
Ann. Sci. Math. Québec 34 (2010), no 1, 1–14

A STUDY OF FROBENIUS-EULER NUMBERS AND
POLYNOMIALS

TAKASHI AGOH AND MASASHI YAMANAKA

In honour of Paulo Ribenboim on the occasion of his 80th birthday.

RÉSUMÉ. Le but principal de cet article est d’étudier les propriétés de base des
polynômes et nombres de Frobenius-Euler, pour en tirer diverses formules de récur-
rence et de convolution, et de discuter d’une certaine congruence de type Kummer
permettant l’écriture de ces nombres au moyen de limites p-adiques.

ABSTRACT. The main purpose of this paper is to study the basic properties of
ordinary and generalized Frobenius-Euler numbers and polynomials, from which we
deduce various recurrence and convolution formulas and discuss a certain Kummer-
type congruence allowing the expression of these numbers by means of p-adic limits.

1. Introduction

The classical Euler numbers En and polynomials En(x), which are very important
in number theory, combinatorics and other branches of mathematics, are defined by,
respectively, the generating functions

(1.1)


F (t) :=

2
et + 1

=
∞∑
n=0

En
tn

n!
,

F (t, x) := F (t)ext =
∞∑
n=0

En(x)
tn

n!
·

These were extended by Frobenius in 1910 to the numbers Hn(u) and polynomials
Hn(u, x) associated to an algebraic number u 6= 1. The ordinary Frobenius-Euler num-
bers Hn(u) and the polynomials Hn(u, x) associated to u are defined by, respectively,
the generating functions

(1.2)


F (u, t) :=

1− u
et − u

=
∞∑
n=0

Hn(u)
tn

n!
,

F (u, t, x) := F (u, t)ext =
∞∑
n=0

Hn(u, x)
tn

n!
·

Reçu le 6 mai 2009 et, sous forme définitive, le 11 janvier 2010.
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As easily seen,

Hn(u−1, x) = (−1)nHn(u, 1− x) = (1− u)xn + (−1)nuHn(u, x)

and these numbers and polynomials satisfy the following recurrence relations. With the
initial conditions H0(u) = 1 and H0(u, x) = 1, we have for n ≥ 1,

(H(u) + 1)n = uHn(u),

(H(u) + x)n = Hn(u, x),

(H(u, x) + 1)n = uHn(u, x) + (1− u)xn.

Here we used the symbolic umbral notation, though we replaced Hk(u, x) by Hk(u, x)
and Hk(u) by Hk(u), after expanding in full by means of the binomial theorem.

Recently, the above numbers were further extended to the generalized Frobenius-
Euler numbers analogously to the generalized Bernoulli numbers (cf. [7]). Let χ be a
primitive Dirichlet character with conductor f = fχ. The generalized Frobenius-Euler
numbers Hn,χ(u) attached to an algebraic number u 6= 1 are defined by the generating
function

(1.3) Fχ(u, t) :=
f−1∑
a=0

(1− uf )χ(a)eatuf−1−a

eft − uf
=
∞∑
n=0

Hn,χ(u)
tn

n!
·

When χ = 1, we know Fχ(u, t) = F (u, t) and Hn,χ(u) = Hn(u).

Similarly to Hn(u, x), the generalized Frobenius-Euler polynomials, denoted by
Hn,χ(u, x), are defined by

(1.4) Fχ(u, t, x) := Fχ(u, t)ext =
∞∑
n=0

Hn,χ(u, x)
tn

n!
·

Then we can easily see that

(1.5)


Hn,χ(u, x) = (Hχ(u) + x)n :=

n∑
i=0

(
n

i

)
Hi,χ(u)xn−i,

Hn,χ(u, x+ y) = (Hχ(u, x) + y)n :=
n∑
i=0

(
n

i

)
Hi,χ(u, x)yn−i.

