)(ζ4 − ζ2)
·

Using the equality f̄ = 0 in M , we see that

ag0 = ζg0, ag1 = ζ2g1 and ag2 = ζ4g2.

Moreover,

bg0(x) = z(x)g0(x4) =
z(x)(x4 − ζ2)(x4 − ζ4)

(ζ − ζ2)(ζ − ζ4)
·

But
(x4 − ζ2)(x4 − ζ4)
(ζ − ζ2)(ζ − ζ4)

and
(x− ζ)(x− ζ4)

(ζ2 − ζ)(ζ2 − ζ4)

evaluated at ζ, ζ2 and ζ4 both yield 0, 1, 0 respectively, showing that bg0 = g1. Simi-
larly bg1 = g2 and bg2 = ηg0 since z(x)z(x4)z(x2) = η. It follows that the given
representation is realizable over F because M is our desired 3-dimensional representa-
tion space over F .
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The above example is representative of the proof we are about to embark upon for
the general case, except that, in the general case we need a technical maneuver to deal
with the possibility that f is reducible over F and that conjugation of a by b does not
reflect the action of the Galois group on ζ. In the example above f is irreducible over
F and b−1ab = a2 reflects the fact that σ(ζ) = ζ2.

Lemma 4.2. Let F be a field and f a monic polynomial over F . Assume f has
distinct roots ζ1, ζ2, . . . , ζt in some splitting field and let d be a positive integer such
that

{ζ1, ζ2, . . . , ζt} = {ζd1 , ζd2 , . . . , ζdt }.
Then f(x) | f(xd).

Proof. We have

f(xd) =
∏
i

(xd − ζi) =
∏
i

(xd − ζdi ).

Clearly each ζi is a root of f(xd) and so f(x) | f(xd). �

Corollary 4.3. With the same hypotheses and notation as above, if g(x) and h(x)
are polynomials over F and g(x) ≡ h(x) (mod f), then g(xd) ≡ h(xd) (mod f).

Proof. If f(x) | (g(x)−h(x)), then f(xd) | (g(xd)−h(xd)). By the above lemma,
we have f(x) | (g(xd)− h(xd)). �

The next lemma is the technical maneuver referred to above.

Lemma 4.4. Let s be a prime, m be a positive integer with (m, s) = 1 and let q be
a power of s. Let k be a positive integer and let ζ be a primitive m-th root of unity in
Fs. Assume that |k|m = t and that q ≡ kj (mod m) for some j. Let

f = (x− ζ)(x− ζk) · · · (x− ζkt−1
)

and let η ∈ F = Fq. Then there exists z(x) ∈ F [x] such that

z(x)z(xk) · · · z(xkt−1
) ≡ η (mod f).

Proof. The set
{
ζ, ζk, . . . , ζk

t−1
}

of roots of f in L = F (ζ) is invariant under

the Frobenius automorphism a 7→ aq since q ≡ kj (mod m). Hence f ∈ F [x]. Let
f = f1f2 · · · fu be the factorization of f into irreducible factors over F and let S (resp.
Ŝ) denote the set of roots of f1 (resp. f2f3 · · · fu). Assume that ζ ∈ S. Let f̂i = f/fi,
with i = 1, 2, . . . , u. Since (f̂i, fi) = 1, there exists hi ∈ F [x] such that

hif̂i ≡ 1 (mod fi).

Now F [x]
(f1) is isomorphic to L, where x̄ (the element x (mod f1)) plays the role of ζ.

Further there exists z ∈ L such that NL/F (z) = η. Hence there exists z1(x) ∈ F [x]

such that
∏
ξ∈S

z1(ξ) = η. Now let

z(x) = h1(x)f̂1(x)z1(x) + h2(x)f̂2(x) + · · ·+ hu(x)f̂u(x).
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We observe that if α is a root of fi, then hi(α)f̂i(α) = 1, while if α is a root of f̂i, we
have hi(α)f̂i(α) = 0. Now let δ be a root of f . We compute

z(δ)z(δk) · · · z(δkt−1
) =

∏
ξ∈S

z(ξ)
∏
ξ∈Ŝ

z(ξ).

