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A REMARK ON THE GENERALIZED
RAMANUJAN–NAGELL EQUATION x2 − D = kn

BO HE AND ALAIN TOGBÉ

Dedicated to Professor Paulo Ribenboim on his 80th birthday.

RÉSUMÉ. Dans cet article, nous montrons, en utilisant des arguments élémentaires
ainsi qu’un résultat sur l’approximation diophantienne, que l’équation donnée dans le
titre a au plus 6 log |3.2D|/ log k + 8 solutions (x, n).

ABSTRACT. In this note, using elementary arguments and a result of Diophan-
tine approximation, we prove that the Diophantine equation in the title has at most
6 log |3.2D|/ log k + 8 solutions (x, n).

1. Introduction

The Diophantine equation

(1) x2 + 7 = 2n

is called the Ramanujan-Nagell equation. In 1960, Nagell [11] proved that the only
positive integer solutions to equation (1) are

(x, n) = (1, 3), (3, 4), (5, 5), (11, 7), (181, 15).

The Generalized Ramanujan-Nagell equation is the Diophantine equation

(2) x2 +D = kn, with x ≥ 1, n ≥ 1 and gcd(D, k) = 1.

The literature on the generalized Ramanujan-Nagell equation is very rich. One aspect
of the study of equation (2) is to determine the integer solutions (x, k, n). In 1850,
Lebesgue [8] proved that the above equation has no solutions when D = 1. In 1965,
Chao Ko [4] proved that the only solution of equation (2) with D = −1 is x = 3 and
k = 2. J.H.E. Cohn [5] solved the above equation for several values of the parameter
D in the range 1 ≤ D ≤ 100. Some of the remaining values of D in that range were
covered by Mignotte and De Weger in [10], while the remaining ones were considered
in the recent paper [3]. Recently, several authors have become interested in the case
when only the prime factors of D are specified. For example, the cases when D is a
fixed product of a few powers of primes were studied. See [1], [2], and [9] for the recent
surveys on this type of equations.
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In this paper, D is a nonzero integer and k is a positive integer. We consider the
Diophantine equation

(3) x2 −D = kn, with x ≥ 1, n ≥ 1 and gcd(D, k) = 1.

We denote by N(D, k) the number of solutions of equation (3). One can see, for
example, [7] for a history on N(D, k). In [7], Le proved the following result.

Theorem 1.1. Let ω(D) be the number of distinct prime factors of |D|. Then

(4) N(D, k) ≤

{
2ω(D)+1 if D < 0,
2ω(D)+1 + 1 if D > 0.

The aim of this paper is to sharpen Le’s result by using Diophantine approximations
and properties on continued fractions to prove the following result.

Theorem 1.2. There are at most 8 solutions (x, n) satisfying kn > 45D6.

From Theorem 1.2, we deduce the following result.

Corollary 1.3. We have N(D, k) ≤ 6 log |3.2D|
log k + 8.

2. Lemmas

Let us prove the following lemma.

Lemma 2.1. For j = 1, 2, 3, let (xj , nj) be any three solutions of (3) such that
n1 < n2 < n3 and 2 - nj . Suppose that kn1 > 45D6. Then

n3 > n2 +
2
3
n1.

Proof. From equation (3), we get∣∣∣ x2

k(n2−n1)/2
−
√
kn1

∣∣∣ =
∣∣∣ x2

k(n2−n1)/2
+
√
kn1

∣∣∣−1
· |D|
kn2−n1

<
|D|√

kn1kn2−n1

<
1

3.2kn1/3
(
k(n2−n1)/2

)2 ·(5)

Since
1

3.2kn1/3
(
k(n2−n1)/2

)2 < 1

2
(
k(n2−n1)/2

)2 ,
we have, by the classical Legendre’s Theorem on Diophantine approximation, that

x2

k(n2−n1)/2 is a convergent in the simple continued fraction expansion of
√
kn1 . One

can apply the same method to the solution (x3, n3). Moreover, if pm/qm is the m-th
convergent of

√
kn1 , then

(6)
∣∣∣∣√kn1 − pm

qm

∣∣∣∣ > 1
(am+1 + 2)q2m

,
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where am+1 is the (m+ 1)-st partial quotient of
√
kn1 (see e.g. [6]). Since

gcd
(
x2, k

(n2−n1)/2
)

= gcd
(
x3, k

(n3−n1)/2
)

= 1,

it follows that if
x2

k(n2−n1)/2
=
pb
qb

and
x3

k(n3−n1)/2
=
pc
qc
,

then
x2 = pb, k(n2−n1)/2 = qb, x3 = pc and k(n3−n1)/2 = qc.

