A STUDY OF FROBENIUS-EULER NUMBERS AND POLYNOMIALS

TAKASHI AGOH and MAsASHI YAMANAKA
In honour of Paulo Ribenboim on the occasion of his 80th birthday.

RÉSumÉ. Le but principal de cet article est d'étudier les propriétés de base des polynômes et nombres de Frobenius-Euler, pour en tirer diverses formules de récurrence et de convolution, et de discuter d'une certaine congruence de type Kummer permettant l'écriture de ces nombres au moyen de limites p-adiques.

Abstract

The main purpose of this paper is to study the basic properties of ordinary and generalized Frobenius-Euler numbers and polynomials, from which we deduce various recurrence and convolution formulas and discuss a certain Kummertype congruence allowing the expression of these numbers by means of p-adic limits.

1. Introduction

The classical Euler numbers E_{n} and polynomials $E_{n}(x)$, which are very important in number theory, combinatorics and other branches of mathematics, are defined by, respectively, the generating functions

$$
\left\{\begin{array}{l}
F(t):=\frac{2}{e^{t}+1}=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!} \tag{1.1}\\
F(t, x):=F(t) e^{x t}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!}
\end{array}\right.
$$

These were extended by Frobenius in 1910 to the numbers $H_{n}(u)$ and polynomials $H_{n}(u, x)$ associated to an algebraic number $u \neq 1$. The ordinary Frobenius-Euler numbers $H_{n}(u)$ and the polynomials $H_{n}(u, x)$ associated to u are defined by, respectively, the generating functions

$$
\left\{\begin{array}{l}
F(u, t):=\frac{1-u}{e^{t}-u}=\sum_{n=0}^{\infty} H_{n}(u) \frac{t^{n}}{n!}, \tag{1.2}\\
F(u, t, x):=F(u, t) e^{x t}=\sum_{n=0}^{\infty} H_{n}(u, x) \frac{t^{n}}{n!} .
\end{array}\right.
$$

Reçu le 6 mai 2009 et, sous forme définitive, le 11 janvier 2010.

As easily seen,

$$
H_{n}\left(u^{-1}, x\right)=(-1)^{n} H_{n}(u, 1-x)=(1-u) x^{n}+(-1)^{n} u H_{n}(u, x)
$$

and these numbers and polynomials satisfy the following recurrence relations. With the initial conditions $H_{0}(u)=1$ and $H_{0}(u, x)=1$, we have for $n \geq 1$,

$$
\left\{\begin{array}{l}
(H(u)+1)^{n}=u H_{n}(u), \\
(H(u)+x)^{n}=H_{n}(u, x), \\
(H(u, x)+1)^{n}=u H_{n}(u, x)+(1-u) x^{n}
\end{array}\right.
$$

Here we used the symbolic umbral notation, though we replaced $H^{k}(u, x)$ by $H_{k}(u, x)$ and $H^{k}(u)$ by $H_{k}(u)$, after expanding in full by means of the binomial theorem.

Recently, the above numbers were further extended to the generalized FrobeniusEuler numbers analogously to the generalized Bernoulli numbers (cf. [7]). Let χ be a primitive Dirichlet character with conductor $f=f_{\chi}$. The generalized Frobenius-Euler numbers $H_{n, \chi}(u)$ attached to an algebraic number $u \neq 1$ are defined by the generating function

$$
\begin{equation*}
F_{\chi}(u, t):=\sum_{a=0}^{f-1} \frac{\left(1-u^{f}\right) \chi(a) e^{a t} u^{f-1-a}}{e^{f t}-u^{f}}=\sum_{n=0}^{\infty} H_{n, \chi}(u) \frac{t^{n}}{n!} \tag{1.3}
\end{equation*}
$$

When $\chi=1$, we know $F_{\chi}(u, t)=F(u, t)$ and $H_{n, \chi}(u)=H_{n}(u)$.
Similarly to $H_{n}(u, x)$, the generalized Frobenius-Euler polynomials, denoted by $H_{n, \chi}(u, x)$, are defined by

$$
\begin{equation*}
F_{\chi}(u, t, x):=F_{\chi}(u, t) e^{x t}=\sum_{n=0}^{\infty} H_{n, \chi}(u, x) \frac{t^{n}}{n!} . \tag{1.4}
\end{equation*}
$$

Then we can easily see that

$$
\left\{\begin{array}{l}
H_{n, \chi}(u, x)=\left(H_{\chi}(u)+x\right)^{n}:=\sum_{i=0}^{n}\binom{n}{i} H_{i, \chi}(u) x^{n-i}, \tag{1.5}\\
H_{n, \chi}(u, x+y)=\left(H_{\chi}(u, x)+y\right)^{n}:=\sum_{i=0}^{n}\binom{n}{i} H_{i, \chi}(u, x) y^{n-i} .
\end{array}\right.
$$

Basic and important properties of these numbers and polynomials were studied by many mathematicians including Carlitz [1, 2], Kim [4], Shiratani [6], Tsumura [8], Young [9] and others. Further, several types of p-adic analytic interpolation functions associated with $H_{n}(u)$ and $H_{n, \chi}(u)$ were constructed and their specific properties were investigated by Kim et al. [3], Kozuka [5], Shiratani-Yamamoto [7] and Tsumura [8].

