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ON THE DIOPHANTINE EQUATION x2 + C = 4yn

FLORIAN LUCA, SZABOLCS TENGELY AND ALAIN TOGBÉ

Dedicated to Paulo Ribenboim on the occasion of his 80th birthday.

RÉSUMÉ. Nous étudions, pour plusieurs entiers positifs C, l’équation Diophan-
tienne x2 + C = 4yn, avec x, y et n des entiers non négatifs tels que x et y sont
copremiers et n ≥ 3.

ABSTRACT. We study, for various positive integers C, the Diophantine equation
x2 + C = 4yn in nonnegative integers x, y and n, where x and y are coprime and
n ≥ 3.

1. Introduction

The Diophantine equation

(1.1) x2 + C = yn, in integers x ≥ 1, y ≥ 1 and n ≥ 3,

once C is given, has a rich history. In 1850, Lebesgue [19] proved that the above
equation has no solutions when C = 1. In 1965, Chao [14] proved that the only
solution of the above equation with C = −1 is x = 3 and y = 2. Cohn [15] solved
the above equation for several values of the parameter C in the range 1 ≤ C ≤ 100. A
couple of the remaining values of C between 1 and 100 were covered by Mignotte and
De Weger in [24], and the remaining ones in the recent paper [13]. In [29], all solutions
of the similar looking equation x2 + C = 2yn, where n ≥ 2, x and y are coprime, and
C = B2, with B ∈ {3, 4, . . . , 501}, were found.

Recently, several authors become interested in the case when only the prime factors
of C are specified. For example, the case when C = pk, with a fixed prime number
p, was dealt with in [10] and [18] for p = 2, in [4], [9] and [20] for p = 3, and
in [3] for p = 5 and k odd. Partial results for a general prime p appear in [8] and
[17]. When C = 2a3b, all the solutions were found in [21] and, when C = paqb,
with {p, q} ⊂ {2, 5, 13}, the solutions were found in the series of papers [7], [22]
and [23]. For an analysis of the case C = 2α 3β 5γ 7δ, see [27]. The same Diophan-
tine equation with C = 2α 5β 13γ was dealt with in [16]. The Diophantine equa-
tion x2 + C = 2yn was studied in the recent paper [6] for the families of parameters
C ∈ {17a, 5a113a2 , 3a111a2}. See also [2], [28], as well as the recent survey [5] for
further results on equations of this type.
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In this paper, we consider the Diophantine equation

(1.2) x2 + C = 4yn, with x ≥ 1, y ≥ 1, gcd(x, y) = 1, n ≥ 3 and C ≥ 1.

We have the following results.

Theorem 1.1. The only integer solutions (C, n, x, y) of the Diophantine equation

(1.3) x2 + C = 4yn,

with x ≥ 1, y ≥ 1, gcd(x, y) = 1, n ≥ 3, C ≡ 3 (mod 4) and 1 ≤ C ≤ 100, are
given in the following table:

(3, n, 1, 1) (3, 3, 37, 7) (7, 3, 5, 2) (7, 5, 11, 2)

(7, 13, 181, 2) (11, 5, 31, 3) (15, 4, 7, 2) (19, 7, 559, 5)

(23, 3, 3, 2) (23, 3, 29, 6) (23, 3, 45, 8) (23, 3, 83, 12)

(23, 3, 7251, 236) (23, 9, 45, 2) (31, 3, 1, 2) (31, 3, 15, 4)

(31, 3, 63, 10) (31, 3, 3313, 140) (31, 6, 15, 2) (35, 4, 17, 3)

(39, 4, 5, 2) (47, 5, 9, 2) (55, 4, 3, 2) (59, 3, 7, 3)

(59, 3, 21, 5) (59, 3, 525, 41) (59, 3, 28735, 591) (63, 4, 1, 2)

(63, 4, 31, 4) (63, 8, 31, 2) (71, 3, 235, 24) (71, 7, 21, 2)

(79, 3, 265, 26) (79, 5, 7, 2) (83, 3, 5, 3) (83, 3, 3785, 153)

(87, 3, 13, 4) (87, 3, 1651, 88) (87, 6, 13, 2) (99, 4, 49, 5)

TABLE 1. Solutions for 1 ≤ C ≤ 100.

