A CUBIC EXTENSION OF THE LUCAS FUNCTIONS

Siguna MÜLLER, ERIC ROETTGER And Hugh C. WILLIAMS

Dedicated to Paulo Ribenboim on the occasion of his 80th birthday.

RÉSUMÉ. Entre 1876 et 1878 , Lucas développa la théorie des fonctions V_{n} et U_{n} qui portent aujourd'hui son nom. Il s'intéressa beaucoup aux moyens de montrer la primalité de certains grands nombres premiers à l'aide de ces fonctions, et parvint, en particulier, à prouver que $2^{127}-1$ est un nombre de Mersenne premier. Si V_{n} et U_{n} s'expriment en fonction des puissances n-ièmes des zéros d'un polynôme quadratique, on trouve à travers les écrits de Lucas des allusions répétées à l'étude de fonctions qui puissent généraliser les fonctions V_{n} et U_{n} et s'exprimer à l'aide des puissances n ièmes des racines d'un polynôme cubique.

Dans cet article, nous présentons deux fonctions qui s'expriment simplement à l'aide de certains polynômes symétriques des racines des zéros d'un polynôme de degré 3 , et dont les propriétés semblent en accord avec la théorie que Lucas avait envisagée. Ainsi, nous établissons clairement que les aspects combinatoires et arithmétiques de nos fonctions étendent la théorie classique de Lucas, et développons aussi des résultats nouveaux qui illustrent davantage la remarquable analogie entre nos fonctions et les fonctions V_{n} et U_{n} de Lucas. Aussi nous mettrons en évidence le fait que, bien que Lucas n'ait probablement jamais développé la théorie que nous exposons ici, les moyens mathématiques étaient néanmoins à sa disposition et à sa portée.

AbSTRACT. From 1876 to 1878 , Lucas developed his theory of the functions V_{n} and U_{n}, which now bear his name. He was particularly interested in how these functions could be employed in proving the primality of certain large integers, and as part of his investigations he succeeded in demonstrating that the Mersenne number $2^{127}-1$ is a prime. The functions V_{n} and U_{n} can be expressed in terms of the n-th powers of the zeros of a quadratic polynomial, and throughout his writings Lucas speculated about the possible extension of these functions to those which could be expressed in terms of the n-th powers of the zeros of a cubic polynomial.

In this paper we discuss a pair of functions that are easily expressed as certain symmetric polynomials of the zeros of a cubic polynomial. We show how their properties seem to underlie the theory that Lucas was seeking. We do this by deriving a number of results which show how the combinatorial and arithmetic aspects of these functions provide an extension of Lucas's theory. Furthermore, we develop many new results, which illustrate the striking analogy between our functions and those of Lucas. We also argue that, while Lucas very likely never developed this theory, it was certainly within his abilities to do so.

1. Introduction

The present paper is a condensed version of the results in [Roe09], a 218 page thesis devoted to developing the properties of two functions analogous to the wellknown functions of Lucas. As such, much detail has been omitted, including many lengthy proofs. The interested reader can find full details in the original work. In several of Lucas's works concerning the development of the theory of his functions, (see Section 1.2 of [Roe09] for full details), he mentioned the possibility of extending his theory. It seems, however, that he never succeeded in doing this. The main tools employed in our investigation into this problem would have been known to Lucas. For example, he would have needed the fundamental theorem of symmetric polynomials, but he indicated in several places (see, for example, Section 21 of [Luc78]), that he was well aware of this result. We will make a great deal of use of Waring's theorem, but this was described in great detail by Lucas in Chapter XV of [Luc91b]. We will also use the theory of finite fields, but this would have been known (at least the amount that he would need) to Lucas through the second volume of Serret's Cours d'Algèbre supérieure [Ser79], with which Lucas was quite familiar (see p. vii of [Luc91b]). To develop our law of repetition, we require a small amount of algebraic number theory to prove Theorem 5.7. Lucas might have been aware of some of this material because he claims in part CLIX of [Luc80] that he was working, together with M. Tastavin, on producing a French translation of the third edition of Dirichlet-Dedekind's Vorlesungen über die Zahlentheorie. Unfortunately, this volume never appeared, but the result that we need could easily have been deduced by Lucas, even though his proof might not have been completely rigorous. In the Appendix of [Roe09], we provide an alternate, more elementary proof of Theorem 5.7, which Lucas could have been able to deduce. We also make use of derivatives to establish a certain identity that will be useful in our investigation into the law of repetition, but Lucas often did this himself (see, for example, Section XVII of [Luc78]).

The result of this work is a fairly complete cubic generalization of the theory of the Lucas functions. In the next section we list the most important properties of the Lucas functions. In the succeeding sections we will develop analogues of all of these results in our cubic extension of Lucas's functions.

2. Lucas sequences

Given the polynomial $x^{2}-P x+Q$, where P and Q are coprime integers, the Lucas functions U_{n} and V_{n} are defined by

$$
U_{n}=U_{n}(P, Q)=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta)
$$

and

$$
V_{n}=V_{n}(P, Q)=\alpha^{n}+\beta^{n},
$$

where α and β are the zeros of the given polynomial. Further let

$$
\Delta=\delta^{2}=(\alpha-\beta)^{2}=P^{2}-4 Q
$$

2.1. Identities

Lucas sequences satisfy many well-known identities, several of which will be mentioned herein. For further information the reader is referred to standard works such as [Wil98] and [Rib89].

For a fixed m, both U_{n} and V_{n} satisfy the following recurrence relation

$$
\begin{equation*}
X_{n+2 m}=V_{m} X_{n+m}-Q^{m} X_{n} \tag{1}
\end{equation*}
$$

where $U_{0}=0, U_{1}=1, V_{0}=2$ and $V_{1}=P$. Further, we have:

$$
\begin{align*}
& U_{n+m}=V_{m} U_{n}-Q^{m} U_{n-m}, \tag{2}\\
& V_{n+m}=V_{m} V_{n}-Q^{m} V_{n-m}, \tag{3}\\
& 2 U_{m+n}=V_{m} U_{n}+U_{m} V_{n} \tag{4}\\
& 2 V_{m+n}=V_{m} V_{n}+\Delta U_{m} U_{n}, \tag{5}\\
& 2 Q^{m} U_{n-m}=U_{n} V_{m}-V_{n} U_{m}, \tag{6}\\
& 2 Q^{m} V_{n-m}=V_{n} V_{m}-\Delta U_{n} U_{m}, \tag{7}\\
& U_{n+m}=V_{n} U_{m}+Q^{m} U_{n-m}, \tag{8}\\
& V_{m+n}=\Delta U_{n} U_{m}+Q^{m} V_{n-m}, \tag{9}\\
& V_{n}^{2}-\Delta U_{n}^{2}=4 Q^{n} \tag{10}\\
& U_{2 n}=V_{n} U_{n} \tag{11}\\
& V_{2 n}=V_{n}^{2}-2 Q^{n}=\Delta U_{n}^{2}+2 Q^{n} . \tag{12}
\end{align*}
$$

Furthermore:

$$
\begin{align*}
2^{m-1} U_{m n} & =\sum_{i=0}^{\lfloor(m-1) / 2\rfloor}\binom{m}{2 i+1} \Delta^{i} U_{n}^{2 i+1} V_{n}^{m-2 i-1}, \tag{13}\\
2^{m-1} V_{m n} & =\sum_{i=0}^{\lfloor m / 2\rfloor}\binom{m}{2 i} \Delta^{i} U_{n}^{2 i} V_{n}^{m-2 i} .
\end{align*}
$$

2.2. Arithmetic results

The identities from the previous section may be employed to construct arithmetic results for Lucas sequences. Most of the results provided below were known to Lucas, but some such as Theorems 2.4 and 2.15 were not. As is usual, we denote the greatest common divisor of a and b by (a, b) and the least common multiple of a and b by $[a, b]$. It is well-known that

$$
\begin{equation*}
\left(U_{n}, V_{n}\right) \mid 2, \quad \text { for } n \geq 0, \tag{15}
\end{equation*}
$$

and

$$
\left(U_{n}, Q\right)=\left(V_{n}, Q\right)=1, \quad \text { for } n \geq 1
$$

Furthermore, it is not difficult to show that $\left\{U_{n}\right\}$ is a divisibility sequence, i.e.,

$$
U_{m} \mid U_{n}, \quad \text { when } \quad m \mid n
$$

Definition 2.1. Given $m \in \mathbb{Z}$, let ω be the least positive integer, if it exists, such that $m \mid U_{\omega}$. This value is called the rank of apparition of m, denoted by $\omega(m)$.

Theorem 2.2. Let $(Q, m)=1$ and $\omega=\omega(m)$. If $m \mid U_{n}$ for some $n>0$, then $\omega \mid n$.

Corollary 2.3. If $m, n>0$ and $d=(m, n)$, then

$$
\left(U_{m}, U_{n}\right)=\left|U_{d}\right| .
$$

The following theorem is a result of Carmichael, and may be found as a corollary to Theorem 17 in [Car13].

Theorem 2.4. If $m, n \geq 1$, then

$$
\left(U_{m n} / U_{n}, U_{n}\right) \mid m
$$

We are often interested in values of n for which a prime p divides U_{n}. It will be assumed that $p \nmid Q$. Notice that if $p \mid Q$, then $p \nmid P$ and

$$
U_{n} \equiv P^{n-1} \quad(\bmod p)
$$

Thus, $p \mid U_{0}$ and $p \nmid U_{n}$ for $n \geq 1$. The following theorem provides us with what is called the law of repetition for a prime p.

Theorem 2.5. If p is a prime and, for $\lambda>0$, we have $p^{\lambda} \neq 2$ and $p^{\lambda} \| U_{n}$, then $p^{\lambda+1} \| U_{p n}$. If $p^{\lambda}=2$, then $p^{\lambda+1} \mid U_{p n}$.

Definition 2.6. Let $\epsilon(n)$ be the Jacobi symbol (Δ / n).
The following theorem is called the law of apparition for a prime p. Let $\epsilon=\epsilon(p)$ for the remainder of the section.

Theorem 2.7. If p is a prime such that $p \nmid 2 Q$, then $V_{p-\epsilon} \equiv 2 Q^{(1-\epsilon) / 2}(\bmod p)$ and $p \mid U_{p-\epsilon}$, that is, $\omega(p) \mid p-\epsilon$.

We have similar arithmetic results for $\left\{V_{n}\right\}$; many of these were possibly not known to Lucas, but might have appeared in the subsequent literature (see, for example, [Mül01]). In any event, we make no claims of originality of these results.

It is known that $\left\{U_{n}\right\}$ is a divisibility sequence, but this is not necessarily true for $\left\{V_{n}\right\}$; however, we have the following weaker results provided by the next two theorems.

Theorem 2.8. If $m \mid n$ and $2 \nmid \frac{n}{m}$, then $V_{m} \mid V_{n}$.
Theorem 2.9. If $m \mid n$ and $2 \left\lvert\, \frac{n}{m}\right.$, then $\left(V_{m}, V_{n}\right) \mid 2$.
The rank of apparition has been introduced for $\left\{U_{n}\right\}$, and we might expect to have something similar for $\left\{V_{n}\right\}$. But the situation may exist where $r \nmid V_{n}$ for every $n \in \mathbb{Z}$, hence the following modified definition for the $\left\{V_{n}\right\}$ case is needed.

Definition 2.10. Suppose that $r \mid V_{n}$, with $n>0$. Denote by $\rho(r)$ the least positive integer ρ such that $r \mid V_{\rho}$.

Theorem 2.11. If $r \mid V_{n}$ for some $n>0$, then $\rho(r) \mid n$.
Theorem 2.12. If $2^{\mu} \| m$ and $2^{\mu} \| n$, then $\left(V_{m}, V_{n}\right)=\left|V_{(m, n)}\right|$.
Theorem 2.13. If $2^{\mu} \| m$ and $2^{\nu} \| n(\mu \neq \nu)$, then $\left(V_{m}, V_{n}\right) \mid 2$.

The short theorem below, which was known to Lucas, is of interest because it was the fundamental result that he required to establish his test for the primality of Mersenne numbers.

Theorem 2.14. If p is an odd prime and $p \mid V_{n}$, then $p \equiv \pm 1\left(\bmod 2^{\nu+1}\right)$, where $2^{\nu} \| n$.

We know, by Theorem 2.7, that for a prime p where $p \nmid 2 \Delta Q$, we have $p \mid U_{p-\epsilon}$. Thus, $U_{p-\epsilon}=U_{\frac{p-\epsilon}{2}} V_{\frac{p-\epsilon}{2}}$ and so $p \left\lvert\, U_{\frac{p-\epsilon}{2}}\right.$ or $p \left\lvert\, V_{\frac{p-\epsilon}{2}}\right.$, but not both. The question of which one is divisible by p is answered by the following theorem, called Euler's criterion for the Lucas functions. This result was not known to Lucas and was first proved in a more general setting by Lehmer [Leh30].

Theorem 2.15. If p is a prime such that $p \nmid 2 \Delta Q$, then
(a) $p \left\lvert\, U_{\frac{p-\epsilon}{2}}\right.$ if and only if $(Q / p)=1$,
(b) $p \left\lvert\, V_{\frac{p-\epsilon}{2}}\right.$ if and only if $(Q / p)=-1$.

2.3. Primality testing

Lucas's main purpose for his investigation into the sequences now named for him was to find new methods for the discovery of primes. This can be seen in the following result, which Lucas called his fundamental theorem.

Theorem 2.16. Suppose that N is an odd integer. Let $T=T(N)=N+1$ or $T=T(N)=N-1$. If $N \mid U_{T}$, but $N \nmid U_{T / d}$ for all d such that $d<T$ and $d \mid T$, then N is a prime.

It was Lehmer [Leh27], who realized that this theorem could be rewritten as follows.

Theorem 2.17. Suppose that N is an odd integer. Let $T=T(N)=N+1$ or $T=T(N)=N-1$. If $N \mid U_{T}$, but $N \nmid U_{T / q}$ for each prime divisor q of T, then N is a prime.

We also have the following corollary.
Corollary 2.18. Suppose that N is an odd integer and $T=T(N)=N+1$ or $T=T(N)=N-1$. If $N \mid U_{T}$ and $N \mid U_{T} / U_{T / q}$ for each prime divisor q of T, then N is a prime.

The following theorem is called the Lucas-Lehmer theorem. Lucas used a result similar to this one to implement a primality test for Mersenne numbers.

Theorem 2.19. If $N=A 2^{n}-1, n \geq 3,0<A<2^{n}, 2 \nmid A$, and the Jacobi symbols $(\Delta / N)=(Q / N)=-1$, then N is a prime if and only if

$$
N \left\lvert\, V_{\frac{N+1}{2}}(P, Q)\right. \text {. }
$$

Corollary 2.20. Suppose that $A=1$ and $2 \nmid n$, with $n \geq 3$. Put $Q=-2$ and $P \equiv 2(\bmod N)$. Then N is a prime if and only if

$$
N \left\lvert\, V_{\frac{N+1}{2}}(2,-2) .\right.
$$

Put $S_{0}=4$ and $S_{j+1}=S_{j}^{2}-2$. Then

$$
N \left\lvert\, V_{\frac{N+1}{2}}(2,-2)\right. \text { if and only if } N \mid S_{n-2},
$$

as

$$
V_{2^{j}}(2,-2)=2^{2^{j-1}} S_{j-1} .
$$

Thus, if N is a Mersenne number, we have that N is a prime if and only if $N \mid S_{n-2}$. It is this corollary that provides an efficient test for Mersenne primes; for further information see [Leh35].

We conclude this chapter by characterizing all the values of P and Q modulo a prime $p \equiv-1(\bmod 4)$ for which $\left(\frac{\Delta}{p}\right)=\left(\frac{Q}{p}\right)=-1$. We use the notation $\bar{\alpha}$ to denote the conjugate of α in $\mathbb{Q}(\sqrt{\Delta})$ and we use $N(\alpha)=\alpha \bar{\alpha}$ to denote the norm of α and $\operatorname{Tr}(\alpha)=\alpha+\bar{\alpha}$ to denote the trace of α.

Theorem 2.21. Let p be a prime such that $p \equiv-1(\bmod 4)$. There exist P and Q such that $\left(\frac{\Delta}{p}\right)=\left(\frac{Q}{p}\right)=-1$ if and only if $Q \equiv N(\lambda)$ and $P \equiv \operatorname{Tr}(\lambda)(\bmod p)$, where $\lambda \in \mathbb{Z}[i]$ and $\left(\frac{N(\lambda)}{p}\right)=-1$.

3. The problem

3.1. Introduction

From 1876 until about 1880, Édouard Lucas discovered many properties of his functions. Indeed, it was during this period that he used these properties to develop tests for the primality of large integers. These tests were usually sufficiency tests, which could be used to prove whether a number N of a certain special form is a prime. As Lucas well realized, these tests were quite novel for their time, because instead of having to try divide N by a large number of integers, for example all the primes less than \sqrt{N}, it was only necessary to compute some integer S and test whether $N \mid S$.

Throughout his several papers on U_{n} and V_{n}, Lucas alluded to the problem of extending or generalizing these functions and offered various suggestions by which this might be done. However, in spite of these ideas, he seems never to have produced any consistent theory that was analogous to his work on the Lucas functions.

On examining the material in [Luc76], [Luc78], [Luc80], [Luc91a] and [Luc91b], we note several properties of Lucas's investigation into his functions and those that he might have considered as proper generalizations. We certainly see that he was interested in functions satisfying linear recurring sequences; these functions should be symmetric functions of the zeros of a defining polynomial with rational (in practice, usually integral) coefficients, and there is more than one function to be considered. He seems to have been particularly interested in defining polynomials of degree three or four. He indicated the need to find addition and multiplication formulas involving these functions; this is certainly what he did in order to prove the many properties of his own functions. His method of approach was to use empirical techniques to attempt to elucidate what the laws of apparition and repetition for these functions would be, and from this material he should be able, as he did in the case of U_{n} and V_{n}, to derive primality testing algorithms.