Throughout this paper, we denote by $\mathbb{Q}, \mathbb{C}, \mathbb{Q}_{p}$ and \mathbb{C}_{p}, with p a prime number, the field of rational numbers, the complex number field, the field of p-adic rational numbers and the p-adic completion of the algebraic closure $\overline{\mathbb{Q}}_{p}$ of \mathbb{Q}, respectively. We fix an embedding of the algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} into \mathbb{C}_{p}. Also we denote by $|\cdot|_{p}$ the p-adic absolute value on \mathbb{C}_{p} normalized by $|p|_{p}=p^{-1}$.

The main purpose of this paper is to study basic properties of Frobenius-Euler numbers and polynomials. In Section 2 we deduce various recurrence and convolution formulas for these numbers and polynomials. In Section 3 we discuss arithmetic properties of generalized Frobenius-Euler numbers and derive a certain Kummer-type congruence applying the expression of these numbers by means of p-adic limit.

2. Recurrence and convolution formulas

At first, we would like to present the most basic recurrence relations.
Proposition 2.1. For $m, n \geq 1$,

$$
\begin{equation*}
\left(H_{\chi}(u)+m f\right)^{n}-u^{m f} H_{n, \chi}(u)=\left(1-u^{f}\right) \sum_{a=0}^{f-1} \chi(a) \sum_{i=0}^{m-1}(i f+a)^{n} u^{(m-i) f-1-a} . \tag{2.1}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
(H(u)+m)^{n}-u^{m} H_{n}(u)=(1-u) \sum_{i=1}^{m-1} i^{n} u^{m-1-i} . \tag{2.2}
\end{equation*}
$$

Proof. Consider the identity

$$
\begin{aligned}
F_{\chi}(u, t)\left(e^{m f t}-u^{m f}\right) & =\left(\sum_{a=0}^{f-1}\left(1-u^{f}\right) \chi(a) e^{a t} u^{f-a-1}\right)\left(\sum_{i=0}^{m-1} e^{i f t} u^{(m-1-i) f}\right) \\
& =\left(1-u^{f}\right) \sum_{a=0}^{f-1} \chi(a) \sum_{i=0}^{m-1} e^{(i f+a) t} u^{(m-i) f-1-a} .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\left(H_{\chi}(u)+m f\right)^{n} & -u^{m f} H_{n, \chi}(u) \\
& =\left[\frac{d^{n}}{d t^{n}}\left(F_{\chi}(u, t)\left(e^{m f t}-u^{m f}\right)\right)\right]_{t=0} \\
& =\left(1-u^{f}\right)\left[\frac{d^{n}}{d t^{n}}\left(\sum_{a=0}^{f-1} \chi(a) \sum_{i=0}^{m-1} e^{(i f+a) t} u^{(m-i) f-1-a}\right)\right]_{t=0} \\
& =\left(1-u^{f}\right) \sum_{a=0}^{f-1} \chi(a) \sum_{i=0}^{m-1}(i f+a)^{n} u^{(m-i) f-1-a},
\end{aligned}
$$

which completes the proof of (2.1). Formula (2.2) is just a special case of $\chi=1$.
For brevity, put for $n, r \geq 0$,

$$
b_{r}^{n}(u, f):=\left[\frac{d^{n}}{d t^{n}}\left(e^{f t}-u^{f}\right)^{r}\right]_{t=0}=\sum_{i=0}^{r}(-1)^{r-i}\binom{r}{i}(i f)^{n} u^{(r-i) f},
$$

with the convention $0^{0}=1$, and $b_{r}^{n}(u):=b_{r}^{n}(u, 1)$.

Proposition 2.2. For $n, r \geq 1$, we have

$$
\begin{align*}
& \sum_{i=0}^{n}\binom{n}{i} b_{r}^{n-i}(u, f) H_{i, \chi}(u) \\
& \quad=\left(1-u^{f}\right) \sum_{a=0}^{f-1} \chi(a) u^{f-1-a} \sum_{i=0}^{n}\binom{n}{i} a^{n-i} b_{r-1}^{i}(u, f) \tag{2.3}\\
& \quad=\left(1-u^{f}\right) \sum_{a=0}^{f-1} \chi(a) \sum_{j=0}^{r-1}(-1)^{r-1-j}\binom{r-1}{j}(j f+a)^{n} u^{(r-j) f-1-a}
\end{align*}
$$

and in particular,

$$
\begin{align*}
\sum_{i=0}^{n}\binom{n}{i} b_{r}^{n-i}(u) H_{i}(u) & =(1-u) b_{r-1}^{n}(u, 1) \\
& =(1-u) \sum_{j=0}^{r-1}\binom{r-1}{j} j^{n}(-u)^{r-1-j} . \tag{2.4}
\end{align*}
$$

Proof. Consider the equality

$$
\begin{aligned}
F_{\chi}(u, & t)\left(e^{f t}-u^{f}\right)^{r} \\
& =\left(\left(1-u^{f}\right) \sum_{a=0}^{f-1} \chi(a) e^{a t} u^{f-1-a}\right)\left(e^{f t}-u^{f}\right)^{r-1} \\
& =\left(1-u^{f}\right) \sum_{a=0}^{f-1} \chi(a) \sum_{j=0}^{r-1}(-1)^{r-1-j}\binom{r-1}{j} e^{(j f+a) t} u^{(r-j) f-1-a} .
\end{aligned}
$$

Using this identity, we can obtain (2.3) by the same method as stated in the proof of Proposition 2.1. The recurrence (2.4) is nothing but a special case when $\chi=1$.