Theorem 1.2. (a) The only integer solutions of the Diophantine equation

(1.4) x2 + 7a · 11b = 4yn,

with x ≥ 1, y ≥ 1, gcd(x, y) = 1, n ≥ 3, a ≥ 0 and b ≥ 0, are:
52 + 71 · 110 = 4 · 23, 112 + 71 · 110 = 4 · 25,

312 + 70 · 111 = 4 · 35, 572 + 71 · 112 = 4 · 45,

132 + 73 · 110 = 4 · 27, 572 + 71 · 112 = 4 · 210,

1812 + 71 · 110 = 4 · 213.

(b) The only integer solutions of the Diophantine equation

(1.5) x2 + 7a · 13b = 4yn,

with x ≥ 1, y ≥ 1, gcd(x, y) = 1, n ≥ 3, a ≥ 0 and b ≥ 0, are:
52 + 71 · 130 = 4 · 23, 53716552 + 73 · 132 = 4 · 193223,

112 + 71 · 130 = 4 · 25, 132 + 73 · 130 = 4 · 27,

872 + 73 · 132 = 4 · 47, 1812 + 71 · 130 = 4 · 213,

872 + 73 · 132 = 4 · 214.
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The plan of the paper is the following. In Section 2, we prove an important result
using the theory of primitive divisors for Lucas sequences that will turn out to be very
useful for the rest of the paper. We then find all the solutions of equation (1.2) for
1 ≤ C ≤ 100 and C ≡ 3 (mod 4) in Section 3. In fact, using the results from
Section 2, for each positiveC ≤ 100 withC ≡ 3 (mod 4), we transform equation (1.2)
into several elliptic curves that we solve using MAGMA [12] except for the values
C = 47, 71, 79 for which a class number issue appears. For these remaining cases, we
transform equation (1.2) into Thue equations that we solve with PARI/GP [25]. In the
last section, we study equations (1.4) and (1.5). We note that reducing (1.4) modulo
4 gives that a + b is odd and reducing (1.5) modulo 4 implies that a is odd. We will
use these facts in the computations. For n = 3 and n = 4, we turn these equations
into elliptic curves on which we need to compute S-integer points for some small finite
sets S of places of Q. These computations are done with MAGMA. For the remaining
values of n, we use the theory of Section 2.

2. Auxiliary results

Clearly, if (x, y, C, n) is a solution of the Diophantine equation (1.2) and d ≥ 3 is
any divisor of n, then (x, yn/d, C, d) is also a solution of equation (1.2). Since n ≥ 3, it
follows that n either has an odd prime divisor d, or n is a multiple of d = 4. We replace
n by d and, from now on, we assume that n is either 4 or an odd prime.

Let α and β be distinct numbers such that r = α + β and s = αβ are coprime
nonzero integers. Assume that α/β is not a root of 1, which amounts to (r, s) 6= (1,−1)
and (r, s) 6= (−1,−1). Let ∆ = (α − β)2 = r2 − 4s. The Lucas sequence of roots
α, β is the sequence of general term

um =
αm − βm

α− β
, for all m ≥ 0.

Given m > 3, a primitive prime factor of um is a prime p such that p divides um but p
does not divide ∆

∏
1≤k≤m−1 uk. Whenever it exists, it is odd and it has the property

that p ≡ ±1 (mod m). More precisely, p ≡
(

∆
p

)
(mod m), where, as usual,

(
a

p

)
stands for the Legendre symbol of a with respect to p. The Primitive Divisor Theorem
asserts that if m 6∈ {1, 2, 3, 4, 6}, then um always has a primitive divisor except for
a finite list of triples (α, β,m), all of which are known (see [1] and [11]). One of
our work-horses is the following result whose proof is based on the Primitive Divisor
Theorem.