Laisant raised the intriguing possibility, through a question in L'Intermédiaire des mathématiciens [Lai96], that Lucas was considering three functions that were symmetric functions of α, β and γ, one of which was $S_{n}=\alpha^{n}+\beta^{n}+\gamma^{n}$; what were the other two functions? In his attempt to interpret Lucas's writings, Bell [Bel24] considered three functions, which he denoted as x_{n}, y_{n}, z_{n}. These can be most easily described by the equation

$$
\alpha^{n}=x_{n}+y_{n} \alpha+z_{n} \alpha^{2},
$$

with similar expressions involving β and γ. Clearly, these functions are symmetric functions of α, β, γ. However, none of these functions is S_{n}; furthermore, these functions were known to Lucas (see pp. 305-306 of [Luc91b]), who mentioned them in a more general context without further comment. If these were the functions he was thinking about, it seems peculiar that he would not have mentioned something about them. Further properties of x_{n}, y_{n} and z_{n} were discussed by Ward [War31a] and Mendelsohn [Men62].

It is possible that Lucas had intended to publish his findings concerning the extension of his functions in one of the later volumes of Théorie des nombres. We know that he was considering the publication of additional books in this series (see the latter part of Chapter 6 of [Déc99]), and Harkin [Har57] has pointed out a short table of contents for Volume II: Divisibility and Algebraic Irreducibility, Binomial Congruences and Primitive roots. However, in response to a question raised by G. de Rocquigny concerning the possible appearance of the second and third volumes of Théorie des nombres, Delannoy, Laisant and Lemoine [DLL95] replied:

> A careful examination of the papers left by Ed. Lucas has led us to this conclusion, that contrary to our first hopes, it would be very difficult to publish a continuation to the Théorie des nombres, of which only the first volume has appeared.

In spite of the lack of information concerning it, the problem of extending or generalizing the Lucas functions has inspired a great deal of work. Some early attempts at this are mentioned in Chapter XVII of the first volume of [Dic19]. In the next section, we will briefly describe some of these and some of the more modern investigations into this problem.

3.2. Previous extensions of the Lucas functions

One of the earliest attempts to extend the Lucas functions was done in 1880 by de Longchamps [dL80]. If we put $R=\alpha \beta \gamma$, where α, β and γ are the zeros of a cubic polynomial $f(x)$, de Longchamps considered D_{n}, E_{n} and A_{n} (this is, in fact, a modification of the original de Longchamps notation, as we have replaced his S_{n} by A_{n}) where

$$
\left\{\begin{array}{l}
R^{n} D_{n}=\left(\alpha^{n}+\beta^{n}\right)\left(\beta^{n}+\gamma^{n}\right)\left(\gamma^{n}+\alpha^{n}\right) \\
R^{n} E_{n}=\frac{\left(\alpha^{n}-\beta^{n}\right)\left(\beta^{n}-\gamma^{n}\right)\left(\gamma^{n}-\alpha^{n}\right)}{(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)} \\
A_{n}=\alpha^{n}+\beta^{n}+\gamma^{n}
\end{array}\right.
$$

to be the degree three recurring function analogs of the Lucas functions. Are these the three functions to which Laisant was referring? They would certainly have been
known to Lucas because he was the session chair for the talk in which de Longchamps presented his results. In fact, de Longchamps showed how to express D_{n} and E_{n} in terms of the coefficients of $f(x)$. However, Lucas would likely not have been comfortable with the fact that the first two of these functions are not necessarily integral. Also, in [Luc78], Lucas had certainly mentioned a more general version of the function $\Delta\left(\alpha^{n}, \beta^{n}, \gamma^{n}\right) / \Delta(\alpha, \beta, \gamma)$ that de Longchamps denoted by $R^{n} E_{n}$. This seems to be all that de Longchamps wrote concerning this topic because the list of his papers in [Laz07] does not contain any other paper devoted to this subject.

Lehmer [Leh30] extended the Lucas functions by replacing the parameter P by \sqrt{R}, where R is an integer coprime to Q; however, the resulting sequences are no longer integers for all n. Lehmer's functions were later generalized by Williams [Wil76], but in spite of the successes of the theory of Lehmer's extension and its generalization, there is no reason to believe that this was the direction in which Lucas was looking to extend his functions.

Carmichael [Car20], Ward [War31b, War31c, War33, War36, War37, War55] and Engstrom [Eng31] investigated the arithmetical theory of linear recurring sequences, but they did not produce a set of functions which were analogous to Lucas's functions U_{n} and V_{n}. One of the most important properties of Lucas's function U_{n} is that it satisfies the condition of being a divisibility sequence; that is, the sequence of integers $\left\{U_{n}\right\}$, with $n>0$, is such that if $m \mid n$, then $U_{m} \mid U_{n}$. Lucas was very aware of this property of U_{n} and made heavy use of it in developing his theory.

Williams [Wil69, Wil72a, Wil77] generalized the Lucas functions, but while his functions satisfy a linear recurrence, they are not symmetric functions of the zeros of a polynomial $f(x)$. Furthermore, they are not always integers unless the coefficients of $f(x)$ obey certain properties. Again, these functions do not seem to be those for which Lucas was searching.

Ballot [Bal99] developed a generalization which, for cubics $f(x)$ of discriminants of the form $M^{3} \pm 1$, coincides with the generalization given in [Wil69]. This line of study first appeared in Chapter 4 of [Ba195], with

$$
U_{n}^{*}=\delta^{-1}\left[(\gamma-\beta) \alpha^{n}+(\alpha-\gamma) \beta^{n}+(\beta-\alpha) \gamma^{n}\right],
$$

and up to three associated integral companion sequences given by

$$
V_{n}^{i}=\delta^{-1}\left[(\gamma-\beta) \epsilon_{1, i} \alpha^{n}+(\alpha-\gamma) \epsilon_{2, i} \beta^{n}+(\beta-\alpha) \epsilon_{3, i} \gamma^{n}\right], \quad \text { for } i=1,2,3,
$$

where $\epsilon_{j, i}=1$ if $j \neq i$, and $\epsilon_{i, i}=-1$. Each prime p divides $\left(U_{n}^{*}, U_{n+1}^{*}\right)$ for some $n \geq 0$. The least such $n>0$ is the rank of p, and primes that divide $\left(V_{n}^{i}, V_{n+1}^{i}\right)$, for some n and some $i=1,2$ or 3 , are prime factors of the de Longchamps sequence $L_{n}=R^{n} D_{n}$. Note that depending on the reducibility of $f(x)$ some of the V_{n}^{i},s may not be integral, but their product is.

3.3. Our objective

While many researchers have looked directly or peripherally at the problem of extending Lucas's functions, none of them seems to have produced the kind of results that Lucas was seeking. In what follows, we will offer a new suggestion as to how Lucas might have wanted to extend his functions. This is based on a very simple variant of de Longchamps's original suggestion.

We begin with a cubic polynomial $f(x)=x^{3}-P x^{2}+Q x-R$, where P, Q and R are integers and we put

$$
\delta=(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)
$$

and

$$
\Delta=\delta^{2}=P^{2} Q^{2}-4 Q^{3}-4 R P^{3}+18 P Q R-27 R^{2}
$$

where α, β and γ are the zeros of $f(x)$. We will assume that $\delta \neq 0$. We next define C_{n} and W_{n} by

$$
\begin{aligned}
\delta C_{n} & =\left(\alpha^{n}-\beta^{n}\right)\left(\beta^{n}-\gamma^{n}\right)\left(\gamma^{n}-\alpha^{n}\right) \\
& =\left(\alpha^{n} \beta^{2 n}+\beta^{n} \gamma^{2 n}+\gamma^{n} \alpha^{2 n}\right)-\left(\alpha^{2 n} \beta^{n}+\beta^{2 n} \gamma^{n}+\gamma^{2 n} \alpha^{n}\right)
\end{aligned}
$$

and

$$
W_{n}=\left(\alpha^{n} \beta^{2 n}+\beta^{n} \gamma^{2 n}+\gamma^{n} \alpha^{2 n}\right)+\left(\alpha^{2 n} \beta^{n}+\beta^{2 n} \gamma^{n}+\gamma^{2 n} \alpha^{n}\right)
$$

Note that C_{n} is the same as Lucas's $\frac{\Delta\left(\alpha^{n}, \beta^{n}, \gamma^{n}\right)}{\Delta(\alpha, \beta, \gamma)}\left(=R^{n} E_{n}\right)$ and $W_{n}=L_{n}-2 R^{n}$, where

$$
L_{n}=R^{n} D_{n}=\left(\alpha^{n}+\beta^{n}\right)\left(\beta^{n}+\gamma^{n}\right)\left(\gamma^{n}+\alpha^{n}\right)
$$

Both C_{n} and W_{n} are symmetric functions of α, β and γ and are therefore integers for all non-negative values of n. It is these functions that we will use as our extensions of the Lucas functions U_{n} and V_{n}. Observe that $\left\{C_{n}\right\}$ is a divisibility sequence.

In the previous section we listed the most important properties of the Lucas functions U_{n} and V_{n}; most of these were known to Lucas, and can be found in his memoir [Luc78]. It would be reasonable to expect that he would want to extend these results. In the succeeding sections we will develop analogous results involving C_{n} and W_{n}. These will include, among several other items, the addition formulas, the multiplication formulas, the laws of apparition and repetition and some primality testing results. What is most remarkable in this entire investigation is the need for only two functions, not three. In the next section we will define our generalization of C_{n} and W_{n} of the Lucas functions for an arbitrary degree m polynomial, not just for the cubic case $m=3$.

4. A new cubic generalization of the Lucas functions

4.1. De Longchamps's method

Denoting again $R^{n} D_{n}$ by L_{n} and $R^{n} E_{n}$ by C_{n}, so as to match the notation of other generalizations, de Longchamps's work yielded a few interesting results, including the multiplicative formula

$$
C_{2 n}=L_{n} C_{n} .
$$

He also developed the following identities

$$
L_{n}=R^{n}\left(\sigma_{n}+\tau_{n}+2\right) \text { and } \delta C_{n}=R^{n}\left(\sigma_{n}-\tau_{n}\right),
$$

where

$$
\sigma_{n}=\frac{\alpha^{n}}{\beta^{n}}+\frac{\beta^{n}}{\gamma^{n}}+\frac{\gamma^{n}}{\alpha^{n}} \text { and } \tau_{n}=\frac{\beta^{n}}{\alpha^{n}}+\frac{\alpha^{n}}{\gamma^{n}}+\frac{\gamma^{n}}{\beta^{n}} .
$$

However, it should be stated that neither $\left\{\sigma_{n}\right\}$ nor $\left\{\tau_{n}\right\}$ are integer sequences.

If we let $S_{n}=\alpha^{n} \beta^{2 n}+\beta^{n} \gamma^{2 n}+\gamma^{n} \alpha^{2 n}$, and $T_{n}=\alpha^{2 n} \beta^{n}+\beta^{2 n} \gamma^{n}+\gamma^{2 n} \alpha^{n}$, then

$$
\delta C_{n}=S_{n}-T_{n} \quad \text { and } \quad L_{n}=S_{n}+T_{n}+2 R^{n}
$$

Also,

$$
\begin{aligned}
S_{n} T_{n} & =R^{n} A_{n}^{3}+B_{n}^{3}-6 R^{n} A_{n} B_{n}+9 R^{2 n} \\
& =R^{n} A_{3 n}+B_{3 n}+3 R^{2 n}
\end{aligned}
$$

where B_{n} is defined in the next section.

4.2. Another cubic generalization

In an attempt to develop a theory analogous to that of Lucas's functions, the following method was proposed by Williams [Wil98]. Again, there are three sequences defined in this generalization. As in the last method, let α, β and γ be the zeros of $X^{3}-P X^{2}+Q X-R$, where P, Q and R are integers. Now define

$$
\left\{\begin{array}{l}
A_{n}=\alpha^{n}+\beta^{n}+\gamma^{n} \\
B_{n}=\alpha^{n} \beta^{n}+\beta^{n} \gamma^{n}+\gamma^{n} \alpha^{n}, \\
C_{n}=\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right)\left(\frac{\beta^{n}-\gamma^{n}}{\beta-\gamma}\right)\left(\frac{\gamma^{n}-\alpha^{n}}{\gamma-\alpha}\right)
\end{array}\right.
$$

Rather than a second order linear recurrence as in identity (1) for the Lucas case, there is the following result for A_{n} and B_{n}.

Theorem 4.1. The sequences A_{n} and B_{n} respectively satisfy the third order recurrence formulas

$$
t_{n+3}=P t_{n+2}-Q t_{n+1}+R t_{n} \quad \text { and } \quad t_{n+3}=Q t_{n+2}-R P t_{n+1}+R^{2} t_{n}
$$

If we write (10) as $\Delta U_{n}^{2}=V_{n}^{2}-4 Q^{n}$, then the following theorem is a useful generalization for this cubic case.

Theorem 4.2. We have

$$
\Delta C_{n}^{2}=A_{n}^{2} B_{n}^{2}+18 A_{n} B_{n} R^{n}-4 B_{n}^{3}-4 A_{n}^{3} R^{n}-27 R^{2 n}
$$

and

$$
27 \Delta C_{n}^{2}=4\left(A_{n}^{2}-3 B_{n}\right)^{3}-\left(27 R^{n}+2 A_{n}^{3}-9 A_{n} B_{n}\right)^{2} .
$$

The following theorem provides some addition formulas for A_{n} and B_{n}.
Theorem 4.3. We have

$$
A_{n+m}=A_{n} A_{m}-\left(B_{n} A_{m-n}-R^{n} A_{m-2 n}\right)
$$

and

$$
B_{n+m}=B_{n} B_{m}-R^{n}\left(A_{n} B_{m-n}-R^{n} B_{m-2 n}\right) .
$$

Corollary 4.4. We have

$$
\sigma_{n+m}=\sigma_{n} \sigma_{m}-\tau_{n} \sigma_{m-n}+\sigma_{m-2 n}
$$

and

$$
\tau_{n+m}=\tau_{n} \tau_{m}-\sigma_{n} \tau_{m-n}+\tau_{m-2 n}
$$

Note that historically Corollary 4.4 was discovered by de Longchamps in his original paper [dL80].

4.3. Our generalization

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ be the roots of the degree m polynomial

$$
X^{m}-P_{m-1} X^{m-1}+P_{m-2} X^{m-2}-\cdots+(-1)^{m} P_{0}
$$

where P_{m-1}, \ldots, P_{0} are integers. Further, if we let $\delta=\prod_{1 \leq i<j \leq m}\left(\alpha_{j}-\alpha_{i}\right)$ then $\Delta=\delta^{2}$ is the discriminant of the above polynomial. It will be assumed that $\Delta \neq 0$. Lastly, let

$$
V=\left[\begin{array}{ccccc}
1 & \alpha_{1}^{n} & \alpha_{1}^{2 n} & \ldots & \alpha_{1}^{(m-1) n} \\
1 & \alpha_{2}^{n} & \alpha_{2}^{2 n} & \ldots & \alpha_{2}^{(m-1) n} \\
1 & \alpha_{3}^{n} & \alpha_{3}^{2 n} & \ldots & \alpha_{3}^{(m-1) n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha_{m}^{n} & \alpha_{m}^{2 n} & \ldots & \alpha_{m}^{(m-1) n}
\end{array}\right]
$$

be a Vandermonde matrix. Then we can define generalized Lucas sequences of degree m as follows:

$$
\delta C_{n}=\operatorname{det} V=\prod_{1 \leq i<j \leq m}\left(\alpha_{j}^{n}-\alpha_{i}^{n}\right)
$$

Or, using the Leibniz formula,

$$
\delta C_{n}=\sum_{\sigma \in S_{m}} \operatorname{sgn}(\sigma) \alpha_{1}^{n(\sigma(1)-1)} \cdots \alpha_{m}^{n(\sigma(m)-1)}
$$

and we define W_{n} by

$$
W_{n}=\sum_{\sigma \in S_{m}} \alpha_{1}^{n(\sigma(1)-1)} \cdots \alpha_{m}^{n(\sigma(m)-1)}
$$

where S_{m} denotes the set of permutations of $\{1,2, \ldots, m\}$, and $\operatorname{sgn}(\sigma)$ denotes the sign of the permutation σ.

It can be readily verified for the case $m=2$ that this generalization is, in fact, just the historic Lucas sequence, that is, $C_{n}=U_{n}$ and $W_{n}=V_{n}$. For the case $m=3$, we fall back on the two sequences C_{n} and W_{n} presented in Subsection 3.3. In an effort to achieve simplicity and clarity with the new generalization, we will restrict ourselves to the case where $m=3$. The theorem below is an extension of identity (1).

Theorem 4.5. For a fixed m, the sequences C_{n} and W_{n} satisfy the recurrence formula

$$
X_{n+6 m}=a_{1} X_{n+5 m}-a_{2} X_{n+4 m}+a_{3} X_{n+3 m}-a_{4} X_{n+2 m}+a_{5} X_{n+m}-a_{6} X_{n}
$$

where

$$
\begin{cases}a_{1}=W_{m}, & a_{2}=\left(W_{m}^{2}-\Delta C_{m}^{2}\right) / 4+R^{m} W_{m} \\ a_{3}=R^{m}\left(W_{2 m}+2 R^{m} W_{m}+2 R^{2 m}\right), & a_{4}=R^{2 m} a_{2} \\ a_{5}=R^{4 m} a_{1}, & a_{6}=R^{6 m}\end{cases}
$$

Proof. For fixed n and m, the sequences $\left(C_{n+m k}\right)_{k \geq 0}$ and $\left(W_{n+m k}\right)_{k \geq 0}$ are linear combinations of the k-th powers of $\alpha^{m} \beta^{2 m}, \beta^{m} \gamma^{2 m}, \gamma^{m} \alpha^{2 m}, \alpha^{2 m} \beta^{m}, \beta^{2 m} \gamma^{m}$ and $\gamma^{2 m} \alpha^{m}$, and these 6 quantities are the zeros of

$$
x^{6}-a_{1} x^{5}+a_{2} x^{4}-a_{3} x^{3}+a_{4} x^{2}-a_{5} x+a_{6} .
$$

Since, as observed in Section 4.1,

$$
\delta C_{n}=S_{n}-T_{n} \quad \text { and } \quad W_{n}=S_{n}+T_{n},
$$

we find the important formulas

$$
S_{n}=R^{n} \sigma_{n}=\frac{W_{n}+\delta C_{n}}{2} \text { and } T_{n}=R^{n} \tau_{n}=\frac{W_{n}-\delta C_{n}}{2} .
$$

Also we have that

$$
\begin{align*}
\frac{W_{n}^{2}-\Delta C_{n}^{2}}{4} & =S_{n} T_{n}=3 R^{2 n}+R^{n} A_{3 n}+B_{3 n} \tag{16}\\
& =R^{n} A_{n}^{3}+B_{n}^{3}-6 R^{n} A_{n} B_{n}+9 R^{2 n}
\end{align*}
$$

Theorem 4.6. We have
(a) $R^{2 n} C_{-n}=-C_{n}$,
(b) $R^{2 n} W_{-n}=W_{n}$.

