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RÉSUMÉ. Entre 1876 et 1878, Lucas développa la théorie des fonctions Vn et Un

qui portent aujourd’hui son nom. Il s’intéressa beaucoup aux moyens de montrer la
primalité de certains grands nombres premiers à l’aide de ces fonctions, et parvint, en
particulier, à prouver que 2127 − 1 est un nombre de Mersenne premier. Si Vn et Un

s’expriment en fonction des puissances n-ièmes des zéros d’un polynôme quadratique,
on trouve à travers les écrits de Lucas des allusions répétées à l’étude de fonctions qui
puissent généraliser les fonctions Vn et Un et s’exprimer à l’aide des puissances n-
ièmes des racines d’un polynôme cubique.

Dans cet article, nous présentons deux fonctions qui s’expriment simplement à
l’aide de certains polynômes symétriques des racines des zéros d’un polynôme de de-
gré 3, et dont les propriétés semblent en accord avec la théorie que Lucas avait envisa-
gée. Ainsi, nous établissons clairement que les aspects combinatoires et arithmétiques
de nos fonctions étendent la théorie classique de Lucas, et développons aussi des ré-
sultats nouveaux qui illustrent davantage la remarquable analogie entre nos fonctions
et les fonctions Vn et Un de Lucas. Aussi nous mettrons en évidence le fait que, bien
que Lucas n’ait probablement jamais développé la théorie que nous exposons ici, les
moyens mathématiques étaient néanmoins à sa disposition et à sa portée.

ABSTRACT. From 1876 to 1878, Lucas developed his theory of the functions Vn

and Un, which now bear his name. He was particularly interested in how these func-
tions could be employed in proving the primality of certain large integers, and as part
of his investigations he succeeded in demonstrating that the Mersenne number 2127−1
is a prime. The functions Vn andUn can be expressed in terms of the n-th powers of the
zeros of a quadratic polynomial, and throughout his writings Lucas speculated about
the possible extension of these functions to those which could be expressed in terms
of the n-th powers of the zeros of a cubic polynomial.

In this paper we discuss a pair of functions that are easily expressed as certain
symmetric polynomials of the zeros of a cubic polynomial. We show how their pro-
perties seem to underlie the theory that Lucas was seeking. We do this by deriving a
number of results which show how the combinatorial and arithmetic aspects of these
functions provide an extension of Lucas’s theory. Furthermore, we develop many new
results, which illustrate the striking analogy between our functions and those of Lucas.
We also argue that, while Lucas very likely never developed this theory, it was certainly
within his abilities to do so.

Reçu le 29 avril 2009 et, sous forme définitive, le 26 novembre 2009.
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1. Introduction

The present paper is a condensed version of the results in [Roe09], a 218 page
thesis devoted to developing the properties of two functions analogous to the well-
known functions of Lucas. As such, much detail has been omitted, including many
lengthy proofs. The interested reader can find full details in the original work. In
several of Lucas’s works concerning the development of the theory of his functions,
(see Section 1.2 of [Roe09] for full details), he mentioned the possibility of extending
his theory. It seems, however, that he never succeeded in doing this. The main tools
employed in our investigation into this problem would have been known to Lucas. For
example, he would have needed the fundamental theorem of symmetric polynomials,
but he indicated in several places (see, for example, Section 21 of [Luc78]), that he
was well aware of this result. We will make a great deal of use of Waring’s theorem,
but this was described in great detail by Lucas in Chapter XV of [Luc91b]. We will
also use the theory of finite fields, but this would have been known (at least the amount
that he would need) to Lucas through the second volume of Serret’s Cours d’Algèbre
supérieure [Ser79], with which Lucas was quite familiar (see p. vii of [Luc91b]). To
develop our law of repetition, we require a small amount of algebraic number theory
to prove Theorem 5.7. Lucas might have been aware of some of this material because
he claims in part CLIX of [Luc80] that he was working, together with M. Tastavin, on
producing a French translation of the third edition of Dirichlet–Dedekind’s Vorlesungen
über die Zahlentheorie. Unfortunately, this volume never appeared, but the result that
we need could easily have been deduced by Lucas, even though his proof might not
have been completely rigorous. In the Appendix of [Roe09], we provide an alternate,
more elementary proof of Theorem 5.7, which Lucas could have been able to deduce.
We also make use of derivatives to establish a certain identity that will be useful in
our investigation into the law of repetition, but Lucas often did this himself (see, for
example, Section XVII of [Luc78]).

The result of this work is a fairly complete cubic generalization of the theory of the
Lucas functions. In the next section we list the most important properties of the Lucas
functions. In the succeeding sections we will develop analogues of all of these results
in our cubic extension of Lucas’s functions.

2. Lucas sequences

Given the polynomial x2−Px+Q, where P andQ are coprime integers, the Lucas
functions Un and Vn are defined by

Un = Un(P,Q) = (αn − βn)/(α− β)

and

Vn = Vn(P,Q) = αn + βn,

where α and β are the zeros of the given polynomial. Further let

∆ = δ2 = (α− β)2 = P 2 − 4Q.
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2.1. Identities
Lucas sequences satisfy many well-known identities, several of which will be men-

tioned herein. For further information the reader is referred to standard works such as
[Wil98] and [Rib89].

For a fixed m, both Un and Vn satisfy the following recurrence relation

Xn+2m = VmXn+m −QmXn,(1)

where U0 = 0, U1 = 1, V0 = 2 and V1 = P . Further, we have:

Un+m = VmUn −QmUn−m,(2)

Vn+m = VmVn −QmVn−m,(3)

2Um+n = VmUn + UmVn,(4)

2Vm+n = VmVn + ∆UmUn,(5)

2QmUn−m = UnVm − VnUm,(6)

2QmVn−m = VnVm −∆UnUm,(7)

Un+m = VnUm +QmUn−m,(8)

Vm+n = ∆UnUm +QmVn−m,(9)

V 2
n −∆U2

n = 4Qn,(10)

U2n = VnUn,(11)

V2n = V 2
n − 2Qn = ∆U2

n + 2Qn.(12)

Furthermore:

2m−1Umn =
b(m−1)/2c∑

i=0

(
m

2i+ 1

)
∆iU2i+1

n V m−2i−1
n ,(13)

2m−1Vmn =
bm/2c∑
i=0

(
m

2i

)
∆iU2i

n V
m−2i
n .(14)

2.2. Arithmetic results
The identities from the previous section may be employed to construct arithmetic

results for Lucas sequences. Most of the results provided below were known to Lucas,
but some such as Theorems 2.4 and 2.15 were not. As is usual, we denote the greatest
common divisor of a and b by (a, b) and the least common multiple of a and b by [a, b].
It is well-known that

(Un, Vn) | 2, for n ≥ 0,(15)

and
(Un, Q) = (Vn, Q) = 1, for n ≥ 1.

Furthermore, it is not difficult to show that {Un} is a divisibility sequence, i.e.,

Um | Un, when m | n.
Definition 2.1. Given m ∈ Z, let ω be the least positive integer, if it exists, such

that m | Uω. This value is called the rank of apparition of m, denoted by ω(m).



188 A CUBIC EXTENSION OF THE LUCAS FUNCTIONS

Theorem 2.2. Let (Q,m) = 1 and ω = ω(m). If m | Un for some n > 0, then
ω | n.

Corollary 2.3. If m, n > 0 and d = (m,n), then

(Um, Un) = |Ud|.

The following theorem is a result of Carmichael, and may be found as a corollary
to Theorem 17 in [Car13].

Theorem 2.4. If m, n ≥ 1, then

(Umn/Un, Un) |m.

We are often interested in values of n for which a prime p divides Un. It will be
assumed that p - Q. Notice that if p |Q, then p - P and

Un ≡ Pn−1 (mod p).

Thus, p | U0 and p - Un for n ≥ 1. The following theorem provides us with what is
called the law of repetition for a prime p.

Theorem 2.5. If p is a prime and, for λ > 0, we have pλ 6= 2 and pλ || Un, then
pλ+1 || Upn. If pλ = 2, then pλ+1 | Upn.

Definition 2.6. Let ε(n) be the Jacobi symbol (∆/n).

The following theorem is called the law of apparition for a prime p. Let ε = ε(p)
for the remainder of the section.

Theorem 2.7. If p is a prime such that p - 2Q, then Vp−ε ≡ 2Q(1−ε)/2 (mod p)
and p | Up−ε, that is, ω(p) | p− ε.

We have similar arithmetic results for {Vn}; many of these were possibly not
known to Lucas, but might have appeared in the subsequent literature (see, for example,
[Mül01]). In any event, we make no claims of originality of these results.

It is known that {Un} is a divisibility sequence, but this is not necessarily true
for {Vn}; however, we have the following weaker results provided by the next two
theorems.

Theorem 2.8. If m | n and 2 - n
m , then Vm | Vn.

Theorem 2.9. If m | n and 2 | nm , then (Vm, Vn) | 2.

The rank of apparition has been introduced for {Un}, and we might expect to have
something similar for {Vn}. But the situation may exist where r - Vn for every n ∈ Z,
hence the following modified definition for the {Vn} case is needed.

Definition 2.10. Suppose that r |Vn, with n > 0. Denote by ρ(r) the least positive
integer ρ such that r | Vρ.

Theorem 2.11. If r | Vn for some n > 0, then ρ(r) | n.

Theorem 2.12. If 2µ || m and 2µ || n, then (Vm, Vn) = |V(m,n)|.
Theorem 2.13. If 2µ || m and 2ν || n (µ 6= ν), then (Vm, Vn) | 2.
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The short theorem below, which was known to Lucas, is of interest because it was
the fundamental result that he required to establish his test for the primality of Mersenne
numbers.

Theorem 2.14. If p is an odd prime and p | Vn, then p ≡ ±1 (mod 2ν+1), where
2ν || n.

We know, by Theorem 2.7, that for a prime p where p - 2∆Q, we have p | Up−ε.
Thus, Up−ε = U p−ε

2
V p−ε

2
and so p | U p−ε

2
or p | V p−ε

2
, but not both. The question

of which one is divisible by p is answered by the following theorem, called Euler’s
criterion for the Lucas functions. This result was not known to Lucas and was first
proved in a more general setting by Lehmer [Leh30].

Theorem 2.15. If p is a prime such that p - 2∆Q, then

(a) p | U p−ε
2

if and only if (Q/p) = 1,

(b) p | V p−ε
2

if and only if (Q/p) = −1.

2.3. Primality testing
Lucas’s main purpose for his investigation into the sequences now named for him

was to find new methods for the discovery of primes. This can be seen in the following
result, which Lucas called his fundamental theorem.

Theorem 2.16. Suppose that N is an odd integer. Let T = T (N) = N + 1 or
T = T (N) = N − 1. If N |UT , but N - UT/d for all d such that d < T and d | T , then
N is a prime.

It was Lehmer [Leh27], who realized that this theorem could be rewritten as fol-
lows.

Theorem 2.17. Suppose that N is an odd integer. Let T = T (N) = N + 1 or
T = T (N) = N − 1. If N |UT , but N - UT/q for each prime divisor q of T , then N is
a prime.

We also have the following corollary.

Corollary 2.18. Suppose that N is an odd integer and T = T (N) = N + 1 or
T = T (N) = N − 1. If N | UT and N | UT /UT/q for each prime divisor q of T , then
N is a prime.

The following theorem is called the Lucas-Lehmer theorem. Lucas used a result
similar to this one to implement a primality test for Mersenne numbers.

Theorem 2.19. If N = A2n − 1, n ≥ 3, 0 < A < 2n, 2 - A, and the Jacobi
symbols (∆/N) = (Q/N) = −1, then N is a prime if and only if

N | VN+1
2

(P,Q).