Lemma 2.1. Let C be a positive integer satisfying C ≡ 3 (mod 4), which we
write as C = cd2, where c is square-free. Suppose that (x, y, C, n) is a solution to the
equation (1.2), where n ≥ 5 is prime. Let α = (x+ i

√
cd)/2, β = (x− i

√
cd)/2 and

let K = Q[α]. Then one of the following holds:

(i) n divides the class number of K;

(ii) There exist complex conjugate algebraic integers u and v in K such that the
n-th term of the Lucas sequence with roots u and v has no primitive divisors;
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(iii) There exists a prime q | d not dividing c such that q ≡
(
c

q

)
(mod n).

Proof. Write (1.2) as(
x+ i

√
cd

2

)(
x− i

√
cd

2

)
= yn.

Note that since C ≡ 3 (mod 4), it follows that the two numbers α and β appearing
in the left-hand side of the above inequality are algebraic integers. Their sum is x and
their product is (x2 + C)/4 = yn, and these two integers are coprime. Passing to the
level of ideals in K, we get that the product of the two coprime ideals 〈α〉 and 〈β〉 is
an n-th power of an ideal in the ring of algebraic integers OK. Here, for γ ∈ OK, we
write 〈γ〉 for the principal ideal γOK generated by γ in OK. By unique factorization at
the level of ideals, we get that both 〈α〉 and 〈β〉 are n-th powers of some other ideals.
Unless (i) happens, both 〈α〉 and 〈β〉 are powers of some principal ideals. Write

〈α〉 = 〈u〉n = 〈un〉, for some u ∈ OK.

Passing to the levels of elements, we get that α and un are associated. Since K is
a complex quadratic field, the group of units in OK is finite of orders 2, 4 or 6, all
coprime to n. Thus, by replacing u with a suitable associate, we get that α = un.
Conjugating, we get β = vn, where v = u. Thus,

un − vn = α− β = i
√
cd.

Now clearly, u− v = i
√
cd1 for some integer d1. Thus,

un − vn

u− v
=

d

d1
| d.

The left-hand side is the n-th term of a Lucas sequence. Unless (ii) happens for this
sequence, the left-hand side above has a primitive divisor as a Lucas sequence. This
primitive divisor q does not divide cd1 (since c is a divisor of ∆ = (u− v)2 = cd2

1). It

clearly must divide d and it satisfies q ≡
(
c

q

)
(mod n), which is precisely (iii). �

3. Proof of Theorem 1.1

Step 1: First, we suppose that n = 3. Then, for each positive integer C ≤ 100
which is congruent to 3 modulo 4, equation (1.2) becomes

(3.1) Y 2 = X3 + C1,

where X = 4y, Y = 4x and C1 = −16C. We then find all solutions in Table 1 by
using the MAGMA function IntegralPoints with n = 3.

Step 2: Secondly, we suppose that n = 4. Then, for each positive integer C ≤ 100
which is congruent to 3 modulo 4, we solve equation (1.2) using the MAGMA function
IntegralQuarticPoints by first transforming it into

(3.2) Y 2 = X4 + C1,

where X = 2x, Y = 2y, and C1 = −4C. In case (C, n, x, y) is a solution such that
y is a power of an integer, i.e., y = yk1 , then (C, nk, x, y1) is also a solution. We can
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also deal with this in an elementary way by observing that (Y −X2)(Y +X2) = C1,
therefore both Y −X2 and Y +X2 are divisors of the number C1.