Thus, combining equations (5) and (6) yields to

ab+1 > 3.2kn1/3 − 2 > kn1/3.

Also, since pc ≥ pb+1 > ab+1pb, we obtain

k(n3−n1)/2 > k(n2−n1)/2 · kn1/3.

Therefore, we have

�(7) n3 > n2 +
2
3
n1.

Now, we recall a result due to Tzanakis-Wolfskill [12].

Lemma 2.2. Suppose k is not a square and (x, n) is a solution of (3) which satisfies
kn ≥ 41+s/r|D|2+s/r for some r, s ∈ N. Then, we have∣∣∣∣ x′

kn′/2
− 1
∣∣∣∣ > 8

2187kn(3+ν/2)

(
81kn

4

)1/s

k−n
′(1+ν)/2,

for any x′, n′ ∈ N with 2 - n′, where ν satisfies knν = 9(81kn/4)r/s.

Proof. This is [12, Theorem I.2] with a = 1. �

Now, we prove the following result.

Lemma 2.3. Suppose that k is not a square and equation (3) has a solution (x, n)
such that kn > 45D6. Then every solution (x′, n′) of (3) with 2 - n′ satisfies n′ < 12n.

Proof. We take r = 1, s = 4 in Lemma 2.2. It follows that kn > 45D6 and

(8)
∣∣∣∣ x′

kn′/2
− 1
∣∣∣∣ > 8

2187kn(3+ν/2)

(
81kn

4

)1/4

k−n
′(1+ν)/2,

where

ν =
log 9
log kn

+
1
4

+
log(81/4)
4 log kn

<
1
4

+
2.8

log kn
<

1
2
·

Since (x′, n′) is a solution of (3) with 2 - n′, one has

(9)
∣∣∣∣ x′

kn′/2
− 1
∣∣∣∣ = |D|

kn′/2(kn′/2 + x′)
<
|D|
kn′
·

Combining equations (8) and (9) then gives

8
2187kn(3+ν/2)

(
81kn

4

)1/4

k−n
′(1+ν)/2 <

|D|
kn′
·
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As |D| < (kn/45)1/6, we get

8
(

81kn

4

)1/4

kn
′(1−ν)/2 < 2187kn(3+ν/2)|D| < 2187kn(3+ν/2)(kn/45)1/6,

and so
kn
′(1−ν)/2 < 40.6kn(3+ν/2+1/6−1/4) < kn(3+ν/2+1/6−1/4−1/4).

Therefore, we obtain

n′ <
3 + ν/2 + 1/6− 1/2

(1− ν)/2
· n ≤ 35n/3 < 12n. �

3. The proofs

In this section, we prove our main results.

Proof of Theorem 1.2. We assume that there exist 9 solutions (xj , nj), 1 ≤ j ≤ 9,
with kn1 > 45D6. It is easy to see that if n ≥ n1, then n is odd. Indeed, equation (3)
can be factored into

(x+ kn/2)(x− kn/2) = D.

Therefore, there exist two integers D1, D2 with D1 > 0 such that

x+ kn/2 = D1, x− kn/2 = D2 and D = D1D2.

As
kn/2 = (D1 −D2)/2 ≤ (D1 + |D2|)/2 ≤ |D|,

we deduce that 45D6 < kn1 ≤ kn < D2, which is impossible.

Therefore, by Lemma 2.1, we have

(10) nj+2 > nj+1 +
2
3
nj , 0 ≤ j ≤ 7.

This implies

n9 > n8 + 2
3n7 > 5

3n7 + 2
3n6 > 7

3n6 + 10
9 n5 > 31

9 n5 + 14
9 n4

> 5n4 + 62
27n3 > 197

27 n3 + 10
3 n2 > 287

27 n2 + 394
81 n1 > 1255

81 n1

> 15n1.

But Lemma 2.3 provides n9 < 12n1. This leads to a contradiction. Therefore, there
are at most 8 solutions (x, n) satisfying kn > 45D6. �

We deduce the proof of Corollary 1.3.

Proof of Corollary 1.3. Since there exist at most log(45D6)/ log k positive inte-
gers n satisfying kn ≤ 45D6, Theorem 1.2 yields the upper bound for the number of
solutions for equation (3). �
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4. Final remark

In [7], Le showed that the number of positive integer solutions of equation (3) is at
most 2ω(D)+1 + δ (where δ = 0 for D > 0 and δ = 1 for D < 0), see Theorem 1.1.
The method of the present paper can sharpen the upper bound to 3 · 2ω(D)−1 + c, where
c is an absolute constant a little bigger than 8.
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