Corollary 2.20. Suppose that A = 1 and 2 - n, with n ≥ 3. Put Q = −2 and
P ≡ 2 (mod N). Then N is a prime if and only if

N | VN+1
2

(2,−2).
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Put S0 = 4 and Sj+1 = S2
j − 2. Then

N | VN+1
2

(2,−2) if and only if N |Sn−2,

as
V2j (2,−2) = 22j−1

Sj−1.

Thus, ifN is a Mersenne number, we have thatN is a prime if and only ifN |Sn−2. It is
this corollary that provides an efficient test for Mersenne primes; for further information
see [Leh35].

We conclude this chapter by characterizing all the values of P and Q modulo a
prime p ≡ −1 (mod 4) for which

(
∆
p

)
=
(
Q
p

)
= −1. We use the notation ᾱ to

denote the conjugate of α in Q(
√

∆) and we use N(α) = αᾱ to denote the norm of α
and Tr(α) = α+ ᾱ to denote the trace of α.

Theorem 2.21. Let p be a prime such that p ≡ −1 (mod 4). There exist P and
Q such that

(
∆
p

)
=
(
Q
p

)
= −1 if and only if Q ≡ N(λ) and P ≡ Tr(λ) (mod p),

where λ ∈ Z[i] and
(
N(λ)
p

)
= −1.

3. The problem

3.1. Introduction
From 1876 until about 1880, Édouard Lucas discovered many properties of his

functions. Indeed, it was during this period that he used these properties to develop
tests for the primality of large integers. These tests were usually sufficiency tests, which
could be used to prove whether a number N of a certain special form is a prime. As
Lucas well realized, these tests were quite novel for their time, because instead of ha-
ving to try divide N by a large number of integers, for example all the primes less than√
N , it was only necessary to compute some integer S and test whether N | S.

Throughout his several papers on Un and Vn, Lucas alluded to the problem of
extending or generalizing these functions and offered various suggestions by which
this might be done. However, in spite of these ideas, he seems never to have produced
any consistent theory that was analogous to his work on the Lucas functions.

On examining the material in [Luc76], [Luc78], [Luc80], [Luc91a] and [Luc91b],
we note several properties of Lucas’s investigation into his functions and those that
he might have considered as proper generalizations. We certainly see that he was in-
terested in functions satisfying linear recurring sequences; these functions should be
symmetric functions of the zeros of a defining polynomial with rational (in practice,
usually integral) coefficients, and there is more than one function to be considered. He
seems to have been particularly interested in defining polynomials of degree three or
four. He indicated the need to find addition and multiplication formulas involving these
functions; this is certainly what he did in order to prove the many properties of his own
functions. His method of approach was to use empirical techniques to attempt to eluci-
date what the laws of apparition and repetition for these functions would be, and from
this material he should be able, as he did in the case of Un and Vn, to derive primality
testing algorithms.
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Laisant raised the intriguing possibility, through a question in L’Intermédiaire des
mathématiciens [Lai96], that Lucas was considering three functions that were symme-
tric functions of α, β and γ, one of which was Sn = αn+βn+γn; what were the other
two functions? In his attempt to interpret Lucas’s writings, Bell [Bel24] considered
three functions, which he denoted as xn, yn, zn. These can be most easily described by
the equation

αn = xn + ynα+ znα
2,

with similar expressions involving β and γ. Clearly, these functions are symmetric
functions of α, β, γ. However, none of these functions is Sn; furthermore, these func-
tions were known to Lucas (see pp. 305–306 of [Luc91b]), who mentioned them in
a more general context without further comment. If these were the functions he was
thinking about, it seems peculiar that he would not have mentioned something about
them. Further properties of xn, yn and zn were discussed by Ward [War31a] and
Mendelsohn [Men62].

It is possible that Lucas had intended to publish his findings concerning the exten-
sion of his functions in one of the later volumes of Théorie des nombres. We know
that he was considering the publication of additional books in this series (see the latter
part of Chapter 6 of [Déc99]), and Harkin [Har57] has pointed out a short table of con-
tents for Volume II: Divisibility and Algebraic Irreducibility, Binomial Congruences
and Primitive roots. However, in response to a question raised by G. de Rocquigny
concerning the possible appearance of the second and third volumes of Théorie des
nombres, Delannoy, Laisant and Lemoine [DLL95] replied:

A careful examination of the papers left by Ed. Lucas has led us to this
conclusion, that contrary to our first hopes, it would be very difficult to
publish a continuation to the Théorie des nombres, of which only the
first volume has appeared.

In spite of the lack of information concerning it, the problem of extending or gene-
ralizing the Lucas functions has inspired a great deal of work. Some early attempts at
this are mentioned in Chapter XVII of the first volume of [Dic19]. In the next section,
we will briefly describe some of these and some of the more modern investigations into
this problem.

3.2. Previous extensions of the Lucas functions
One of the earliest attempts to extend the Lucas functions was done in 1880 by

de Longchamps [dL80]. If we put R = αβγ, where α, β and γ are the zeros of a
cubic polynomial f(x), de Longchamps considered Dn, En and An (this is, in fact, a
modification of the original de Longchamps notation, as we have replaced his Sn by
An) where 

RnDn = (αn + βn)(βn + γn)(γn + αn),

RnEn =
(αn − βn)(βn − γn)(γn − αn)

(α− β)(β − γ)(γ − α)
,

An = αn + βn + γn,

to be the degree three recurring function analogs of the Lucas functions. Are these
the three functions to which Laisant was referring? They would certainly have been
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known to Lucas because he was the session chair for the talk in which de Longchamps
presented his results. In fact, de Longchamps showed how to express Dn and En in
terms of the coefficients of f(x). However, Lucas would likely not have been com-
fortable with the fact that the first two of these functions are not necessarily integral.
Also, in [Luc78], Lucas had certainly mentioned a more general version of the function
∆(αn, βn, γn)/∆(α, β, γ) that de Longchamps denoted by RnEn. This seems to be
all that de Longchamps wrote concerning this topic because the list of his papers in
[Laz07] does not contain any other paper devoted to this subject.

Lehmer [Leh30] extended the Lucas functions by replacing the parameter P by√
R, whereR is an integer coprime toQ; however, the resulting sequences are no longer

integers for all n. Lehmer’s functions were later generalized by Williams [Wil76], but
in spite of the successes of the theory of Lehmer’s extension and its generalization,
there is no reason to believe that this was the direction in which Lucas was looking to
extend his functions.

Carmichael [Car20], Ward [War31b, War31c, War33, War36, War37, War55] and
Engstrom [Eng31] investigated the arithmetical theory of linear recurring sequences,
but they did not produce a set of functions which were analogous to Lucas’s functions
Un and Vn. One of the most important properties of Lucas’s function Un is that it
satisfies the condition of being a divisibility sequence; that is, the sequence of integers
{Un}, with n > 0, is such that if m | n, then Um | Un. Lucas was very aware of this
property of Un and made heavy use of it in developing his theory.

Williams [Wil69, Wil72a, Wil77] generalized the Lucas functions, but while his
functions satisfy a linear recurrence, they are not symmetric functions of the zeros of a
polynomial f(x). Furthermore, they are not always integers unless the coefficients of
f(x) obey certain properties. Again, these functions do not seem to be those for which
Lucas was searching.

Ballot [Bal99] developed a generalization which, for cubics f(x) of discriminants
of the form M3 ± 1, coincides with the generalization given in [Wil69]. This line of
study first appeared in Chapter 4 of [Bal95], with

U∗n = δ−1[(γ − β)αn + (α− γ)βn + (β − α)γn],

and up to three associated integral companion sequences given by

V i
n = δ−1[(γ − β)ε1,iαn + (α− γ)ε2,iβn + (β − α)ε3,iγn], for i = 1, 2, 3,

where εj,i = 1 if j 6= i, and εi,i = −1. Each prime p divides (U∗n, U
∗
n+1) for some

n ≥ 0. The least such n > 0 is the rank of p, and primes that divide (V i
n, V

i
n+1), for

some n and some i = 1, 2 or 3, are prime factors of the de Longchamps sequence
Ln = RnDn. Note that depending on the reducibility of f(x) some of the V i

n’s may
not be integral, but their product is.

3.3. Our objective
While many researchers have looked directly or peripherally at the problem of ex-

tending Lucas’s functions, none of them seems to have produced the kind of results that
Lucas was seeking. In what follows, we will offer a new suggestion as to how Lucas
might have wanted to extend his functions. This is based on a very simple variant of de
Longchamps’s original suggestion.
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We begin with a cubic polynomial f(x) = x3 − Px2 +Qx− R, where P , Q and
R are integers and we put

δ = (α− β)(β − γ)(γ − α),

and
∆ = δ2 = P 2Q2 − 4Q3 − 4RP 3 + 18PQR− 27R2,

where α, β and γ are the zeros of f(x). We will assume that δ 6= 0. We next define Cn
and Wn by

δCn = (αn − βn)(βn − γn)(γn − αn)

= (αnβ2n + βnγ2n + γnα2n)− (α2nβn + β2nγn + γ2nαn)

and

Wn = (αnβ2n + βnγ2n + γnα2n) + (α2nβn + β2nγn + γ2nαn).

Note that Cn is the same as Lucas’s
∆(αn, βn, γn)

∆(α, β, γ)
(= RnEn) and Wn = Ln − 2Rn,

where
Ln = RnDn = (αn + βn)(βn + γn)(γn + αn).

Both Cn and Wn are symmetric functions of α, β and γ and are therefore integers for
all non-negative values of n. It is these functions that we will use as our extensions of
the Lucas functions Un and Vn. Observe that {Cn} is a divisibility sequence.

In the previous section we listed the most important properties of the Lucas func-
tions Un and Vn; most of these were known to Lucas, and can be found in his memoir
[Luc78]. It would be reasonable to expect that he would want to extend these results. In
the succeeding sections we will develop analogous results involving Cn andWn. These
will include, among several other items, the addition formulas, the multiplication for-
mulas, the laws of apparition and repetition and some primality testing results. What
is most remarkable in this entire investigation is the need for only two functions, not
three. In the next section we will define our generalization of Cn and Wn of the Lucas
functions for an arbitrary degree m polynomial, not just for the cubic case m = 3.

4. A new cubic generalization of the Lucas functions

4.1. De Longchamps’s method
Denoting againRnDn by Ln andRnEn by Cn, so as to match the notation of other

generalizations, de Longchamps’s work yielded a few interesting results, including the
multiplicative formula

C2n = LnCn.

He also developed the following identities

Ln = Rn(σn + τn + 2) and δCn = Rn(σn − τn),

where

σn =
αn

βn
+
βn

γn
+
γn

αn
and τn =

βn

αn
+
αn

γn
+
γn

βn
·

However, it should be stated that neither {σn} nor {τn} are integer sequences.
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If we let Sn = αnβ2n +βnγ2n +γnα2n, and Tn = α2nβn +β2nγn +γ2nαn, then

δCn = Sn − Tn and Ln = Sn + Tn + 2Rn.

Also,

SnTn = RnA3
n +B3

n − 6RnAnBn + 9R2n

= RnA3n +B3n + 3R2n,

where Bn is defined in the next section.

4.2. Another cubic generalization
In an attempt to develop a theory analogous to that of Lucas’s functions, the fol-

lowing method was proposed by Williams [Wil98]. Again, there are three sequences
defined in this generalization. As in the last method, let α, β and γ be the zeros of
X3 − PX2 +QX −R, where P , Q and R are integers. Now define

An = αn + βn + γn,

Bn = αnβn + βnγn + γnαn,

Cn =
(
αn − βn

α− β

)(
βn − γn

β − γ

)(
γn − αn

γ − α

)
.

Rather than a second order linear recurrence as in identity (1) for the Lucas case,
there is the following result for An and Bn.

Theorem 4.1. The sequences An and Bn respectively satisfy the third order recur-
rence formulas

tn+3 = Ptn+2 −Qtn+1 +Rtn and tn+3 = Qtn+2 −RPtn+1 +R2tn.