Step 3: Thirdly, we consider the case when n ≥ 5 is prime. For each positive
integer C ≤ 100 which is congruent to 3 modulo 4, we write C = cd2 and look at
K = Q[ic1/2]. The class numbers of the resulting fields are h = 1, 2, 3, 4, 6, 8, except
for C = 47 and C = 79, for which h = 5, and for C = 71, for which h = 7. We will
study later the equations

(3.3) x2 + 47 = 4y5, x2 + 79 = 4y5 and x2 + 71 = 4y7.

For the time being, we assume that item (i) of Lemma 2.1 is fulfilled. We look at items
(ii) and (iii) of Lemma 2.1. If (iii) holds, then we get some n-th member of a Lucas
sequence whose prime factors are among the primes in d. But 100 > C = cd2 ≥ 3d2,
so d ≤ 5. Since also n ≥ 5, it is impossible that this n-th member of the Lucas sequence
has primitive divisors. So, item (iii) cannot occur. For item (ii) of Lemma 2.1, we check
in the tables in Bilu-Hanrot-Voutier [11] and Abouzaid [1], and we obtain the solutions
in Table 1. It remains to study the three exceptional equations appearing in (3.3).

We will apply the following scheme to each of the equations in (3.3). Note that in
each case we haveC = c, so d = 1. Then we rewrite the equation x2+C = 4yp, where
p = hK is prime and is the order of the class group of K, into the form αᾱ = yp, where
α = (x + i

√
C)/2. We conclude from this that (α) = a for some ideal a. Suppose

that b is a fixed representative of the class of a−1 in the ideal class group of K. Then
(α) = bp(ba)p. The ideals (α) and ba are principal; hence, so is b−p. Writing ba = (γ)
and b−p = (β) for some algebraic integers β and γ in K, we obtain (by replacing, if
necessary, β by−β, and using the fact that in all cases the only units inOK are±1) the
relation α = βγp. Similarly, ᾱ = β̄γ̄p, and subtracting the above two relations gives
the equation

βγp − β̄γ̄p = i
√
C.

Substituting γ = (u + vi
√
C)/2, we get a Thue equation in u and v of degree p. In

this way, each of the three equations (3.3) yields hK Thue equations, one for each ideal
class, because the ideal class group is cyclic of prime order. In the next subsections, we
will use this scheme to write down the hK Thue equations corresponding to each of the
equations (3.3). However, for all the three cases we will not consider the trivial ideal
class as the corresponding case is solved by the Primitive Divisors Theorem. Thus, we
will only deal with p−1 ideal classes in each of the three cases. Furthermore, among the
remaining p− 1 classes, only half will be considered because in each case the complex
conjugation induces the automorphism a 7→ a−1 of the class group. Hence, it remains
to obtain and solve two Thue equations for each of the first two equations from (3.3),
and three Thue equations for the third one.

3.1. The equation x2 + 47 = 4yn

Let us start by creating the two Thue equations. First,

〈2〉 = b1b2,
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where 
θ = (1 + i

√
47)/2,

b1 = 〈θ, 2〉 = 〈(1 + i
√

47)/2, 2〉,
b2 = 〈θ − 1, 2〉 = 〈(1− i

√
47)/2, 2〉.

A system of representatives for the nonzero elements of the class group of K is given
by b1, b

2
1, b2 = b−1

1 and b2
2 = b−2

1 .

Let α = (x+i
√

47)/2 and β = (9+i
√

47)/2. With the previous notations, assume
that the inverse of a sits in the class of b2 = b−1

1 . Then

b5
2〈α〉 = (b2a)5 = 〈γ5〉.

Since b5
2 = 〈β〉, we get that 〈αβ〉 = 〈γ5〉. Write γ = (u + i

√
47v)/2, with some

integers u and v which are congruent modulo 2. Since

αβ =
9x+ 47 + i(9− x)i

√
47

4
,

we get (by replacing γ by −γ if necessary, identifying the real and imaginary parts
from the equation αβ, and then eliminating x from the two obtained equations) the
Thue equation

(3.4) 1024 = u5 + 45u4v − 470u3v2 − 4230u2v3 + 11045uv4 + 19881v5.