Basic and important properties of these numbers and polynomials were studied
by many mathematicians including Carlitz [1, 2], Kim [4], Shiratani [6], Tsumura [8],
Young [9] and others. Further, several types of p-adic analytic interpolation functions
associated withHn(u) andHn,χ(u) were constructed and their specific properties were
investigated by Kim et al. [3], Kozuka [5], Shiratani-Yamamoto [7] and Tsumura [8].

Throughout this paper, we denote by Q, C, Qp and Cp, with p a prime number,
the field of rational numbers, the complex number field, the field of p-adic rational
numbers and the p-adic completion of the algebraic closure Qp of Q, respectively. We
fix an embedding of the algebraic closure Q of Q into Cp. Also we denote by | · |p the
p-adic absolute value on Cp normalized by |p|p = p−1.
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The main purpose of this paper is to study basic properties of Frobenius-Euler
numbers and polynomials. In Section 2 we deduce various recurrence and convolu-
tion formulas for these numbers and polynomials. In Section 3 we discuss arithmetic
properties of generalized Frobenius-Euler numbers and derive a certain Kummer-type
congruence applying the expression of these numbers by means of p-adic limit.

2. Recurrence and convolution formulas

At first, we would like to present the most basic recurrence relations.

Proposition 2.1. For m,n ≥ 1,

(2.1) (Hχ(u)+mf)n−umfHn,χ(u) = (1−uf )
f−1∑
a=0

χ(a)
m−1∑
i=0

(if+a)nu(m−i)f−1−a.

In particular,

(2.2) (H(u) +m)n − umHn(u) = (1− u)
m−1∑
i=1

inum−1−i.

Proof. Consider the identity

Fχ(u, t)(emft − umf ) =

(
f−1∑
a=0

(1− uf )χ(a)eatuf−a−1

)(
m−1∑
i=0

eiftu(m−1−i)f

)

= (1− uf )
f−1∑
a=0

χ(a)
m−1∑
i=0

e(if+a)tu(m−i)f−1−a.

Then we have

(Hχ(u) +mf)n−umfHn,χ(u)

=
[
dn

dtn

(
Fχ(u, t)(emft − umf )

)]
t=0

= (1− uf )

[
dn

dtn

(
f−1∑
a=0

χ(a)
m−1∑
i=0

e(if+a)tu(m−i)f−1−a

)]
t=0

= (1− uf )
f−1∑
a=0

χ(a)
m−1∑
i=0

(if + a)nu(m−i)f−1−a,

which completes the proof of (2.1). Formula (2.2) is just a special case of χ = 1. �

For brevity, put for n, r ≥ 0,

bnr (u, f) :=
[
dn

dtn
(eft − uf )r

]
t=0

=
r∑
i=0

(−1)r−i
(
r

i

)
(if)nu(r−i)f ,

with the convention 00 = 1, and bnr (u) := bnr (u, 1).
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Proposition 2.2. For n, r ≥ 1, we have

(2.3)

n∑
i=0

(
n

i

)
bn−ir (u, f)Hi,χ(u)

= (1− uf )
f−1∑
a=0

χ(a)uf−1−a
n∑
i=0

(
n

i

)
an−ibir−1(u, f)

= (1− uf )
f−1∑
a=0

χ(a)
r−1∑
j=0

(−1)r−1−j
(
r − 1
j

)
(jf + a)nu(r−j)f−1−a,

and in particular,

(2.4)

n∑
i=0

(
n

i

)
bn−ir (u)Hi(u) = (1− u)bnr−1(u, 1)

= (1− u)
r−1∑
j=0

(
r − 1
j

)
jn(−u)r−1−j .

Proof. Consider the equality

Fχ(u, t)(eft − uf )r

=

(
(1− uf )

f−1∑
a=0

χ(a)eatuf−1−a

)
(eft − uf )r−1

= (1− uf )
f−1∑
a=0

χ(a)
r−1∑
j=0

(−1)r−1−j
(
r − 1
j

)
e(jf+a)tu(r−j)f−1−a.

