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DISTRIBUTION MODULO 1 AND THE
LEXICOGRAPHIC WORLD

JEAN-PAUL ALLOUCHE AND AMY GLEN

In honour of Paulo Ribenboim on the occasion of his 80th birthday.

RÉSUMÉ. Nous donnons une description complète des intervalles de longueur mi-
nimale contenant toutes les parties fractionnaires {ξ2n}, pour un certain nombre réel
positif ξ, et pour tout n ≥ 0.

ABSTRACT. We give a complete description of the minimal intervals containing
all fractional parts {ξ2n} for some positive real number ξ, and for all n ≥ 0.

1. Introduction

In the paper [20], Mahler defined the set of Z-numbers by{
ξ ∈ R

∣∣∣∣ ξ > 0, ∀n ≥ 0, 0 ≤
{
ξ

(
3
2

)n}
<

1
2

}
,

where {z} is the fractional part of the real number z. Mahler proved that this set is
at most countable. It is still an open problem to prove that this set is actually empty.
More generally, given a real number α > 1 and an interval (x, y) ⊂ (0, 1) one can ask
whether there exists ξ > 0 such that, for all n ≥ 0, one has x ≤ {ξαn} < y (or the
variant x ≤ {ξαn} ≤ y). Flatto, Lagarias and Pollington [14, Theorem 1.4] proved that
if α = p/q, with p, q coprime integers and p > q ≥ 2, then any interval (x, y) such that
for some ξ > 0 one has {ξ(p/q)n} ∈ (x, y) for all n ≥ 0 must satisfy y − x ≥ 1/p.
Recently Bugeaud and Dubickas [8] characterized irrational numbers ξ such that for a
fixed integer b ≥ 2 all the fractional parts {ξbn} belong to a closed interval of length
1/b. Before stating their theorem we need a definition.

Definition 1. Given two real numbers α and ρ, with α ≥ 0, we denote by

sα,ρ := (sα,ρ(n))n≥0 and s′α,ρ := (s′α,ρ(n))n≥0

the sequences defined by

sα,ρ(n) = b(n+ 1)α+ ρc− bnα+ ρc and s′α,ρ(n) = d(n+ 1)α+ ρe− dnα+ ρe,

where bxc denotes the greatest integer less than or equal to x and dxe denotes the least
integer greater than or equal to x. The sequences sα,ρ and s′α,ρ are called Sturmian
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sequences if α is irrational, and periodic balanced sequences if α is rational. Fur-
thermore, if α = ρ, these sequences are called characteristic Sturmian sequences or
characteristic periodic balanced sequences, according to whether or not α is irrational.

On the one hand, we observe that if α is not an integer then for all n ≥ 0,

bαc ≤ sα,ρ(n) ≤ bαc+ 1 and dαe − 1 ≤ s′α,ρ(n) ≤ dαe,

where dαe − 1 = bαc and dαe = bαc + 1. On the other hand, if α is an integer, then
sα,ρ = s′α,ρ and α ≤ sα,ρ(n) ≤ α + 1 for all n ≥ 0. Accordingly, the sequences
sα,ρ and s′α,ρ take their values in the “alphabet” {k, k + 1} where k = bαc. The
classical definition of Sturmian sequences with values in {0, 1} is thus obtained by
subtracting bαc from each of the terms in the sequences sα,ρ and s′α,ρ. Alternatively,
one may restrict α to the interval (0, 1). Hereafter, if the alphabet is not mentioned, it
is understood that the sequences are over {0, 1}. We may also assume that ρ ∈ [0, 1) or
ρ ∈ (0, 1] since sα,ρ = sα,ρ′ and s′α,ρ = s′α,ρ′ for any two real numbers ρ, ρ′ such that
ρ− ρ′ is an integer.

Example 2. Taking α = ρ = (3 −
√

5)/2, we obtain the well-known (binary)
Fibonacci sequence 0100101001001010010100100101 · · · .

Remark 3. Note that if α is irrational, then the (Sturmian) sequences sα,ρ and s′α,ρ
are aperiodic (i.e., not eventually periodic), whereas if α is rational, the sequences sα,ρ
and s′α,ρ are (purely) periodic (see for instance [19, Lemma 2.14]). This justifies the
use of “periodic” in the name of such sequences in the rational case. The reason for
being called “balanced” is explained in Section 3.1.

Let T denote the shift map on sequences, defined as follows: if s := (sn)n≥0, then
T (s) = T ((sn)n≥0) := (sn+1)n≥0. The main result in [8] reads as follows.