The case of the conjugate equation (i.e., when the class of a sits in the class of b5
2) leads

to the same Thue equation with v replaced by −v and 1024 replaced by its negative.
We use PARI/GP [25] to solve the above Thue equation (3.4) and the solutions are
(u, v) = (±4, 0). This gives the solution (x, y) = (9, 2).

Assume now that the inverse of a sits in the class of b2
1 = 〈β2〉. Then, by a similar

argument, we get

αβ2 = γ5,

for some γ = (u+ i
√

47v)/2 ∈ OK. Note that

αβ2 =
17x− 423 + i(9x+ 17)

√
47

4
·

Identifying real and imaginary parts gives{
17x−423

4 = 1
32(u5 − 470u3v2 + 11045uv4),

9x+17
4 = 1

32(5u4v − 470u2v3 + 2209v5).

Multiplying the first equation by 9, the second by 17, and subtracting the resulting
equations, leads to

−215 = 9u5 − 85u4v − 4230u3v2 + 7990u2v3 + 99405uv4 − 37553v5.

With PARI/GP, we deduce that these Thue equations have no solutions.
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3.2. The equation x2 + 79 = 4yn

The same argument works for 79. We will only sketch the proof without too many
details. Here, 27 = 72 + 79. We take

α =
(
x+ i

√
79
)
/2 and β =

(
7 + i

√
79
)
/2.

So, we only need to distinguish the following two remaining cases:

Case 1: αβ is a fifth power in K.

We then get

αβ =
7x− 79 + i(x+ 7)

√
79

4
=

(
u+ iv

√
79

2

)5

·

Identifying real and imaginary parts gives{
7x−79

4 = 1
32(u5 − 790u3v2 + 31205uv4),

x+7
4 = 1

32(5u4v − 790u2v3 + 6241v5).

Multiplying the second equation by 7 and subtracting it from the first one leads to

(3.5) −1024 = u5 − 35u4v − 790u3v2 + 5530u2v3 + 31205uv4 − 43687v5.

When αβ is a fifth power in K, one is lead to a similar equation as above but with the
positive sign in the left-hand side. We use PARI/GP to solve these Thue equations. The
resulting solutions are (u, v) = (±4, 0). This gives the solution (x, y) = (7, 2).

Case 2: αβ2 is a fifth power in K.

We proceed as in Case 1 and we obtain

(3.6) −32768 = 7u5 + 75u4v − 5530u3v2 − 1180u2v3 + 218435uv4 + 93615v5.

When αβ
2

is a fifth power in K, then the resulting Thue equation has the same right-
hand side but the sign on the left-hand side is positive. These Thue equations have no
solutions.

3.3. The equation x2 + 71 = 4yn

We use the same method. Here, 212 + 71 = 29, so we take

α = (x+ i
√

71)/2 and β = (21 + i
√

71)/2.

Assume that

αβ =
21x− 71 + i(x+ 21)

√
71

4
=

(
u+ iv

√
71

2

)7

·

Identifying real and imaginary parts gives{
21x−71

4 = 1
128(u7 − 1491u5v2 + 176435u3v4 − 2505377uv6),

x+21
4 = 1

128(7u6v − 2485u4v3 + 105861u2v5 − 357911v7).

To eliminate x, we multiply the second equation by 21 and subtract the resulting equa-
tion from the first one. We get

(3.7)
±16384 = u7 − 147u6v − 1491u5v2 + 52185u4v3 + 176435u3v4

− 2223081u2v5 − 2505377uv6 + 7516131v7.
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The sign + appears in the left-hand side when αβ = γ7. We use PARI/GP to solve
these Thue equations and obtain the solutions (u, v) = (±4, 0). We get the solution
(x, y) = (21, 2).

Next, we consider αβ2 and we have

(3.8)
±2097152 = 21u7 − 1295u6v − 31311u5v2 + 459725u4v3

+ 3705135u3v4 − 19584285u2v5 − 52612917uv6

+ 66213535v7.