Let $A(n, k)$, with $n, k \geq 0$, be the Eulerian number defined by

$$
A(n, k):=\sum_{j=0}^{k}(-1)^{j}\binom{n+1}{j}(k-j)^{n} .
$$

Using generalized binomial coefficients, these numbers appear in the expansion

$$
x^{n}=\sum_{k=0}^{n} A(n, k)\binom{x+n-k}{n}, \quad n=0,1,2, \ldots,
$$

and they satisfy, with the initial conditions $A(0,0)=1, A(n, 0)=0$ for $n>0$, and $A(n, k)=0$ for $k>n$,

$$
\left\{\begin{array}{l}
A(n, k)=A(n, n-k+1) \quad \text { with } n, k \geq 0 \tag{2.5}\\
A(n+1, k)=k A(n, k)+(n-k+2) A(n, k-1)
\end{array}\right.
$$

Lemma 2.3. For $n, g \geq 1$ and $\alpha \in \mathbb{C}$, we have

$$
\begin{equation*}
\frac{d^{n}}{d t^{n}} \frac{1}{e^{g t}-\alpha}=\frac{(-g)^{n} \sum_{j=1}^{n} A(n, j) \alpha^{j-1} e^{(n+1-j) g t}}{\left(e^{g t}-\alpha\right)^{n+1}} \tag{2.6}
\end{equation*}
$$

Proof. We shall give the proof by induction on n. By direct calculations, it is easy to confirm that (2.6) is true for $n=1,2$. Assume that (2.6) holds for $n=k$. Denoting by $P_{k}(\alpha, g, t)$ the numerator on the right-hand side of (2.6), in which we replaced n by k, we have

$$
\frac{d^{k+1}}{d t^{k+1}} \frac{1}{e^{g t}-\alpha}=\frac{d}{d t} \frac{P_{k}(\alpha, g, t)}{\left(e^{g t}-\alpha\right)^{k+1}}=\frac{P_{k}^{\prime}(\alpha, g, t)\left(e^{g t}-\alpha\right)-P_{k}(\alpha, g, t)(k+1) g e^{g t}}{\left(e^{g t}-\alpha\right)^{k+2}}
$$

where $P_{k}^{\prime}(\alpha, g, t):=\frac{d}{d t} P_{k}(\alpha, g, t)$. Here the numerator becomes, by using (2.5),

$$
\begin{aligned}
P_{k}^{\prime}(\alpha, g, t) & \left(e^{g t}-\alpha\right)-P_{k}(\alpha, g, t)(k+1) g e^{g t} \\
= & \left((-g)^{k} \sum_{j=1}^{k}(k+1-j) g A(k, j) \alpha^{j-1} e^{(k+1-j) g t}\right)\left(e^{g t}-\alpha\right) \\
& -\left((-g)^{k} \sum_{j=1}^{k} A(k, j) \alpha^{j-1} e^{(k+1-j) g t}\right)\left((k+1) g e^{g t}\right) \\
= & (-g)^{k+1} \sum_{i=1}^{k+1}(i A(k, i)+(k+2-i) A(k, i-1)) \alpha^{i-1} e^{(k+2-i) g t} \\
= & (-g)^{k+1} \sum_{i=1}^{k+1} A(k+1, i) \alpha^{i-1} e^{(k+2-i) g t}=P_{k+1}(\alpha, g, t),
\end{aligned}
$$

which shows that (2.6) holds for $n=k+1$.
For simplification, set

$$
\left\{\begin{array}{l}
P_{0}(\alpha, g):=1 \\
P_{r}(\alpha, g):=P_{r}(\alpha, g, 0)=(-g)^{r} \sum_{j=1}^{r} A(r, j) \alpha^{j-1} \quad \text { for } r \geq 1 .
\end{array}\right.
$$

As explicit expressions of $H_{n, \chi}(u)$ and $H_{n}(u)$, we can state the following.
Proposition 2.4. For $n \geq 0$, we get

$$
\begin{equation*}
H_{n, \chi}(u)=\sum_{a=0}^{f-1} \chi(a) u^{f-1-a} \sum_{r=0}^{n}\binom{n}{r} \frac{P_{r}\left(u^{f}, f\right) a^{n-r}}{\left(1-u^{f}\right)^{r}} \tag{2.7}
\end{equation*}
$$

and in particular $H_{0}(u)=1$ and for $n \geq 1$,

$$
\begin{equation*}
H_{n}(u)=\frac{1}{(u-1)^{n}} \sum_{j=1}^{n} A(n, j) u^{j-1} \tag{2.8}
\end{equation*}
$$