Theorem 4 (Bugeaud-Dubickas). Let b ≥ 2 be an integer and let ξ be an irrational
number. Then the numbers {ξbn}, with n ≥ 0, cannot all lie in an interval of length
smaller than 1/b. Furthermore, there exists a closed interval I of length 1/b containing
the numbers {ξbn} for all n ≥ 0 if and only if the sequence of base b digits of the
fractional part of ξ is a Sturmian sequence s on the alphabet {k, k + 1} for some
k ∈ {0, 1, . . . , b − 2}. If this is the case, then ξ is transcendental, and the interval
I is semi-open. It is open unless there exists an integer j ≥ 1 such that T j(s) is a
characteristic Sturmian sequence on the alphabet {k, k + 1}.

The purpose of this paper is to give a complete description of the minimal intervals
containing all fractional parts {ξ2n} for some positive real number ξ, and for all n ≥ 0.
More precisely, inspired by the definition of the lexicographic world (see Section 2.2),
let us define a function F on [0, 1] as follows.

Definition 5. For all x ∈ [0, 1], let

Sx := {ξ ∈ R | ξ > 0, ∀n ≥ 0, x ≤ {ξ2n} < 1}
and let F : [0, 1]→ [0, 1] be the function defined by

F (x) =

{
inf{y ∈ [0, 1) | ∃ξ > 0, ∀n ≥ 0, x ≤ {ξ2n} ≤ y} if Sx 6= ∅,

1 if Sx = ∅.
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Remark 6. From Bugeaud-Dubickas’s result for b = 2, we deduce the following
two facts:

• For x ∈
[

1
2 , 1
]
, there is no irrational number ξ > 0 such that x ≤ {ξ2n} < 1 for

all n ≥ 0; nor is there a rational number ξ > 0 such that x ≤ {ξ2n} < 1 for all n ≥ 0.
(This can be seen by considering, for instance, the base 2 expansion of the fractional
part of ξ for any rational number ξ ≥ x.) Hence, F (x) = 1 for all x ∈

[
1
2 , 1
]
.

• If ξ > 0 is an irrational real number, then there exists a real number x ∈
[
0, 1

2

)
such that all the fractional parts {ξ2n} belong to the interval

[
x, x+ 1

2

]
if and only if

the base 2 expansion of the fractional part of ξ is a Sturmian sequence. Furthermore,
for any such x, one has F (x) = x+ 1

2 .

Note that it follows from our main theorem (see Theorem 7 later) that 0 ≤ F (x) < 1
for x ∈

[
0, 1

2

)
.

Before stating our main theorem, let us note that the sequences sα,ρ and s′α,ρ (given
in Definition 1) are said to have slope α and intercept ρ, in view of their geometric
realization as approximations to the line y = αx+ρ (called lower and upper mechanical
words in [19, Chapter 2]). From now on, we will assume that α and ρ are in the interval
[0, 1], in which case the sequences sα,ρ and s′α,ρ take their values in {0, 1}. If α is
irrational, then we have sα,α = s′α,α, denoted by cα. We also have s0,0 = s′0,0 = 0∞

and s1,1 = s′1,1 = 1∞, denoted by c0 and c1, respectively. In these cases, the sequence
cα is the unique characteristic Sturmian sequence of slope α in {0, 1}N. Besides this,
if α ∈ (0, 1) is rational, then the characteristic periodic balanced sequences of slope
α, namely sα,α and s′α,α, are distinct sequences in {0, 1}N containing both 0’s and 1’s.
More precisely, let us suppose that α = p/q ∈ (0, 1), with gcd(p, q) = 1. Then by
considering the prefix of length q of each of the sequences sp/q,0 and s′p/q,0, we find
that there exists a unique word wp,q of length q − 2 such that

sp/q,0 = (0wp,q1)∞ and s′p/q,0 = (1wp,q0)∞,

where v∞ denotes the periodic sequence vvvv · · · for a given word v (see for instance
[19, p. 59]). Hence, the two characteristic periodic balanced sequences of slope p/q in
{0, 1}N are given by

sp/q,p/q = T (sp/q,0) = (wp,q10)∞ and s′p/q,p/q = T (s′p/q,0) = (wp,q01)∞.

The words wp,q are often referred to as central words in the literature; they hold a spe-
cial place in the rich theory of Sturmian sequences (see, e.g., [19, Chapter 2]). For
instance, it follows from the work of de Luca and Mignosi [11, 12] that central words
coincide with the palindromic prefixes of characteristic Sturmian sequences (see Sec-
tion 3.3).