If ξ ∈ Ŝ, (say ξ is a root of fj , with j 6= 1), then z(ξ) = hj(ξ)f̂j(ξ) = 1. Thus

z(δ)z(δk) · · · z(δkt−1
) =

∏
ξ∈S

z(ξ).

But if ξ ∈ S, z(ξ) = z1(ξ) and so

z(δ)z(δk) · · · z(δkt−1
) =

∏
ξ∈S

z1(ξ) = η.

Hence z(x)z(xk) · · · z(xkt−1
) evaluated at any root of f yields η. It follows that

z(x)z(xk) · · · z(xkt−1
) ≡ η (mod f). �

Theorem 4.5. Let

G =
〈
a, b | am = bn = 1, b−1ab = ak

〉
and let |k|m = t and n = rt. Let ζ be a primitive m-th root of unity in Fs, s a prime
with (s,m) = 1. Let q be a power of s and assume q ≡ kj (mod m) for some j.
Assume further that F (= Fq) contains a primitive r-th root of unity η. Then, for each
integer c, the representation of G defined by

a 7→


ζ 0 . . . 0
0 ζk . . . 0
...

...
. . .

...
0 0 . . . ζk

t−1

 and b 7→


0 0 . . . 0 ηc

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


is realizable over F .

Proof. Let f = (x− ζ)(x− ζk) · · · (x− ζkt−1
). As in Lemma 4.4, f ∈ F [x]. Let

M = F [x]
(f) and turn M into an FG-module by defining

ag(x) = xg(x)

and
bg(x) = z(x)g(xϕ(b−1))

where z(x) is chosen as in Lemma 4.4 with respect to ηc and ϕ : 〈b〉 → 〈[k]m〉 is the
homomorphism defined by ϕ(b) = [k]m. Recall that by [k]m we mean k (mod m) and
naturally, by x[i]m we mean xi. This is independent of the representative of [i]m since
xm = 1. Clearly the action of a is well-defined. That the action of b is well-defined
follows from Corollary 4.3. Straightforward computation yields bng(x) = g(x) while
it is obvious that amg(x) = g(x). In addition,

abg(x) = xz(x)g(xϕ(b−1)),
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while

bakg(x) = bxkg(x) = z(x)xϕ(b)ϕ(b−1)g(xϕ(b−1)) = xz(x)g(xϕ(b−1)).

It now follows that we have a well-defined action of G on M , thus turning M into an
FG-module. Let L = F (ζ) and let

ML = L⊗F M =
L[x]
(f)
·

ThenML affords the same matrix representation asM relative to {1, x, . . . , xt−1}. We
construct a basis B of L[x]

(f) such that relative to B, the matrix representation afforded by
ML is the given representation.

For i = 0, 1, . . . , t− 1, let

gi(x) =
f(x)

(x− ζki)f ′(ζki)
,

and define 

h0(x) = g0(x),

h1(x) = z(x)g1(x),

h2(x) = z(x)z(xϕ(b−1))g2(x),

...
...

...

ht−1(x) = z(x)z(xϕ(b−1)) · · · z(xϕ(b−(t−2)))gt−1(x).

First observe that (x− ζki)gi(x) = 0 and so xgi(x) = ζk
i
gi(x) whence

ahi(x) = ζk
i
hi(x)

for i = 0, 1, . . . , t− 1. Consider now

bhi(x) = z(x)hi(xϕ(b−1)) = z(x)z(xϕ(b−1)) · · · z(xϕ(b−i))gi(xϕ(b−1)).

We show that gi(xϕ(b−1)) = gi+1(x) for all 0 ≤ i ≤ t − 1 where i is taken modulo t.
Indeed,

gi(xϕ(b−1)) =
∏
v 6=i

(
xk

t−1 − ζkv
)

/
∏
v 6=i

(
ζk

i − ζkv
)
.