Proof. By using Leibniz's rule and Lemma 2.3, we obtain from the definition of $F_{\chi}(u, t)$ in (1.3) that

$$
\begin{aligned}
H_{n, \chi}(u) & =\left[\frac{d^{n}}{d t^{n}} F_{\chi}(u, t)\right]_{t=0} \\
& =\left(1-u^{f}\right) \sum_{a=0}^{f-1} \chi(a) u^{f-1-a}\left[\frac{d^{n}}{d t^{n}} \frac{e^{a t}}{e^{f t}-u^{f}}\right]_{t=0} \\
& =\left(1-u^{f}\right) \sum_{a=0}^{f-1} \chi(a) u^{f-1-a} \sum_{r=0}^{n}\binom{n}{r}\left[\frac{d^{r}}{d t^{r}} \frac{1}{e^{f t}-u^{f}} \cdot \frac{d^{n-r}}{d t^{n-r}} e^{a t}\right]_{t=0} \\
& =\left(1-u^{f}\right) \sum_{a=0}^{f-1} \chi(a) u^{f-1-a} \sum_{r=0}^{n}\binom{n}{r} \frac{P_{r}\left(u^{f}, f\right) a^{n-r}}{\left(1-u^{f}\right)^{r+1}} \\
& =\sum_{a=0}^{f-1} \chi(a) u^{f-1-a} \sum_{r=0}^{n}\binom{n}{r} \frac{P_{r}\left(u^{f}, f\right) a^{n-r}}{\left(1-u^{f}\right)^{r}}
\end{aligned}
$$

and this implies (2.7). For (2.8), consider the special case with $\chi=1$.
Incidentally, considering the special case where $u=-1$, we see that

$$
t F(-1, t)=\frac{2 t}{e^{t}+1}=\sum_{n=0}^{\infty} G_{n} \frac{t^{n}}{n!}
$$

where the G_{n} 's are the Genocchi numbers. Let B_{n} be the Bernoulli number in the even suffix notation defined by

$$
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} t^{n} .
$$

Then, noticing that $B_{n+1}=G_{n+1}=E_{n}=0$ if $n \geq 2$ is even, we obtain from (1.1) and (2.8) the well-known formula

$$
\sum_{i=1}^{n}(-1)^{i} A(n, i)=\frac{2^{n} G_{n+1}}{n+1}=\frac{2^{n+1}\left(1-2^{n+1}\right) B_{n+1}}{n+1}=2^{n} E_{n}
$$

The next proposition is a special (shortened) recurrence relation for ordinary Frobe-nius-Euler numbers that allows, for any given $k \geq 1$, to compute $H_{n+k}(u)$ from $H_{k}(u), H_{k+1}(u), \ldots, H_{k+n-1}(u)$.

Proposition 2.5. For any $n, k \geq 1$, we have

$$
\begin{equation*}
\sum_{i=0}^{n}\binom{n}{i} b_{k+1}^{n-i}(u) H_{k+i}(u)=(1-u)(-1)^{k} \sum_{j=1}^{k} A(k, j) u^{j-1}(k+1-j)^{n} \tag{2.9}
\end{equation*}
$$

Proof. Using Lemma 2.3, we have

$$
\begin{equation*}
\left(e^{t}-u\right)^{k+1} \frac{d^{k}}{d t^{k}} F(u, t)=(1-u)(-1)^{k} \sum_{j=1}^{k} A(k, j) u^{j-1} e^{(k+1-j) t} . \tag{2.10}
\end{equation*}
$$

Therefore it can be shown, by Leibniz's rule, that

$$
\begin{aligned}
& {\left[\frac{d^{n}}{d t^{n}}\left(\left(e^{t}-u\right)^{k+1} \frac{d^{k}}{d t^{k}} F(u, t)\right)\right]_{t=0}} \\
& \quad=\sum_{i=0}^{n}\binom{n}{i}\left[\frac{d^{n-i}}{d t^{n-i}}\left(e^{t}-u\right)^{k+1} \cdot \frac{d^{k+i}}{d t^{k+i}} F(u, t)\right]_{t=0} \\
& \quad=\sum_{i=0}^{n}\binom{n}{i} b_{k+1}^{n-i}(u) H_{k+i}(u)
\end{aligned}
$$

and also

$$
\left[\frac{d^{n}}{d t^{n}} \sum_{j=1}^{k} A(k, j) u^{j-1} e^{(k+1-j) t}\right]_{t=0}=\sum_{j=1}^{k} A(k, j) u^{j-1}(k+1-j)^{n}
$$

which yield (2.9) in view of (2.10).

Putting $u=-1$ in (2.9), we get a linear recurrence relation of arbitrary length for Genocchi, Bernoulli and Euler numbers. Indeed, since $A(k, j)=A(k, k+1-j)$ for $j=1,2, \ldots, k$,

$$
\begin{aligned}
\sum_{i=0}^{n}\binom{n}{i} b_{k+1}^{n-i}(-1) H_{k+i}(-1) & =2 \sum_{j=1}^{k}(-1)^{k+j-1} A(k, j)(k+1-j)^{n} \\
& =2 \sum_{j=1}^{k}(-1)^{j} A(k, j) j^{n}
\end{aligned}
$$

where

$$
\left\{\begin{array}{l}
b_{r}^{m}(-1)=\sum_{j=0}^{r}\binom{r}{j} j^{m} \\
H_{r}(-1)=\frac{G_{r+1}}{r+1}=\frac{2\left(1-2^{r+1}\right) B_{r+1}}{r+1}=E_{r}
\end{array}\right.
$$