Given a sequence s ∈ {0, 1}N, let r(s) denote the real number in (0, 1) whose se-
quence of base 2 digits after the binary point is given by s. Our main number-theoretical
result reads as follows.

Theorem 7. Let x be a real number in [0, 1].

(i) If x ≥ 1
2 , then F (x) = 1.

(ii) If x = 0, then F (x) = 0.
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(iii) If x ∈
(
0, 1

2

)
and if the base 2 expansion of 2x is given by a characteristic

Sturmian sequence, then F (x) = x+ 1
2 . Furthermore, F (x) is the unique real number

in [0, 1] that has a Sturmian base 2 expansion and satisfies x ≤ {F (x)2k} ≤ F (x) for
all k ≥ 0.

(iv) If x ∈
(
0, 1

2

)
and if the base 2 expansion of 2x is given by a characteristic

periodic balanced sequence of slope p/q ∈ (0, 1), with gcd(p, q) = 1, then F (x) is
the rational number whose base 2 expansion is given by the periodic balanced sequence
s′p/q,0 = (1wp,q0)∞. In this case, F (x) ≤ x + 1

2 .

(v) In all other cases, F (x) can be explicitly computed: it is equal to the rational
number whose base 2 expansion is given by a (unique) periodic balanced sequence
s′p/q,0 = (1wp,q0)∞ where p, q are coprime integers, with 0 < p < q, such that
r((wp,q01)∞) < 2x < r((wp,q10)∞). In these cases, F (x) < x + 1

2 .

Moreover, in cases (iv) and (v), F (x) is the unique real number in (0, 1) whose
base 2 expansion is given by a periodic balanced sequence and which, for all k ≥ 0,
satisfies x ≤ {F (x)2k} ≤ F (x).

Remark 8. It is known (see [13]) that real numbers having a Sturmian base 2
expansion are transcendental. As a consequence of Theorem 7, we deduce that if x is
an algebraic real number in

[
0, 1

2

)
, then F (x) is rational.

2. The combinatorial approach

The main tool used by Bugeaud and Dubickas is combinatorics on words: real num-
bers are replaced by their base b expansion, and inequalities between real numbers are
transformed into (lexicographic) inequalities between infinite sequences representing
their base b expansions. We will establish a theorem of combinatorial flavour (Theo-
rem 13), whose translation into a number-theoretical statement is exactly Theorem 7
above. A method for computing F (x) in case (v) of Theorem 7 is given in Section 6.

2.1. Two combinatorial theorems
It happens that the case b = 2 of Bugeaud-Dubickas’s theorem was already proved

by Veerman in [25, 26]. The combinatorial result proved by Veerman, and by Bugeaud-
Dubickas, is stated (and strengthened) in Theorems 9 and 10 below.

Theorem 9. An aperiodic sequence s := (sn)n≥0 on {0, 1} is Sturmian if and only
if there exists a sequence u := (un)n≥0 on {0, 1} such that 0u ≤ T k(s) ≤ 1u for all
k ≥ 0. Moreover, u is the unique characteristic Sturmian sequence with the same slope
as s, and we have 0u = inf{T k(s), k ≥ 0} and 1u = sup{T k(s), k ≥ 0}.

Theorem 10. An aperiodic sequence u on {0, 1} is a characteristic Sturmian se-
quence if and only if, for all k ≥ 0,

0u < T k(u) < 1u.

Furthermore, we have 0u = inf{T k(u), k ≥ 0} and 1u = sup{T k(u), k ≥ 0}.
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2.2. The lexicographic world
As discussed in [1], the results in Theorems 9 and 10 have been rediscovered several

times since the work of Veerman in the mid-late 80’s. One of the presentations of these
statements is due to Gan [16]. It is based on the lexicographic(al) world, which seems
to have been introduced in 2000, in a preprint version of [18].

For any two sequences x, y ∈ {0, 1}N, define the set

Σx,y := {s ∈ {0, 1}N | ∀k ≥ 0, x ≤ T k(s) ≤ y},

where ≤ denotes the lexicographic order on {0, 1}N induced by 0 < 1. The lexico-
graphic world L is defined by

L := {(x,y) ∈ {0, 1}N × {0, 1}N | Σx,y 6= ∅}.
Moreover, by [16, Lemma 2.1], we have

L = {(u,v) ∈ {0, 1}N × {0, 1}N | v ≥ φ(u)},

where φ : {0, 1}N → {0, 1}N is the map defined by

φ(x) := inf{y ∈ {0, 1}N | Σx,y 6= ∅}.

Trivially, φ(1x) = 1∞ = 111 · · · for any sequence x ∈ {0, 1}N.