Using this identity, we can obtain (2.3) by the same method as stated in the proof of
Proposition 2.1. The recurrence (2.4) is nothing but a special case when χ = 1. �

Let A(n, k), with n, k ≥ 0, be the Eulerian number defined by

A(n, k) :=
k∑
j=0

(−1)j
(
n+ 1
j

)
(k − j)n.

Using generalized binomial coefficients, these numbers appear in the expansion

xn =
n∑
k=0

A(n, k)
(
x+ n− k

n

)
, n = 0, 1, 2, . . . ,

and they satisfy, with the initial conditions A(0, 0) = 1, A(n, 0) = 0 for n > 0, and
A(n, k) = 0 for k > n,

(2.5)

{
A(n, k) = A(n, n− k + 1) with n, k ≥ 0,

A(n+ 1, k) = kA(n, k) + (n− k + 2)A(n, k − 1).
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Lemma 2.3. For n, g ≥ 1 and α ∈ C, we have

(2.6)
dn

dtn
1

egt − α
=

(−g)n
∑n

j=1A(n, j)αj−1e(n+1−j)gt

(egt − α)n+1
·

Proof. We shall give the proof by induction on n. By direct calculations, it is easy
to confirm that (2.6) is true for n = 1, 2. Assume that (2.6) holds for n = k. Denoting
by Pk(α, g, t) the numerator on the right-hand side of (2.6), in which we replaced n by
k, we have

dk+1

dtk+1

1
egt − α

=
d

dt

Pk(α, g, t)
(egt − α)k+1

=
P ′k(α, g, t)(e

gt − α)− Pk(α, g, t)(k + 1)gegt

(egt − α)k+2
,

where P ′k(α, g, t) := d
dtPk(α, g, t). Here the numerator becomes, by using (2.5),

P ′k(α, g, t)(e
gt − α)− Pk(α, g, t)(k + 1)gegt

=

(−g)k
k∑
j=1

(k + 1− j)gA(k, j)αj−1e(k+1−j)gt

 (egt − α)

−

(−g)k
k∑
j=1

A(k, j)αj−1e(k+1−j)gt

((k + 1)gegt
)

= (−g)k+1
k+1∑
i=1

(iA(k, i) + (k + 2− i)A(k, i− 1))αi−1e(k+2−i)gt

= (−g)k+1
k+1∑
i=1

A(k + 1, i)αi−1e(k+2−i)gt = Pk+1(α, g, t),

which shows that (2.6) holds for n = k + 1. �

For simplification, set{
P0(α, g) := 1,

Pr(α, g) := Pr(α, g, 0) = (−g)r
∑r

j=1A(r, j)αj−1 for r ≥ 1.

As explicit expressions of Hn,χ(u) and Hn(u), we can state the following.

Proposition 2.4. For n ≥ 0, we get

(2.7) Hn,χ(u) =
f−1∑
a=0

χ(a)uf−1−a
n∑
r=0

(
n

r

)
Pr(uf , f)an−r

(1− uf )r
,

and in particular H0(u) = 1 and for n ≥ 1,

(2.8) Hn(u) =
1

(u− 1)n

n∑
j=1

A(n, j)uj−1.
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Proof. By using Leibniz’s rule and Lemma 2.3, we obtain from the definition of
Fχ(u, t) in (1.3) that

Hn,χ(u) =
[
dn

dtn
Fχ(u, t)