The following convolution identities for Frobenius-Euler numbers are the analogue of some formulas of Euler for Bernoulli numbers and Euler numbers, namely

$$
\left\{\begin{array}{l}
(B+B)^{n}:=\sum_{i=0}^{n}\binom{n}{i} B_{i} B_{n-i}=-n B_{n-1}-(n-1) B_{n} \\
(E+E)^{n}:=\sum_{i=0}^{n}\binom{n}{i} E_{i} E_{n-i}=2\left(E_{n}+E_{n+1}\right)
\end{array}\right.
$$

Proposition 2.6. Let $n \geq 1$ and $u \neq 0,1$. Then

$$
\begin{align*}
(H(u)+H(u))^{n} & :=\sum_{i=0}^{n}\binom{n}{i} H_{i}(u) H_{n-i}(u) \tag{2.11}\\
& =\frac{u-1}{u}\left(H_{n}(u)+H_{n+1}(u)\right) .
\end{align*}
$$

Proof. Considering the identity

$$
\begin{equation*}
F(u, t)^{2}=\frac{u-1}{u}\left(F(u, t)+\frac{d}{d t} F(u, t)\right), \tag{2.12}
\end{equation*}
$$

we have, by Leibniz's rule,

$$
\begin{aligned}
\frac{d^{n}}{d t^{n}} F(u, t)^{2} & =\sum_{i=0}^{n}\binom{n}{i} \frac{d^{i}}{d t^{i}} F(u, t) \cdot \frac{d^{n-i}}{d t^{n-i}} F(u, t) \\
& =\frac{u-1}{u}\left(\frac{d^{n}}{d t^{n}} F(u, t)+\frac{d^{n+1}}{d t^{n+1}} F(u, t)\right) .
\end{aligned}
$$

Here, setting $t=0$, we get immediately (2.11).
Similarly, as a convolution identity for Frobenius-Euler polynomials, we can state the following.

Proposition 2.7. For $n \geq 1$ and $u \neq 0,1$, we have

$$
\begin{aligned}
&(H(u, x)+H(u, x))^{n}: \\
&=\sum_{i=0}^{n}\binom{n}{i} H_{i}(u, x) H_{n-i}(u, x) \\
&=\frac{u-1}{u}\left((1-2 x) H_{n}(u, 2 x)+H_{n+1}(u, 2 x)\right) .
\end{aligned}
$$

Proof. The proof can be given by a similar method to that of Proposition 2.6. That is, instead of (2.12), considering the identity

$$
F(u, t, x)^{2}=\frac{u-1}{u}\left((1-2 x) F(u, t, 2 x)+\frac{d}{d t} F(u, t, 2 x)\right),
$$

we have only to carry out the same calculation as done above.

3. Basic properties and Kummer-type congruence

In this section, we study basic properties of generalized Frobenius-Euler numbers and polynomials and discuss a certain Kummer-type congruence on these numbers.

Proposition 3.1. We have

$$
\begin{equation*}
F_{\chi}(u, t, x)=\sum_{a=0}^{f-1} \chi(a) u^{f-1-a} F\left(u^{f}, f t, \frac{a+x}{f}\right), \tag{3.1}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
H_{n, \chi}(u, x)=f^{n} \sum_{a=0}^{f-1} \chi(a) u^{f-1-a} H_{n}\left(u^{f}, \frac{a+x}{f}\right) . \tag{3.2}
\end{equation*}
$$

Proof. From the definitions of $F(u, t, x)$ in (1.2) and $F_{\chi}(u, t, x)$ in (1.4) we obtain, since $e^{(a+x) t}=e^{\left(\frac{a+x}{f}\right) f t}$,

$$
\begin{aligned}
F_{\chi}(u, t, x) & =\sum_{a=0}^{f-1} \chi(a) u^{f-1-a} \frac{\left(1-u^{f}\right) e^{\left(\frac{a+x}{f}\right) f t}}{e^{f t}-u^{f}} \\
& =\sum_{a=0}^{f-1} \chi(a) u^{f-1-a} F\left(u^{f}, f t, \frac{a+x}{f}\right),
\end{aligned}
$$

which proves (3.1). To prove (3.2), compare the coefficient of t^{n} on both sides of this equality.

Setting $x=0$ in (3.2), we obtain immediately

$$
H_{n, \chi}(u)=f^{n} \sum_{a=0}^{f-1} \chi(a) u^{f-1-a} H_{n}\left(u^{f}, \frac{a}{f}\right) .
$$

As a symmetric property of $F_{\chi}(u, t, x)$, we can state the following.
Proposition 3.2. If $\chi \neq 1$, then

$$
\begin{equation*}
F_{\chi}(u,-t,-x)=\chi(-1) u^{f-2} F_{\chi}\left(u^{-1}, t, x\right), \tag{3.3}
\end{equation*}
$$

and hence

$$
\begin{equation*}
(-1)^{n} H_{n, \chi}(u,-x)=\chi(-1) u^{f-2} H_{n, \chi}\left(u^{-1}, x\right) . \tag{3.4}
\end{equation*}
$$