The sign + on the left-hand side appears when αβ
2 = γ7. These Thue equations have

no solutions.

Finally, we take αβ3 to obtain

(3.9)
±268435456 = 313u7 − 8379u6v − 466683u5v2 + 2974545u4v3

+ 55224155u3v4 − 126715617u2v5 − 784183001uv6

+ 428419467v7.

Again the sign + in the left-hand side appears when αβ
3 = γ7. One can check that

these last Thue equations (3.9) are all impossible modulo 43. This finishes the proof of
Theorem 1.1.

4. Proof of Theorem 1.2

4.1. The equation (1.4)
First we deal with the cases n ∈ {3, 4}.
Case 1: Let n = 3.

We transform equation (1.4) as follows

X2 = Y 3 − 42 · 7a1 · 11b1 ,

where a1, b1 ∈ {0, 1, 2, 3, 4, 5}. Now we need to determine all {7, 11}-points on the
corresponding 36 elliptic curves. The coefficients are getting too large making the
computations time consuming. Thus, we use a different approach instead. We give the
details in case of equation (1.4). We have

x+ 7α11β
√
−7

2
=
(
u+ v

√
−7

2

)3

,

or
x+ 7α11β

√
−11

2
=
(
u+ v

√
−11

2

)3

·

After subtracting the conjugate equation, we obtain{
4 · 7α11β = 3u2v − 7v3,

4 · 7α11β = 3u2v − 11v3.

In the case of the first equation, one can easily see that 11 | v, and in the latter case
that 7 | v. Therefore, we have v ∈ {±11β,±4 · 11β,±7α · 11β,±4 · 7α · 11β}, and
v ∈ {±7α,±4 · 7α,±7α · 11β,±4 · 7α · 11β}, respectively.
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If v = ±11β, we then get that α ∈ {0, 1}, and it is sufficient to solve the following
equations: 

3u2 = 7V 4 ± 4,
3u2 = 7V 4 ± 28,
3u2 = 7 · 112V 4 ± 4,
3u2 = 7 · 112V 4 ± 28,

with V = 11k. Here and in what follows, k = bβ/2c. We use the MAGMA [12]
software and its function SIntegralLjunggrenPoints to determine all integral
points on the above curves. We obtain (u, v) = (±1,±1). Thus, (x, y) = (5, 2).

The other cases where

v ∈ {±4 · 11β,±7α · 11β,±4 · 7α · 11β,±7α,±4 · 7α,±7α · 11β,±4 · 7α · 11β}

can be handled in a similar way and do not yield any new solutions. The only solution
of equation (1.4) with n = 3 is

52 + 71 · 110 = 4 · 23.

Case 2: Let n = 4.

We can rewrite equation (1.4) as follows

x2 = 4y4 − 7α11β,

where α, β ∈ {0, 1, 2, 3} and S = {7, 11}. The problem can now be solved by applying
standard algorithms for computing S-integral points on elliptic curves (see, for exam-
ple, [26]). We use the MAGMA [12] function SIntegralLjunggrenPoints to
determine all S-integral points on the above curves. No solution of equation (1.4) can
be found.

Case 3: Let n ≥ 5, with n prime.

Then, by Lemma 2.1, we have that either n = 5, or

(y, n) ∈ {(2, 7), (2, 13), (3, 7), (4, 7), (5, 7)}.

It is easy to see that the class number of K is 1 when K = Q[i
√
d], with d ∈ {7, 11}.

Case 4: Let n = 5.