Note that in the above theorem $R^{2 n}$ is the logical analogue to Q^{n} in the identities

$$
Q^{n} U_{-n}=-U_{n} \quad \text { and } \quad Q^{n} V_{-n}=V_{n}
$$

for the quadratic case.

4.4. Addition formulas for $\boldsymbol{W}_{\boldsymbol{n}}$ and $\boldsymbol{C}_{\boldsymbol{n}}$

As in other generalizations of Lucas sequences, there exist addition formulas for C_{n} and W_{n}. These formulas build on de Longchamps's work, and are analogues of (4) and (5).

Theorem 4.7. We have
(a) $2 W_{2 n+m}=W_{n} W_{n+m}+\Delta C_{n} C_{n+m}-R^{n}\left(W_{n} W_{m}-\Delta C_{n} C_{m}-2 R^{2 m} W_{n-m}\right)$,
(b) $2 C_{2 n+m}=C_{n+m} W_{n}+C_{n} W_{n+m}-R^{n}\left(C_{m} W_{n}-C_{n} W_{m}+2 R^{2 m} C_{n-m}\right)$.

Proof. First, it is clear that

$$
\left(W_{n}+\delta C_{n}\right)\left(W_{n+m}+\delta C_{n+m}\right)=W_{n} W_{n+m}+\delta C_{n} W_{n+m}+\delta C_{n+m} W_{n}+\Delta C_{n} C_{n+m} .
$$

Using the fact that $R^{n} \sigma_{n}=\frac{W_{n}+\delta C_{n}}{2}$ we have

$$
\left(W_{n}+\delta C_{n}\right)\left(W_{n+m}+\delta C_{n+m}\right)=\left(2 R^{n} \sigma_{n}\right)\left(2 R^{n+m} \sigma_{n+m}\right)=4 R^{2 n+m} \sigma_{n} \sigma_{n+m} .
$$

Corollary 4.4 and the fact $\sigma_{-n}=\tau_{n}$ yield

$$
\sigma_{n} \sigma_{n+m}=\sigma_{2 n+m}+\tau_{n} \sigma_{m}-\tau_{n-m}
$$

Hence

$$
\begin{aligned}
& \left(W_{n}+\delta C_{n}\right)\left(W_{n+m}+\delta C_{n+m}\right)=4 R^{2 n+m}\left(\sigma_{2 n+m}+\tau_{n} \sigma_{m}-\tau_{n-m}\right) \\
& \quad=4 R^{2 n+m}\left(\frac{W_{2 n+m}+\delta C_{2 n+m}}{2 R^{2 n+m}}+\frac{W_{n}-\delta C_{n}}{2 R^{n}} \frac{W_{m}+\delta C_{m}}{2 R^{m}}-\frac{W_{n-m}-\delta C_{n-m}}{2 R^{n-m}}\right) \\
& =2 W_{2 n+m}+2 \delta C_{2 n+m}+R^{n}\left(W_{n} W_{m}-\delta C_{n} W_{m}+\delta C_{m} W_{n}-\Delta C_{n} C_{m}\right. \\
& \left.\quad-2 R^{2 m} W_{n-m}+2 \delta R^{2 m} C_{n-m}\right) .
\end{aligned}
$$

Thus we may conclude

$$
\begin{aligned}
& W_{n} W_{n+m}+\delta C_{n} W_{n+m}+\delta C_{n+m} W_{n}+\Delta C_{n} C_{n+m} \\
&= 2 W_{2 n+m}+2 \delta C_{2 n+m}+\delta R^{n}\left(-C_{n} W_{m}+C_{m} W_{n}+2 R^{2 m} C_{n-m}\right) \\
&+R^{n}\left(W_{n} W_{m}-\Delta C_{n} C_{m}-2 R^{2 m} W_{n-m}\right)
\end{aligned}
$$

We next use the identity

$$
R^{n} \tau_{n}=\frac{W_{n}-\delta C_{n}}{2}
$$

and manipulate $\left(W_{n}-\delta C_{n}\right)\left(W_{n+m}-\delta C_{n+m}\right)$ with the additive identity for τ_{n} in Corollary 4.4. By adding and subtracting the resulting formula from that given above, we get the identities stated in (a) and (b).

There are the following special cases of the previous theorem.
Corollary 4.8. We have
(a) $2 W_{2 n}=\Delta C_{n}^{2}+W_{n}^{2}-4 R^{n} W_{n}$,
(b) $C_{2 n}=C_{n}\left(W_{n}+2 R^{n}\right)=C_{n} L_{n}$,
(c) $4 W_{3 n}=3 \Delta C_{n}^{2}\left(W_{n}+2 R^{n}\right)+W_{n}^{2}\left(W_{n}-6 R^{n}\right)+24 R^{3 n}$,
(d) $4 C_{3 n}=C_{n}\left(\Delta C_{n}^{2}+3 W_{n}^{2}\right)$.

The next corollary is only a slight modification of the previous theorem, but it does put the identities in a nicer form by removing the subtractions in the subscripts.

Corollary 4.9. We have
(a) $2 W_{n+3 m}=\Delta C_{m} C_{n+2 m}+W_{m} W_{n+2 m}-R^{m} W_{m} W_{n+m}$

$$
+R^{m} \Delta C_{m} C_{n+m}+2 R^{3 m} W_{n}
$$

(b) $2 C_{n+3 m}=W_{m} C_{n+2 m}+C_{m} W_{n+2 m}-R^{m} W_{m} C_{n+m}$

$$
+R^{m} C_{m} W_{n+m}-2 R^{3 m} C_{n}
$$

Theorem 4.10. We have

$$
\begin{aligned}
4 R^{2 n-1} P Q= & W_{n}^{2}-\Delta C_{n}^{2}+2\left(W_{n+1} C_{n}-C_{n+1} W_{n}\right)-2 R\left(W_{n+1} C_{n-1}\right. \\
& \left.-W_{n-1} C_{n+1}\right)+2 R^{2}\left(W_{n} C_{n-1}-W_{n-1} C_{n}\right)
\end{aligned}
$$

This formula is an extension of the Lucas identity (10)

$$
V_{n}^{2}-\Delta U_{n}^{2}=4 Q^{\prime n}
$$

where $V_{n}=V_{n}\left(P^{\prime}, Q^{\prime}\right)$ and $U_{n}=U_{n}\left(P^{\prime}, Q^{\prime}\right)$. This can be justified as follows. Since $V_{-n}=V_{n} / Q^{\prime n}$ and $U_{-n}=-U_{n} / Q^{\prime n}$, we see that R^{2} corresponds to Q^{\prime}. Using the identity

$$
2 Q^{\prime m} U_{n-m}=V_{m} U_{n}-U_{m} V_{n}
$$

we can see that

$$
\begin{cases}-2 Q^{\prime n}=V_{n+1} U_{n}-U_{n+1} V_{n} & \text { when } m=n+1 \text { and } n=n \\ -2 Q^{\prime n-1}=V_{n} U_{n-1}-U_{n} V_{n-1} & \text { when } m=n \text { and } n=n-1 \\ -2 Q^{\prime n-1} P^{\prime}=V_{n+1} U_{n-1}-U_{n+1} V_{n-1} & \text { when } m=n+1 \text { and } n=n-1\end{cases}
$$

Replacing Q^{\prime} by R^{2} in the above returns

$$
\left\{\begin{array}{l}
V_{n+1} U_{n}-U_{n+1} V_{n}=-2 R^{2 n} \\
V_{n} U_{n-1}-U_{n} V_{n-1}=-2 R^{2 n-2} \\
V_{n+1} U_{n-1}-U_{n+1} V_{n-1}=-2 R^{2 n-2} P^{\prime}
\end{array}\right.
$$

Also note that $U_{2}+R U_{1}=P^{\prime}+R$. Using the above and replacing W_{m} by V_{m} and C_{m} by U_{m} into the identity in Theorem 4.10 we see that

$$
\begin{aligned}
V_{n}^{2}-\Delta U_{n}^{2}= & 4 R^{2 n-1}\left(P^{\prime}+R\right)-2\left(-2 R^{2 n}\right)+2 R\left(-2 R^{2 n-2} P^{\prime}\right) \\
& +2 R^{2}\left(-2 R^{2 n-2}\right) \\
= & 4 R^{2 n}
\end{aligned}
$$

It is not surprising that Theorem 4.10 involves 6 objects: $W_{n-1}, W_{n}, W_{n+1}, C_{n-1}, C_{n}$ and C_{n+1}, as one may recall that both $\left\{W_{n}\right\}$ and $\left\{C_{n}\right\}$ satisfy an order 6 recurrence.

In view of the importance that the quantity $W_{n}-6 R^{n}$ will assume in later sections, we also point out that from Theorem 4.2 it is easy to deduce that

$$
\left(W_{n}-6 R^{n}\right)^{2}+3 \Delta C_{n}^{2}=4\left(A_{n}^{2}-3 B_{n}\right)\left(B_{n}^{2}-3 R^{n} A_{n}\right)
$$

4.5. Multiplication formulas for $\boldsymbol{W}_{\boldsymbol{n}}$ and $\boldsymbol{C}_{\boldsymbol{n}}$

A general multiplicative result is shown in the following theorem and this result is our analogue to (13) and (14). It is at this point where our generalization begins to outperform the others. This is because other generalizations are missing the necessary multiplication formulas needed in order to develop arithmetic results. Also, in the following theorem, we introduce \tilde{P}_{n} and \tilde{Q}_{n} for the first time, where

$$
\tilde{P}_{n}=W_{n} \quad \text { and } \quad \tilde{Q}_{n}=\frac{W_{n}^{2}-\Delta C_{n}^{2}}{4}
$$

This notation for \tilde{P}_{n} and \tilde{Q}_{n} will be used throughout the rest of the paper.
Theorem 4.11. For any integers $m \geq 0$, we have
(a) $W_{m n}=\sum_{\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3}} \frac{(-1)^{\lambda_{0}} m\left(m-\lambda_{0}-1\right)!}{\lambda_{1}!\lambda_{2}!\lambda_{3}!} R^{n\left(\lambda_{0}+\lambda_{3}\right)} \tilde{Q}_{n}^{\lambda_{2}} V_{\lambda_{1}-\lambda_{2}}\left(\tilde{P}_{n}, \tilde{Q}_{n}\right)$,
(b) $\frac{C_{m n}}{C_{n}}=\sum_{\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3}} \frac{(-1)^{\lambda_{0}} m\left(m-\lambda_{0}-1\right)!}{\lambda_{1}!\lambda_{2}!\lambda_{3}!} R^{n\left(\lambda_{0}+\lambda_{3}\right)} \tilde{Q}_{n}^{\lambda_{2}} U_{\lambda_{1}-\lambda_{2}}\left(\tilde{P}_{n}, \tilde{Q}_{n}\right)$.

Here the sum is extended over the values $\lambda_{i} \in \mathbb{Z}$ such that

$$
\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0, \quad \lambda_{0}+\lambda_{1}+\lambda_{2}+\lambda_{3}=m \quad \text { and } \quad \lambda_{1}+2 \lambda_{2}+3 \lambda_{3}=m
$$

U_{k} is the Lucas function $U_{k}\left(\tilde{P}_{n}, \tilde{Q}_{n}\right), \tilde{P}_{n}=W_{n}$ and $\tilde{Q}_{n}=\left(W_{n}^{2}-\Delta C_{n}^{2}\right) / 4$.
Proof. First let $\sigma_{1}=\alpha / \beta+\beta / \gamma+\gamma / \alpha=\sum r_{i}$, where the sum is over the three quantities $r_{1}=\alpha / \beta, r_{2}=\beta / \gamma$, and $r_{3}=\gamma / \alpha$. Thus σ_{1} is the first elementary function of degree three involving these three terms. Also

$$
\tau_{1}=\frac{\beta}{\alpha}+\frac{\gamma}{\beta}+\frac{\alpha}{\gamma}=\sum_{i \neq j} r_{i} r_{j}
$$

Thus τ_{1} is the second elementary function of degree three. Finally note

$$
\sum_{i \neq j \neq k} r_{i} r_{j} r_{k}=r_{1} r_{2} r_{3}=1
$$

Hence we can use Waring's theorem (see, for example, [Mac15]) to see that

$$
\sigma_{n}=\left(\frac{\alpha}{\beta}\right)^{n}+\left(\frac{\beta}{\gamma}\right)^{n}+\left(\frac{\gamma}{\alpha}\right)^{n}=\sum_{\lambda_{1}, \lambda_{2}, \lambda_{3}}(-1)^{n+k} \frac{n(k-1)!}{\lambda_{1}!\lambda_{2}!\lambda_{3}!} \sigma_{1}^{\lambda_{1}} \tau_{1}^{\lambda_{2}}
$$

where $\lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0, \lambda_{1}+\lambda_{2}+\lambda_{3}=k$ and $\lambda_{1}+2 \lambda_{2}+3 \lambda_{3}=n$.
Setting $\lambda_{0}=n-k$, so $(-1)^{n+k}=(-1)^{n-k}=(-1)^{\lambda_{0}}$, we can write the previous identity as

$$
\sigma_{n}=\sum_{\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3}}(-1)^{\lambda_{0}} \frac{n\left(n-\lambda_{0}-1\right)!}{\lambda_{1}!\lambda_{2}!\lambda_{3}!} \sigma_{1}^{\lambda_{1}} \tau_{1}^{\lambda_{2}},
$$

where $\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0, \lambda_{0}+\lambda_{1}+\lambda_{2}+\lambda_{3}=n$ and $\lambda_{1}+2 \lambda_{2}+3 \lambda_{3}=n$.
Similarly, we can use Waring's theorem to derive

$$
\sigma_{m n}=\sum_{\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3}}(-1)^{\lambda_{0}} \frac{m\left(m-\lambda_{0}-1\right)!}{\lambda_{1}!\lambda_{2}!\lambda_{3}!} \sigma_{n}^{\lambda_{1}} \tau_{n}^{\lambda_{2}}
$$

and

$$
\tau_{m n}=\sum_{\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3}}(-1)^{\lambda_{0}} \frac{m\left(m-\lambda_{0}-1\right)!}{\lambda_{1}!\lambda_{2}!\lambda_{3}!} \tau_{n}^{\lambda_{1}} \sigma_{n}^{\lambda_{2}}
$$

where $\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0, \lambda_{0}+\lambda_{1}+\lambda_{2}+\lambda_{3}=m$ and $\lambda_{1}+2 \lambda_{2}+3 \lambda_{3}=m$. This is the sum as stated in the theorem. Now, since $S_{m n}=R^{m n} \sigma_{m n}$ and $T_{m n}=R^{m n} \tau_{m n}$, we obtain

$$
W_{m n}=S_{m n}+T_{m n}=\sum_{\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3}}(-1)^{\lambda_{0}} \frac{m\left(m-\lambda_{0}-1\right)!}{\lambda_{1}!\lambda_{2}!\lambda_{3}!} R^{m n}\left(\sigma_{n}^{\lambda_{1}} \tau_{n}^{\lambda_{2}}+\sigma_{n}^{\lambda_{2}} \tau_{n}^{\lambda_{1}}\right)
$$

Or considering the term following the coefficient we obtain

$$
\begin{aligned}
R^{m n}\left(\sigma_{n}^{\lambda_{1}} \tau_{n}^{\lambda_{2}}+\sigma_{n}^{\lambda_{2}} \tau_{n}^{\lambda_{1}}\right) & =R^{\left(m-\lambda_{1}-\lambda_{2}\right) n}\left(R^{n \lambda_{1}} \sigma_{n}^{\lambda_{1}} R^{n \lambda_{2}} \tau_{n}^{\lambda_{2}}+R^{n \lambda_{2}} \sigma_{n}^{\lambda_{2}} R^{n \lambda_{1}} \tau_{n}^{\lambda_{1}}\right) \\
& =R^{\left(\lambda_{0}+\lambda_{3}\right) n}\left(S_{n}^{\lambda_{1}} T_{n}^{\lambda_{2}}+S_{n}^{\lambda_{2}} T_{n}^{\lambda_{1}}\right) .
\end{aligned}
$$

Now we will employ some well-known results for Lucas sequences; that is,

$$
S_{n}^{\lambda}=\left(\frac{W_{n}+\delta C_{n}}{2}\right)^{\lambda}=\frac{V_{\lambda}+\tilde{\delta}_{n} U_{\lambda}}{2},
$$

and

$$
T_{n}^{\lambda}=\left(\frac{W_{n}-\delta C_{n}}{2}\right)^{\lambda}=\frac{V_{\lambda}-\tilde{\delta}_{n} U_{\lambda}}{2}
$$

where $U=U\left(\tilde{P}_{n}, \tilde{Q}_{n}\right), V=V\left(\tilde{P}_{n}, \tilde{Q}_{n}\right), \tilde{\Delta}_{n}=\Delta C_{n}^{2}, \tilde{\delta}_{n}=\delta C_{n}$ and $\tilde{P}_{n}, \tilde{Q}_{n}$ are as stated in the theorem.

So

$$
\begin{aligned}
S_{n}^{\lambda_{1}} T_{n}^{\lambda_{2}}+S_{n}^{\lambda_{2}} T_{n}^{\lambda_{1}} & =\frac{V_{\lambda_{1}}+\tilde{\delta}_{n} U_{\lambda_{1}}}{2} \frac{V_{\lambda_{2}}-\tilde{\delta}_{n} U_{\lambda_{2}}}{2}+\frac{V_{\lambda_{2}}+\tilde{\delta}_{n} U_{\lambda_{2}}}{2} \frac{V_{\lambda_{1}}-\tilde{\delta}_{n} U_{\lambda_{1}}}{2} \\
& =\frac{V_{\lambda_{1}} V_{\lambda_{2}}-\tilde{\Delta}_{n} U_{\lambda_{1}} U_{\lambda_{2}}}{2} .
\end{aligned}
$$

To complete the proof of (a), use the following identity known for Lucas sequences:

$$
2 Q^{m} V_{n-m}=V_{n} V_{m}-\Delta U_{n} U_{m},
$$

replacing $n=\lambda_{1}, m=\lambda_{2}$ and $\Delta=\tilde{\Delta}_{n}$. Hence

$$
S_{n}^{\lambda_{1}} T_{n}^{\lambda_{2}}+S_{n}^{\lambda_{2}} T_{n}^{\lambda_{1}}=\tilde{Q}_{n}^{\lambda_{2}} V_{\lambda_{1}-\lambda_{2}} .
$$

Part (b) is proven similarly by expanding $\delta C_{n}=S_{n}-T_{n}$ via Waring's theorem.
It is the general multiplication formulas that allow us to proceed with this cubic generalization. With them we are able to develop arithmetic properties for C_{n} and W_{n} in Section 5. Once we have arithmetic properties some primality testing can be done.