Proof. From the definition of $F_{\chi}(u, t, x)$ in (1.4), we have, since $\chi(k)=\chi(m)$ if $k \equiv m(\bmod f)$,

$$
\begin{aligned}
F_{\chi}(u,-t,-x) & =\sum_{a=0}^{f-1} \frac{\left(1-u^{f}\right) \chi(a) e^{(x-a) t} u^{f-1-a}}{e^{-f t}-u^{f}} \\
& =\sum_{a=0}^{f-1} \frac{\left(1-u^{-f}\right) \chi(a) e^{(f-a+x) t} u^{f-1-a}}{e^{f t}-u^{-f}} \\
& =\sum_{a=0}^{f-1} \frac{\left(1-u^{-f}\right) \chi(-1) \chi(f-a) e^{(f-a+x) t} u^{f-1-a}}{e^{f t}-u^{-f}} \\
& =\sum_{b=1}^{f} \frac{\left(1-u^{-f}\right) \chi(-1) \chi(b) e^{(b+x) t} u^{b-1}}{e^{f t}-u^{-f}} \\
& =\chi(-1) u^{f-2} \sum_{b=1}^{f} \frac{\left(1-u^{-f}\right) \chi(b) e^{(b+x) t} u^{-(f-1-b)}}{e^{f t}-u^{-f}} \\
& =\chi(-1) u^{f-2} F_{\chi}\left(u^{-1}, t, x\right),
\end{aligned}
$$

which proves (3.3). Also, comparing the coefficient of t^{n} on both sides of this equality, we can deduce (3.4).

Proposition 3.3. For any $l \geq 1$, we have

$$
\begin{equation*}
F_{\chi}(u, t, x-(l-1) f)-u^{f} F_{\chi}(u, t, x-l f)=\left(1-u^{f}\right) \sum_{a=0}^{f-1} \chi(a) u^{f-1-a} e^{(a+x-l f) t} \tag{3.5}
\end{equation*}
$$

hence

$$
\begin{aligned}
& H_{n, \chi}(u, x-(l-1) f)-u^{f} H_{n, \chi}(u, x-l f) \\
& \quad=\left(1-u^{f}\right) \sum_{a=0}^{f-1} \chi(a) u^{f-1-a}(a+x-l f)^{n} .
\end{aligned}
$$

Proof. From the definition of $F_{\chi}(u, t, x)$ we have

$$
\begin{aligned}
F_{\chi}(u, t, x-(l-1) f)- & u^{f} F_{\chi}(u, t, x-l f) \\
= & \sum_{a=0}^{f-1} \frac{\left(1-u^{f}\right) \chi(a) e^{(a+x-(l-1) f) t} u^{f-1-a}}{e^{f t}-u^{f}} \\
& -u^{f} \sum_{a=0}^{f-1} \frac{\left(1-u^{f}\right) \chi(a) e^{(a+x-l f) t} u^{f-1-a}}{e^{f t}-u^{f}} \\
= & \sum_{a=0}^{f-1} \frac{\left(1-u^{f}\right) \chi(a) e^{(a+x-l f) t} u^{f-1-a}}{e^{f t}-u^{f}}\left(e^{f t}-u^{f}\right) \\
= & \left(1-u^{f}\right) \sum_{a=0}^{f-1} \chi(a) u^{f-1-a} e^{(a+x-l f) t},
\end{aligned}
$$

which implies (3.5). Also (3.6) follows from (3.5) by equating the coefficient of t^{n}.
Proposition 3.4. Let $\chi \neq 1$. For any $k \geq 1$, we have

$$
\begin{equation*}
H_{n, \chi}(u, k f)-u^{k f} H_{n, \chi}(u)=\left(1-u^{f}\right) \sum_{b=0}^{k f-1} \chi(b) b^{n} u^{k f-1-b} . \tag{3.7}
\end{equation*}
$$

Proof. In particular, set $x=(l+i-1) f$ for $i \geq 1$ in (3.6). Then we obtain

$$
\begin{aligned}
& H_{n, \chi}(u, i f)-u^{f} H_{n, \chi}(u,(i-1) f) \\
& \quad=\left(1-u^{f}\right) \sum_{a=0}^{f-1} \chi(a) u^{f-1-a}(a+(i-1) f)^{n} .
\end{aligned}
$$

Making use of (3.8) with $i=1,2, \ldots, k$, it follows that, since $H_{n, \chi}(u)=H_{n, \chi}(u, 0)$,

$$
\begin{aligned}
& H_{n, \chi}(u, k f)-u^{k f} H_{n, \chi}(u) \\
& =\quad \sum_{i=1}^{k} u^{(k-i) f}\left(H_{n, \chi}(u, i f)-u^{f} H_{n, \chi}(u,(i-1) f)\right) \\
& = \\
& =\left(1-u^{f}\right) \sum_{a=0}^{f-1} \sum_{i=1}^{k} u^{(k-i+1) f-1-a} \chi(a+(i-1) f)(a+(i-1) f)^{n} \\
& = \\
& =\left(1-u^{f}\right) \sum_{b=0}^{k f-1} \chi(b) b^{n} u^{k f-1-b},
\end{aligned}
$$

which completes the proof of (3.7).
Here and in what follows, we assume that u is algebraic over \mathbb{Q}_{p} with $\left|1-u^{f}\right|_{p} \geq 1$. The next proposition was already shown by Tsumura [8], however we will give here another proof based on (3.7).