]
t=0

= (1− uf )
f−1∑
a=0

χ(a)uf−1−a
[
dn

dtn
eat

eft − uf

]
t=0

= (1− uf )
f−1∑
a=0

χ(a)uf−1−a
n∑
r=0

(
n

r

)[
dr

dtr
1

eft − uf
· d

n−r

dtn−r
eat
]
t=0

= (1− uf )
f−1∑
a=0

χ(a)uf−1−a
n∑
r=0

(
n

r

)
Pr(uf , f)an−r

(1− uf )r+1

=
f−1∑
a=0

χ(a)uf−1−a
n∑
r=0

(
n

r

)
Pr(uf , f)an−r

(1− uf )r
,

and this implies (2.7). For (2.8), consider the special case with χ = 1. �

Incidentally, considering the special case where u = −1, we see that

tF (−1, t) =
2t

et + 1
=
∞∑
n=0

Gn
tn

n!
,

where the Gn’s are the Genocchi numbers. Let Bn be the Bernoulli number in the even
suffix notation defined by

t

et − 1
=
∞∑
n=0

Bn
n!
tn.

Then, noticing that Bn+1 = Gn+1 = En = 0 if n ≥ 2 is even, we obtain from (1.1)
and (2.8) the well-known formula

n∑
i=1

(−1)iA(n, i) =
2nGn+1

n+ 1
=

2n+1(1− 2n+1)Bn+1

n+ 1
= 2nEn.

The next proposition is a special (shortened) recurrence relation for ordinary Frobe-
nius-Euler numbers that allows, for any given k ≥ 1, to compute Hn+k(u) from
Hk(u), Hk+1(u), . . . ,Hk+n−1(u).

Proposition 2.5. For any n, k ≥ 1, we have

(2.9)
n∑
i=0

(
n

i

)
bn−ik+1(u)Hk+i(u) = (1− u)(−1)k

k∑
j=1

A(k, j)uj−1(k + 1− j)n.

Proof. Using Lemma 2.3, we have

(2.10) (et − u)k+1 d
k

dtk
F (u, t) = (1− u)(−1)k

k∑
j=1

A(k, j)uj−1e(k+1−j)t.
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Therefore it can be shown, by Leibniz’s rule, that[
dn

dtn

(
(et − u)k+1 d

k

dtk
F (u, t)

)]
t=0

=
n∑
i=0

(
n

i

)[
dn−i

dtn−i
(et − u)k+1 · d

k+i

dtk+i
F (u, t)

]
t=0

=
n∑
i=0

(
n

i

)
bn−ik+1(u)Hk+i(u),

and also dn
dtn

k∑
j=1

A(k, j)uj−1e(k+1−j)t


t=0

=
k∑
j=1

A(k, j)uj−1(k + 1− j)n,

which yield (2.9) in view of (2.10). �

Putting u = −1 in (2.9), we get a linear recurrence relation of arbitrary length for
Genocchi, Bernoulli and Euler numbers. Indeed, since A(k, j) = A(k, k + 1 − j) for
j = 1, 2, . . . , k,

n∑
i=0

(
n

i

)
bn−ik+1(−1)Hk+i(−1) = 2

k∑
j=1

(−1)k+j−1A(k, j)(k + 1− j)n

= 2
k∑
j=1

(−1)jA(k, j)jn,

where 
bmr (−1) =

r∑
j=0

(
r

j

)
jm,

Hr(−1) =
Gr+1

r + 1
=

2(1− 2r+1)Br+1

r + 1
= Er.

The following convolution identities for Frobenius-Euler numbers are the analogue
of some formulas of Euler for Bernoulli numbers and Euler numbers, namely

(B +B)n : =
n∑
i=0

(
n

i

)
BiBn−i = −nBn−1 − (n− 1)Bn,

(E + E)n : =
n∑
i=0

(
n

i

)
EiEn−i = 2(En + En+1).
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Proposition 2.6. Let n ≥ 1 and u 6= 0, 1. Then

(2.11)

(H(u) +H(u))n :=
n∑
i=0

(
n

i

)
Hi(u)Hn−i(u)

=
u− 1
u

(Hn(u) +Hn+1(u)) .