5. Arithmetic properties of $\left\{C_{n}\right\}$ and $\left\{W_{n}\right\}$

5.1. Introductory arithmetic results

To continue our generalization we need to develop arithmetic results that are logical analogues of the arithmetic results seen in Section 2 for Lucas sequences.

Lemma 5.1. If $(Q, R)=1$, then $\left(B_{n}, R\right)=1$, for $n>0$.
Lemma 5.2. If $(Q, R)=1$ and $2^{\alpha} \|\left(W_{n}, C_{n}\right)$, then $\alpha \in\{0,1\}$. If $2 \mid W_{n}$, then \tilde{Q}_{n} is odd.

The following result is a clear analogue of (15).
Theorem 5.3. If $(Q, R)=1$, then for $n>0$,

$$
\left(W_{n}, C_{n}, R\right) \mid 2 .
$$

Proof. Let p be any prime such that $p \mid\left(W_{n}, C_{n}, R\right)$. Since $p \mid W_{n}$ and $p \mid C_{n}$, we must have $p \mid W_{n}^{2}-\Delta C_{n}^{2}$. Observe that by equation (16), $p \mid 4 B_{3 n}$. Also,

$$
B_{3 n}=B_{n}^{3}-3 R^{n} A_{n} B_{n}+3 R^{2 n}
$$

so $p \mid 4 B_{n}^{3}$. Since $(Q, R)=1$, we have $\left(B_{n}, R\right)=1$ by Lemma 5.1 but this implies $p \nmid B_{n}$, so $p=2$. Indeed, by Lemma 5.2, we must have $\left(W_{n}, C_{n}, R\right) \mid 2$.

Theorem 5.4. The sequence $\left\{C_{n}\right\}$ is a divisibility sequence.
Proof. Note that if $n=m s$, then

$$
C_{n}(P, Q, R)=C_{m}(P, Q, R) \cdot C_{s}\left(A_{m}, B_{m}, R^{m}\right)
$$

Definition 5.5. Given $m \in \mathbb{Z}$, let r be the least positive integer, if it exists, such that $m \mid C_{r}$. This value is called the rank of apparition of m for the sequence $\left\{C_{n}\right\}$ and will be denoted by $r(m)$.

In Theorem 2.2 for the classic Lucas case, we had that if $m \mid U_{k}$, then $r(m) \mid k$. However, this is not necessarily true for $\left\{C_{n}\right\}$. It may be that $m \mid C_{k}$, yet $r(m) \nmid k$.

Definition 5.6. Let r_{1} be the least positive integer for which we have $p \mid C_{r_{1}}$. For $i=1,2, \ldots, k$ define r_{i+1} to be the least positive integer, if it exists, such that $p \mid C_{r_{i+1}}$, $r_{i+1}>r_{i}$ and $r_{j} \nmid r_{i+1}$ for any $j \leq i+1$. We define $r_{1}, r_{2}, \ldots, r_{k}$ to be the ranks of apparition of p for $\left\{C_{n}\right\}$.

It will become clear that the number of ranks of apparition is finite. For example, if we let $P=1, Q=2, R=3$ and $p=7$, then $\left\{C_{n}\right\}$ has two ranks of apparition for the prime 7. In fact, $C_{3} \equiv 0(\bmod p)$ and $C_{7} \equiv 0(\bmod p)$. Also, if we let $P=3$, $Q=9, R=7$ and $p=31$, then $\left\{C_{n}\right\}$ has three ranks of apparition. This follows from $C_{6} \equiv 0(\bmod p), C_{10} \equiv 0(\bmod p)$ and $C_{15} \equiv 0(\bmod p)$.

Our sequence $\left\{C_{n}\right\}$ also fails to satisfy the generalization of Corollary 2.3 where if $d=(m, n)$, then

$$
\left(U_{m}, U_{n}\right)=\left|U_{d}\right| .
$$

It can be that

$$
\left(C_{m}, C_{n}\right) \neq\left|C_{d}\right|,
$$

and $d=(m, n)$. For example, if $P=3, Q=9, R=7$, then $\left(C_{6}, C_{10}\right)=2^{2} \cdot 5 \cdot 31$ and $C_{2}=2^{2} \cdot 5$.

We have seen that many of Lucas's results have analogues when we assume that $(Q, R)=1$. This is similar to Lucas's condition that $(P, Q)=1$, and we will assume for the remainder of this work that $(Q, R)=1$.

5.2. The law of repetition for $\left\{C_{n}\right\}$

The proof of the law of repetition for $\left\{C_{n}\right\}$ relies on the following main results. Two proofs for the following theorem can be found in [Roe09], one using algebraic number theory and a second in Appendix A, employing techniques that Lucas himself could have used.

Theorem 5.7. Let p be a prime such that $p \nmid 6 R \Delta, p \mid C_{n}$ and $p \mid W_{n}-6 R^{n}$. Then $p^{3} \mid C_{n}$ and $p^{2} \mid W_{n}-6 R^{n}$.

Next we define

$$
K_{m}(X)=\sum \frac{(-1)^{\lambda_{0}} m\left(m-\lambda_{0}-1\right)!\left(\lambda_{1}-\lambda_{2}\right)}{\lambda_{1}!\lambda_{2}!\lambda_{3}!} X^{\lambda_{1}+\lambda_{2}-1}
$$

where the sum is extended over the values $\lambda_{i} \in \mathbb{Z}$ such that

$$
\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0, \quad \lambda_{0}+\lambda_{1}+\lambda_{2}+\lambda_{3}=m \quad \text { and } \quad \lambda_{1}+2 \lambda_{2}+3 \lambda_{3}=m .
$$

Theorem 5.8. If $D(X)=X^{2}-2 X-3=(X-3)(X+1)$, then

$$
K_{m}(X)=\frac{m}{X-3}\left[\left(\frac{X-1+\sqrt{D(X)}}{2}\right)^{m}+\left(\frac{X-1-\sqrt{D(X)}}{2}\right)^{m}-2\right] .
$$

Theorem 5.9. Let $X \in \mathbb{Z}$ and $p>3$ be a prime. If $p \nmid X-3$, then

$$
K_{p}(X) \equiv p \quad\left(\bmod p^{2}\right)
$$

If $p \mid X-3$, then

$$
K_{p}(X) \equiv p^{3} \quad\left(\bmod p^{4}\right)
$$

In the proof of Theorem 5.8 in [Roe09] we make use of partial derivatives; Lucas as well often did this. See for example, Section XVII of [Luc78]. Our law of repetition for $\left\{C_{n}\right\}$, which relies on the observation that

$$
\frac{C_{m n}}{C_{n}} \equiv R^{n(m-1)} K_{m}\left(W_{n} / 2 R^{n}\right) \quad\left(\bmod F_{n}\right),
$$

where F_{n} is defined in (18) below, is provided by the next theorem.
Theorem 5.10. Let $p^{\lambda} \| C_{n}$, with $\lambda \geq 1$.
(a) If $p \geq 3$ and $p \mid W_{n}-6 R^{n}$, then

$$
p^{\lambda+3 \mu} \mid C_{p^{\mu} n}, \quad \text { with } p^{\lambda+3 \mu} \| C_{p^{\mu} n} \text { for } p^{\lambda}>3
$$

(b) If $p \geq 3$ and $p \nmid W_{n}-6 R^{n}$, then

$$
p^{\lambda+\mu} \| C_{p^{\mu} n} .
$$

(c) If $p=2$ and $2 \mid R$, then

$$
\begin{cases}2^{\lambda+\mu} \| C_{2^{\mu_{n}}} & \text { for } \lambda>1 \\ 2^{\lambda+\mu} \mid C_{2^{\mu_{n}}} & \text { for } \lambda=1\end{cases}
$$

(d) If $p=2$ and $2 \nmid R$, then

$$
\begin{cases}2^{\lambda+2 \mu} \mid C_{2^{\mu}}{ }_{n} & \text { for } \lambda>1 \\ 2^{2 \mu} \mid C_{2^{\mu}} & \text { for } \lambda=1\end{cases}
$$

Some additional precisions may be obtained for $p=2$ and $2 \nmid \Delta R$ when $\lambda \geq 4$, details of which can be found in [Roe09]. In the case of the law of repetition for the Lucas functions U_{n}, we know that $p^{\lambda+\mu} \| U_{n m p^{\mu}}$ if $p \nmid m$ and $p^{\lambda} \| U_{n}$. This result does not generalize to C_{n}. For example, if $p \nmid W_{n}-6 R^{n}$ and $p \nmid 2 R$, it is possible that $p^{\lambda} \| C_{n}$ and $p^{\lambda+1} \mid C_{m n}$, where $p \nmid m$. We note that

$$
\left(\frac{W_{n}}{2 R^{n}}-3\right) \frac{C_{m n}}{C_{n}} \equiv m\left(-2+V_{m}\left(W_{n} / 2 R^{n}-1,1\right)\right) \quad(\bmod p) .
$$

By Theorem 2.7 we know that $V_{m}\left(W_{n} / 2 R^{n}-1,1\right) \equiv 2(\bmod p)$ when $m=p-\epsilon$, where

$$
\epsilon=\left(\frac{\left(W_{n} / 2 R^{n}-1\right)^{2}-4}{p}\right)=\left(\frac{\left(W_{n}-6 R^{n}\right)\left(W_{n}+2 R^{n}\right)}{p}\right)
$$

It follows that if ϵ is not equal to zero, as will be most frequently the case, then $p \mid\left(C_{m n} / C_{n}\right)$ and $p \nmid m$.

5.3. The law of apparition for $\left\{C_{n}\right\}$

If a prime p divides R, it is easy to see that

$$
C_{n} \equiv Q^{n-1} U_{n}(P, Q) \quad(\bmod p),
$$

in which case the theory reduces to that of the Lucas function $U_{n}(P, Q)$. We will therefore assume that $p \nmid R$ in what follows.

We point out that

$$
27 \Delta=4\left(P^{2}-3 Q\right)^{3}-\left(27 R+2 P^{3}-9 Q P\right)^{2} .
$$

When $p \mid \Delta$ and $p \neq 2$, the splitting field of $f(x)=x^{3}-P x^{2}+Q x-R \in \mathbb{F}_{p}[x]$ is \mathbb{F}_{p}, and we have two possible cases.

On the one hand, suppose that $p \mid P^{2}-3 Q$. Here $f(x) \equiv(x-a)^{3}(\bmod p)$ where $a \equiv P / 3(\bmod p)($ if $p=3$, then $3 \mid P)$. In this case we can put $\alpha=\beta=\gamma=a$ in \mathbb{F}_{p}. Now in \mathbb{F}_{p},

$$
\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}=\alpha^{n-1}+\beta \alpha^{n-2}+\beta^{2} \alpha^{n-3}+\cdots+\beta^{n-1}=n a^{n-1}
$$

so it follows that

$$
C_{n} \equiv n^{3} a^{3(n-1)} \quad(\bmod p) \quad \text { and } \quad W_{n} \equiv 6 a^{3 n} \quad(\bmod p) .
$$

We may then conclude that $p \mid C_{n}$ if and only if $p \mid n$. Also, if $p \mid C_{n}$, then $p \mid W_{n}-6 R^{n}$.
On the other hand, suppose that $p \nmid P^{2}-3 Q$. In this case $f(x) \equiv(x-a)^{2}(x-b)$ $(\bmod p)$, where

$$
a \equiv \frac{P Q-9 R}{2\left(P^{2}-3 Q\right)} \quad(\bmod p) \quad \text { and } \quad b \equiv \frac{P^{3}-4 P Q+9 R}{P^{2}-3 Q} \quad(\bmod p) .
$$

Hence we can put $\alpha=\beta=a \neq 0$ and $\gamma=b \neq 0$ in \mathbb{F}_{p}. Put $P^{\prime} \equiv P-a(\bmod p)$ and $Q^{\prime} \equiv a^{2}-P a+Q(\bmod p)$. One can see that since $a^{2} b \equiv R(\bmod p)$, we get $a b \equiv R / a \equiv a^{2}-P a+Q(\bmod p)$. Also, $2 a+b \equiv P(\bmod p)$, and therefore $a+b \equiv P-a(\bmod p)$. We use these results to obtain

$$
\begin{aligned}
C_{n} & =\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right)\left(\frac{\beta^{n}-\gamma^{n}}{\beta-\gamma}\right)\left(\frac{\gamma^{n}-\alpha^{n}}{\gamma-\alpha}\right) \\
& =n a^{n-1}\left(\frac{a^{n}-b^{n}}{a-b}\right)^{2}
\end{aligned}
$$

in \mathbb{F}_{p}. Thus,

$$
C_{n} \equiv n a^{n-1} U_{n}^{2}\left(P^{\prime}, Q^{\prime}\right) \quad(\bmod p)
$$

It is also true that $\left(\frac{\Delta^{\prime}}{p}\right)=1$, as

$$
\Delta^{\prime}=P^{\prime 2}-4 Q^{\prime} \equiv(a-b)^{2} \equiv \frac{\left(27 R+2 P^{3}-9 P Q\right)^{2}}{4\left(P^{2}-3 Q\right)^{2}} \equiv P^{2}-3 Q \quad(\bmod p)
$$

Thus $p \mid C_{n}$ if and only if $p \mid n$ or $p \mid U_{n}\left(P^{\prime}, Q^{\prime}\right)$ since $p \nmid a$. If $p \mid a$ or $p \mid Q^{\prime}$, then $p \mid R$, which is a contradiction. Since the rank of apparition of p in $U_{n}\left(P^{\prime}, Q^{\prime}\right)$ is a divisor r of $p-1$, we can say that $p \mid C_{n}$ if and only if either $p \mid n$ or $r \mid n$. Since $(r, p)=1$ we have two ranks of apparition in this case. We also note that since

$$
W_{n}-6 R^{n} \equiv 2 a^{n} \Delta^{\prime} U_{n}^{2}\left(P^{\prime}, Q^{\prime}\right) \quad(\bmod p),
$$

we see that $p \mid W_{n}-6 R^{n}$ if and only if n is a multiple of r.
It can be shown that $r(2)$ always exists and is unique (Theorem 4.15 of [Roe09]). The case for $p=3$ can be handled explicitly by calculation and is done in [Roe09]. By a computer search through all possible residue classes of P, Q, and R modulo 3 it can be shown that there always exists at least one rank of apparition for 3 in $\left\{C_{n}\right\}$ as long as $(Q, R)=1$. Also, $r(3) \leq 13=3^{2}+3+1$. Note also that if $3 \nmid \Delta$ and $3 \mid C_{n}$, then $r(3) \mid n$.

We now deal with those primes p such that $p \nmid 6 \Delta R$. The law of apparition for $\left\{C_{n}\right\}$ is more difficult than that for $\left\{U_{n}\right\}$. This is largely due to the fact that $\left\{C_{n}\right\}$ can have multiple ranks of apparition, as has been seen. Just how many ranks of apparition $\left\{C_{n}\right\}$ actually has, modulo a prime p, is dependent on the splitting behaviour of $f(x)$ modulo p. Following Adams and Shanks [AS82] we will characterize the primes that do not divide $6 \Delta R$ as follows.

Let $f(x)=x^{3}-P x^{2}+Q x-R$ and $p \nmid 6 R \Delta$. There are three possibilities for the splitting field \mathbb{K} of $f(x) \in \mathbb{F}_{p}[x]$:
(1) if $\mathbb{K}=\mathbb{F}_{p}$, we say that p is an S prime;
(2) if $\mathbb{K}=\mathbb{F}_{p^{2}}$, we say that p is a Q prime;
(3) if $\mathbb{K}=\mathbb{F}_{p^{3}}$, we say that p is an I prime.

Determining the type of a prime p is important, since its type dictates where C_{n} equals 0 in \mathbb{K}. This is also an old problem and several references to how it can be solved are mentioned in Chapter VIII of the first volume of [Dic 19] (see also [WZ74] and [Mü104]). We summarize these results in the following theorem.

Theorem 5.11. Suppose that p is a prime and $p \nmid 6 \Delta R$.
(a) If $\left(\frac{\Delta}{p}\right)=-1$, then p is a Q prime.
(b) If $\left(\frac{\Delta}{p}\right)=1, p \equiv \epsilon(\bmod 3), A=2 P^{3}-9 Q R+27 R, B=P^{3}-3 Q$ and $p \left\lvert\, U_{\frac{p-\epsilon}{3}}\left(A, B^{3}\right)\right.$, then p is an S prime; otherwise, p is an I prime.

We will now develop the law of apparition for a prime p in $\left\{C_{n}\right\}$. First we determine the number of ranks of apparition of a Q prime.

Theorem 5.12. Let p be a Q prime and α, β, γ be the zeros of $f(x)$ in $\mathbb{F}_{p^{2}}$, where $\beta \notin \mathbb{F}_{p}$. Then $p \mid C_{m}$ if and only if $\beta^{m}=\beta^{p m}$.

Corollary 5.13. If p is a Q prime, then $p \mid C_{p+1}$.
Corollary 5.14. Let p be a Q prime. Then p can only have one rank of apparition, r, in $\left\{C_{n}\right\}$ and $r \mid p+1$.

Corollary 5.15. If p is a Q prime, r is its rank of apparition in $\left\{C_{n}\right\}$ and $p \mid C_{n}$, then $r \mid n$.

Note that if p is a Q prime, then

$$
W_{p+1} \equiv 2 \alpha^{4} \beta \gamma+2 \beta^{3} \gamma^{3}+2 R^{3} \quad(\bmod p) .
$$

This will not be useful to us here; however, we can see that

$$
W_{p^{2}-1} \equiv 6 \quad(\bmod p) .
$$

Theorem 5.16. If p is an I prime, then $p \mid C_{p^{2}+p+1}$.
For an I prime p,

$$
W_{p^{2}+p+1} \equiv 6 R^{3} \quad(\bmod p) .
$$

Corollary 5.17. Let p be an I prime. Then p can only have one rank of apparition r in $\left\{C_{n}\right\}$ and $r \mid p^{2}+p+1$.