Proposition 3.5. In the field $\mathbb{Q}_{p}(u)$,

$$
\begin{equation*}
\frac{u}{1-u^{f}} H_{n, \chi}(u)=\lim _{N \rightarrow \infty} \sum_{b=0}^{f p^{N}-1} \chi(b) b^{n} \frac{u^{f p^{N}-b}}{1-u^{f p^{N}}} \tag{3.9}
\end{equation*}
$$

where the limit on the right-hand side means p-adic limit.
Proof. Put $k=p^{N}$ in (3.7). Hence

$$
\begin{equation*}
H_{\chi}^{n}\left(u, p^{N} f\right)-u^{p^{N} f} H_{n, \chi}(u)=\left(1-u^{f}\right) \sum_{b=0}^{p^{N} f-1} \chi(b) b^{n} u^{p^{N} f-1-b} . \tag{3.10}
\end{equation*}
$$

From (1.5), the left-hand side of (3.10) becomes

$$
H_{n, \chi}\left(u, p^{N} f\right)-u^{p^{N} f} H_{n, \chi}(u)=\left(1-u^{p^{N} f}\right) H_{n, \chi}(u)+\sum_{i=0}^{n-1}\binom{n}{i} H_{i, \chi}(u)\left(p^{N} f\right)^{n-i}
$$ and then (3.10) gives

$$
\begin{aligned}
\frac{u}{1-u^{f}} H_{n, \chi}(u)= & \sum_{b=0}^{f p^{N}-1} \chi(b) b^{n} \frac{u^{f p^{N}-b}}{1-u^{f p^{N}}} \\
& -\frac{u}{\left(1-u^{f}\right)\left(1-u^{f p^{N}}\right)} \sum_{i=0}^{n-1}\binom{n}{i} H_{i, \chi}(u)\left(p^{N} f\right)^{n-i} .
\end{aligned}
$$

Since $\left|1-u^{f}\right|_{p} \geq 1$ implies $\left|1-u^{f p^{N}}\right|_{p} \geq 1$ for any $N \geq 1$ and $\lim _{N \rightarrow \infty} p^{N}=0$, we get

$$
\frac{u}{1-u^{f}} H_{n, \chi}(u)=\lim _{N \rightarrow \infty} \sum_{b=0}^{f p^{N}-1} \chi(b) b^{n} \frac{u^{f p^{N}-b}}{1-u^{f p^{N}}},
$$

which completes the proof.

In the following proposition, we want to deduce a general form of Kummer-type congruence for generalized Frobenius-Euler numbers referring to the same method as mentioned in [6]. It should be noted that, using properties of p-adic integrals and measures, more general and stronger Kummer-type congruences for these and other related numbers have been already obtained by Young [9].

Given a sequence $\left\{a_{n}\right\}$, let Δ_{r} be a linear difference operator defined by

$$
\Delta_{r} a_{n}:=a_{n+r}-a_{n}
$$

The powers of Δ_{r} are defined by $\Delta_{r}^{0}:=i d$ and $\Delta_{r}^{k}:=\Delta_{r} \circ \Delta_{r}^{k-1}$ for $k \geq 1$.
Proposition 3.6. Let n and k be positive integers and let c be also a positive integer divisible by $p^{e}(p-1)(e \geq 0)$. Then we obtain, for the sequence $\left\{H_{n, \chi}(u)\right\}$ in the field $\mathbb{Q}_{p}(u)$,

$$
\Delta_{c}^{k} H_{n, \chi}(u) \equiv 0 \quad\left(\bmod p^{M}\right)
$$

where $M:=\min \{n, k(e+1)\}$.
Proof. By making use of (3.9), it follows that

$$
\begin{aligned}
\Delta_{c}^{k} H_{n, \chi}(u) & =\Delta_{c}^{k} \lim _{N \rightarrow \infty} \frac{1-u^{f}}{1-u^{f p^{N}}} \sum_{b=0}^{f p^{N}-1} \chi(b) b^{n} u^{f p^{N}-1-b} \\
& =\lim _{N \rightarrow \infty} \frac{1-u^{f}}{1-u^{f p^{N}}} \sum_{b=0}^{f p^{N}-1} u^{f p^{N}-1-b} \Delta_{c}^{k} \chi(b) b^{n} \\
& =\lim _{N \rightarrow \infty} \frac{1-u^{f}}{1-u^{f p^{N}}} \sum_{b=0}^{f p^{N}-1} u^{f p^{N}-1-b} \chi(b) b^{n} \sum_{i=0}^{k}\binom{k}{i} b^{i c}(-1)^{k-i} \\
& =\lim _{N \rightarrow \infty} \frac{1-u^{f}}{1-u^{f p^{N}}} \sum_{b=0}^{f p^{N}-1} u^{f p^{N}-1-b} \chi(b) b^{n}\left(b^{c}-1\right)^{k}
\end{aligned}
$$

Noting that

$$
\begin{cases}p^{n} \mid b^{n} & \text { if } p \mid b \\ p^{k(e+1)} \mid\left(b^{c}-1\right)^{k} & \text { if } p \nmid b\end{cases}
$$

we get $\Delta_{c}^{k} H_{n, \chi}(u) \equiv 0\left(\bmod p^{M}\right)$, as desired.
Proposition 3.7. If $p-1 \mid n$ for $n \geq 1$, then

$$
H_{n, \chi}(u) \equiv \lim _{N \rightarrow \infty}\left(1-\chi(p) \frac{1-u^{f p^{N-1}}}{1-u^{f p^{N}}}\right) H_{0, \chi}(u) \quad(\bmod p)
$$