Clearly gi(xϕ(b−1)) vanishes for all ζk
v

except ζk
i+1

when its value is 1. The same
holds for gi+1(x) and so we have bhi(x) = hi+1(x) provided 1 ≤ i ≤ t−2. Moreover,

bht−1(x) = z(x)z(xk) · · · z(xkt−1
)gt−1(xϕ(b−1)) = ηch0(x).

Therefore, as claimed, ML affords the same matrix representation as the original one.
�

Remark. We have an algorithm to obtain the F -representation from the given
F (ζ)-representation (once we have found z(x)), namely, the matrix for a is the com-
panion matrix of f ; the (i + 1)-st column of the matrix for b is computed as follows:
write

z(x)xik
t−1

= f(x)g(x) + r(x),
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where deg r(x) < deg f(x). Then the column vector formed by the coefficients of
r(x) (coefficient of constant term first) is the (i+ 1)-st column of the matrix for b.

Definition 4.6. Let L be an extension field of F and let ρ be an L-representation
of a group G. We say ρ is completely realizable over F if ρ is equivalent to an F -
representation of G, each of whose irreducible components over L is realizable over
F .

Corollary 4.7. Let the notation be as in Theorem 4.4 and let ρ be the representation
〈a〉 defined by ρ(a) = ζ. Then ρG is completely realizable over F (= Fq) if and only if
q ≡ kj (mod m) for some j and q ≡ 1 (mod r).

Proof. By Proposition 2.1, ρG is a sum of representations ρi of the form dealt with
in Theorem 4.5. The sufficiency is thus established. For the necessity we observe first
that if ρG is completely realizable over F , then F must contain a primitive r-th root of
unity since (using the notation of Proposition 2.1 (2)) the characteristic polynomial of
ρ1(b) is xt − η−1. In addition the characteristic polynomial of ρ1(a) remains invariant
under the Frobenius automorphism τ : y → yq and so τ must permute the elements of
the set {ζ, ζk, . . . , ζkt−1} and so q ≡ kj (mod m). �

We finish by applying the results obtained to compute a specific example.

Example 4.8. Let G =
〈
a, b | a5 = 1 = b8, b−1ab = a2

〉
, with s = q = 19. In

this case |2|5 = 4, so t = 4 and r = 2. Also f = x4 + x3 + x2 + x+ 1. By the general
theory, ρG is that direct sum of the two irreducible representations ρ1 and ρ2 defined by

ρ1(a) =


ζ 0 0 0
0 ζ2 0 0
0 0 ζ4 0
0 0 0 ζ3

 , ρ1(b) =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


and

ρ2(a) =


ζ 0 0 0
0 ζ2 0 0
0 0 ζ4 0
0 0 0 ζ3

 , ρ2(b) =


0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0

 .

We first compute a matrix representation ρ̂1 over F19 equivalent to ρ1 using the algo-
rithm established above. We know that

ρ̂1(a) =


0 0 0 −1
1 0 0 −1
0 1 0 −1
0 0 1 −1

 .

To compute ρ̂1(b) we observe that in this case kt−1 = 23 = 8 and so we must find 1
(mod f), x8 (mod f), x16 (mod f) and x24 (mod f). Since x5 = 1 in F19[x]

(f) we
compute 1 (mod f), x3 (mod f), x (mod f) and x4 (mod f). We get 1, x3, x and
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−1− x− x2 − x3. Hence

ρ̂1(b) =


1 0 0 −1
0 0 1 −1
0 0 0 −1
0 1 0 −1

 .

To compute a matrix representation ρ̂2 over F19 equivalent to ρ2 we must compute
z(x). We have ζ4 + ζ3 + ζ2 + ζ + 1 = 0 and so ζ2 + ζ−2 + ζ + ζ−1 + 1 = 0. But
(ζ + ζ−1)2 = ζ2 + ζ−2 + 2, whence ζ2 + ζ−2 = (ζ + ζ−1)2− 2. Letting ω = ζ + ζ−1

we get ω2 + ω − 1 = 0. Hence

ω =
−1±

√
5

2
=
−1± 9

2
·

Thus ω = 4 or ω = −5 from which it follows that

x4 + x3 + x2 + x+ 1 = (x2 − 4x+ 1)(x2 + 5x+ 1).