If we write (10) as ∆U2
n = V 2

n − 4Qn, then the following theorem is a useful
generalization for this cubic case.

Theorem 4.2. We have

∆C2
n = A2

nB
2
n + 18AnBnRn − 4B3

n − 4A3
nR

n − 27R2n

and
27∆C2

n = 4(A2
n − 3Bn)3 − (27Rn + 2A3

n − 9AnBn)2.

The following theorem provides some addition formulas for An and Bn.

Theorem 4.3. We have

An+m = AnAm − (BnAm−n −RnAm−2n)

and
Bn+m = BnBm −Rn(AnBm−n −RnBm−2n).

Corollary 4.4. We have

σn+m = σnσm − τnσm−n + σm−2n

and
τn+m = τnτm − σnτm−n + τm−2n.
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Note that historically Corollary 4.4 was discovered by de Longchamps in his ori-
ginal paper [dL80].

4.3. Our generalization
Let α1, α2, . . . , αm be the roots of the degree m polynomial

Xm − Pm−1X
m−1 + Pm−2X

m−2 − · · ·+ (−1)mP0,

where Pm−1, . . . , P0 are integers. Further, if we let δ =
∏

1≤i<j≤m(αj − αi) then
∆ = δ2 is the discriminant of the above polynomial. It will be assumed that ∆ 6= 0.
Lastly, let

V =



1 αn1 α2n
1 . . . α

(m−1)n
1

1 αn2 α2n
2 . . . α

(m−1)n
2

1 αn3 α2n
3 . . . α

(m−1)n
3

...
...

...
. . .

...

1 αnm α2n
m . . . α

(m−1)n
m


be a Vandermonde matrix. Then we can define generalized Lucas sequences of degree
m as follows:

δCn = detV =
∏

1≤i<j≤m
(αnj − αni ).

Or, using the Leibniz formula,

δCn =
∑
σ∈Sm

sgn(σ)αn(σ(1)−1)
1 · · ·αn(σ(m)−1)

m

and we define Wn by

Wn =
∑
σ∈Sm

α
n(σ(1)−1)
1 · · ·αn(σ(m)−1)

m ,

where Sm denotes the set of permutations of {1, 2, . . . ,m}, and sgn(σ) denotes the
sign of the permutation σ.

It can be readily verified for the case m = 2 that this generalization is, in fact, just
the historic Lucas sequence, that is, Cn = Un and Wn = Vn. For the case m = 3, we
fall back on the two sequences Cn and Wn presented in Subsection 3.3. In an effort to
achieve simplicity and clarity with the new generalization, we will restrict ourselves to
the case where m = 3. The theorem below is an extension of identity (1).

Theorem 4.5. For a fixed m, the sequences Cn and Wn satisfy the recurrence
formula

Xn+6m = a1Xn+5m − a2Xn+4m + a3Xn+3m − a4Xn+2m + a5Xn+m − a6Xn,

where
a1 = Wm, a2 = (W 2

m −∆C2
m)/4 +RmWm,

a3 = Rm(W2m + 2RmWm + 2R2m), a4 = R2ma2,

a5 = R4ma1, a6 = R6m.
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Proof. For fixed n and m, the sequences (Cn+mk)k≥0 and (Wn+mk)k≥0 are linear
combinations of the k-th powers of αmβ2m, βmγ2m, γmα2m, α2mβm, β2mγm and
γ2mαm, and these 6 quantities are the zeros of

x6 − a1x
5 + a2x

4 − a3x
3 + a4x

2 − a5x+ a6. �

Since, as observed in Section 4.1,

δCn = Sn − Tn and Wn = Sn + Tn,

we find the important formulas

Sn = Rnσn =
Wn + δCn

2
and Tn = Rnτn =

Wn − δCn
2

·

Also we have that

W 2
n −∆C2

n

4
= SnTn = 3R2n +RnA3n +B3n(16)

= RnA3
n +B3

n − 6RnAnBn + 9R2n.

Theorem 4.6. We have

(a) R2nC−n = −Cn,

(b) R2nW−n = Wn.

Note that in the above theorem R2n is the logical analogue to Qn in the identities

QnU−n = −Un and QnV−n = Vn

for the quadratic case.

4.4. Addition formulas for Wn and Cn

As in other generalizations of Lucas sequences, there exist addition formulas for
Cn and Wn. These formulas build on de Longchamps’s work, and are analogues of (4)
and (5).

Theorem 4.7. We have

(a) 2W2n+m = WnWn+m+∆CnCn+m−Rn(WnWm−∆CnCm−2R2mWn−m),

(b) 2C2n+m = Cn+mWn + CnWn+m −Rn(CmWn − CnWm + 2R2mCn−m).

Proof. First, it is clear that

(Wn+δCn)(Wn+m+δCn+m) = WnWn+m+δCnWn+m+δCn+mWn+∆CnCn+m.

Using the fact that Rnσn = Wn+δCn
2 we have

(Wn + δCn)(Wn+m + δCn+m) = (2Rnσn)(2Rn+mσn+m) = 4R2n+mσnσn+m.

Corollary 4.4 and the fact σ−n = τn yield

σnσn+m = σ2n+m + τnσm − τn−m.



S. Müller, E. Roettger and H. C. Williams 197

Hence
(Wn + δCn)(Wn+m + δCn+m) = 4R2n+m(σ2n+m + τnσm − τn−m)

= 4R2n+m

(
W2n+m + δC2n+m

2R2n+m
+
Wn − δCn

2Rn
Wm + δCm

2Rm
− Wn−m − δCn−m

2Rn−m

)
= 2W2n+m + 2δC2n+m +Rn(WnWm − δCnWm + δCmWn −∆CnCm

−2R2mWn−m + 2δR2mCn−m).

Thus we may conclude

WnWn+m + δCnWn+m + δCn+mWn + ∆CnCn+m

= 2W2n+m + 2δC2n+m + δRn(−CnWm + CmWn + 2R2mCn−m)

+Rn(WnWm −∆CnCm − 2R2mWn−m).

We next use the identity

Rnτn =
Wn − δCn

2
and manipulate (Wn − δCn)(Wn+m − δCn+m) with the additive identity for τn in
Corollary 4.4. By adding and subtracting the resulting formula from that given above,
we get the identities stated in (a) and (b). �

There are the following special cases of the previous theorem.

Corollary 4.8. We have

(a) 2W2n = ∆C2
n +W 2

n − 4RnWn,

(b) C2n = Cn(Wn + 2Rn) = CnLn,

(c) 4W3n = 3∆C2
n(Wn + 2Rn) +W 2

n(Wn − 6Rn) + 24R3n,

(d) 4C3n = Cn(∆C2
n + 3W 2

n).

The next corollary is only a slight modification of the previous theorem, but it does
put the identities in a nicer form by removing the subtractions in the subscripts.

Corollary 4.9. We have

(a) 2Wn+3m = ∆CmCn+2m +WmWn+2m −RmWmWn+m

+Rm∆CmCn+m + 2R3mWn,

(b) 2Cn+3m = WmCn+2m + CmWn+2m −RmWmCn+m

+RmCmWn+m − 2R3mCn.

Theorem 4.10. We have

4R2n−1PQ = W 2
n −∆C2

n + 2(Wn+1Cn − Cn+1Wn)− 2R(Wn+1Cn−1

−Wn−1Cn+1) + 2R2(WnCn−1 −Wn−1Cn).

This formula is an extension of the Lucas identity (10)

V 2
n −∆U2

n = 4Q′n,
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where Vn = Vn(P ′, Q′) and Un = Un(P ′, Q′). This can be justified as follows. Since
V−n = Vn/Q

′n and U−n = −Un/Q′n, we see that R2 corresponds to Q′. Using the
identity

2Q′mUn−m = VmUn − UmVn
we can see that

−2Q′n = Vn+1Un − Un+1Vn when m = n+ 1 and n = n,

−2Q′n−1 = VnUn−1 − UnVn−1 when m = n and n = n− 1,

−2Q′n−1P ′ = Vn+1Un−1 − Un+1Vn−1 when m = n+ 1 and n = n− 1.

Replacing Q′ by R2 in the above returns
Vn+1Un − Un+1Vn = −2R2n,

VnUn−1 − UnVn−1 = −2R2n−2,

Vn+1Un−1 − Un+1Vn−1 = −2R2n−2P ′.

Also note that U2 + RU1 = P ′ + R. Using the above and replacing Wm by Vm and
Cm by Um into the identity in Theorem 4.10 we see that

V 2
n −∆U2

n = 4R2n−1(P ′ +R)− 2(−2R2n) + 2R(−2R2n−2P ′)

+2R2(−2R2n−2)

= 4R2n.

It is not surprising that Theorem 4.10 involves 6 objects: Wn−1, Wn, Wn+1, Cn−1, Cn
and Cn+1, as one may recall that both {Wn} and {Cn} satisfy an order 6 recurrence.

In view of the importance that the quantityWn−6Rn will assume in later sections,
we also point out that from Theorem 4.2 it is easy to deduce that

(Wn − 6Rn)2 + 3∆C2
n = 4(A2

n − 3Bn)(B2
n − 3RnAn).

4.5. Multiplication formulas for Wn and Cn

A general multiplicative result is shown in the following theorem and this result
is our analogue to (13) and (14). It is at this point where our generalization begins
to outperform the others. This is because other generalizations are missing the neces-
sary multiplication formulas needed in order to develop arithmetic results. Also, in the
following theorem, we introduce P̃n and Q̃n for the first time, where

P̃n = Wn and Q̃n =
W 2
n −∆C2

n

4
·

This notation for P̃n and Q̃n will be used throughout the rest of the paper.

Theorem 4.11. For any integers m ≥ 0, we have

(a) Wmn =
∑

λ0,λ1,λ2,λ3

(−1)λ0m(m− λ0 − 1)!
λ1!λ2!λ3!

Rn(λ0+λ3)Q̃λ2
n Vλ1−λ2(P̃n, Q̃n),

(b)
Cmn
Cn

=
∑

λ0,λ1,λ2,λ3

(−1)λ0m(m− λ0 − 1)!
λ1!λ2!λ3!

Rn(λ0+λ3)Q̃λ2
n Uλ1−λ2(P̃n, Q̃n).
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Here the sum is extended over the values λi ∈ Z such that

λ0, λ1, λ2, λ3 ≥ 0, λ0 + λ1 + λ2 + λ3 = m and λ1 + 2λ2 + 3λ3 = m,

Uk is the Lucas function Uk(P̃n, Q̃n), P̃n = Wn and Q̃n = (W 2
n −∆C2

n)/4.

Proof. First let σ1 = α/β + β/γ + γ/α =
∑
ri, where the sum is over the three

quantities r1 = α/β, r2 = β/γ, and r3 = γ/α. Thus σ1 is the first elementary function
of degree three involving these three terms. Also

τ1 =
β

α
+
γ

β
+
α

γ
=
∑
i 6=j

rirj .

Thus τ1 is the second elementary function of degree three. Finally note∑
i 6=j 6=k

rirjrk = r1r2r3 = 1.

Hence we can use Waring’s theorem (see, for example, [Mac15]) to see that

σn =
(
α

β

)n
+
(
β

γ

)n
+
(γ
α

)n
=

∑
λ1,λ2,λ3

(−1)n+kn(k − 1)!
λ1!λ2!λ3!

σλ1
1 τλ2

1 ,

where λ1, λ2, λ3 ≥ 0, λ1 + λ2 + λ3 = k and λ1 + 2λ2 + 3λ3 = n.

Setting λ0 = n− k, so (−1)n+k = (−1)n−k = (−1)λ0 , we can write the previous
identity as

σn =
∑

λ0,λ1,λ2,λ3

(−1)λ0
n(n− λ0 − 1)!
λ1!λ2!λ3!