Proof. From (3.9), we have

$$
\begin{equation*}
H_{n, \chi}(u)=\lim _{N \rightarrow \infty} \frac{1-u^{f}}{1-u^{f p^{N}}} \sum_{b=0}^{f p^{N}-1} \chi(b) b^{n} u^{f p^{N}-1-b} \tag{3.11}
\end{equation*}
$$

For any $n \geq 1$ satisfying $p-1 \mid n$, it follows that

$$
\begin{aligned}
& \sum_{b=0}^{f p^{N}-1} \chi(b) b^{n} u^{f p^{N}-1-b} \\
& =\sum_{\substack{b=0 \\
(b, p) \neq 1}}^{f p^{N}-1} \chi(b) b^{n} u^{f p^{N}-1-b}+\sum_{\substack{b=0 \\
(b, p)=1}}^{f p^{N}-1} \chi(b) b^{n} u^{f p^{N}-1-b} \\
& \equiv \sum_{\substack{b=0 \\
(b, p)=1}}^{f p^{N}-1} \chi(b) u^{f p^{N}-1-b} \\
& \equiv \sum_{b=0}^{f p^{N}-1} \chi(b) u^{f p^{N}-1-b}-\sum_{j=0}^{f p^{N-1}-1} \chi(j p) u^{f p^{N}-1-j p} \\
& \equiv \sum_{k=0}^{p^{N}-1} \sum_{i=0}^{f-1} \chi(k f+i) u^{f p^{N}-1-k f-i}-\chi(p) \sum_{l=0}^{p^{N-1}-1} \sum_{i=0}^{f-1} \chi(l f+i) u^{f p^{N}-1-(l f+i) p} \\
& \equiv \frac{1-u^{f p^{N}}}{1-u^{f}} \sum_{i=0}^{f-1} \chi(i) u^{f-1-i}-\frac{1-u^{f p^{N-1}}}{1-u^{f}} \chi(p) \sum_{i=0}^{f-1} \chi(i) u^{f-1-i} \\
& \equiv \frac{1-u^{f p^{N}}}{1-u^{f}}\left(1-\frac{1-u^{f p^{N-1}}}{1-u^{f p^{N}}} \chi(p)\right) \sum_{i=0}^{f-1} \chi(i) u^{f-1-i} \quad(\bmod p) .
\end{aligned}
$$

So that, using the leading coefficient $H_{0, \chi}(u)=\sum_{i=0}^{f-1} \chi(i) u^{f-1-i}$ of $H_{n, \chi}(u, x)$, we can deduce from (3.11) that

$$
H_{n, \chi}(u) \equiv \lim _{N \rightarrow \infty}\left(1-\frac{1-u^{f p^{N-1}}}{1-u^{f p^{N}}} \chi(p)\right) H_{0, \chi}(u) \quad(\bmod p),
$$

which proves the proposition.

It seems that an explicit condition of u for which $H_{0, \chi}(u)$ does not vanish is unknown. About this topic, we do not enter into details, but it can be shown that if $|u| \geq 2$ or $|u| \leq \frac{1}{2}$, then $H_{0, \chi}(u) \neq 0$.

Acknowledgements. This research was supported in part by a grant of the Ministry of Education, Science and Culture of Japan, No. 21540026. The authors would like to express many thanks to the anonymous referee for his/her useful suggestions on various aspects of this paper.

References

[1] L. Carlitz, A note on Euler number and congruences, Nagoya Math. J. 7 (1954), 35-43.
[2] L. Carlitz, Arithmetic properties of generalized Bernoulli numbers, J. reine angew. Math. 202 (1959), 174-182.
[3] T. Kim, D. Kim and J. K. Koo, p-adic interpolating function associated with Euler numbers, J. Nonlinear Math. Phys. 14 (2007), no. 2, 250-257.
[4] M.-S. Kim, On Euler numbers, polynomials and related p-adic integrals, J. Number Theory 129 (2009), no. 9, 2166-2179.
[5] K. Kozuka, On linear combinations of p-adic interpolating functions for the Euler numbers, Kyushu J. Math. 54 (2000), no. 2, 403-421.
[6] K. Shiratani, On Euler numbers, Mem. Fac. Sci. Kyushu Univ. Ser. A 27 (1973), 1-5.
[7] K. Shiratani and S. Yamamoto, On a p-adic interpolation function for the Euler numbers and its derivatives, Mem. Fac. Sci. Kyushu Univ. Ser. A 39 (1985), no. 1, 113-125.
[8] H. Tsumura, On a p-adic interpolation of the generalized Euler numbers and its applications, Tokyo J. Math. 10 (1987), no. 2, 281-293.
[9] P. T. Young, Congruences for Bernoulli, Euler, and Stirling numbers, J. Number Theory 78 (1999), no. 2, 204-227.
T. Agoh, Dept. of Math., Tokyo U. of Science, Noda, Chiba 278-8510, Japan
agoh_takashi@ma.noda.tus.ac.jp
M. Yamanaka, Dept. of Math., Tokyo U. of Science, Noda, Chiba 278-8510, Japan yamanaka_masashi@ma.noda.tus.ac.jp