We describe the method in case of equation (1.4). We have

x+ 7α11β
√
−7

2
=
(
u+ v

√
−7

2

)5

,

or
x+ 7α11β

√
−11

2
=
(
u+ v

√
−11

2

)5

·

After subtracting the conjugate equation we obtain

16 · 7α11β = v(5u4 − 70u2v2 + 49v4),

or
16 · 7α11β = v(5u4 − 110u2v2 + 121v4).
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Therefore v is composed by the primes 2, 7 and 11. We rewrite the above equations as
follows:

Y 2 = ±2a17a211a3(5X4 − 70X2 + 49),
or

Y 2 = ±2a17a211a3(5X4 − 110X2 + 121),
where ai ∈ {0, 1}.Many of these equations do not have solutions in Qp for some prime
p, where here by Qp we mean the p-adic field. We use the MAGMA [12] function
SIntegralLjunggrenPoints to determine all {2, 7, 11}-integral points on the
remaining curves. We obtain the following solutions:

curve {2, 7, 11}-integral points

Y 2 = −11(5X4 − 70X2 + 49) (±3,±44), (±3
2 ,±

121
4 )

Y 2 = −(5X4 − 70X2 + 49) (±1,±4)

Y 2 = 5X4 − 70X2 + 49 (0, 7)

Y 2 = 11(5X4 − 70X2 + 49) (±7,±308)

Y 2 = 5X4 − 110X2 + 121 (0,±11), (±1,±4)

We use the above points on the elliptic curves to find the corresponding solutions of
equation (1.4). For example, the solution (X,Y ) = (3, 44) of the first elliptic curve
gives the solution (n, a, b, x, y) = (5, 1, 2, 57, 4). The solution (X,Y ) = (1, 4) of the
second elliptic curve yields the solution (n, a, b, x, y) = (5, 1, 0, 11, 2). The solution
(n, a, b, x, y) = (5, 0, 1, 31, 3) is obtained from the solution (X,Y ) = (1, 4) of the
last elliptic curve, while the solution (n, a, b, x, y) = (10, 1, 2, 57, 2) is easily obtained
from the solution (n, a, b, x, y) = (5, 1, 2, 57, 4).

Case 5: Let n > 5.

Here, by Lemma 2.1, we have

(y, n) ∈ {(2, 7), (2, 13), (3, 7), (4, 7), (5, 7)}.
We provide the details of the computations in case of equation (1.4). It remains to find
all integral points on the following elliptic curves

Y 2 = X3 + 4 · 72α112βyn,

with 0 ≤ α, β ≤ 2 and (y, n) ∈ {(2, 7), (2, 13), (3, 7), (4, 7), (5, 7)}. Using MAGMA,
we get the following solutions:

(α, β) (2, 7) (2, 13)

(0, 0) X ∈ {±8,−7, 4, 184} X ∈ {±32,−28, 16, 736}
(0, 1) X ∈ {−28} X ∈ {−112}
(0, 2) ∅ ∅
(1, 0) X ∈ {−28, 8, 56, 497} X ∈ {−112,−7, 32, 224, 1988}
(1, 1) X ∈ {−28, 56, 1736, 61037816} X ∈ {−112, 224, 6944, 244151264}
(1, 2) ∅ ∅
(2, 0) X ∈ {392} X ∈ {1568}
(2, 1) X ∈ {−503,−392, 49, 2744} X ∈ {−2012,−1568, 196, 5537, 10976}
(2, 2) ∅ ∅
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and
(α, β) (3, 7) (4, 7) (5, 7)

(0, 0) X ∈ {−18, 117} X ∈ {0} ∅
(0, 1) X ∈ {−99,−18, 22, 198} X ∈ {0} X ∈ {−275}
(0, 2) ∅ X ∈ {0} ∅
(1, 0) X ∈ {198} X ∈ {−112, 0, 128, 420, 896} ∅
(1, 1) X ∈ {198, 333, 15598} X ∈ {0} ∅
(1, 2) ∅ X ∈ {0, 21669648} ∅
(2, 0) X ∈ {−234} X ∈ {0, 25872} ∅
(2, 1) X ∈ {198, 37566} X ∈ {−1536, 0, 1617} ∅
(2, 2) ∅ X ∈ {0} ∅

One can check, for example, that (y, n, α, β,X) = (2, 7, 0, 0,−7) yields the solu-
tion 132 + 73 · 110 = 4 · 27, while the solution 1812 + 71 · 110 = 4 · 213 is obtained
from (y, n, α, β,X) = (2, 13, 1, 0,−7).