Corollary 5.18. Let p be an I prime. If r is the rank of apparition of p in $\left\{C_{n}\right\}$ and $p \mid C_{n}$, then $r \mid n$.

Thus, the situation with Q and I primes parallels that of primes that divide U_{n}. That is, we know that if a prime p divides U_{n}, then the rank of apparition $\omega=\omega(p)$ of p in $\left\{U_{n}\right\}$ must divide n. However, the situation with S primes can be different.

Theorem 5.19. Let $p \nmid 6 \Delta R$ and p be an S prime. Then $p \mid C_{p-1}$.
Once more we note that under these circumstances

$$
W_{p-1} \equiv 6 \quad(\bmod p) .
$$

Corollary 5.20. If p is an S prime and $p \nmid 6 \Delta R$, then p may have at most 3 ranks of apparition in $\left\{C_{n}\right\}$ and each rank of apparition divides $p-1$.

Corollary 5.21. If p is an S prime and $p \mid C_{n}$, then at least one of the ranks of apparition of p in $\left\{C_{n}\right\}$ must divide n.

We have in fact shown that there exists an infinite set of primes \mathcal{P} such that for each p in \mathcal{P} there is a cubic recursion in which p has three distinct ranks (see [Roe09], Theorem 4.27).

6. Arithmetic properties of $\left\{D_{n}\right\}$ and $\left\{E_{n}\right\}$

6.1. Definition of the divisibility sequence $\left\{D_{n}\right\}$

While, as we have seen, C_{n} is analogous to the Lucas function U_{n} in many respects, there are a number of significant differences between the arithmetic behaviour of C_{n} and U_{n}. This is particularly the case in the law of repetition and the law of apparition, where it is possible to have more than one rank of apparition for $\left\{C_{n}\right\}$. In the law of repetition for a prime p such that $p \mid C_{n}$, it is important to know whether or not p
divides the quantity $W_{n}-6 R^{n}$. We often have the case of a prime p dividing both C_{n} and $W_{n}-6 R^{n}$. In view of this, we define

$$
D_{n}=\operatorname{gcd}\left(C_{n}, W_{n}-6 R^{n}\right) .
$$

This is not as peculiar as it might seem at first. For if we look at the formula for $W_{n}-6 R^{n}$ in terms of α, β and γ, we see that the corresponding formula involving α and β of the Lucas functions would be

$$
\alpha^{2 n}+\beta^{2 n}-2 \alpha^{n} \beta^{n}=V_{2 n}-2 Q^{n}
$$

This is because if we consider $W_{n}-6 R^{n}$ to be a polynomial in α^{n}, β^{n} and γ^{n}, then it is of degree three and the $\alpha^{n} \beta^{n} \gamma^{n}$ term is subtracted as many times as there are terms in the expression for W_{n}. Hence, the degree two counter part to this would be $\alpha^{2 n}+\beta^{2 n}-2 \alpha^{n} \beta^{n}$. However,

$$
V_{2 n}-2 Q^{n}=V_{n}^{2}-4 Q^{n}=\Delta U_{n}^{2} \text { and } \operatorname{gcd}\left(V_{2 n}-2 Q^{n}, U_{n}\right)=U_{n} .
$$

Notice that by Theorem 5.3 we have

$$
\begin{equation*}
\operatorname{gcd}\left(D_{n}, R\right) \mid 2 \tag{17}
\end{equation*}
$$

As we shall see below, it turns out that D_{n} has arithmetic properties which are much more analogous to those of U_{n} than does C_{n}.

Theorem 6.1. The sequence $\left\{D_{n}\right\}$ is a divisibility sequence.
Proof. In order to show that $\left\{D_{n}\right\}$ is a divisibility sequence we will first develop some results for the function $L_{m}(X)$. We define

$$
L_{m}(X)=\sum \frac{(-1)^{\lambda_{0}} m\left(m-\lambda_{0}-1\right)!}{\lambda_{1}!\lambda_{2}!\lambda_{3}!} X^{\lambda_{1}+\lambda_{2}},
$$

where the sum is extended over the values $\lambda_{i} \in \mathbb{Z}$ such that

$$
\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0, \quad \lambda_{0}+\lambda_{1}+\lambda_{2}+\lambda_{3}=m \quad \text { and } \quad \lambda_{1}+2 \lambda_{2}+3 \lambda_{3}=m .
$$

By Waring's theorem,

$$
L_{m}(X)=\alpha_{1}^{m}+\alpha_{2}^{m}+\alpha_{3}^{m},
$$

where α_{1}, α_{2} and α_{3} are the zeros of $Z^{3}-X Z^{2}+X Z-1$ such that

$$
\alpha_{1}=1, \quad \alpha_{2}=\frac{X-1+\sqrt{D(X)}}{2}, \quad \alpha_{3}=\frac{X-1-\sqrt{D(X)}}{2},
$$

and $D(X)=(X-3)(X+1)$. We can then write

$$
L_{m}(X)=1+\alpha_{2}^{m}+\alpha_{3}^{m}=1+V_{m}(X-1,1) .
$$

So, if $2 \nmid m$, it can be shown that

$$
V_{m}(X-1,1)=V_{1} \sum_{j=0}^{(m-1) / 2}\binom{(m-1) / 2+j}{(m-1) / 2-j} D(X)^{j}
$$

To the contrary, if $2 \mid m$, then we can show that

$$
V_{m}(X-1,1)=\sum_{j=0}^{m / 2} \frac{m}{m / 2-j}\binom{m / 2+j-1}{m / 2-j-1} D(X)^{j}
$$

Now, by using results similar to those in Section 4.4 of [Roe09] and noting $\tilde{P}_{n}=W_{n}$, we have

$$
W_{m n} \equiv 2 \sum_{\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3}} \frac{(-1)^{\lambda_{0}} m\left(m-\lambda_{0}-1\right)!}{\lambda_{1}!\lambda_{2}!\lambda_{3}!}\left(\frac{\tilde{P}_{n}}{2}\right)^{\lambda_{1}+\lambda_{2}} R^{n\left(m-\lambda_{1}-\lambda_{2}\right)}\left(\bmod F_{n}\right)
$$

where

$$
F_{n}= \begin{cases}\Delta C_{n}^{2} & \text { if } 2 \nmid C_{n}, \tag{18}\\ \Delta C_{n}^{2} / 4 & \text { if } 2 \mid C_{n} .\end{cases}
$$

Let $2^{\gamma} \| D_{n}$. Then $D_{n} / 2^{\gamma} \mid F_{n}, 2 \nmid D_{n} / 2^{\gamma}$ and $\left(D_{n} / 2^{\gamma}, R\right)=1$. Moreover, let $G_{n}=D_{n} / 2^{\gamma}$. Then

$$
\begin{aligned}
W_{m n} & \equiv 2 R^{m n} \sum_{\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3}} \frac{(-1)^{\lambda_{0}} m\left(m-\lambda_{0}-1\right)!}{\lambda_{1}!\lambda_{2}!\lambda_{3}!}\left(\frac{W_{n}}{2 R^{n}}\right)^{\lambda_{1}+\lambda_{2}}\left(\bmod F_{n}\right) \\
& \equiv 2 R^{m n} L_{m}\left(W_{n} / 2 R^{n}\right)\left(\bmod F_{n}\right)
\end{aligned}
$$

If m is odd,

$$
L_{m}\left(\frac{W_{n}}{2 R^{n}}\right)=1+\left(\frac{W_{n}}{2 R^{n}-1}\right) \sum_{j=0}^{(m-1) / 2}\binom{(m-1) / 2+j}{(m-1) / 2-j}\left(\frac{W_{n}}{2 R^{n}+1}\right)^{j}\left(\frac{W_{n}}{2 R^{n}-3}\right)^{j}
$$

Since $W_{n} / 2 R^{n}-3 \equiv 0\left(\bmod G_{n}\right)$,

$$
L_{m}\left(W_{n} / 2 R^{n}\right) \equiv 1+W_{n} / 2 R^{n}-1 \equiv 3 \quad\left(\bmod G_{n}\right) .
$$

If m is even,

$$
\begin{aligned}
L_{m}\left(W_{n} / 2 R^{n}\right) & =1+\sum_{j=0}^{m / 2} \frac{m}{m / 2-j}\binom{m / 2+j-1}{m / 2-j-1}\left(\frac{W_{n}}{2 R^{n}+1}\right)^{j}\left(\frac{W_{n}}{2 R^{n}-3}\right)^{j} \\
& \equiv 3\left(\bmod G_{n}\right)
\end{aligned}
$$

Thus, $W_{m n} \equiv 6 R^{m n}\left(\bmod G_{n}\right)$, so $G_{n} \mid W_{m n}-6 R^{m n}$. It follows that if $\gamma=0$, then $D_{n} \mid D_{n m}$.

If $\gamma=1$, then since $2 \mid \operatorname{gcd}\left(W_{n}, C_{n}\right)$, we have $2 \mid C_{m n}$, and since $\tilde{Q}_{m n}$ is an integer, we have $2 \mid W_{m n}$; thus, $D_{n} \mid D_{m n}$. If $\gamma>1$, then $4 \mid C_{n}$ and $4 \mid W_{n}-6 R^{n}$. Recall that if $2^{\alpha} \| \operatorname{gcd}\left(W_{n}, C_{n}\right)$, then $\alpha=0$ or $\alpha=1$ by Lemma 5.2. In this case $\alpha=1$ and $2 \| W_{n}$. It follows from $4 \mid W_{n}-6 R^{n}$ that R must be odd. Thus, since $2 \gamma \geq \gamma+2$, we have $2^{\gamma} \mid F_{n}$ and

$$
\begin{aligned}
W_{m n} & \equiv 2 R^{m n} \sum_{\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3}} \frac{(-1)^{\lambda_{0}} m\left(m-\lambda_{0}-1\right)!}{\lambda_{1}!\lambda_{2}!\lambda_{3}!}\left(\frac{W_{n}}{2 R^{n}}\right)^{\lambda_{1}+\lambda_{2}}\left(\bmod 2^{\gamma}\right) \\
& \equiv 6 R^{m n}\left(\bmod 2^{\gamma}\right)
\end{aligned}
$$

so that $2^{\gamma} \mid W_{m n}-6 R^{m n}$. Consequently $D_{n} \mid W_{m n}-6 R^{m n}$, and further $D_{n} \mid D_{m n}$. Thus, if $n \mid m$, we get $D_{n} \mid D_{m}$. Therefore, like $\left\{U_{n}\right\}$ and $\left\{C_{n}\right\},\left\{D_{n}\right\}$ is a divisibility sequence.

6.2. The law of repetition for $\left\{D_{n}\right\}$

Theorem 6.2. If p is a prime, $p^{\lambda} \| D_{n}(\lambda \geq 1)$ and $p \nmid m$, then $p^{\lambda} \| D_{m n}$.
Our "law of repetition" for $\left\{D_{n}\right\}$ is provided in the following theorem.
Theorem 6.3. If $p^{\lambda} \| D_{n}\left(\right.$ with $p \neq 2$ and $\left.p^{\lambda} \neq 3\right)$, then

$$
\begin{cases}p^{\lambda+2} \| D_{p n} & \text { when } p^{\lambda} \| W_{n}-6 R^{n}, \\ p^{\lambda+3} \| D_{p n} & \text { otherwise }\end{cases}
$$

Also, $p^{\lambda+2} \mid D_{p n}$ when $p^{\lambda}=3$, and $p^{\lambda+1} \mid D_{p n}$ when $p=2$. Furthermore, $p^{\lambda+1} \nmid D_{m n}$ if $p \nmid m$.

Notice that if $p \notin\{2,3\}, p^{\lambda} \| W_{n}-6 R^{n}$ and $p^{\lambda} \| D_{n}$, then $p^{\lambda+2} \| W_{p n}-6 R^{p n}$ and therefore

$$
p^{\lambda+2 \mu} \| D_{p^{\mu} n}
$$

However, if $p^{\lambda} \| D_{n}$ and $p^{\lambda+1} \mid W_{n}-6 R^{n}$, it is not necessarily the case that

$$
p^{\lambda+4} \| W_{p n}-6 R^{p n}
$$

The best we are able to show is that $p^{\lambda+3} \mid W_{p n}-6 R^{p n}$. If $p^{\lambda+3}| | W_{p n}-6 R^{p n}$, then we return to the previous condition and by induction we get

$$
\left(p^{\lambda+1+2 \mu}=\right) p^{\lambda+3+2(\mu-1)} \| D_{p^{\mu} n} .
$$

Of course, this latter situation would never occur if the case of

$$
p^{\lambda}| | D_{n} \text { and } p^{\lambda+1} \mid W_{n}-6 R^{n}
$$

could not happen. This might be an infrequent occurrence, but unfortunately it does happen. For example, if $P=257, Q=2004$ and $R=5389$, then $7^{3} \| C_{6}$ and $7^{4} \mid W_{6}-6 R^{6}$.

Thus, we cannot provide an as complete law of repetition for $\left\{D_{n}\right\}$ as we were able to do for $\left\{C_{n}\right\}$. However, if $p^{\lambda}\left\|C_{n}, p^{\lambda+\kappa}\right\| W_{n}-6 R^{n}$ and $\kappa<\lambda-2$, it can be shown that

$$
p^{\lambda+3 \mu} \| C_{p^{\mu} n} \quad \text { and } \quad p^{\lambda+\kappa+2 \mu} \| W_{p^{\mu} n}-6 R^{p^{\mu} n} .
$$

Hence, we get

$$
p^{\lambda+3 \mu} \| D_{p^{\mu} n}, \quad \text { for } \quad \mu \leq \kappa .
$$

Note that if $\mu=\kappa$, then $\lambda+\kappa+2 \mu=\lambda+3 \mu$ and we return to the previous case. It follows that

$$
p^{\lambda+\kappa+2 \mu} \| D_{p^{\mu} n}
$$

when $\mu>\kappa$. Unfortunately, if $\kappa \geq \lambda-2$, it seems to be difficult to formulate a comprehensive law of repetition.

6.3. The law of apparition for $\left\{D_{n}\right\}$

Definition 6.4. Let p be a prime and $\omega(p)$ be the least positive integer n, if it exists, such that $p \mid D_{n}$. We call this the rank of apparition of p in $\left\{D_{n}\right\}$.

The next theorems build toward a result very comparable to Theorem 2.2. What is remarkable is that this is a result that did not hold for $\left\{C_{n}\right\}$. Hence, with the help of $\left\{D_{n}\right\}$ we are able to establish a more convincing analogue. We are now able to present an important result concerning $\omega(p)$.

Theorem 6.5. If $p \nmid R$, then $\omega(p)$ must exist. Further, if $p \mid D_{n}$, then $\omega(p) \mid n$.
Corollary 6.6. If p is a prime and $\omega(p)$ exists, then $\omega(p) \leq p^{2}+p+1$.
Suppose $p \nmid R$ and $p^{\alpha} \mid D_{n}$. Let $\omega=\omega(p)$ and let $\omega\left(p^{\alpha}\right)$ denote the least positive integer k such that $p^{\alpha} \mid D_{k}$. If $p^{\alpha} \mid D_{\omega}$, put $\nu=0$; otherwise define $\nu \in \mathbb{Z}_{\geq 0}$ by

$$
p^{\alpha} \mid D_{p^{\nu} \omega(p)} \text { and } \quad p^{\alpha} \nmid D_{p^{\nu-1} \omega(p)} .
$$

By our previous results concerning the law of repetition for $\left\{D_{n}\right\}$ such a ν must exist.
Theorem 6.7. If $p \nmid R$ and $p^{\alpha} \mid D_{n}$, then $\omega\left(p^{\alpha}\right)=p^{\nu} \omega(p)$ and $\omega\left(p^{\alpha}\right) \mid n$.
Proof. Since $p \mid D_{n}$, we must have $n=m \omega(p)$ for some $m \in \mathbb{N}$. Suppose that $p^{\gamma} \| m$ and put $m=m^{\prime} p^{\gamma}$, where $p \nmid m^{\prime}$. Since $p^{\alpha} \nmid D_{p^{\nu-1} \omega(p)}$, we must have $p^{\alpha} \nmid D_{m^{\prime} p^{\nu-1} \omega(p)}$, so $\gamma>\nu-1$. But $p^{\alpha} \mid D_{m^{\prime} p^{\nu} \omega(p)}$, so $\gamma=\nu$. Furthermore, since $p^{\alpha} \mid D_{p^{\nu} \omega(p)}$, we must have $\omega\left(p^{\alpha}\right)=p^{\nu} \omega(p)$ and $\omega\left(p^{\alpha}\right) \mid n$.

Theorem 6.8. Suppose that $m \mid D_{n}$. Denote by $\omega(m)$ the least positive integer such that $m \mid D_{\omega(m)}$. Let

$$
m=\prod_{i=1}^{k} p_{i}^{\alpha_{i}} .
$$

Then $\omega(m)=\operatorname{lcm}\left[\omega\left(p_{i}^{\alpha_{i}}\right) ; i=1,2, \ldots, k\right]$.
Proof. Clearly $\omega\left(p_{i}^{\alpha_{i}}\right) \mid \omega(m)$ for $i=1,2, \ldots, k$. Since D_{n} is a divisibility sequence the result follows.

We may now prove the following theorem, which very much resembles Corollary 2.3. Again, this is another result that did not hold for $\left\{C_{n}\right\}$.

Theorem 6.9. We have

$$
\operatorname{gcd}\left(D_{n}, D_{m}\right)=D_{g c d(m, n)}
$$

Proof. Since D_{n} is a divisibility sequence, we have $D_{g c d(m, n)} \mid D_{n}$, which implies

$$
D_{g c d(m, n)} \mid \operatorname{gcd}\left(D_{n}, D_{m}\right)
$$

Let $p^{\alpha} \| \operatorname{gcd}\left(D_{n}, D_{m}\right)$. Then $\omega\left(p^{\alpha}\right)$ exists, so $\omega\left(p^{\alpha}\right) \mid n$ and $\omega\left(p^{\alpha}\right) \mid m$. Hence $\omega\left(p^{\alpha}\right) \mid \operatorname{gcd}(m, n)$, so $p^{\alpha} \mid D_{g c d(m, n)}$. Thus $\operatorname{gcd}\left(D_{n}, D_{m}\right)=D_{g c d(m, n)}$.