Proof. Considering the identity

(2.12) F (u, t)2 =
u− 1
u

(
F (u, t) +

d

dt
F (u, t)

)
,

we have, by Leibniz’s rule,

dn

dtn
F (u, t)2 =

n∑
i=0

(
n

i

)
di

dti
F (u, t) · d

n−i

dtn−i
F (u, t)

=
u− 1
u

(
dn

dtn
F (u, t) +

dn+1

dtn+1
F (u, t)

)
.

Here, setting t = 0, we get immediately (2.11). �

Similarly, as a convolution identity for Frobenius-Euler polynomials, we can state
the following.

Proposition 2.7. For n ≥ 1 and u 6= 0, 1, we have

(H(u, x) +H(u, x))n :=
n∑
i=0

(
n

i

)
Hi(u, x)Hn−i(u, x)

=
u− 1
u

((1− 2x)Hn(u, 2x) +Hn+1(u, 2x)) .

Proof. The proof can be given by a similar method to that of Proposition 2.6. That
is, instead of (2.12), considering the identity

F (u, t, x)2 =
u− 1
u

(
(1− 2x)F (u, t, 2x) +

d

dt
F (u, t, 2x)

)
,

we have only to carry out the same calculation as done above. �

3. Basic properties and Kummer-type congruence

In this section, we study basic properties of generalized Frobenius-Euler numbers
and polynomials and discuss a certain Kummer-type congruence on these numbers.

Proposition 3.1. We have

(3.1) Fχ(u, t, x) =
f−1∑
a=0

χ(a)uf−1−aF

(
uf , ft,

a+ x

f

)
,
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and therefore

(3.2) Hn,χ(u, x) = fn
f−1∑
a=0

χ(a)uf−1−aHn

(
uf ,

a+ x

f

)
.

Proof. From the definitions of F (u, t, x) in (1.2) and Fχ(u, t, x) in (1.4) we obtain,

since e(a+x)t = e
(a+x

f
)ft,

Fχ(u, t, x) =
f−1∑
a=0

χ(a)uf−1−a (1− uf )e(
a+x

f
)ft

eft − uf

=
f−1∑
a=0

χ(a)uf−1−aF

(
uf , ft,

a+ x

f

)
,

which proves (3.1). To prove (3.2), compare the coefficient of tn on both sides of this
equality. �

Setting x = 0 in (3.2), we obtain immediately

Hn,χ(u) = fn
f−1∑
a=0

χ(a)uf−1−aHn

(
uf ,

a

f

)
.

As a symmetric property of Fχ(u, t, x), we can state the following.

Proposition 3.2. If χ 6= 1, then

(3.3) Fχ(u,−t,−x) = χ(−1)uf−2Fχ(u−1, t, x),

and hence

(3.4) (−1)nHn,χ(u,−x) = χ(−1)uf−2Hn,χ(u−1, x).

Proof. From the definition of Fχ(u, t, x) in (1.4), we have, since χ(k) = χ(m) if
k ≡ m (mod f),

Fχ(u,−t,−x) =
f−1∑
a=0

(1− uf )χ(a)e(x−a)tuf−1−a

e−ft − uf

=
f−1∑
a=0

(1− u−f )χ(a)e(f−a+x)tuf−1−a

eft − u−f

=
f−1∑
a=0

(1− u−f )χ(−1)χ(f − a)e(f−a+x)tuf−1−a

eft − u−f

=
f∑
b=1

(1− u−f )χ(−1)χ(b)e(b+x)tub−1

eft − u−f

= χ(−1)uf−2
f∑
b=1

(1− u−f )χ(b)e(b+x)tu−(f−1−b)

eft − u−f

= χ(−1)uf−2Fχ(u−1, t, x),
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which proves (3.3). Also, comparing the coefficient of tn on both sides of this equality,
we can deduce (3.4). �

Proposition 3.3. For any l ≥ 1, we have

(3.5) Fχ(u, t, x−(l−1)f)−ufFχ(u, t, x−lf) = (1−uf )
f−1∑
a=0

χ(a)uf−1−ae(a+x−lf)t,

hence

(3.6)

Hn,χ(u, x− (l − 1)f)− ufHn,χ(u, x− lf)

= (1− uf )
f−1∑
a=0

χ(a)uf−1−a (a+ x− lf)n .