σλ1
1 τλ2

1 ,

where λ0, λ1, λ2, λ3 ≥ 0, λ0 + λ1 + λ2 + λ3 = n and λ1 + 2λ2 + 3λ3 = n.

Similarly, we can use Waring’s theorem to derive

σmn =
∑

λ0,λ1,λ2,λ3

(−1)λ0
m(m− λ0 − 1)!

λ1!λ2!λ3!
σλ1
n τ

λ2
n

and

τmn =
∑

λ0,λ1,λ2,λ3

(−1)λ0
m(m− λ0 − 1)!

λ1!λ2!λ3!
τλ1
n σλ2

n ,

where λ0, λ1, λ2, λ3 ≥ 0, λ0 + λ1 + λ2 + λ3 = m and λ1 + 2λ2 + 3λ3 = m. This is
the sum as stated in the theorem. Now, since Smn = Rmnσmn and Tmn = Rmnτmn,
we obtain

Wmn = Smn + Tmn =
∑

λ0,λ1,λ2,λ3

(−1)λ0
m(m− λ0 − 1)!

λ1!λ2!λ3!
Rmn(σλ1

n τ
λ2
n + σλ2

n τ
λ1
n ).

Or considering the term following the coefficient we obtain

Rmn(σλ1
n τ

λ2
n + σλ2

n τ
λ1
n ) = R(m−λ1−λ2)n(Rnλ1σλ1

n R
nλ2τλ2

n +Rnλ2σλ2
n R

nλ1τλ1
n )

= R(λ0+λ3)n(Sλ1
n T

λ2
n + Sλ2

n T
λ1
n ).
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Now we will employ some well-known results for Lucas sequences; that is,

Sλn =
(
Wn + δCn

2

)λ
=
Vλ + δ̃nUλ

2
,

and

T λn =
(
Wn − δCn

2

)λ
=
Vλ − δ̃nUλ

2
,

where U = U(P̃n, Q̃n), V = V (P̃n, Q̃n), ∆̃n = ∆C2
n, δ̃n = δCn and P̃n, Q̃n are as

stated in the theorem.

So

Sλ1
n T

λ2
n + Sλ2

n T
λ1
n =

Vλ1 + δ̃nUλ1

2
Vλ2 − δ̃nUλ2

2
+
Vλ2 + δ̃nUλ2

2
Vλ1 − δ̃nUλ1

2

=
Vλ1Vλ2 − ∆̃nUλ1Uλ2

2
·

To complete the proof of (a), use the following identity known for Lucas sequences:

2QmVn−m = VnVm −∆UnUm,

replacing n = λ1, m = λ2 and ∆ = ∆̃n. Hence

Sλ1
n T

λ2
n + Sλ2

n T
λ1
n = Q̃λ2

n Vλ1−λ2 .

Part (b) is proven similarly by expanding δCn = Sn − Tn via Waring’s theorem. �

It is the general multiplication formulas that allow us to proceed with this cubic
generalization. With them we are able to develop arithmetic properties for Cn and Wn

in Section 5. Once we have arithmetic properties some primality testing can be done.

5. Arithmetic properties of {Cn} and {Wn}
5.1. Introductory arithmetic results
To continue our generalization we need to develop arithmetic results that are logical

analogues of the arithmetic results seen in Section 2 for Lucas sequences.

Lemma 5.1. If (Q,R) = 1, then (Bn, R) = 1, for n > 0.

Lemma 5.2. If (Q,R) = 1 and 2α || (Wn, Cn), then α ∈ {0, 1}. If 2 |Wn, then
Q̃n is odd.

The following result is a clear analogue of (15).

Theorem 5.3. If (Q,R) = 1, then for n > 0,

(Wn, Cn, R) | 2.

Proof. Let p be any prime such that p | (Wn, Cn, R). Since p |Wn and p | Cn, we
must have p |W 2

n −∆C2
n. Observe that by equation (16), p | 4B3n. Also,

B3n = B3
n − 3RnAnBn + 3R2n,
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so p | 4B3
n. Since (Q,R) = 1, we have (Bn, R) = 1 by Lemma 5.1 but this implies

p - Bn, so p = 2. Indeed, by Lemma 5.2, we must have (Wn, Cn, R) | 2. �

Theorem 5.4. The sequence {Cn} is a divisibility sequence.

Proof. Note that if n = ms, then

Cn(P,Q,R) = Cm(P,Q,R) · Cs(Am, Bm, Rm). �

Definition 5.5. Given m ∈ Z, let r be the least positive integer, if it exists, such
that m |Cr. This value is called the rank of apparition of m for the sequence {Cn} and
will be denoted by r(m).

In Theorem 2.2 for the classic Lucas case, we had that if m | Uk, then r(m) | k.
However, this is not necessarily true for {Cn}. It may be that m | Ck, yet r(m) - k.

Definition 5.6. Let r1 be the least positive integer for which we have p | Cr1 . For
i = 1, 2, . . . , k define ri+1 to be the least positive integer, if it exists, such that p |Cri+1 ,
ri+1 > ri and rj - ri+1 for any j ≤ i + 1. We define r1, r2, . . . , rk to be the ranks of
apparition of p for {Cn}.

It will become clear that the number of ranks of apparition is finite. For example,
if we let P = 1, Q = 2, R = 3 and p = 7, then {Cn} has two ranks of apparition for
the prime 7. In fact, C3 ≡ 0 (mod p) and C7 ≡ 0 (mod p). Also, if we let P = 3,
Q = 9, R = 7 and p = 31, then {Cn} has three ranks of apparition. This follows from
C6 ≡ 0 (mod p), C10 ≡ 0 (mod p) and C15 ≡ 0 (mod p).

Our sequence {Cn} also fails to satisfy the generalization of Corollary 2.3 where if
d = (m,n), then

(Um, Un) = |Ud|.
It can be that

(Cm, Cn) 6= |Cd|,
and d = (m,n). For example, if P = 3, Q = 9, R = 7, then (C6, C10) = 22 · 5 · 31
and C2 = 22 · 5.

We have seen that many of Lucas’s results have analogues when we assume that
(Q,R) = 1. This is similar to Lucas’s condition that (P,Q) = 1, and we will assume
for the remainder of this work that (Q,R) = 1.

5.2. The law of repetition for {Cn}
The proof of the law of repetition for {Cn} relies on the following main results.

Two proofs for the following theorem can be found in [Roe09], one using algebraic
number theory and a second in Appendix A, employing techniques that Lucas himself
could have used.

Theorem 5.7. Let p be a prime such that p - 6R∆, p |Cn and p |Wn− 6Rn. Then
p3 | Cn and p2 |Wn − 6Rn.

Next we define

Km(X) =
∑ (−1)λ0m(m− λ0 − 1)!(λ1 − λ2)

λ1!λ2!λ3!
Xλ1+λ2−1,
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where the sum is extended over the values λi ∈ Z such that

λ0, λ1, λ2, λ3 ≥ 0, λ0 + λ1 + λ2 + λ3 = m and λ1 + 2λ2 + 3λ3 = m.

Theorem 5.8. If D(X) = X2 − 2X − 3 = (X − 3)(X + 1), then

Km(X) =
m

X − 3

[(
X − 1 +

√
D(X)

2

)m
+

(
X − 1−

√
D(X)

2

)m
− 2

]
.

Theorem 5.9. Let X ∈ Z and p > 3 be a prime . If p - X − 3, then

Kp(X) ≡ p (mod p2).

If p |X − 3, then
Kp(X) ≡ p3 (mod p4).

In the proof of Theorem 5.8 in [Roe09] we make use of partial derivatives; Lucas
as well often did this. See for example, Section XVII of [Luc78]. Our law of repetition
for {Cn}, which relies on the observation that

Cmn
Cn
≡ Rn(m−1)Km(Wn/2Rn) (mod Fn),

where Fn is defined in (18) below, is provided by the next theorem.

Theorem 5.10. Let pλ || Cn, with λ ≥ 1.

(a) If p ≥ 3 and p |Wn − 6Rn, then

pλ+3µ | Cpµn, with pλ+3µ || Cpµn for pλ > 3.

(b) If p ≥ 3 and p - Wn − 6Rn, then

pλ+µ || Cpµn.

(c) If p = 2 and 2 |R, then{
2λ+µ || C2µn for λ > 1,

2λ+µ | C2µn for λ = 1.

(d) If p = 2 and 2 - R, then{
2λ+2µ | C2µn for λ > 1,

22µ | C2µn for λ = 1.

Some additional precisions may be obtained for p = 2 and 2 - ∆R when λ ≥ 4,
details of which can be found in [Roe09]. In the case of the law of repetition for the
Lucas functions Un, we know that pλ+µ || Unmpµ if p - m and pλ || Un. This result
does not generalize to Cn. For example, if p - Wn − 6Rn and p - 2R, it is possible that
pλ || Cn and pλ+1 | Cmn, where p - m. We note that(

Wn

2Rn
− 3
)
Cmn
Cn
≡ m (−2 + Vm(Wn/2Rn − 1, 1)) (mod p).
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By Theorem 2.7 we know that Vm(Wn/2Rn − 1, 1) ≡ 2 (mod p) when m = p − ε,
where

ε =
(

(Wn/2Rn − 1)2 − 4
p

)
=
(

(Wn − 6Rn)(Wn + 2Rn)
p

)
.

It follows that if ε is not equal to zero, as will be most frequently the case, then
p | (Cmn/Cn) and p - m.

5.3. The law of apparition for {Cn}
If a prime p divides R, it is easy to see that

Cn ≡ Qn−1Un(P,Q) (mod p),

in which case the theory reduces to that of the Lucas function Un(P,Q). We will
therefore assume that p - R in what follows.

We point out that

27∆ = 4(P 2 − 3Q)3 − (27R+ 2P 3 − 9QP )2.

When p |∆ and p 6= 2, the splitting field of f(x) = x3 − Px2 + Qx − R ∈ Fp[x] is
Fp, and we have two possible cases.

On the one hand, suppose that p |P 2−3Q. Here f(x) ≡ (x−a)3 (mod p) where
a ≡ P/3 (mod p) (if p = 3, then 3 | P ). In this case we can put α = β = γ = a in
Fp. Now in Fp,

αn − βn

α− β
= αn−1 + βαn−2 + β2αn−3 + · · ·+ βn−1 = nan−1,

so it follows that

Cn ≡ n3a3(n−1) (mod p) and Wn ≡ 6a3n (mod p).

We may then conclude that p |Cn if and only if p |n. Also, if p |Cn, then p |Wn−6Rn.

On the other hand, suppose that p - P 2 − 3Q. In this case f(x) ≡ (x− a)2(x− b)
(mod p), where

a ≡ PQ− 9R
2(P 2 − 3Q)

(mod p) and b ≡ P 3 − 4PQ+ 9R
P 2 − 3Q

(mod p).

Hence we can put α = β = a 6= 0 and γ = b 6= 0 in Fp. Put P ′ ≡ P − a (mod p)
and Q′ ≡ a2 − Pa + Q (mod p). One can see that since a2b ≡ R (mod p), we get
ab ≡ R/a ≡ a2 − Pa + Q (mod p). Also, 2a + b ≡ P (mod p), and therefore
a+ b ≡ P − a (mod p). We use these results to obtain

Cn =
(
αn − βn

α− β

)(
βn − γn

β − γ

)(
γn − αn

γ − α

)

= nan−1

(
an − bn

a− b

)2

in Fp. Thus,
Cn ≡ nan−1U2

n(P ′, Q′) (mod p).
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It is also true that
(

∆′

p

)
= 1, as

∆′ = P ′2 − 4Q′ ≡ (a− b)2 ≡ (27R+ 2P 3 − 9PQ)2

4(P 2 − 3Q)2
≡ P 2 − 3Q (mod p).