In Chapter 4 of [Roe09], we were able to develop a result somewhat akin to Carmichael's result in Theorem 2.4. Surprisingly, if we look at $\left\{D_{n}\right\}$ rather than $\left\{C_{n}\right\}$, we can in fact do much better. We have that

$$
\frac{C_{m n}}{C_{n}} \equiv m^{3} R^{n(m-1)} \quad\left(\bmod \operatorname{gcd}\left(F_{n}, W_{n}-6 R^{n}\right)\right)
$$

where F_{n} is as in (18). If $2^{\nu} \| C_{n}$ and $\nu>1$, then $C_{n} \mid F_{n}$ and

$$
\begin{equation*}
\frac{C_{m n}}{C_{n}} \equiv m^{3} R^{n(m-1)} \quad\left(\bmod D_{n}\right) \tag{19}
\end{equation*}
$$

If $2 \| C_{n}$, then $\frac{C_{m n}}{C_{n}} \equiv m(\bmod 2)($ see Theorem 4.10 of $[\operatorname{Roe} 09])$ and $C_{n} / 2 \mid F_{n}$, so

$$
\frac{C_{m n}}{C_{n}} \equiv m^{3} R^{n(m-1)} \quad\left(\bmod \operatorname{gcd}\left(C_{n} / 2, W_{n}-6 R^{n}\right)\right)
$$

Now $\operatorname{gcd}\left(D_{n}, R\right) \mid 2$. If $\operatorname{gcd}\left(D_{n}, R\right)=1$, then $\left.\operatorname{gcd}\left(\frac{C_{m n}}{C_{n}}, D_{n}\right) \right\rvert\, m^{3}$.
If $\left(D_{n}, R\right)=2$, then $2 \| D_{n}$ by Lemma 5.2. Then $\left.\operatorname{gcd}\left(\frac{C_{m n}}{C_{n}}, D_{n} / 2\right) \right\rvert\, m^{3}$. Since $\operatorname{gcd}\left(D_{n} / 2, R\right)=1$ and $\left.\operatorname{gcd}\left(\frac{C_{m n}}{C_{n}}, 2\right) \right\rvert\, m$, we have $\left.\operatorname{gcd}\left(\frac{C_{m n}}{C_{n}}, D_{n}\right) \right\rvert\, m^{3}$.

We next examine $\operatorname{gcd}\left(\frac{D_{m n}}{D_{n}}, D_{n}\right)$. Let $p^{\alpha} \| \operatorname{gcd}\left(\frac{D_{m n}}{D_{n}}, D_{n}\right)$. We will show that $p^{\alpha} \mid m^{3}$ when p is a prime and $\alpha \geq 1$. This means of course that

$$
\operatorname{gcd}\left(D_{m n} / D_{n}, D_{n}\right) \mid m^{3} .
$$

We first observe that if $p \nmid m$, then $p \nmid D_{m n} / D_{n}$, which is a contradiction to Theorem 6.2, so $p \mid m$. If $\alpha<4$, then $p^{\alpha} \mid m^{3}$. If $\alpha \geq 4$, then by the law of repetition for D_{n}, we know that $p^{\lambda} \| D_{m n}$, with $\lambda \leq 3 \mu+\nu$, where $p^{\nu} \| D_{n}(\nu \geq 4)$ and $p^{\mu} \mid m$. Thus if $p^{\gamma} \| D_{m n} / D_{n}$, then $\gamma=\lambda-\nu \leq 3 \mu$, so $p^{\gamma} \mid m^{3}$. We now have the desired analogue of Theorem 2.4.

Theorem 6.10. If $m \geq 1$ and $n \geq 1$, then

$$
\operatorname{gcd}\left(D_{m n} / D_{n}, D_{n}\right) \mid m^{3} .
$$

Theorem 6.11. Let p be any prime such that $p \nmid 6 \Delta R$. Put $T=p^{2}-1$ if p is an S or a Q prime and $T=p^{2}+p+1$ otherwise. Then $p \mid D_{T}$.

6.4. Preliminary results for $\left\{E_{n}\right\}$

While working on the sequences $\left\{W_{n}\right\}$ and $\left\{C_{n}\right\}$, several results were obtained concerning the sequence $\left\{E_{n}\right\}$, where $E_{n}=\operatorname{gcd}\left(W_{n}, C_{n}\right)$. This sequence has a number of properties analogous to those of the Lucas sequence $\left\{V_{n}\right\}$. In the next several sections we will develop these properties. We begin with a result analogous to $\operatorname{gcd}\left(U_{n}, V_{n}\right) \mid 2$ for Lucas functions.

Theorem 6.12. If $\operatorname{gcd}(Q, R)=1$, then $\operatorname{gcd}\left(D_{n}, E_{n}\right) \mid 6$.
Proof. Suppose that p is any prime such that $p \mid D_{n}$ and $p \mid E_{n}$. Since $p \mid W_{n}-6 R^{n}$, we must have $p \mid 6 R^{n}$. Since $\operatorname{gcd}\left(D_{n}, R\right)=\operatorname{gcd}\left(E_{n}, R\right)$ and $\operatorname{gcd}\left(D_{n}, R\right) \mid 2$ by (17), we can only have $p=2$ or $p=3$. If $3^{2} \mid \operatorname{gcd}\left(D_{n}, E_{n}\right)$, then $3 \mid R$, which is impossible. If $2^{2} \mid \operatorname{gcd}\left(D_{n}, E_{n}\right)$, then $2^{2} \mid E_{n}$, which is also impossible by Lemma 5.2. Hence $\operatorname{gcd}\left(D_{n}, E_{n}\right) \mid 6$.

It is readily apparent that equation (11) implies $V_{n} \mid U_{2 n}$. Similarly we have the following theorem.

Theorem 6.13. We have $E_{n} \mid D_{3 n}$.

Proof. We can rework the identity

$$
4 W_{3 n}=3 \Delta C_{n}^{2}\left(W_{n}+2 R^{n}\right)+W_{n}^{2}\left(W_{n}-6 R^{n}\right)+24 R^{3 n}
$$

to see that

$$
\begin{equation*}
W_{3 n}-6 R^{3 n}=\left(W_{n}-6 R^{n}\right)\left(\frac{W_{n}^{2}-\Delta C_{n}^{2}}{4}\right)+\Delta W_{n} C_{n}^{2} \tag{20}
\end{equation*}
$$

Recall again from Lemma 5.2 that if $\operatorname{gcd}(Q, R)=1$, then $2^{\alpha} \| \operatorname{gcd}\left(W_{n}, C_{n}\right)$, so $\alpha=0$ or $\alpha=1$, and if $\alpha=1$, then $\tilde{Q}_{n}=\frac{W_{n}^{2}-\Delta C_{n}^{2}}{4}$ is odd.

We are now ready to show that $E_{n} \mid D_{3 n}$. We know that $C_{n} \mid C_{3 n}$. If $2 \nmid E_{n}$, then $E_{n} \mid \tilde{Q}_{n}$, so $E_{n} \mid W_{3 n}-6 R^{3 n}$ by equation (20). If $2 \mid E_{n}$, then $E_{n} / 2$ is odd and $E_{n} / 2 \mid \tilde{Q}_{n}$. Since $2 \mid W_{n}$, we have $2 \mid W_{n}-6 R^{n}$, so $E_{n} \mid\left(W_{n}-6 R^{n}\right) \tilde{Q}_{n}$ and $E_{n} \mid W_{3 n}-6 R^{3 n}$ by equation (20). Since $E_{n} \mid C_{n}$ and $C_{n} \mid C_{3 n}$, we get $E_{n} \mid C_{3 n}$ and $E_{n} \mid W_{3 n}-6 R^{3 n}$, so $E_{n} \mid D_{3 n}$.

We next derive some useful results concerning the primes which can divide E_{n}.
Theorem 6.14. If $\operatorname{gcd}(Q, R)=1$ and $p>3$ is a prime divisor of E_{n}, then $p \equiv 1$ $(\bmod 3)$.

Thus, if p is a prime such that $p>3, p \equiv-1(\bmod 3)$ and $p \mid D_{3 n}$, we know that $p \nmid E_{n}$. Theorem 6.14 can now be generalized.

Theorem 6.15. If $p>3$ is a prime such that $p \mid E_{n}$, then $p \equiv 1\left(\bmod 3^{\nu+1}\right)$, where $3^{\nu} \| n$.

Proof. Since $\operatorname{gcd}\left(E_{n}, R\right) \mid 2$, we must have $p \nmid R$. Suppose that $p \mid E_{n}$. Then we know that p cannot be an I prime by Theorem 6.6 of [Roe09] and $p \equiv 1(\bmod 3)$ by Theorem 6.14. We also have $p \mid D_{3 n}$. If $p \mid D_{n}$, then $p \mid W_{n}$ and $p \mid W_{n}-6 R^{n}$, so $p \mid 6 R^{n}$, which is a contradiction. Hence $p \nmid D_{n}$. Let ω be the rank of apparition of p in $\left\{D_{n}\right\}$. We have $\omega(p) \mid 3 n$ and $\omega(p) \nmid n$, as $p \mid D_{3 n}$ and $p \nmid D_{n}$. So, if $3^{\nu} \| n$, then $3^{\nu+1} \mid \omega(p)$. Also, since p is not an I prime and $p \nmid 6 R$, we have $\omega(p) \mid p$ or $\omega(p) \mid p^{2}-1$, by results seen in Theorem 6.5 for the S and Q prime cases. Hence,

$$
\omega(p) \mid(p-1)(p+1)
$$

so,

$$
3^{\nu+1} \mid(p-1)(p+1)
$$

Since $3 \mid \omega(p)$, we know $\omega(p) \nmid p$. Also, since $3 \mid p-1$, we must have $3^{\nu+1} \mid p-1$, so $p \equiv 1\left(\bmod 3^{\nu+1}\right)$.

Lucas showed (Theorem 2.14) that if p is an odd prime such that $p \mid V_{n}$, then $p \equiv \pm 1$ $\left(\bmod 2^{\nu+1}\right)$, where $2^{\nu} \| n$. We next produce an analogue of this result. Recall that $V_{n}=U_{2 n} / U_{n}$. We will consider those primes $p \notin\{2,3\}$ such that $p \mid\left(D_{3 n} / D_{n}\right)$.

Theorem 6.16. If $p>3$ is a prime such that $p \mid\left(D_{3 n} / D_{n}\right)$, then $p \equiv \pm 1$ $\left(\bmod 3^{\nu+1}\right)$, where $3^{\nu} \| n$.

Proof. Since $p \mid D_{3 n}$, we see that if $p \mid R$, then $p=2$ by (17), which is not possible. Thus, $p \nmid R$. Also, since $g c d\left(D_{3 n} / D_{n}, D_{n}\right) \mid 27$ by Theorem 6.10, we cannot have $p \mid D_{n}$. It follows by the same reasoning used in the proof of Theorem 6.15, that

$$
3^{\nu+1} \mid(p-1)(p+1) .
$$

Hence $p \equiv \pm 1\left(\bmod 3^{\nu+1}\right)$.

6.5. A law of repetition for $\left\{\boldsymbol{E}_{\boldsymbol{n}}\right\}$

Theorem 6.17. If $p>3$ is a prime such that $p^{\mu} \| E_{n}$, then $p^{\mu+1} \| E_{p n}$ for $\mu \geq 1$.

Proof. We note that

$$
p \left\lvert\, \frac{p\left(p-\lambda_{0}-1\right)!}{\lambda_{1}!\lambda_{2}!\lambda_{3}!}\right.
$$

unless $\lambda_{1}=p, \lambda_{0}=\lambda_{2}=\lambda_{3}=0$. If $\lambda_{1}=p$, then

$$
\tilde{Q}_{n}^{\lambda_{2}} U_{\lambda_{1}-\lambda_{2}}\left(\tilde{P}_{n}, \tilde{Q}_{n}\right)=U_{p}\left(\tilde{P}_{n}, \tilde{Q}_{n}\right) \quad \text { and } \quad \tilde{Q}_{n}^{\lambda_{2}} V_{\lambda_{1}-\lambda_{2}}\left(\tilde{P}_{n}, \tilde{Q}_{n}\right)=V_{p}\left(\tilde{P}_{n}, \tilde{Q}_{n}\right) .
$$

Also, by Theorem 6.10 of [Roe09], $\left(p^{\mu}\right)^{p} \mid V_{p}\left(\tilde{P}_{n}, \tilde{Q}_{n}\right)$ and $\left(p^{\mu}\right)^{p-1} \mid U_{p}\left(\tilde{P}_{n}, \tilde{Q}_{n}\right)$. Now, since $p>3$, we know that $2 \mu+1<\mu(p-1)$ and thus

$$
U_{p}\left(\tilde{P}_{n}, \tilde{Q}_{n}\right) \equiv V_{p}\left(\tilde{P}_{n}, \tilde{Q}_{n}\right) \equiv 0 \quad\left(\bmod p^{2 \mu-1}\right) .
$$

Furthermore, $p^{2 \mu} \mid \tilde{Q}_{n}^{\lambda_{2}} V_{\lambda_{1}-\lambda_{2}}$ for $\lambda_{1}+\lambda_{2} \geq 2$, so

$$
p^{2 \mu+1} \left\lvert\, \frac{p\left(p-\lambda_{0}-1\right)!}{\lambda_{1}!\lambda_{2}!\lambda_{3}!} \tilde{Q}_{n}^{\lambda_{2}} V_{\lambda_{1}-\lambda_{2}} .\right.
$$

Similarly, $p^{\mu} \mid \tilde{Q}_{n}^{\lambda_{2}} U_{\lambda_{1}-\lambda_{2}}\left(\tilde{P}_{n}, \tilde{Q}_{n}\right)$ for $\lambda_{1}+\lambda_{2} \geq 2$, so

$$
p^{\mu+1} \left\lvert\, \frac{p\left(p-\lambda_{0}-1\right)!}{\lambda_{1}!\lambda_{2}!\lambda_{3}!} \tilde{Q}_{n}^{\lambda_{2}} U_{\lambda_{1}-\lambda_{2}} .\right.
$$

Finally, if $\lambda_{1}+\lambda_{2}=1$, then

$$
W_{p n} \equiv \pm p R^{(p-1) n} W_{n} \quad\left(\bmod p^{2 \mu+1}\right) \quad \text { and } \quad \frac{C_{p n}}{C_{n}} \equiv p R^{(p-1) n} \quad\left(\bmod p^{\mu+1}\right)
$$

We may then conclude that if $p^{\mu} \| E_{n}$, then $p^{\mu+1} \| E_{p n}$.

Also, notice that if $p>3, p \nmid E_{n}$ and $p \nmid \Delta$, then $p \nmid E_{p n}$. For if $p \nmid C_{n}$, then $\tilde{\Delta}_{n}=\Delta C_{n}^{2}$, so $p \nmid \tilde{\Delta}_{n}$, and thus $U_{p}\left(\tilde{P}_{n}, \tilde{Q}_{n}\right) \not \equiv 0(\bmod p)$. But

$$
\frac{C_{p n}}{C_{n}} \equiv U_{p}\left(\tilde{P}_{n}, \tilde{Q}_{n}\right) \quad(\bmod p),
$$

so $p \nmid C_{p n}$. Also, since, $p \mid W_{n}$ if and only if $p \mid W_{p n}$ whenever $p \mid C_{n}$, we see that $p \nmid E_{p n}$ when $p \nmid W_{n}$.

6.6. A law of apparition for $\left\{\boldsymbol{E}_{\boldsymbol{n}}\right\}$

It will be seen here that $\left\{E_{n}\right\}$ behaves in much the same way as $\left\{V_{n}\right\}$. By employing $\left\{E_{n}\right\}$, we will be able to extend more of the results for $\left\{V_{n}\right\}$ from Section 2 that were, until now, missing. We must first deal with the case of $p=2$. Since $2 \mid E_{n}$ if and only if $2 \mid C_{n}$, from our results in Section 4.1 of [Roe09], there always exists some minimal ρ such that $2 \mid E_{\rho}$ and $2 \mid E_{n}$ if and only if $\rho \mid n$. We next consider the case of a general modulus. We note by the first two identities in Corollary 4.8 that $C_{n} \mid C_{2 n}$ and $W_{2 n} \equiv\left(\Delta C_{n}^{2}+W_{n}^{2}\right) / 2\left(\bmod W_{n}\right)$. Since E_{n} is either odd or $2 \| E_{n}$, it is easy to see that $E_{n} \mid E_{2 n}$.

The following theorem provides an analogue to Theorem 2.11.
Theorem 6.18. Suppose that $r \mid E_{n}$, with $n>0$. Then there must be a least positive $\rho=\rho(r)$ such that $r \mid E_{\rho}$. Further, $\rho \mid n$.

6.7. Further observations on $\left\{E_{n}\right\}$

The next theorems parallel Theorems 2.12 and 2.13.
Theorem 6.19. If $3^{\mu}\left\|m, 3^{\nu}\right\| n$ and $\mu=\nu$, then

$$
\operatorname{gcd}\left(E_{m}, E_{n}\right)=E_{g c d(m, n)}
$$

Theorem 6.20. If $3^{\mu}\left\|m, 3^{\nu}\right\| n$ and $\mu \neq \nu$, then

$$
\operatorname{gcd}\left(E_{m}, E_{n}\right) \mid 6
$$

6.8. Euler's criterion for $\left\{D_{n}\right\}$ and $\left\{E_{n}\right\}$

We restate Euler's criterion for U_{n}, V_{n} as follows.
Theorem 6.21. If $p \nmid 2 \Delta Q$, then

$$
\left\{\begin{aligned}
p \left\lvert\, U_{\frac{T(p)}{2}}\right. & \Longleftrightarrow Q^{\frac{p-1}{2}} \equiv 1 \quad(\bmod p) \\
p \left\lvert\, V_{\frac{T(p)}{2}}\right. & \Longleftrightarrow Q^{\frac{p-1}{2}} \equiv-1 \quad(\bmod p)
\end{aligned}\right.
$$

where $T(p)=p-1$ if p splits in $\mathbb{Q}(\alpha)$, and $T(p)=p+1$ otherwise.
Our analogue of Euler's criterion for D_{n} and E_{n} is stated in the theorem below. The proof of the following theorem relies on results in Sections 4.5, 5.3 and 6.3 of [Roe09]. We first suppose that p is a prime such that $p \nmid 6 \Delta R$. Define $T=T(p)$ to be $p-1$, $p^{2}-1$ or $p^{2}+p+1$ for p an S prime, a Q prime or an I prime, respectively.