Proof. From the definition of Fχ(u, t, x) we have

Fχ(u, t, x− (l − 1)f)−ufFχ(u, t, x− lf)

=
f−1∑
a=0

(1− uf )χ(a)e(a+x−(l−1)f)tuf−1−a

eft − uf

− uf
f−1∑
a=0

(1− uf )χ(a)e(a+x−lf)tuf−1−a

eft − uf

=
f−1∑
a=0

(1− uf )χ(a)e(a+x−lf)tuf−1−a

eft − uf
(eft − uf )

= (1− uf )
f−1∑
a=0

χ(a)uf−1−ae(a+x−lf)t,

which implies (3.5). Also (3.6) follows from (3.5) by equating the coefficient of tn. �

Proposition 3.4. Let χ 6= 1. For any k ≥ 1, we have

(3.7) Hn,χ(u, kf)− ukfHn,χ(u) = (1− uf )
kf−1∑
b=0

χ(b)bnukf−1−b.

Proof. In particular, set x = (l + i− 1)f for i ≥ 1 in (3.6). Then we obtain

(3.8)

Hn,χ(u, if)− ufHn,χ(u, (i− 1)f)

= (1− uf )
f−1∑
a=0

χ(a)uf−1−a(a+ (i− 1)f)n.
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Making use of (3.8) with i = 1, 2, . . . , k, it follows that, since Hn,χ(u) = Hn,χ(u, 0),

Hn,χ(u, kf)− ukfHn,χ(u)

=
k∑
i=1

u(k−i)f
(
Hn,χ(u, if)− ufHn,χ(u, (i− 1)f)

)

= (1− uf )
f−1∑
a=0

k∑
i=1

u(k−i+1)f−1−aχ(a+ (i− 1)f)(a+ (i− 1)f)n

= (1− uf )
kf−1∑
b=0

χ(b)bnukf−1−b,

which completes the proof of (3.7). �

Here and in what follows, we assume that u is algebraic over Qp with |1−uf |p ≥ 1.
The next proposition was already shown by Tsumura [8], however we will give here
another proof based on (3.7).

Proposition 3.5. In the field Qp(u),

(3.9)
u

1− uf
Hn,χ(u) = lim

N→∞

fpN−1∑
b=0

χ(b)bn
ufp

N−b

1− ufpN ,

where the limit on the right-hand side means p-adic limit.

Proof. Put k = pN in (3.7). Hence

(3.10) Hn
χ(u, pNf)− upNfHn,χ(u) = (1− uf )

pNf−1∑
b=0

χ(b)bnup
Nf−1−b.

From (1.5), the left-hand side of (3.10) becomes

Hn,χ(u, pNf)− upNfHn,χ(u) = (1− upNf )Hn,χ(u) +
n−1∑
i=0

(
n

i

)
Hi,χ(u)(pNf)n−i,

and then (3.10) gives

u

1− uf
Hn,χ(u) =

fpN−1∑
b=0

χ(b)bn
ufp

N−b

1− ufpN

− u

(1− uf )(1− ufpN )

n−1∑
i=0

(
n

i

)
Hi,χ(u)(pNf)n−i.

Since |1− uf |p ≥ 1 implies |1− ufpN |p ≥ 1 for any N ≥ 1 and limN→∞ p
N = 0, we

get

u

1− uf
Hn,χ(u) = lim

N→∞

fpN−1∑
b=0

χ(b)bn
ufp

N−b

1− ufpN ,

which completes the proof. �
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In the following proposition, we want to deduce a general form of Kummer-type
congruence for generalized Frobenius-Euler numbers referring to the same method as
mentioned in [6]. It should be noted that, using properties of p-adic integrals and mea-
sures, more general and stronger Kummer-type congruences for these and other related
numbers have been already obtained by Young [9].