Thus p |Cn if and only if p |n or p |Un(P ′, Q′) since p - a. If p |a or p |Q′, then p |R,
which is a contradiction. Since the rank of apparition of p in Un(P ′, Q′) is a divisor r
of p− 1, we can say that p | Cn if and only if either p | n or r | n. Since (r, p) = 1 we
have two ranks of apparition in this case. We also note that since

Wn − 6Rn ≡ 2an∆′U2
n(P ′, Q′) (mod p),

we see that p |Wn − 6Rn if and only if n is a multiple of r.

It can be shown that r(2) always exists and is unique (Theorem 4.15 of [Roe09]).
The case for p = 3 can be handled explicitly by calculation and is done in [Roe09]. By
a computer search through all possible residue classes of P , Q, and R modulo 3 it can
be shown that there always exists at least one rank of apparition for 3 in {Cn} as long
as (Q,R) = 1. Also, r(3) ≤ 13 = 32 + 3 + 1. Note also that if 3 - ∆ and 3 | Cn, then
r(3) | n.

We now deal with those primes p such that p - 6∆R. The law of apparition for
{Cn} is more difficult than that for {Un}. This is largely due to the fact that {Cn} can
have multiple ranks of apparition, as has been seen. Just how many ranks of apparition
{Cn} actually has, modulo a prime p, is dependent on the splitting behaviour of f(x)
modulo p. Following Adams and Shanks [AS82] we will characterize the primes that
do not divide 6∆R as follows.

Let f(x) = x3−Px2 +Qx−R and p - 6R∆. There are three possibilities for the
splitting field K of f(x) ∈ Fp[x] :

(1) if K = Fp, we say that p is an S prime;

(2) if K = Fp2 , we say that p is a Q prime;

(3) if K = Fp3 , we say that p is an I prime.

Determining the type of a prime p is important, since its type dictates where Cn
equals 0 in K. This is also an old problem and several references to how it can be
solved are mentioned in Chapter VIII of the first volume of [Dic19] (see also [WZ74]
and [Mül04]). We summarize these results in the following theorem.

Theorem 5.11. Suppose that p is a prime and p - 6∆R.

(a) If
(

∆
p

)
= −1, then p is a Q prime.

(b) If
(

∆
p

)
= 1, p ≡ ε (mod 3), A = 2P 3 − 9QR + 27R, B = P 3 − 3Q and

p | U p−ε
3

(A,B3), then p is an S prime; otherwise, p is an I prime.

We will now develop the law of apparition for a prime p in {Cn}. First we deter-
mine the number of ranks of apparition of a Q prime.

Theorem 5.12. Let p be a Q prime and α, β, γ be the zeros of f(x) in Fp2 , where
β 6∈ Fp. Then p | Cm if and only if βm = βpm.
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Corollary 5.13. If p is a Q prime, then p | Cp+1.

Corollary 5.14. Let p be a Q prime. Then p can only have one rank of apparition,
r, in {Cn} and r | p+ 1.

Corollary 5.15. If p is a Q prime, r is its rank of apparition in {Cn} and p | Cn,
then r | n.

Note that if p is a Q prime, then

Wp+1 ≡ 2α4βγ + 2β3γ3 + 2R3 (mod p).

This will not be useful to us here; however, we can see that

Wp2−1 ≡ 6 (mod p).

Theorem 5.16. If p is an I prime, then p | Cp2+p+1.

For an I prime p,
Wp2+p+1 ≡ 6R3 (mod p).

Corollary 5.17. Let p be an I prime. Then p can only have one rank of apparition
r in {Cn} and r | p2 + p+ 1.

Corollary 5.18. Let p be an I prime. If r is the rank of apparition of p in {Cn} and
p | Cn, then r | n.

Thus, the situation with Q and I primes parallels that of primes that divide Un.
That is, we know that if a prime p divides Un, then the rank of apparition ω = ω(p) of
p in {Un} must divide n. However, the situation with S primes can be different.

Theorem 5.19. Let p - 6∆R and p be an S prime. Then p | Cp−1.

Once more we note that under these circumstances

Wp−1 ≡ 6 (mod p).

Corollary 5.20. If p is an S prime and p - 6∆R, then p may have at most 3 ranks
of apparition in {Cn} and each rank of apparition divides p− 1.

Corollary 5.21. If p is an S prime and p | Cn, then at least one of the ranks of
apparition of p in {Cn} must divide n.

We have in fact shown that there exists an infinite set of primes P such that for
each p in P there is a cubic recursion in which p has three distinct ranks (see [Roe09],
Theorem 4.27).

6. Arithmetic properties of {Dn} and {En}
6.1. Definition of the divisibility sequence {Dn}
While, as we have seen,Cn is analogous to the Lucas function Un in many respects,

there are a number of significant differences between the arithmetic behaviour of Cn
and Un. This is particularly the case in the law of repetition and the law of apparition,
where it is possible to have more than one rank of apparition for {Cn}. In the law
of repetition for a prime p such that p | Cn, it is important to know whether or not p
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divides the quantity Wn − 6Rn. We often have the case of a prime p dividing both Cn
and Wn − 6Rn. In view of this, we define

Dn = gcd(Cn,Wn − 6Rn).

This is not as peculiar as it might seem at first. For if we look at the formula for
Wn − 6Rn in terms of α, β and γ, we see that the corresponding formula involving α
and β of the Lucas functions would be

α2n + β2n − 2αnβn = V2n − 2Qn.

This is because if we consider Wn − 6Rn to be a polynomial in αn, βn and γn, then
it is of degree three and the αnβnγn term is subtracted as many times as there are
terms in the expression for Wn. Hence, the degree two counter part to this would be
α2n + β2n − 2αnβn. However,

V2n − 2Qn = V 2
n − 4Qn = ∆U2

n and gcd(V2n − 2Qn, Un) = Un.

Notice that by Theorem 5.3 we have

gcd(Dn, R) | 2.(17)

As we shall see below, it turns out that Dn has arithmetic properties which are much
more analogous to those of Un than does Cn.

Theorem 6.1. The sequence {Dn} is a divisibility sequence.

Proof. In order to show that {Dn} is a divisibility sequence we will first develop
some results for the function Lm(X). We define

Lm(X) =
∑ (−1)λ0m(m− λ0 − 1)!

λ1!λ2!λ3!
Xλ1+λ2 ,

where the sum is extended over the values λi ∈ Z such that

λ0, λ1, λ2, λ3 ≥ 0, λ0 + λ1 + λ2 + λ3 = m and λ1 + 2λ2 + 3λ3 = m.

By Waring’s theorem,
Lm(X) = αm1 + αm2 + αm3 ,

where α1, α2 and α3 are the zeros of Z3 −XZ2 +XZ − 1 such that

α1 = 1, α2 =
X − 1 +

√
D(X)

2
, α3 =

X − 1−
√
D(X)

2
,

and D(X) = (X − 3)(X + 1). We can then write

Lm(X) = 1 + αm2 + αm3 = 1 + Vm(X − 1, 1).

So, if 2 - m, it can be shown that

Vm(X − 1, 1) = V1

(m−1)/2∑
j=0

(
(m− 1)/2 + j

(m− 1)/2− j

)
D(X)j .

To the contrary, if 2 |m, then we can show that

Vm(X − 1, 1) =
m/2∑
j=0

m

m/2− j

(
m/2 + j − 1
m/2− j − 1

)
D(X)j .
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Now, by using results similar to those in Section 4.4 of [Roe09] and noting P̃n = Wn,
we have

Wmn ≡ 2
∑

λ0,λ1,λ2,λ3

(−1)λ0m(m− λ0 − 1)!
λ1!λ2!λ3!

(
P̃n
2

)λ1+λ2

Rn(m−λ1−λ2) (mod Fn)

where

Fn =

{
∆C2

n if 2 - Cn,

∆C2
n/4 if 2 | Cn.

(18)

Let 2γ || Dn. Then Dn/2γ | Fn, 2 - Dn/2γ and (Dn/2γ , R) = 1. Moreover, let
Gn = Dn/2γ . Then

Wmn ≡ 2Rmn
∑

λ0,λ1,λ2,λ3

(−1)λ0m(m− λ0 − 1)!
λ1!λ2!λ3!

(
Wn

2Rn

)λ1+λ2

(mod Fn)

≡ 2RmnLm(Wn/2Rn) (mod Fn).

If m is odd,

Lm

(
Wn

2Rn

)
= 1 +

(
Wn

2Rn − 1

) (m−1)/2∑
j=0

(
(m− 1)/2 + j

(m− 1)/2− j

)(
Wn

2Rn + 1

)j (
Wn

2Rn − 3

)j

.

Since Wn/2Rn − 3 ≡ 0 (mod Gn),

Lm(Wn/2Rn) ≡ 1 +Wn/2Rn − 1 ≡ 3 (mod Gn).

If m is even,

Lm(Wn/2Rn) = 1 +
m/2∑
j=0

m

m/2− j

(
m/2 + j − 1
m/2− j − 1

)(
Wn

2Rn + 1

)j ( Wn

2Rn − 3

)j
≡ 3 (mod Gn).

Thus, Wmn ≡ 6Rmn (mod Gn), so Gn |Wmn − 6Rmn. It follows that if γ = 0, then
Dn |Dnm.

If γ = 1, then since 2 |gcd(Wn, Cn), we have 2 |Cmn, and since Q̃mn is an integer,
we have 2 |Wmn; thus, Dn | Dmn. If γ > 1, then 4 | Cn and 4 |Wn − 6Rn. Recall
that if 2α || gcd(Wn, Cn), then α = 0 or α = 1 by Lemma 5.2. In this case α = 1 and
2 || Wn. It follows from 4 |Wn − 6Rn that R must be odd. Thus, since 2γ ≥ γ + 2,
we have 2γ | Fn and

Wmn ≡ 2Rmn
∑

λ0,λ1,λ2,λ3

(−1)λ0m(m− λ0 − 1)!
λ1!λ2!λ3!

(
Wn

2Rn

)λ1+λ2

(mod 2γ)

≡ 6Rmn (mod 2γ),

so that 2γ |Wmn − 6Rmn. Consequently Dn |Wmn − 6Rmn, and further Dn |Dmn.
Thus, if n |m, we get Dn |Dm. Therefore, like {Un} and {Cn}, {Dn} is a divisibility
sequence. �
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6.2. The law of repetition for {Dn}
Theorem 6.2. If p is a prime, pλ || Dn (λ ≥ 1) and p - m, then pλ || Dmn.

Our “law of repetition” for {Dn} is provided in the following theorem.

Theorem 6.3. If pλ || Dn (with p 6= 2 and pλ 6= 3), then{
pλ+2 || Dpn when pλ ||Wn − 6Rn,

pλ+3 || Dpn otherwise .

Also, pλ+2 |Dpn when pλ = 3, and pλ+1 |Dpn when p = 2. Furthermore, pλ+1 - Dmn

if p - m.

Notice that if p /∈ {2, 3}, pλ ||Wn − 6Rn and pλ || Dn, then pλ+2 ||Wpn − 6Rpn

and therefore
pλ+2µ || Dpµn.

However, if pλ || Dn and pλ+1 |Wn − 6Rn, it is not necessarily the case that

pλ+4 ||Wpn − 6Rpn.

The best we are able to show is that pλ+3 |Wpn − 6Rpn. If pλ+3 || Wpn − 6Rpn, then
we return to the previous condition and by induction we get

(pλ+1+2µ =)pλ+3+2(µ−1) || Dpµn.

Of course, this latter situation would never occur if the case of

pλ || Dn and pλ+1 |Wn − 6Rn

could not happen. This might be an infrequent occurrence, but unfortunately it does
happen. For example, if P = 257, Q = 2004 and R = 5389, then 73 || C6 and
74 |W6 − 6R6.