Theorem 6.22. The equivalence

$$
p \left\lvert\, D_{\frac{T(p)}{3}} \Longleftrightarrow R^{\frac{p-1}{3}} \equiv 1 \quad(\bmod p)\right.,
$$

holds for any prime $p \equiv 1(\bmod 3)$, with the additional assumption that $p \left\lvert\, C_{\frac{p-1}{3}}\right.$ when p is an S prime. The equivalence

$$
p \left\lvert\, E_{\frac{T(p)}{3}} \Longleftrightarrow R^{\frac{p-1}{3}} \not \equiv 1 \quad(\bmod p)\right.
$$

holds for any S or Q prime $p \equiv 1(\bmod 3)$. If p, with $p \equiv 1(\bmod 3)$, is an I prime, then $p \nmid E_{\frac{T(p)}{3}}$.

7. Primality testing

7.1. An analogue of Lucas's fundamental theorem

As mentioned in Section 3, one of Lucas's main purposes in attempting to extend his functions was to find new primality tests. In this section we explore how the W_{n} and C_{n} functions can be used for producing such tests. We first develop some analogues of Theorem 2.16 of Section 2. We begin with a simple lemma.

Lemma 7.1. If $k \geq 2$ and $r_{i} \geq 5$, for $i=1,2, \ldots, k$, then

$$
\left(\prod_{i=1}^{k} r_{i}^{2}\right)-1>2 \prod_{i=1}^{k}\left(\frac{r_{i}^{2}+r_{i}+1}{2}\right)
$$

Proof. We note that

$$
1>\frac{1}{5^{4}}+2\left(\frac{7}{10}\right)^{2}
$$

hence

$$
1>\frac{1}{5^{2 k}}+2\left(\frac{7}{10}\right)^{k}
$$

for $k \geq 2$. Now

$$
\frac{1}{5^{2 k}} \geq \prod_{i=1}^{k} \frac{1}{r_{i}^{2}} \quad \text { and } \quad \frac{7}{5}=1+\frac{2}{5}>1+\frac{1}{r_{i}}+\frac{1}{r_{i}^{2}}
$$

imply that

$$
1>\prod_{i=1}^{k} \frac{1}{r_{i}^{2}}+2 \prod_{i=1}^{k}\left(\frac{1+\frac{1}{r_{i}}+\frac{1}{r_{i}^{2}}}{2}\right)
$$

Therefore,

$$
\left(\prod_{i=1}^{k} r_{i}^{2}\right)>\left(\prod_{i=1}^{k} r_{i}^{2}\right)\left(\prod_{i=1}^{k} \frac{1}{r_{i}^{2}}\right)+\left(\prod_{i=1}^{k} r_{i}^{2}\right)\left(2 \prod_{i=1}^{k}\left(\frac{1+\frac{1}{r_{i}}+\frac{1}{r_{i}^{2}}}{2}\right)\right)
$$

and

$$
\left(\prod_{i=1}^{k} r_{i}^{2}\right)-1>2 \prod_{i=1}^{k}\left(\frac{r_{i}^{2}+r_{i}+1}{2}\right)
$$

Theorem 7.2. Let N be an integer such that $\operatorname{gcd}(N, 6)=1$. If $N \mid D_{N^{2}-1}$ and $N \nmid D_{\frac{N^{2}-1}{q}}$ for all primes q such that $q \mid N^{2}-1$ and $\operatorname{gcd}\left(D_{\frac{N^{2}-1}{q^{\prime}}}, N\right)=1$, for some prime divisor q^{\prime} of $N^{2}-1$, then N is a prime.

Proof. Clearly $\omega(N)$ exists and $\omega(N) \mid N^{2}-1$. Also, if $\omega(N) \neq N^{2}-1$, then $N^{2}-1=k \omega(N)$, where $k>1$. If q is any divisor of k, then $\omega(N) \left\lvert\, \frac{N^{2}-1}{q}\right.$, so $N \left\lvert\, D_{\frac{N^{2}-1}{q}}\right.$, which is a contradiction. Hence $\omega(N)=N^{2}-1$. Let

$$
N=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}
$$

where the primes p_{i} are all distinct and exceed 4 . Also, $N \mid D_{N^{2}-1}$, then by equation (17) and the fact that $2 \nmid N$, we must have $\operatorname{gcd}(N, R)=1$. We know by Theorem 6.8 that

$$
\omega(N)=\operatorname{lcm}\left[\omega\left(p_{i}^{\alpha_{i}}\right) ; i=1,2, \ldots, k\right] .
$$

Since $\left(p_{i}, \omega(N)\right)=1$ and, by Theorem 6.7, $\omega\left(p_{i}^{\alpha_{i}}\right)=p_{i}^{\nu} \omega\left(p_{i}\right)$, we must have

$$
\omega(N) \mid \operatorname{lcm}\left[\omega\left(p_{i}\right) ; i=1,2, \ldots, k\right] .
$$

Let p be a prime divisor of N. We have $p \mid D_{N^{2}-1}$ and $p \nmid D_{\frac{N^{2}-1}{q^{\prime}}}$. Hence $\omega(p) \mid N^{2}-1$ and $\omega(p) \nmid \frac{N^{2}-1}{q^{\prime}}$, so $q^{\prime} \mid \omega(p)$. Hence

$$
\operatorname{lcm}\left[\omega\left(p_{i}\right) ; i=1,2, \ldots, k\right] \left\lvert\, q^{\prime} \prod_{i=1}^{k} \frac{\omega\left(p_{i}\right)}{q^{\prime}}\right.
$$

Now, for $k \geq 2$ we have by Corollary 6.6,

$$
q^{\prime} \prod_{i=1}^{k} \frac{\omega\left(p_{i}\right)}{q^{\prime}} \leq q^{\prime} \prod_{i=1}^{k} \frac{p_{i}^{2}+p_{i}+1}{q^{\prime}} \leq 2 \prod_{i=1}^{k} \frac{p_{i}^{2}+p_{i}+1}{2}
$$

so we get

$$
\left(\prod_{i=1}^{k} p_{i}^{2}\right)-1 \leq N^{2}-1 \leq 2 \prod_{i=1}^{k} \frac{p_{i}^{2}+p_{i}+1}{2}
$$

which is impossible by the previous lemma.
If $k=1$, then $N=p^{\alpha}$ and by Theorem $6.7 \omega(N)=\omega\left(p^{\alpha}\right)=p^{\nu} \omega(p)$, which implies $N^{2}-1=\omega(p)$ since $\operatorname{gcd}\left(p, N^{2}-1\right)=1$. If $\alpha \geq 2$, then $p^{4}-1 \leq p^{2}+p+1$, which is a contradiction. Thus $N=p$, a prime.

By similar methods used to prove the previous theorem we also have the following result.

Theorem 7.3. Let N be an integer such that $\operatorname{gcd}(N, 6)=1$. If $N \mid D_{N^{2}+N+1}$, $N \nmid D_{\frac{N^{2}+N+1}{q}}$ for each prime divisor q of $N^{2}+N+1$, and $\operatorname{gcd}\left(D_{\frac{N^{2}+N+1}{q^{\prime}}}, N\right)=1$ for some prime divisor q^{\prime} of $N^{2}+N+1$, then N is a prime.

We have proved our analogue of Theorem 2.16.
Theorem 7.4. Let N be an integer such that $\operatorname{gcd}(N, 6)=1$ and let $T=N^{2}-1$ or $T=N^{2}+N+1$. If $N \mid D_{T}$, $N \nmid D_{\frac{T}{q}}$ for each prime divisor q of T, and $\operatorname{gcd}\left(D_{\frac{T}{q^{\prime}}}, N\right)=1$ for some prime divisor q^{\prime} of T, then N is a prime.

The difficulty in providing this as a complete analogue to Lucas's result is the need to involve the prime q^{\prime}, which is not needed in Theorem 2.16. This is because $2 \mid N \pm 1$ and $2 \mid p_{i} \pm 1$, and any proof of Theorem 2.16 makes use of these observations. In what follows, we will modify Theorems 7.2 and 7.3 to eliminate the need for q^{\prime} in certain cases.

Suppose p is a prime such that $p \nmid 6 \Delta$ and $3 \mid T(p)$. By Theorem 6.5 of [Roe09], we know that if $m=T(p) / 3$, then $p \nmid C_{m}$ if and only if

$$
W_{m} \equiv-3 R^{m} \quad \text { and } \quad \Delta C_{m}^{2} \equiv-27 R^{2 m} \quad(\bmod p)
$$

We also have a result for an arbitrary modulus.
Lemma 7.5. Let $\operatorname{gcd}(N, 6)=1$. If $\Delta C_{n}^{2} \equiv-27 R^{2 n}(\bmod N)$ and $W_{n} \equiv-3 R^{n}$ $(\bmod N)$, then $N \mid D_{3 n}$ and $N \nmid C_{n}$.

Proof. We have $\Delta C_{n}^{2}+3 W_{n}^{2} \equiv 0(\bmod N)$. Since $4 C_{3 n}=C_{n}\left(\Delta C_{n}^{2}+3 W_{n}^{2}\right)$, we get $N \mid C_{3 n}$. Also, $4 W_{3 n}=3 \Delta C_{n}^{2}\left(W_{n}+2 R^{n}\right)+W_{n}^{2}\left(W_{n}-6 R^{n}\right)+24 R^{3 n}$ implies

$$
\begin{aligned}
4\left(W_{3 n}-6 R^{3 n}\right) & =3 \Delta C_{n}^{2}\left(W_{n}+2 R^{n}\right)+W_{n}^{2}\left(W_{n}-6 R^{n}\right) \\
& \equiv-9 W_{n}^{2}\left(W_{n}+2 R^{n}\right)+W_{n}^{2}\left(W_{n}-6 R^{n}\right) \quad(\bmod N) \\
& \equiv-9 W_{n}^{3}-18 R^{n} W_{n}^{2}+W_{n}^{3}-6 R^{n} W_{n}^{2} \quad(\bmod N) \\
& \equiv-8 W_{n}^{3}-24 R^{n} W_{n}^{2} \quad(\bmod N) \\
& \equiv-8 W_{n}^{2}\left(W_{n}+3 R^{n}\right) \equiv 0 \quad(\bmod N)
\end{aligned}
$$

Thus $N \mid W_{3 n}-6 R^{3 n}$, so $N \mid D_{3 n}$. Now since $g c d\left(W_{n}, C_{n}, R\right) \mid 2$ by Theorem 5.3 and $\operatorname{gcd}(N, 6)=1$, we have $\operatorname{gcd}(N, R)=1$, and then $N \nmid C_{n}$.

We can use the last result to prove the following theorem.
Theorem 7.6. Suppose N is odd, $3 \mid T(N), \Delta C_{\frac{T(N)}{2}}^{2} \equiv-27 R^{\frac{2 T(N)}{3}}(\bmod N)$, $W_{\frac{T(N)}{3}} \equiv-3 R^{\frac{T(N)}{3}}(\bmod N)$, and $N \nmid C_{\frac{T(N)}{q}}$ for each prime divisor q of $\frac{T(N)}{3}$. Then N is a prime.

Proof. By the previous lemma, we know that $N \mid D_{T(N)}$ and $N \nmid D_{\frac{T(N)}{q}}$ for all prime divisors of $T(N)$. By our earlier reasoning we have $\omega(N)=T(N)$. Also, since $\operatorname{gcd}(T(N), N)=1$,

$$
\omega(N)=\operatorname{lcm}\left[\omega\left(p_{i}\right) ; i=1,2, \ldots, k\right], \quad \text { if } N=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}
$$

Let p be any prime divisor of N. If $p \mid R$, then by the conditions of the theorem $p \left\lvert\, W_{\frac{T(N)}{3}}\right.$ and $p \left\lvert\, \Delta C_{\frac{T(N)}{3}}\right.$. Since $p \nmid C_{\frac{T(N)}{3}}$ by Lemma 7.5, we must have $p \mid \Delta$. However, it can be shown that if $\operatorname{gcd}(Q, R) \stackrel{s}{=} 1$, then $\operatorname{gcd}\left(W_{n}, R, \Delta\right) \mid 4$; thus we can only have $p=2$, which is not possible because N is odd. Thus, $\operatorname{gcd}(N, R)=1$. Also, if $p \mid N$ and $p \mid \Delta$, then $p \mid R$ and $p \left\lvert\, W_{\frac{T(N)}{3}}\right.$, which is also impossible. It follows that $\operatorname{gcd}(N, 6 \Delta R)=1$. Now since $p \mid C_{T(N)}$ and $p \nmid C_{\frac{T(N)}{3}}$, we get

$$
p \left\lvert\, \Delta C_{\frac{T(N)}{3}}^{2}+3 W_{\frac{T(N)}{3}}^{2}\right.
$$

and we know that $p \nmid \Delta C_{\frac{T(N)}{3}} W_{\frac{T(N)}{3}}$. Thus $\left(\frac{-3 \Delta}{p}\right)=1$. If p is an I prime, then $\omega(p) \mid p^{2}+p+1,\left(\frac{\Delta}{p}\right)=1$ and $\left(\frac{-3}{p}\right)=1$, which means that $p \equiv 1(\bmod 3)$ and $3 \mid p^{2}+p+1$. If p is a Q prime, then $\omega(p) \mid p^{2}-1$ and $3 \mid p^{2}-1$. If p is an S prime, then $\omega(p) \mid p-1$ and $p-1<\left(p^{2}-1\right) / 3<\left(p^{2}+p+1\right) / 3$. Thus,

$$
\operatorname{lcm}\left[\omega\left(p_{i}\right) ; i=1,2, \ldots, k\right] \leq 3 \prod_{i+1}^{k} \frac{p_{i}^{2}+p_{i}+1}{3}
$$

That N is a prime now follows from our previous reasoning.
Notice that $3 \mid T(N)$ when $T(N)=N^{2}-1$ and $3 \mid T(N)$ when $T(N)=N^{2}+N+1$ and $N \equiv 1(\bmod 3)$.

A more general result than Theorem 7.6, and one that is more in line with Lucas's precept that the primality of N can be established by showing that N divides certain integers, is provided in Theorem 7.8 below. In order to demonstrate this result we need a simple lemma.

Lemma 7.7. Suppose that N is odd and let m be any positive integer such that $\operatorname{gcd}(m, N)=1$. If $N \mid C_{m n} / C_{n}$, then $\operatorname{gcd}\left(N, D_{n}\right)=1$.

Proof. Suppose p is any prime divisor of D_{n} and N. Since $p \mid C_{n}$ and $p \mid W_{n}-6 R^{n}$, we see by our results in Section 6.3, in particular equation (19), that we have

$$
C_{m n} / C_{n} \equiv m^{3} R^{n(m-1)} \quad(\bmod p) .
$$

It follows that since $p \nmid m$ and $p \nmid R\left(\operatorname{gcd}\left(D_{n}, R\right) \mid 2\right)$, we must have $p \nmid C_{m n} / C_{n}$, contradicting $N \mid C_{m n} / C_{n}$.

We are now able to produce an analogue of Corollary 2.18.
Theorem 7.8. Let N be an integer such that $\operatorname{gcd}(N, 6)=1$. If $N \mid D_{T(N)}$ and $N \left\lvert\,\left(C_{T(N)} / C_{\frac{T(N)}{q}}\right)\right.$ for each prime divisor q of $T(N)$, then N is a prime.

Proof. Since $\operatorname{gcd}(T(N), N)=1$, we have $\operatorname{gcd}(q, N)=1$. By Lemma 7.7 we know that if p is any prime divisor of N, then $g c d\left(N, D_{\frac{T(N)}{q}}\right)=1$. Thus, $N \nmid D_{\frac{T(N)}{q}}$ for all prime divisors q of $T(N)$ and $g c d\left(N, D_{\frac{T(N)}{q^{\prime}}}\right)=1$ for any prime divisor q^{\prime} of $T(N)$. The result follows by Theorem 7.4.

We note here that Lucas himself ([Luc78], pp. 310-311) made use of the divisibility of $U_{3 n} / U_{n}$ to produce a primality test for $N=A 3^{n}-1$. Also, the computation of $C_{T} / C_{\frac{T}{q}}$ can be done efficiently by using the methods of Section 3.6 of [Roe09].

Unfortunately, results like Theorems 7.4 and 7.8 are of limited utility in primality testing because we need to know the complete factorization of $T(N)$, and this is often not available to us. In the next subsection, we will consider some special cases when $T(N)=N^{2}+N+1$.

7.2. The case of $T(N)=N^{2}+N+1$

We will deal here with the case of $N^{2}+N+1=t L$, where L is a prime.
Theorem 7.9. Let $N^{2}+N+1=t L$, where L is a prime. If $t<N-\sqrt{N}+1$, $\left(N, D_{t}\right)=1$ and $N \mid D_{N^{2}+N+1}$, then N is a prime.

Corollary 7.10. If N is odd, $N \equiv 1(\bmod 3), L=\left(N^{2}+N+1\right) / 3$ is a prime, $\operatorname{gcd}\left(N, D_{3}\right)=1$, and $N \mid D_{N^{2}+N+1}$, then N is a prime.

We also have the following result.
Theorem 7.11. Let $N^{2}+N+1=t L$, where L is a prime. If $L>t^{2}+t+1$, $\operatorname{gcd}\left(N, D_{t}\right)=1$ and $N \mid D_{N^{2}+N+1}$, then N is a prime.

Now, suppose that S is a fixed positive integer and $N=t S+u$, where $t=u^{2}+u+1$ and $u \in \mathbb{Z}$. Then $N^{2}+N+1=t L$, where

$$
L=t S^{2}+(2 u+1) S+1
$$

For such numbers, we have the following result.
Theorem 7.12. If $N=t S+u$, where $S \geq 2$ and $N>4$, we have $t<N-\sqrt{N}+1$.
From Theorems 7.9 and 7.12 we see that if $t S^{2}+(2 u+1) S+1$ is a prime, then we can use the test of Theorem 7.9 to prove that $t S+u$ is a prime. Of course, if $N=t S+u$ is a prime, it might not be an I prime and therefore $T(N) \neq N^{2}+N+1$; consequently, this test would not be successful. Thus, we need to find values for P, Q and R such that if $N=t S+u$ is a prime, then N is an I prime for $f(x)=x^{3}-P x^{2}+Q x-R$. It is well-known (see [Wil72b] and [Leh58]) that if N is a prime and

$$
N^{\frac{p-1}{3}} \not \equiv 1 \quad(\bmod p),
$$

where p is a prime (equivalent to 1 modulo 3), $4 p=r^{2}+27 s^{2}$ with $r \equiv 1(\bmod 3)$ and $N \nmid s p r$, then the cubic congruence

$$
x^{3}-3 p x-p r \equiv 0 \quad(\bmod N)
$$

is irreducible; that is, N is an I prime for

$$
P \equiv 0, \quad Q \equiv-3 p \text { and } R \equiv p r \quad(\bmod N)
$$

Notice that since $g c d(p r, N)=1$, there always exists some x such that

$$
\operatorname{gcd}(p r+x N,-3 p)=1 ;
$$

hence, the fact that $\operatorname{gcd}(-3 p, p r)=p \neq 1$ does not have any effect on the validity of our results. We have proved the following theorem.