Given a sequence {an}, let ∆r be a linear difference operator defined by

∆ran := an+r − an.

The powers of ∆r are defined by ∆0
r := id and ∆k

r := ∆r ◦∆k−1
r for k ≥ 1.

Proposition 3.6. Let n and k be positive integers and let c be also a positive integer
divisible by pe(p−1) (e ≥ 0). Then we obtain, for the sequence {Hn,χ(u)} in the field
Qp(u),

∆k
cHn,χ(u) ≡ 0 (mod pM ),

where M := min{n, k(e+ 1)}.

Proof. By making use of (3.9), it follows that

∆k
cHn,χ(u) = ∆k

c lim
N→∞

1− uf

1− ufpN

fpN−1∑
b=0

χ(b)bnufp
N−1−b

= lim
N→∞

1− uf

1− ufpN

fpN−1∑
b=0

ufp
N−1−b∆k

cχ(b)bn

= lim
N→∞

1− uf

1− ufpN

fpN−1∑
b=0

ufp
N−1−bχ(b)bn

k∑
i=0

(
k

i

)
bic(−1)k−i

= lim
N→∞

1− uf

1− ufpN

fpN−1∑
b=0

ufp
N−1−bχ(b)bn(bc − 1)k.

Noting that {
pn | bn if p | b,

pk(e+1) | (bc − 1)k if p - b,

we get ∆k
cHn,χ(u) ≡ 0 (mod pM ), as desired. �

Proposition 3.7. If p− 1 | n for n ≥ 1, then

Hn,χ(u) ≡ lim
N→∞

(
1− χ(p)

1− ufpN−1

1− ufpN

)
H0,χ(u) (mod p).

Proof. From (3.9), we have

(3.11) Hn,χ(u) = lim
N→∞

1− uf

1− ufpN

fpN−1∑
b=0

χ(b)bnufp
N−1−b.
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For any n ≥ 1 satisfying p− 1 | n, it follows that

fpN−1∑
b=0

χ(b)bnufp
N−1−b

=
fpN−1∑
b=0

(b,p) 6=1

χ(b)bnufp
N−1−b +

fpN−1∑
b=0

(b,p)=1

χ(b)bnufp
N−1−b

≡
fpN−1∑
b=0

(b,p)=1

χ(b)ufp
N−1−b

≡
fpN−1∑
b=0

χ(b)ufp
N−1−b −

fpN−1−1∑
j=0

χ(jp)ufp
N−1−jp

≡
pN−1∑
k=0

f−1∑
i=0

χ(kf + i)ufp
N−1−kf−i − χ(p)

pN−1−1∑
l=0

f−1∑
i=0

χ(lf + i)ufp
N−1−(lf+i)p

≡ 1− ufpN

1− uf
f−1∑
i=0

χ(i)uf−1−i − 1− ufpN−1

1− uf
χ(p)

f−1∑
i=0

χ(i)uf−1−i

≡ 1− ufpN

1− uf

(
1− 1− ufpN−1

1− ufpN χ(p)

)
f−1∑
i=0

χ(i)uf−1−i (mod p).

So that, using the leading coefficient H0,χ(u) =
∑f−1

i=0 χ(i)uf−1−i of Hn,χ(u, x), we
can deduce from (3.11) that

Hn,χ(u) ≡ lim
N→∞

(
1− 1− ufpN−1

1− ufpN χ(p)

)
H0,χ(u) (mod p),

which proves the proposition. �

It seems that an explicit condition of u for which H0,χ(u) does not vanish is un-
known. About this topic, we do not enter into details, but it can be shown that if |u| ≥ 2
or |u| ≤ 1

2 , then H0,χ(u) 6= 0.
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