Thus, we cannot provide an as complete law of repetition for {Dn} as we were able
to do for {Cn}. However, if pλ || Cn, pλ+κ || Wn − 6Rn and κ < λ − 2, it can be
shown that

pλ+3µ || Cpµn and pλ+κ+2µ ||Wpµn − 6Rp
µn.

Hence, we get

pλ+3µ || Dpµn, for µ ≤ κ.
Note that if µ = κ, then λ + κ + 2µ = λ + 3µ and we return to the previous case. It
follows that

pλ+κ+2µ || Dpµn

when µ > κ. Unfortunately, if κ ≥ λ − 2, it seems to be difficult to formulate a
comprehensive law of repetition.

6.3. The law of apparition for {Dn}
Definition 6.4. Let p be a prime and ω(p) be the least positive integer n, if it exists,

such that p |Dn. We call this the rank of apparition of p in {Dn}.
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The next theorems build toward a result very comparable to Theorem 2.2. What is
remarkable is that this is a result that did not hold for {Cn}. Hence, with the help of
{Dn} we are able to establish a more convincing analogue. We are now able to present
an important result concerning ω(p).

Theorem 6.5. If p - R, then ω(p) must exist. Further, if p |Dn, then ω(p) | n.

Corollary 6.6. If p is a prime and ω(p) exists, then ω(p) ≤ p2 + p+ 1.

Suppose p - R and pα |Dn. Let ω = ω(p) and let ω(pα) denote the least positive
integer k such that pα |Dk. If pα |Dω, put ν = 0; otherwise define ν ∈ Z≥0 by

pα |Dpνω(p) and pα - Dpν−1ω(p).

By our previous results concerning the law of repetition for {Dn} such a ν must exist.

Theorem 6.7. If p - R and pα |Dn, then ω(pα) = pνω(p) and ω(pα) | n.

Proof. Since p | Dn, we must have n = mω(p) for some m ∈ N. Suppose that
pγ || m and put m = m′pγ , where p - m′. Since pα - Dpν−1ω(p), we must have
pα - Dm′pν−1ω(p), so γ > ν − 1. But pα | Dm′pνω(p), so γ = ν. Furthermore, since
pα |Dpνω(p), we must have ω(pα) = pνω(p) and ω(pα) | n. �

Theorem 6.8. Suppose that m | Dn. Denote by ω(m) the least positive integer
such that m |Dω(m). Let

m =
k∏
i=1

pαii .

Then ω(m) = lcm[ω(pαii ); i = 1, 2, . . . , k].

Proof. Clearly ω(pαii ) | ω(m) for i = 1, 2, . . . , k. Since Dn is a divisibility se-
quence the result follows. �

We may now prove the following theorem, which very much resembles Corollary
2.3. Again, this is another result that did not hold for {Cn}.

Theorem 6.9. We have

gcd(Dn, Dm) = Dgcd(m,n).

Proof. Since Dn is a divisibility sequence, we have Dgcd(m,n) |Dn, which implies

Dgcd(m,n) | gcd(Dn, Dm).

Let pα || gcd(Dn, Dm). Then ω(pα) exists, so ω(pα) | n and ω(pα) | m. Hence
ω(pα) | gcd(m,n), so pα |Dgcd(m,n). Thus gcd(Dn, Dm) = Dgcd(m,n). �

In Chapter 4 of [Roe09], we were able to develop a result somewhat akin to Carmi-
chael’s result in Theorem 2.4. Surprisingly, if we look at {Dn} rather than {Cn}, we
can in fact do much better. We have that

Cmn
Cn
≡ m3Rn(m−1) (mod gcd(Fn,Wn − 6Rn)),
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where Fn is as in (18). If 2ν || Cn and ν > 1, then Cn | Fn and

Cmn
Cn
≡ m3Rn(m−1) (mod Dn).(19)

If 2 || Cn, then Cmn
Cn
≡ m (mod 2) (see Theorem 4.10 of [Roe09]) and Cn/2 | Fn, so

Cmn
Cn
≡ m3Rn(m−1) (mod gcd (Cn/2,Wn − 6Rn)).

Now gcd(Dn, R) | 2. If gcd(Dn, R) = 1, then gcd
(
Cmn
Cn

, Dn

)
|m3.

If (Dn, R) = 2, then 2 || Dn by Lemma 5.2. Then gcd
(
Cmn
Cn

, Dn/2
)
|m3. Since

gcd(Dn/2, R) = 1 and gcd
(
Cmn
Cn

, 2
)
|m, we have gcd

(
Cmn
Cn

, Dn

)
|m3.

We next examine gcd
(
Dmn
Dn

, Dn

)
. Let pα || gcd

(
Dmn
Dn

, Dn

)
. We will show that

pα |m3 when p is a prime and α ≥ 1. This means of course that

gcd(Dmn/Dn, Dn) |m3.

We first observe that if p - m, then p - Dmn/Dn, which is a contradiction to Theorem
6.2, so p |m. If α < 4, then pα |m3. If α ≥ 4, then by the law of repetition for Dn, we
know that pλ || Dmn, with λ ≤ 3µ + ν, where pν || Dn (ν ≥ 4) and pµ |m. Thus if
pγ || Dmn/Dn, then γ = λ− ν ≤ 3µ, so pγ |m3. We now have the desired analogue
of Theorem 2.4.

Theorem 6.10. If m ≥ 1 and n ≥ 1, then

gcd(Dmn/Dn, Dn) |m3.

Theorem 6.11. Let p be any prime such that p - 6∆R. Put T = p2 − 1 if p is an S
or a Q prime and T = p2 + p+ 1 otherwise. Then p |DT .

6.4. Preliminary results for {En}
While working on the sequences {Wn} and {Cn}, several results were obtained

concerning the sequence {En}, where En = gcd(Wn, Cn). This sequence has a num-
ber of properties analogous to those of the Lucas sequence {Vn}. In the next sev-
eral sections we will develop these properties. We begin with a result analogous to
gcd(Un, Vn) | 2 for Lucas functions.

Theorem 6.12. If gcd(Q,R) = 1, then gcd(Dn, En) | 6.

Proof. Suppose that p is any prime such that p |Dn and p |En. Since p |Wn−6Rn,
we must have p | 6Rn. Since gcd(Dn, R) = gcd(En, R) and gcd(Dn, R) | 2 by (17),
we can only have p = 2 or p = 3. If 32 | gcd(Dn, En), then 3 |R, which is impossible.
If 22 | gcd(Dn, En), then 22 | En, which is also impossible by Lemma 5.2. Hence
gcd(Dn, En) | 6. �

It is readily apparent that equation (11) implies Vn | U2n. Similarly we have the
following theorem.

Theorem 6.13. We have En |D3n.
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Proof. We can rework the identity

4W3n = 3∆C2
n(Wn + 2Rn) +W 2

n(Wn − 6Rn) + 24R3n

to see that

W3n − 6R3n = (Wn − 6Rn)
(
W 2
n −∆C2

n

4

)
+ ∆WnC

2
n.(20)

Recall again from Lemma 5.2 that if gcd(Q,R) = 1, then 2α || gcd(Wn, Cn), so α = 0
or α = 1, and if α = 1, then Q̃n = W 2

n−∆C2
n

4 is odd.

We are now ready to show that En | D3n. We know that Cn | C3n. If 2 - En,
then En | Q̃n, so En | W3n − 6R3n by equation (20). If 2 | En, then En/2 is odd
and En/2 | Q̃n. Since 2 |Wn, we have 2 |Wn − 6Rn, so En | (Wn − 6Rn)Q̃n and
En |W3n − 6R3n by equation (20). Since En |Cn and Cn |C3n, we get En |C3n and
En |W3n − 6R3n, so En |D3n. �

We next derive some useful results concerning the primes which can divide En.

Theorem 6.14. If gcd(Q,R) = 1 and p > 3 is a prime divisor of En, then p ≡ 1
(mod 3).

Thus, if p is a prime such that p > 3, p ≡ −1 (mod 3) and p |D3n, we know that
p - En. Theorem 6.14 can now be generalized.

Theorem 6.15. If p > 3 is a prime such that p | En, then p ≡ 1 (mod 3ν+1),
where 3ν || n.

Proof. Since gcd(En, R) | 2, we must have p - R. Suppose that p | En. Then we
know that p cannot be an I prime by Theorem 6.6 of [Roe09] and p ≡ 1 (mod 3) by
Theorem 6.14. We also have p | D3n. If p | Dn, then p |Wn and p |Wn − 6Rn, so
p | 6Rn, which is a contradiction. Hence p - Dn. Let ω be the rank of apparition of
p in {Dn}. We have ω(p) | 3n and ω(p) - n, as p | D3n and p - Dn. So, if 3ν || n,
then 3ν+1 | ω(p). Also, since p is not an I prime and p - 6R, we have ω(p) | p or
ω(p) | p2 − 1, by results seen in Theorem 6.5 for the S and Q prime cases. Hence,

ω(p) | (p− 1)(p+ 1),

so,

3ν+1 | (p− 1)(p+ 1).

Since 3 | ω(p), we know ω(p) - p. Also, since 3 | p− 1, we must have 3ν+1 | p− 1, so
p ≡ 1 (mod 3ν+1). �

Lucas showed (Theorem 2.14) that if p is an odd prime such that p |Vn, then p ≡ ±1
(mod 2ν+1), where 2ν || n. We next produce an analogue of this result. Recall that
Vn = U2n/Un. We will consider those primes p /∈ {2, 3} such that p | (D3n/Dn).

Theorem 6.16. If p > 3 is a prime such that p | (D3n/Dn), then p ≡ ±1
(mod 3ν+1), where 3ν || n.
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Proof. Since p | D3n, we see that if p | R, then p = 2 by (17), which is not
possible. Thus, p - R. Also, since gcd(D3n/Dn, Dn) | 27 by Theorem 6.10, we cannot
have p |Dn. It follows by the same reasoning used in the proof of Theorem 6.15, that

3ν+1 | (p− 1)(p+ 1).

Hence p ≡ ±1 (mod 3ν+1). �

6.5. A law of repetition for {En}
Theorem 6.17. If p > 3 is a prime such that pµ || En, then pµ+1 || Epn for µ ≥ 1.

Proof. We note that

p

∣∣∣∣ p(p− λ0 − 1)!
λ1!λ2!λ3!

unless λ1 = p, λ0 = λ2 = λ3 = 0. If λ1 = p, then

Q̃λ2
n Uλ1−λ2(P̃n, Q̃n) = Up(P̃n, Q̃n) and Q̃λ2

n Vλ1−λ2(P̃n, Q̃n) = Vp(P̃n, Q̃n).

Also, by Theorem 6.10 of [Roe09], (pµ)p | Vp(P̃n, Q̃n) and (pµ)p−1 | Up(P̃n, Q̃n).
Now, since p > 3, we know that 2µ+ 1 < µ(p− 1) and thus

Up(P̃n, Q̃n) ≡ Vp(P̃n, Q̃n) ≡ 0 (mod p2µ−1).

Furthermore, p2µ | Q̃λ2
n Vλ1−λ2 for λ1 + λ2 ≥ 2, so

p2µ+1

∣∣∣∣ p(p− λ0 − 1)!
λ1!λ2!λ3!

Q̃λ2
n Vλ1−λ2 .

Similarly, pµ | Q̃λ2
n Uλ1−λ2(P̃n, Q̃n) for λ1 + λ2 ≥ 2, so

pµ+1

∣∣∣∣ p(p− λ0 − 1)!
λ1!λ2!λ3!

Q̃λ2
n Uλ1−λ2 .

Finally, if λ1 + λ2 = 1, then

Wpn ≡ ±pR(p−1)nWn (mod p2µ+1) and
Cpn
Cn
≡ pR(p−1)n (mod pµ+1).