Theorem 7.13. Let $L=t S^{2}+(2 u+1) S+1$ be a prime and put $N=t S+u$. Suppose that $(N, 6)=1, p$ is a prime such that $p \equiv 1(\bmod 3), N^{\frac{p-1}{3}} \not \equiv 1(\bmod p)$ and $4 p=r^{2}+27 s^{2}$, with $r \equiv 1(\bmod 3)$ and $\operatorname{gcd}(N, p r s)=1$. If we put

$$
P \equiv 0, Q \equiv-3 p \quad \text { and } R \equiv p r \quad(\bmod N)
$$

then N is a prime if and only if $N \mid D_{N^{2}+N+1}$ and $\operatorname{gcd}\left(D_{t}, N\right)=1$.

Corollary 7.14. Let $2 \nmid S$, and $L=3 S^{2}-3 S+1$ be a prime. Suppose that p is a prime such that $p \equiv 1(\bmod 3)$ and

$$
N^{\frac{p-1}{3}} \not \equiv 1 \quad(\bmod p),
$$

where $N=3 S-2$. If we define r and s as above and $\operatorname{gcd}(N, p r s)=1$, then N is a prime if and only if $N \mid D_{N^{2}+N+1}$, where

$$
P \equiv 0, \quad Q \equiv-3 p \quad \text { and } R \equiv p r \quad(\bmod N)
$$

Notice that we need only perform $O\left(\log N\left(M\left(\log _{2} N\right)\right)\right)$ operations to establish the primality of N, once we know that L is a prime. (Here we use $M(n)$ to denote the number of elementary bit operations needed to multiply two n-bit integers.) This is much faster than several other tests because it is not necessarily all that easy to find enough factors of $N \pm 1$ to use the techniques of Brillhart, Lehmer and Selfridge [BLS75], which generalized those of Lucas, to establish the primality of N.

7.3. The primality of L

If we put

$$
L=t S^{2}+(2 u+1) S+1, \quad t=u^{2}+u+1 \quad \text { and } \quad N=t S+u,
$$

the results of the last section allow us to establish the primality of N, when we have already proved L is a prime. This is not a vacuous result because we certainly expect by the Bateman-Horn conjecture [BH62] that there exists an infinitude of values of S such that for a fixed u, L and N will both be prime. Also, for a fixed value of S, we would expect that there exists an infinitude of values of u such that both L and N will be prime. There remains, however, the difficulty of proving that L is a prime. We notice, however, that $S \mid L-1$. Suppose that $S=F G$, where we know the complete factorization of F. It is then possible, by using the methods of [BLS75] to prove that L is either prime or that all the prime factors of L must have the form $k F+1$.

Theorem 7.15. Suppose that $L=t S^{2}+(2 u+1) S+1$ (with $t=u^{2}+u+1$), $S=F G$ and all the prime factors of L have the form $k F+1$. Then L is a prime whenever $F>t G^{2}+|2 u+1| G+2$.

Suppose that we now consider the simple example where we put $F=2^{n}, G=1$. We get

$$
L_{n}=\left(u^{2}+u+1\right) 2^{2 n}+(2 u+1) 2^{n}+1, \text { and } N_{n}=\left(u^{2}+u+1\right) 2^{n}+u
$$

In this case, if $2^{n}>u^{2}+3|u|+4$, we can easily establish (when it is the case) that L_{n} is a prime. We can next use our earlier results to prove that N_{n} is a prime, when that is the case. This is not a vacuous result as both L_{n} and N_{n} are prime for $n=819$ and $u=289$.

If we put $F=q^{n}$, where q is a prime and $G=1$, we can once again easily establish the primality of

$$
L_{n}=\left(u^{2}+u+1\right) q^{2 n}+(2 u+1) q^{n}+1
$$

when L_{n} is a prime. However, if we specify q and u, it seems a very rare event to have both L_{n} and $N_{n}=\left(u^{2}+u+1\right) q^{n}+u$ prime simultaneously. In the particular case where $u=-2$ and $q=3$ we get

$$
L_{n}=3^{2 n+1}-3^{n+1}+1 \quad \text { and } \quad N_{n}=3^{n+1}-2 .
$$

For $n>3$, we need only find some b such that

$$
\begin{equation*}
b^{L_{n}-1} \equiv 1 \quad\left(\bmod L_{n}\right) \quad \text { and } \quad g c d\left(b^{\frac{L_{n}-1}{3}}-1, L_{n}\right)=1, \tag{21}
\end{equation*}
$$

to establish that L_{n} is a prime. Note that $3^{n+1} \| L_{n}-1$. Suppose p is some prime such that $p \mid L_{n}$. By (21) we have

$$
p \mid b^{L_{n}-1}-1 \text { and } p \nmid b^{\frac{L_{n}-1}{3}}-1 .
$$

If ω is the order of b modulo p, then

$$
\omega \mid L_{n}-1 \text { and } \omega \nmid \frac{L_{n}-1}{3} .
$$

So $3^{n+1} \mid \omega$ and $\omega \mid p-1$; thus $p \equiv 1\left(\bmod 3^{n+1}\right)$. Hence $p=k 3^{n+1}+1$ for some $k \in \mathbb{N}$. We then have $p \geq 2 \cdot 3^{n+1}+1$ and we can conclude that L_{n} is a prime since $p>\sqrt{L_{n}}$. Having done this we can use Corollary 7.14 to establish that N_{n} is a prime. This sort of testing of pairs of numbers for primality might have pleased Lucas.

7.4. The case of $T(N)=N^{2}-1$

It is certainly possible to test numbers of the form $A q^{n} \pm 1$ for primality by using the W_{n} and C_{n} functions; however, we will confine our attention here to the case where $N=A 3^{n}-1$, as this is the analogous form to $A 2^{n}-1$ mentioned in Chapter 2. We can produce a theorem similar to Theorem 2.19 , except for the necessity condition.

Theorem 7.16. Let $N=A 3^{n}-1$, where $2 \mid A, A<3^{n}, n \geq 2$ and $\operatorname{gcd}(N, R)=1$. If $N \left\lvert\,\left(C_{N+1} / C_{\frac{N+1}{3}}\right)\right.$, then N is prime.

Our next objective will be to produce conditions that are both necessary and sufficient for $N=A 3^{n}-1$ to be prime. We first need to produce a result analogous to Theorem 2.21. We begin with the following theorem.

Theorem 7.17. Let p be an odd prime such that $p \equiv-1(\bmod 3)$. Then there exist P, Q and R such that p is a Q prime if and only if

$$
P \equiv a+\operatorname{Tr}(\lambda), \quad Q \equiv a \operatorname{Tr}(\lambda)+N(\lambda) \text { and } R \equiv a N(\lambda) \quad(\bmod p),
$$

where $a \in \mathbb{Z}, \lambda=r_{1}+r_{2} \rho \in \mathbb{Z}[\rho], \rho^{2}+\rho+1=0$ and $p \nmid a r_{2} N(\lambda)$.
We can now present our analogue of Theorem 2.21.
Theorem 7.18. Let p be an odd prime such that $p \equiv-1(\bmod 3)$. If P, Q and R satisfy the conditions of Theorem 7.17 and $\left(\frac{\lambda}{p}\right)_{3} \neq 1$, then

$$
p \left\lvert\,\left(C_{p+1} / C_{\frac{p+1}{3}}\right) .\right.
$$

By combining Theorems 7.16 and 7.18 we get the following necessary and sufficient condition for $N=A 3^{n}-1$, with $2 \mid A$ and $A<3^{n}$, to be prime.

Theorem 7.19. Let $N=A 3^{n}-1$, where $2 \mid A$ and $3<A<3^{n}$. Futhermore, let $q \equiv 1(\bmod 3)$ be a prime such that $q \nmid N$ and

$$
N^{\frac{q-1}{3}} \not \equiv 1 \quad(\bmod q) .
$$

Let $\lambda=r_{1}+r_{2} \rho$, with $\rho^{2}+\rho+1=0$, be a primary prime divisor of q in $\mathbb{Z}[\rho]$ and suppose that $N \nmid r_{2}$. Let

$$
P \equiv a+\operatorname{Tr}(\lambda), \quad Q \equiv a \operatorname{Tr}(\lambda)+q, \quad \text { and } R \equiv a q \quad(\bmod N),
$$

where $(a, N)=1$. Then N is a prime if and only if

$$
N \left\lvert\,\left(C_{p+1} / C_{\frac{p+1}{3}}\right) .\right.
$$

8. Conclusion

The purpose of this research was to develop a cubic extension of the Lucas functions that Lucas himself might have discovered. What has emerged from this work is a theory of two functions that displays a number of pleasing similarities with Lucas's original work. The main tools in Lucas's investigation of his functions were the multiplication formulas (13) and (14). The multiplication formulas, proved in Subsection 4.5, allowed us to obtain arithmetic results that closely resemble those for the Lucas case. Key results like the laws of repetition and apparition, and Euler's criterion, have analogues in our extension. Most remarkably, the extension relies on the use of only two functions, despite the fact that you would expect three for the cubic case. (It might be argued that we are really considering four functions here because of D_{n} and E_{n}, but these latter functions are simply a convenient way of representing certain divisors of C_{n}.) Further, when restricted to the quadratic case, our generalization in Section 4.3 satisfyingly reduces to that of Lucas sequences.

With all that in mind, it is difficult to point to a single "main" result. However, knowing that Lucas's own goal in generalizing his sequences was to find and implement new primality tests, Theorem 7.19 stands out as we can easily implement a primality test based on it. The test makes use of $\left\{C_{n}\right\}$, a sequence known to Lucas that surely would have been a part of any generalization he would have done, to test numbers of the form $A 3^{n}-1$. Certainly, even more important than just the primality test is Theorem 7.4, a result that is our analogue of Theorem 2.16, which Lucas refered to as his fundamental theorem. It should be emphasized, however, that today there exist many sophisticated methods for primality proving (see, for example, Chapter 4 of [CP01]). The primality conditions proved here are of mere historical interest and are perhaps what Lucas had in mind.

Acknowledgments. The authors gratefully acknowledge the work of an anonymous referee, whose many helpful comments caused us to produce a much better version of this paper than the one originally submitted. The third author was supported by NSERC of Canada and iCORE of Alberta.

References

[AS82] W. Adams and D. Shanks, Strong primality tests that are not sufficient, Math. Comp. 39 (1982), no. 159, 255-300.
[Ba195] C. Ballot, Density of prime divisors of linear recurrences, Mem. Amer. Math. Soc. 115 (1995), no. 551, viii+102 pp.
[Ba199] C. Ballot, Strong arithmetic properties of the integral solutions of $X^{3}+D Y^{3}+D^{2} Z^{3}-$ $3 D X Y Z=1$, where $D=M^{3} \pm 1, M \in \mathbb{Z}^{*}$, Acta Arith. 89 (1999), no. 3, 259-277.
[BH62] P. T. Bateman and R. A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers, Math. Comp. 16 (1962) 363-367.
[Bel24] E. T. Bell, Notes on recurring series of third order, Tôhoku Math. J. 24 (1924), 168184.
[BLS75] J. Brillhart, D. H. Lehmer and J. L. Selfridge, New primality criteria and factorizations of $2^{m} \pm 1$, Math. Comp. 29 (1975), 620-647.
[Car13] R. D. Carmichael, On the numerical factors of the arithmetic forms $\alpha^{n} \pm \beta^{n}$, Ann. of Math. (2) 15 (1913/14), no. 1-4, 30-70.
[Car20] R. D. Carmichael, On sequences of integers defined by recurrence relations, Quart. J. Math. Oxford Ser. 48 (1920), 343-372.
[CP01] R. Crandall and C. Pomerance, Prime numbers, A computational perspective, SpringerVerlag, New York, 2001, xvi+545 pp.
[Déc99] A. M. Décaillot-Laulagnet, Édouard Lucas (1842-1891): le parcours original d'un scientifique français dans la deuxième moitié du XIX-ième siècle, Ph.D. thesis, Université René Descartes - Paris V, 1999.
[dL80] M. G. de Longchamps, Sur les fonctions récurrentes du troisième degré, AFAS 9th (1880), 115-117.
[DLL95] H. Delannoy, C.-A. Laisant and E. Lemoine, Question 177, L'Intermédiaire des Mathématiciens 2 (1895), 341.
[Dic19] L. E. Dickson, History of the theory of numbers, Carnegie Institution of Washington, Publication No. 256 (1919).
[Eng31] H. T. Engstrom, On sequences defined by linear recurrence relations, Trans. Amer. Math. Soc. 33 (1931), no. 1, 210-218.
[Har57] D. Harkin, On the mathematical work of François-Édouard-Anatole Lucas, L'Enseignement Math. (2) 3 (1957), 276-288.
[Lai96] C.-A. Laisant, Question 744, L'Intermédiaire des Mathématiciens 3 (1896), 33-34.
[Laz07] D. Lazzeri, Gastone Gohierre de Longchamps, Periodico di matematica 4 (1907), 5359.
[Leh27] D. H. Lehmer, Tests for primality by the converse of Fermat's theorem, Bull. Amer. Math. Soc. 33 (1927), no. 3, 327-340.
[Leh30] D. H. Lehmer, An extended theory of Lucas' functions, Ann. of Math. (2) 31 (1930), no. 3, 419-448.
[Leh35] D. H. Lehmer, On Lucas's test for the primality of Mersenne's numbers, J. London Math. Soc. 10 (1935), 162-165.
[Leh58] E. Lehmer, Criteria for cubic and quartic residuacity, Mathematika 5 (1958), 20-29.
[Luc76] E. Lucas, Sur les rapports qui existent entre la théorie des nombres et le calcul intégral, Comptes Rendus Acad. des Sciences, Paris 82 (1876), 1303-1305.
[Luc78] E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 189-240, 289-321.
[Luc80] E. Lucas, Notice sur les titres et travaux scientifiques de M. Édouard Lucas, D. Jouaust, Paris, 1880.
[Luc91a] E. Lucas, Questions proposées à la discussion des lre et $2 e$ sections 1° questions d'arithmétique supérieure, Assoc. Française pour l'Avancement des Sciences, Compte rendu des sessions 20 (1891), 149-151.
[Luc91b] E. Lucas, Théorie des nombres, Gauthier-Villars, Paris, 1891.
[Mac15] P. A. MacMahon, Combinatory analysis, vol. I, Chelsea Publishing Company, 1915.
[Men62] N. S. Mendelsohn, Congruence relationships for integral recurrences, Canad. Math. Bull. 5 (1962), 281-284.
[Mü101] S. Müller, On the rank of appearance and the number of zeros of the Lucas sequences over \mathbf{F}_{q}, Finite Fields and Applications (Augsburg, 1999), Springer, Berlin, 2001, pp. 390-408.
[Mü104] S. Müller, On the computation of cube roots modulo p, High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams, 293-304, Fields Inst. Commun., 41, Amer. Math. Soc., Providence, RI, 2004.
[Rib89] P. Ribenboim, The book of prime number records, Second edition, Springer-Verlag, New York, 1989. xxiv+479 pp.
[Roe09] E. Roettger, A cubic extension of the Lucas functions, Ph.D. thesis, University of Calgary, 2009.
[Ser79] J.-A. Serret, Cours d'algèbre supérieure. Tome II., Reprint of the fourth (1879) edition, Les Grands Classiques Gauthier-Villars, Éditions Jacques Gabay, Sceaux, 1992, xii+695 pp.
[War31a] M. Ward, The algebra of recurring series, Ann. of Math. (2) 32 (1931), no. 1, 1-9.
[War31b] M. Ward, The characteristic number of a sequence of integers satisfying a linear recursion relation, Trans. Amer. Math. Soc. 33 (1931), no. 1, 153-165.
[War31c] M. Ward, The distribution of residues in a sequence satisfying a linear recursion relation, Trans. Amer. Math. Soc. 33 (1931), no. 1, 166-190.
[War33] M. Ward, The arithmetical theory of linear recurring series, Trans. Amer. Math. Soc. 35 (1933), no. 3, 600-628.
[War36] M. Ward, A Calculus of Sequences, Amer. J. Math. 58 (1936), no. 2, 255-266.
[War37] M. Ward, Linear divisibility sequences, Trans. Amer. Math. Soc. 41 (1937), no. 2, 276-286.
[War55] M. Ward, The laws of apparition and repetition of primes in a cubic recurrence, Trans. Amer. Math. Soc. 79 (1955), 72-90.
[Wil69] H. C. Williams, A generalization of the Lucas functions, Ph.D. thesis, University of Waterloo, 1969.
[Wil72a] H. C. Williams, On a generalization of the Lucas functions, Acta Arith. 20 (1972), 33-51.
[Wil72b] H. C. Williams, The primality of $N=2 A 3^{n}-1$, Canad. Math. Bull. 15 (1972), 585-589.
[Wil76] H. C. Williams, A generalization of Lehmer's functions, Acta Arith. 29 (1976), no. 4, 315-341.
[Wil77] H. C. Williams, Properties of some functions similar to Lucas functions, Fibonacci Quart. 15 (1977), no. 2, 97-112.
[Wil98] H. C. Williams, Édouard Lucas and primality testing, Canadian Mathematical Society Series of Monographs and Advanced Texts, 22, A Wiley-Interscience Publication. John Wiley \& Sons, Inc., New York, 1998, x+525 pp.
[WZ74] H. C. Williams and C. R. Zarnke, Some algorithms for solving a cubic congruence modulo p, Utilitas Math. 6 (1974), 285-306.
S. Müller, Dept. of Mathematics and Statistics, U. of Wyoming, Laramie, WY 820713036, United States.
smuller@uwyo.edu
E. Roettger, Dept. of Mathematics, Physics and Engineering, Mount Royal U., Calgary, Alberta, Canada, T3E 6K6.
eroettger@mtroyal.ca
H. C. Williams, Dept. of Mathematics and Statistics, U. of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4.
williams@math.ucalgary.ca