We may assume ζ is a root of x2 − 4x + 1. Adopting the notation established above,
we have f = f1f2, f̂1 = x2 + 5x+ 1 and f̂2 = x2 − 4x+ 1.

We must find an element z ∈ F19(ζ) whose norm is −1. Let z = a0 + a1ζ. We
require (a0 + a1ζ)(a0 + a1ζ

−1) = −1, i.e., a2
0 + a0a1(ζ + ζ−1) + a2

1 = −1. But
ζ + ζ−1 = 4 and so a2

0 + 4a0a1 + a2
1 + 1 = 0. Dividing by a2

1 and setting x = a0
a1

we
get

x2 + 4x+
a2

1 + 1
a2

1

= 0.

Solving for x we have x = −2±
√

3a2
1−1

a1
. Let a1 = 2. Then

x = −2±
√

11
2

= −2± 7
2

= −2± 6.

Hence x = −8 or x = 4. Taking a0
2 = −8 we get a0 = 3. Hence z = 3 + 2ζ and so

z1(x) = 2x+ 3. A routine computation establishes that

1 = (2x− 8)(x2 + 5x+ 1) + (−2x+ 9)(x2 − 4x+ 1).

Hence h1(x) = (2x− 8) and h2(x) = −2x+ 9. It follows that

z(x) = (2x− 8)(x2 + 5x+ 1)(2x+ 3) + (−2x+ 9)(x2 − 4x+ 1).

Taking z(x) modulo f (by abuse of notation) we have z(x) = 4x3 − x. Once again,

ρ̂2(a) =


0 0 0 −1
1 0 0 −1
0 1 0 −1
0 0 1 −1

 .

Now 
b · 1 = 4x3 − x,

bx = (4x3 − x)x8,

bx2 = (4x3 − x)x16,

bx3 = (4x3 − x)x24.
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Reducing modulo f we get
b · 1 = 4x3 − x,

bx = x3 + x2 + 5x+ 1,

bx2 = −4x3 − 5x2 − 4x− 4,

bx3 = 4x2 − 1.

Thus

b→


0 1 −4 −1
−1 5 −4 0

0 1 −5 4
4 1 −4 0

 .

Remark. We have obtained necessary and sufficient conditions for the realizability
of ρG over Fq in the case that |b| = |k|m. Furthermore, in the case when |b| does not
necessarily coincide with |k|m and q ≡ 1 (mod r), we have given the necessary and
sufficient conditions for the complete realizability of ρG over Fq. There remains the
problem of the mere realizability of ρG over Fq when |b| 6= |k|m. We observe in fact
that the condition q ≡ kj (mod m) for some j is, even in this case, a necessary and
sufficient condition for the realizability of ρG over Fq provided (q, |G|) = 1. (Observe
that throughout we are tacitly assuming that (m, q) = 1 so that to require (q, |G|) = 1
we need only assume (n, q) = 1.) Indeed the necessity follows from looking at the
characteristic polynomial of ρG(a) while the sufficiency follows from the fact that ρG

is completely realizable over Fq by Corollary 4.7. Alternatively one could possibly
obtain the sufficiency from two facts, namely:

(i) if q ≡ kj (mod m), then trρG(g) ∈ Fq for all g ∈ G;

(ii) the Schur index of a representation over a finite field is 1 provided (q, |G|) = 1
[Dor, Theorem 24.10].

Nevertheless, the whole thrust of this paper is to explicitly construct the representations
in question. This could not be done by merely appealing to the Schur index.

A number of new interesting problems arise from the paper. We end the paper by
listing a few of them:

(1) Examine the case when (n, q) 6= 1.

(2) Find a reciprocity law for other finite and also algebraic groups.

(3) Extend reciprocity laws to cover fields which are not necessarily finite.

(4) Find further applications to and relations with number-theoretic reciprocity
laws.
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