4.2. The equation (1.5)
We use a similar method as for equation (1.4).

Case 1: Let n = 3.

We transform equation (1.5) as follows

X2 = Y 3 − 42 · 7a1 · 13b1 ,

where a1 ∈ {1, 3, 5}, b1 ∈ {0, 1, 2, 3, 4, 5}. Now we need to determine all {7, 13}-
points on the corresponding 18 elliptic curves. Among the 18 curves, there are only
6 curves having rank greater than 0. MAGMA determined the appropriate Mordell-
Weil groups except in the case (a1, b1) = (5, 4). We deal with this case separately. By
computations similar to those done for equation (1.4) when n = 5, one can see that the
{7, 13}-points on the 5 curves lead to the solutions

(x, y, a, b) = (5, 2, 1, 0) and (x, y, a, b) = (5371655, 19322, 3, 2).

If (a1, b1) = (5, 4), we then obtain

4 · 73α1+2133β1+2 = v(3u2 − 7v2).

One can easily see that 13 | v and 7 - u. So, we have

v ∈ {±73α1+2 · 133β1+2,±4 · 73α1+2 · 133β1+2}.

If v = ±73α1+2 · 133β1+2, then the equations we need to solve are
3u2 = 7V 4 ± 4,
3u2 = 73V 4 ± 4,
3u2 = 7 · 132V 4 ± 4,
3u2 = 73 · 132V 4 ± 4.

We do not get any new solutions. If v = ±4 · 73α1+2 · 133β1+2, then by similar compu-
tations we do not get any new solutions.
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Case 2: Let n = 4.

We can rewrite equation (1.5) as follows

x2 = 4y4 − 7α13β,

where α, β ∈ {0, 1, 2, 3} and S = {7, 13}. As previously, we use the MAGMA [12]
function SIntegralLjunggrenPoints to determine all the S-integral points on
the above curves. We find no solution of equation (1.5) with n = 4.

Case 3: Let n ≥ 5, with n prime.

Then, by Lemma 2.1, we have that either n = 5, or

(y, n) ∈ {(2, 7), (2, 13), (3, 7), (4, 7), (5, 7)}.

A short calculation guarantees that the class number of K is 1 or 2 when K = Q[i
√
d]

with d ∈ {7, 91}.
Let n = 5. Here, we have

16 · 7α13β = v(5u4 − 70u2v2 + 49v4),

or
16 · 7α13β = v(5u4 − 910u2v2 + 8281v4).

Therefore v is composed by the primes 2, 7 and 13. We rewrite the above equations as
follows:

Y 2 = ±2a17a213a3(5X4 − 70X2 + 49),

or
Y 2 = ±2a17a213a3(5X4 − 910X2 + 8281),

where ai ∈ {0, 1}.Many of these equations do not have solutions in Qp for some prime
p.We use the MAGMA [12] function SIntegralLjunggrenPoints to determine
all {2, 7, 13}-integral points on the remaining curves. We obtain the solutions (0,±7),
(±1,±4), (0,±91), (±13,±52).

Finally, let n > 5. By Lemma 2.1, we have

(y, n) ∈ {(2, 7), (2, 13), (3, 7), (4, 7), (5, 7)}.

We find all integral points on the elliptic curves

Y 2 = X3 + 4 · 72α132βyn,

where 0 ≤ α, β ≤ 2 and (y, n) ∈ {(2, 7), (2, 13), (3, 7), (4, 7), (5, 7)}. Using a similar
method to that of the case n > 5 of equation (1.4), we obtain all the desired solutions.
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