We may then conclude that if pµ || En, then pµ+1 || Epn. �

Also, notice that if p > 3, p - En and p - ∆, then p - Epn. For if p - Cn, then
∆̃n = ∆C2

n, so p - ∆̃n, and thus Up(P̃n, Q̃n) 6≡ 0 (mod p). But

Cpn
Cn
≡ Up(P̃n, Q̃n) (mod p),

so p - Cpn. Also, since, p |Wn if and only if p |Wpn whenever p | Cn, we see that
p - Epn when p - Wn.
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6.6. A law of apparition for {En}
It will be seen here that {En} behaves in much the same way as {Vn}. By employ-

ing {En}, we will be able to extend more of the results for {Vn} from Section 2 that
were, until now, missing. We must first deal with the case of p = 2. Since 2 | En if
and only if 2 |Cn, from our results in Section 4.1 of [Roe09], there always exists some
minimal ρ such that 2 | Eρ and 2 | En if and only if ρ | n. We next consider the case
of a general modulus. We note by the first two identities in Corollary 4.8 that Cn | C2n

and W2n ≡ (∆C2
n + W 2

n)/2 (mod Wn). Since En is either odd or 2 || En, it is easy
to see that En | E2n.

The following theorem provides an analogue to Theorem 2.11.

Theorem 6.18. Suppose that r | En, with n > 0. Then there must be a least
positive ρ = ρ(r) such that r | Eρ. Further, ρ | n.

6.7. Further observations on {En}
The next theorems parallel Theorems 2.12 and 2.13.

Theorem 6.19. If 3µ || m, 3ν || n and µ = ν, then

gcd(Em, En) = Egcd(m,n).

Theorem 6.20. If 3µ || m, 3ν || n and µ 6= ν, then

gcd(Em, En) | 6.

6.8. Euler’s criterion for {Dn} and {En}
We restate Euler’s criterion for Un, Vn as follows.

Theorem 6.21. If p - 2∆Q, then p | UT (p)
2

⇐⇒ Q
p−1
2 ≡ 1 (mod p),

p | VT (p)
2

⇐⇒ Q
p−1
2 ≡ −1 (mod p),

where T (p) = p− 1 if p splits in Q(α), and T (p) = p+ 1 otherwise.

Our analogue of Euler’s criterion forDn andEn is stated in the theorem below. The
proof of the following theorem relies on results in Sections 4.5, 5.3 and 6.3 of [Roe09].
We first suppose that p is a prime such that p - 6∆R. Define T = T (p) to be p − 1,
p2 − 1 or p2 + p+ 1 for p an S prime, a Q prime or an I prime, respectively.

Theorem 6.22. The equivalence

p |DT (p)
3

⇐⇒ R
p−1
3 ≡ 1 (mod p),

holds for any prime p ≡ 1 (mod 3), with the additional assumption that p |C p−1
3

when
p is an S prime. The equivalence

p | ET (p)
3

⇐⇒ R
p−1
3 6≡ 1 (mod p)

holds for any S or Q prime p ≡ 1 (mod 3). If p, with p ≡ 1 (mod 3), is an I prime,
then p - ET (p)

3

.
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7. Primality testing

7.1. An analogue of Lucas’s fundamental theorem
As mentioned in Section 3, one of Lucas’s main purposes in attempting to extend

his functions was to find new primality tests. In this section we explore how theWn and
Cn functions can be used for producing such tests. We first develop some analogues of
Theorem 2.16 of Section 2. We begin with a simple lemma.

Lemma 7.1. If k ≥ 2 and ri ≥ 5, for i = 1, 2, . . . , k, then(
k∏
i=1

r2
i

)
− 1 > 2

k∏
i=1

(
r2
i + ri + 1

2

)
.

Proof. We note that

1 >
1
54

+ 2
(

7
10

)2

,

hence

1 >
1

52k
+ 2

(
7
10

)k
for k ≥ 2. Now

1
52k
≥

k∏
i=1

1
r2
i

and
7
5

= 1 +
2
5
> 1 +

1
ri

+
1
r2
i

imply that

1 >
k∏
i=1

1
r2
i

+ 2
k∏
i=1

(
1 + 1

ri
+ 1

r2i

2

)
.

Therefore,(
k∏
i=1

r2
i

)
>

(
k∏
i=1

r2
i

)(
k∏
i=1

1
r2
i

)
+

(
k∏
i=1

r2
i

)(
2

k∏
i=1

(
1 + 1

ri
+ 1

r2i

2

))
and (

k∏
i=1

r2
i

)
− 1 > 2

k∏
i=1

(
r2
i + ri + 1

2

)
. �

Theorem 7.2. Let N be an integer such that gcd(N, 6) = 1. If N | DN2−1 and

N - DN2−1
q

for all primes q such that q |N2 − 1 and gcd
(
DN2−1

q′
, N

)
= 1, for some

prime divisor q′ of N2 − 1, then N is a prime.

Proof. Clearly ω(N) exists and ω(N) | N2 − 1. Also, if ω(N) 6= N2 − 1, then
N2 − 1 = kω(N), where k > 1. If q is any divisor of k, then ω(N) | N2−1

q , so
N |DN2−1

q

, which is a contradiction. Hence ω(N) = N2 − 1. Let

N =
k∏
i=1

pαii ,
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where the primes pi are all distinct and exceed 4. Also, N |DN2−1, then by equation
(17) and the fact that 2 - N , we must have gcd(N,R) = 1. We know by Theorem 6.8
that

ω(N) = lcm[ω(pαii ); i = 1, 2, . . . , k].

Since (pi, ω(N)) = 1 and, by Theorem 6.7, ω(pαii ) = pνi ω(pi), we must have

ω(N) | lcm[ω(pi); i = 1, 2, . . . , k].

Let p be a prime divisor ofN . We have p |DN2−1 and p - DN2−1
q′

. Hence ω(p) |N2−1

and ω(p) - N2−1
q′ , so q′ | ω(p). Hence

lcm[ω(pi); i = 1, 2, . . . , k]

∣∣∣∣∣ q′
k∏
i=1

ω(pi)
q′
·

Now, for k ≥ 2 we have by Corollary 6.6,

q′
k∏
i=1

ω(pi)
q′
≤ q′

k∏
i=1

p2
i + pi + 1

q′
≤ 2

k∏
i=1

p2
i + pi + 1

2
,

so we get (
k∏
i=1

p2
i

)
− 1 ≤ N2 − 1 ≤ 2

k∏
i=1

p2
i + pi + 1

2
,

which is impossible by the previous lemma.

If k = 1, then N = pα and by Theorem 6.7 ω(N) = ω(pα) = pνω(p), which
implies N2− 1 = ω(p) since gcd(p,N2− 1) = 1. If α ≥ 2, then p4− 1 ≤ p2 + p+ 1,
which is a contradiction. Thus N = p, a prime. �

By similar methods used to prove the previous theorem we also have the following
result.

Theorem 7.3. Let N be an integer such that gcd(N, 6) = 1. If N | DN2+N+1,

N - DN2+N+1
q

for each prime divisor q of N2 +N + 1, and gcd
(
DN2+N+1

q′
, N

)
= 1

for some prime divisor q′ of N2 +N + 1, then N is a prime.

We have proved our analogue of Theorem 2.16.

Theorem 7.4. Let N be an integer such that gcd(N, 6) = 1 and let T = N2 − 1
or T = N2 + N + 1. If N | DT , N - DT

q
for each prime divisor q of T , and

gcd

(
D T

q′
, N

)
= 1 for some prime divisor q′ of T , then N is a prime.

The difficulty in providing this as a complete analogue to Lucas’s result is the need
to involve the prime q′, which is not needed in Theorem 2.16. This is because 2 |N ±1
and 2 |pi± 1, and any proof of Theorem 2.16 makes use of these observations. In what
follows, we will modify Theorems 7.2 and 7.3 to eliminate the need for q′ in certain
cases.
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Suppose p is a prime such that p - 6∆ and 3 | T (p). By Theorem 6.5 of [Roe09],
we know that if m = T (p)/3, then p - Cm if and only if

Wm ≡ −3Rm and ∆C2
m ≡ −27R2m (mod p).

We also have a result for an arbitrary modulus.

Lemma 7.5. Let gcd(N, 6) = 1. If ∆C2
n ≡ −27R2n (mod N) and Wn ≡ −3Rn

(mod N), then N |D3n and N - Cn.

Proof. We have ∆C2
n + 3W 2

n ≡ 0 (mod N). Since 4C3n = Cn(∆C2
n + 3W 2

n),
we getN |C3n. Also, 4W3n = 3∆C2

n(Wn+2Rn)+W 2
n(Wn−6Rn)+24R3n implies

4(W3n − 6R3n) = 3∆C2
n(Wn + 2Rn) +W 2

n(Wn − 6Rn)

≡ −9W 2
n(Wn + 2Rn) +W 2

n(Wn − 6Rn) (mod N)

≡ −9W 3
n − 18RnW 2

n +W 3
n − 6RnW 2

n (mod N)

≡ −8W 3
n − 24RnW 2

n (mod N)

≡ −8W 2
n(Wn + 3Rn) ≡ 0 (mod N).

Thus N |W3n − 6R3n, so N | D3n. Now since gcd(Wn, Cn, R) | 2 by Theorem 5.3
and gcd(N, 6) = 1, we have gcd(N,R) = 1, and then N - Cn. �

We can use the last result to prove the following theorem.

Theorem 7.6. Suppose N is odd, 3 | T (N), ∆C2
T (N)

3

≡ −27R
2T (N)

3 (mod N),

WT (N)
3

≡ −3R
T (N)

3 (mod N), and N - CT (N)
q

for each prime divisor q of T (N)
3 . Then

N is a prime.

Proof. By the previous lemma, we know that N | DT (N) and N - DT (N)
q

for all

prime divisors of T (N). By our earlier reasoning we have ω(N) = T (N). Also, since
gcd(T (N), N) = 1,

ω(N) = lcm[ω(pi); i = 1, 2, . . . , k], if N =
k∏
i=1

pαii .

Let p be any prime divisor of N . If p | R, then by the conditions of the theorem
p | WT (N)

3

and p | ∆CT (N)
3

. Since p - CT (N)
3

by Lemma 7.5, we must have p | ∆.

However, it can be shown that if gcd(Q,R) = 1, then gcd(Wn, R,∆) | 4; thus we can
only have p = 2, which is not possible because N is odd. Thus, gcd(N,R) = 1. Also,
if p |N and p |∆, then p | R and p |WT (N)

3

, which is also impossible. It follows that

gcd(N, 6∆R) = 1. Now since p | CT (N) and p - CT (N)
3

, we get

p |∆C2
T (N)

3

+ 3W 2
T (N)

3
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and we know that p - ∆CT (N)
3

WT (N)
3

. Thus
(
−3∆
p

)
= 1. If p is an I prime, then

ω(p) | p2 + p + 1,
(

∆
p

)
= 1 and

(
−3
p

)
= 1, which means that p ≡ 1 (mod 3) and

3 | p2 + p+ 1. If p is a Q prime, then ω(p) | p2 − 1 and 3 | p2 − 1. If p is an S prime,
then ω(p) | p− 1 and p− 1 < (p2 − 1)/3 < (p2 + p+ 1)/3. Thus,

lcm[ω(pi); i = 1, 2, . . . , k] ≤ 3
k∏
i+1

p2
i + pi + 1

3
·

That N is a prime now follows from our previous reasoning. �

Notice that 3 |T (N) when T (N) = N2−1 and 3 |T (N) when T (N) = N2+N+1
and N ≡ 1 (mod 3).

A more general result than Theorem 7.6, and one that is more in line with Lucas’s
precept that the primality of N can be established by showing that N divides certain
integers, is provided in Theorem 7.8 below. In order to demonstrate this result we need
a simple lemma.

Lemma 7.7. Suppose that N is odd and let m be any positive integer such that
gcd(m,N) = 1. If N | Cmn/Cn, then gcd(N,Dn) = 1.

Proof. Suppose p is any prime divisor ofDn andN . Since p |Cn and p |Wn−6Rn,
we see by our results in Section 6.3, in particular equation (19), that we have

Cmn/Cn ≡ m3Rn(m−1) (mod p).

It follows that since p - m and p - R (gcd(Dn, R) | 2), we must have p - Cmn/Cn,
contradicting N | Cmn/Cn. �

We are now able to produce an analogue of Corollary 2.18.

Theorem 7.8. Let N be an integer such that gcd(N, 6) = 1. If N | DT (N) and

N

∣∣∣∣ (CT (N)/CT (N)
q

)
for each prime divisor q of T (N), then N is a prime.

Proof. Since gcd(T (N), N) = 1, we have gcd(q,N) = 1. By Lemma 7.7 we

know that if p is any prime divisor of N , then gcd
(
N,DT (N)

q

)
= 1. Thus, N - DT (N)

q

for all prime divisors q of T (N) and gcd
(
N,DT (N)

q′

)
= 1 for any prime divisor q′ of

T (N). The result follows by Theorem 7.4. �

We note here that Lucas himself ([Luc78], pp. 310-311) made use of the divisibility
of U3n/Un to produce a primality test for N = A3n − 1. Also, the computation of
CT /CT

q
can be done efficiently by using the methods of Section 3.6 of [Roe09].

Unfortunately, results like Theorems 7.4 and 7.8 are of limited utility in primality
testing because we need to know the complete factorization of T (N), and this is often
not available to us. In the next subsection, we will consider some special cases when
T (N) = N2 +N + 1.
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7.2. The case of T (N) = N2 + N + 1
We will deal here with the case of N2 +N + 1 = tL, where L is a prime.

Theorem 7.9. Let N2 + N + 1 = tL, where L is a prime. If t < N −
√
N + 1,

(N,Dt) = 1 and N |DN2+N+1, then N is a prime.

Corollary 7.10. If N is odd, N ≡ 1 (mod 3), L = (N2 + N + 1)/3 is a prime,
gcd(N,D3) = 1, and N |DN2+N+1, then N is a prime.

We also have the following result.

Theorem 7.11. Let N2 + N + 1 = tL, where L is a prime. If L > t2 + t + 1,
gcd(N,Dt) = 1 and N |DN2+N+1, then N is a prime.

Now, suppose that S is a fixed positive integer andN = tS+u, where t = u2+u+1
and u ∈ Z. Then N2 +N + 1 = tL, where

L = tS2 + (2u+ 1)S + 1.

For such numbers, we have the following result.

Theorem 7.12. IfN = tS+u, where S ≥ 2 andN > 4, we have t < N−
√
N+1.

From Theorems 7.9 and 7.12 we see that if tS2 +(2u+1)S+1 is a prime, then we
can use the test of Theorem 7.9 to prove that tS+u is a prime. Of course, ifN = tS+u
is a prime, it might not be an I prime and therefore T (N) 6= N2 +N+1; consequently,
this test would not be successful. Thus, we need to find values for P , Q and R such
that if N = tS + u is a prime, then N is an I prime for f(x) = x3 − Px2 +Qx−R.
It is well-known (see [Wil72b] and [Leh58]) that if N is a prime and

N
p−1
3 6≡ 1 (mod p),

where p is a prime (equivalent to 1 modulo 3), 4p = r2 + 27s2 with r ≡ 1 (mod 3)
and N - spr, then the cubic congruence

x3 − 3px− pr ≡ 0 (mod N)

is irreducible; that is, N is an I prime for

P ≡ 0, Q ≡ −3p and R ≡ pr (mod N).

Notice that since gcd(pr,N) = 1, there always exists some x such that

gcd(pr + xN,−3p) = 1;

hence, the fact that gcd(−3p, pr) = p 6= 1 does not have any effect on the validity of
our results. We have proved the following theorem.

Theorem 7.13. Let L = tS2 + (2u + 1)S + 1 be a prime and put N = tS + u.
Suppose that (N, 6) = 1, p is a prime such that p ≡ 1 (mod 3), N

p−1
3 6≡ 1 (mod p)

and 4p = r2 + 27s2, with r ≡ 1 (mod 3) and gcd(N, prs) = 1. If we put

P ≡ 0, Q ≡ −3p and R ≡ pr (mod N),

then N is a prime if and only if N |DN2+N+1 and gcd(Dt, N) = 1.
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Corollary 7.14. Let 2 - S, and L = 3S2 − 3S + 1 be a prime. Suppose that p is a
prime such that p ≡ 1 (mod 3) and

N
p−1
3 6≡ 1 (mod p),

where N = 3S − 2. If we define r and s as above and gcd(N, prs) = 1, then N is a
prime if and only if N |DN2+N+1, where

P ≡ 0, Q ≡ −3p and R ≡ pr (mod N).

Notice that we need only perform O(logN(M(log2N))) operations to establish
the primality of N , once we know that L is a prime. (Here we use M(n) to de-
note the number of elementary bit operations needed to multiply two n-bit integers.)
This is much faster than several other tests because it is not necessarily all that easy to
find enough factors of N ± 1 to use the techniques of Brillhart, Lehmer and Selfridge
[BLS75], which generalized those of Lucas, to establish the primality of N .

7.3. The primality of L
If we put

L = tS2 + (2u+ 1)S + 1, t = u2 + u+ 1 and N = tS + u,

the results of the last section allow us to establish the primality of N , when we have
already proved L is a prime. This is not a vacuous result because we certainly expect
by the Bateman–Horn conjecture [BH62] that there exists an infinitude of values of
S such that for a fixed u, L and N will both be prime. Also, for a fixed value of S,
we would expect that there exists an infinitude of values of u such that both L and N
will be prime. There remains, however, the difficulty of proving that L is a prime. We
notice, however, that S | L − 1. Suppose that S = FG, where we know the complete
factorization of F . It is then possible, by using the methods of [BLS75] to prove that L
is either prime or that all the prime factors of L must have the form kF + 1.

Theorem 7.15. Suppose that L = tS2 + (2u + 1)S + 1 (with t = u2 + u + 1),
S = FG and all the prime factors of L have the form kF + 1. Then L is a prime
whenever F > tG2 + |2u+ 1|G+ 2.

Suppose that we now consider the simple example where we put F = 2n, G = 1.
We get

Ln = (u2 + u+ 1)22n + (2u+ 1)2n + 1, and Nn = (u2 + u+ 1)2n + u.

In this case, if 2n > u2 + 3|u|+ 4, we can easily establish (when it is the case) that Ln
is a prime. We can next use our earlier results to prove that Nn is a prime, when that
is the case. This is not a vacuous result as both Ln and Nn are prime for n = 819 and
u = 289.

If we put F = qn, where q is a prime andG = 1, we can once again easily establish
the primality of

Ln = (u2 + u+ 1)q2n + (2u+ 1)qn + 1
when Ln is a prime. However, if we specify q and u, it seems a very rare event to have
both Ln and Nn = (u2 + u + 1)qn + u prime simultaneously. In the particular case
where u = −2 and q = 3 we get

Ln = 32n+1 − 3n+1 + 1 and Nn = 3n+1 − 2.
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For n > 3, we need only find some b such that

bLn−1 ≡ 1 (mod Ln) and gcd
(
b
Ln−1

3 − 1, Ln
)

= 1,(21)

to establish that Ln is a prime. Note that 3n+1 || Ln−1. Suppose p is some prime such
that p | Ln. By (21) we have

p | bLn−1 − 1 and p - b
Ln−1

3 − 1.

If ω is the order of b modulo p, then

ω | Ln − 1 and ω -
Ln − 1

3
·

So 3n+1 | ω and ω | p − 1; thus p ≡ 1 (mod 3n+1). Hence p = k3n+1 + 1 for some
k ∈ N. We then have p ≥ 2 · 3n+1 + 1 and we can conclude that Ln is a prime since
p >
√
Ln. Having done this we can use Corollary 7.14 to establish that Nn is a prime.

This sort of testing of pairs of numbers for primality might have pleased Lucas.

7.4. The case of T (N) = N2 − 1
It is certainly possible to test numbers of the form Aqn ± 1 for primality by using

theWn and Cn functions; however, we will confine our attention here to the case where
N = A3n − 1, as this is the analogous form to A2n − 1 mentioned in Chapter 2. We
can produce a theorem similar to Theorem 2.19, except for the necessity condition.

Theorem 7.16. LetN = A3n−1, where 2 |A,A < 3n, n ≥ 2 and gcd(N,R) = 1.
If N |

(
CN+1/CN+1

3

)
, then N is prime.

Our next objective will be to produce conditions that are both necessary and suf-
ficient for N = A3n − 1 to be prime. We first need to produce a result analogous to
Theorem 2.21. We begin with the following theorem.

Theorem 7.17. Let p be an odd prime such that p ≡ −1 (mod 3). Then there
exist P , Q and R such that p is a Q prime if and only if

P ≡ a+ Tr(λ), Q ≡ aTr(λ) +N(λ) and R ≡ aN(λ) (mod p),

where a ∈ Z, λ = r1 + r2ρ ∈ Z[ρ], ρ2 + ρ+ 1 = 0 and p - ar2N(λ).

We can now present our analogue of Theorem 2.21.

Theorem 7.18. Let p be an odd prime such that p ≡ −1 (mod 3). If P , Q and R
satisfy the conditions of Theorem 7.17 and

(
λ
p

)
3
6= 1, then

p
∣∣∣ (Cp+1/C p+1

3

)
.

By combining Theorems 7.16 and 7.18 we get the following necessary and suffi-
cient condition for N = A3n − 1, with 2 |A and A < 3n, to be prime.

Theorem 7.19. Let N = A3n − 1, where 2 | A and 3 < A < 3n. Futhermore, let
q ≡ 1 (mod 3) be a prime such that q - N and

N
q−1
3 6≡ 1 (mod q).
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Let λ = r1 + r2ρ, with ρ2 + ρ + 1 = 0, be a primary prime divisor of q in Z[ρ] and
suppose that N - r2. Let

P ≡ a+ Tr(λ), Q ≡ aTr(λ) + q, and R ≡ aq (mod N),

where (a,N) = 1. Then N is a prime if and only if

N
∣∣∣ (Cp+1/C p+1

3

)
.

8. Conclusion

The purpose of this research was to develop a cubic extension of the Lucas func-
tions that Lucas himself might have discovered. What has emerged from this work is
a theory of two functions that displays a number of pleasing similarities with Lucas’s
original work. The main tools in Lucas’s investigation of his functions were the mul-
tiplication formulas (13) and (14). The multiplication formulas, proved in Subsection
4.5, allowed us to obtain arithmetic results that closely resemble those for the Lucas
case. Key results like the laws of repetition and apparition, and Euler’s criterion, have
analogues in our extension. Most remarkably, the extension relies on the use of only
two functions, despite the fact that you would expect three for the cubic case. (It might
be argued that we are really considering four functions here because of Dn and En, but
these latter functions are simply a convenient way of representing certain divisors of
Cn.) Further, when restricted to the quadratic case, our generalization in Section 4.3
satisfyingly reduces to that of Lucas sequences.

With all that in mind, it is difficult to point to a single “main” result. However,
knowing that Lucas’s own goal in generalizing his sequences was to find and implement
new primality tests, Theorem 7.19 stands out as we can easily implement a primality test
based on it. The test makes use of {Cn}, a sequence known to Lucas that surely would
have been a part of any generalization he would have done, to test numbers of the form
A3n − 1. Certainly, even more important than just the primality test is Theorem 7.4, a
result that is our analogue of Theorem 2.16, which Lucas refered to as his fundamental
theorem. It should be emphasized, however, that today there exist many sophisticated
methods for primality proving (see, for example, Chapter 4 of [CP01]). The primality
conditions proved here are of mere historical interest and are perhaps what Lucas had
in mind.
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