In [16], Gan showed that for any sequenceu ∈ {0, 1}N, the setΣ0u,1u is not empty,
i.e., there exists a sequence s ∈ {0, 1}N such that 0u ≤ T k(s) ≤ 1u for all k ≥ 0
(see [16, Lemma 4.2]). Furthermore, the sequence φ(0u) has the foregoing property
(by [16, Theorem 3.4]) and it is a Sturmian or periodic balanced sequence with the
property that T k(φ(0u)) ≤ φ(0u) for all k ≥ 0 (see [16, Theorem 4.6]). Moreover,
by [16, Lemma 5.4], the set Σ0u,1u contains a unique Sturmian or periodic balanced
sequence satisfying T k(s) ≤ s for all k ≥ 1. We deduce from these remarks that,
for any sequence s ∈ {0, 1}N, if s = φ(0u) for some sequence u ∈ {0, 1}N, then s
is the unique Sturmian or periodic balanced sequence satisfying 0u ≤ T k(s) ≤ 1u
and T k(s) ≤ s for all k ≥ 0. The converse of this statement also holds by [16,
Corollary 5.6]. These observations establish Gan’s main theorem (see below), which
shows in particular that any element in the image of φ is a Sturmian or periodic balanced
sequence in {0, 1}N (and such sequences are the lexicographically greatest amongst
their shifts).

Theorem 11. ([16, Theorem 1.1]) For any sequence s ∈ {0, 1}N, the following
conditions are equivalent:

(i) s = φ(0u) for some sequence u ∈ {0, 1}N;

(ii) s is the unique Sturmian or periodic balanced sequence satisfying 0u ≤ T k(s),
T k(s) ≤ 1u and T k(s) ≤ s for all k ≥ 0.

Note. “Sturmian” in Gan’s paper corresponds to what is called here (and classi-
cally) “Sturmian or periodic balanced”.

Remark 12. It is well-known that the closure of the shift-orbit of a characteristic
Sturmian sequence s (i.e., the closure of {T k(s), k ≥ 0}, denoted byO(s)) is precisely
the set of all Sturmian sequences having the same slope as s (see for instance [19,
Propositions 2.1.25 and 2.1.18], or [21]). In view of this fact, Gan’s result can be
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strengthened using Theorem 9 as follows. If the sequence s := φ(0u) is Sturmian,
then u is the unique characteristic Sturmian sequence in O(s), in which case s = 1u.

We will further strengthen Gan’s result by describing φ(0u) for any given sequence
u ∈ {0, 1}N. In particular, we will show that whenu contains both 0’s and 1’s and is not
a characteristic Sturmian sequence, there exists a unique pair of characteristic periodic
balanced sequences s and s′ of (rational) slope p/q ∈ (0, 1), with gcd(p, q) = 1, such
that s′ ≤ u ≤ s, in which case φ(0u) = 1s′. Moreover, the sequences s, s′ can be
explicitly determined in terms of u.

With the same notation as in the introduction, our main combinatorial theorem
reads as follows.

Theorem 13. Let u be a sequence in {0, 1}N.

(i) φ(1u) = 1∞.

(ii) If u ∈ {0∞, 1∞}, then φ(0u) = u.

(iii) If u is a characteristic Sturmian sequence, then φ(0u) = 1u. Furthermore,
1u is the unique Sturmian sequence in {0, 1}N satisfying 0u ≤ T k(1u) ≤ 1u for all
k ≥ 0.

(iv) If u is a characteristic periodic balanced sequence of rational slope p/q in
(0, 1), with gcd(p, q) = 1, then φ(0u) = s′p/q,0 = (1wp,q0)∞.

(v) If u does not take any of the forms given in parts (ii)–(iv), then there exists a
unique pair of coprime integers p, q, with 0 < p < q, such that

(wp,q01)∞ < u < (wp,q10)∞,

in which case φ(0u) = s′p/q,0 = (1wp,q0)∞.

Moreover, in cases (iv) and (v), φ(0u) is the unique periodic balanced sequence in
{0, 1}N satisfying 0u ≤ T k(φ(0u)) ≤ φ(0u) for all k ≥ 0.

In the next section, we will recall some generalities about Sturmian and periodic
balanced sequences. (For more on Sturmian sequences, the reader can consult, e.g.,
[19, Chapter 2].) The proof of Theorem 13 is given in Section 4, and a corollary is
stated in Section 5. Lastly, in Section 6, we show how to determine the “central word”
wp,q such that φ(0u) = (1wp,q0)∞ for any “generic” sequence u falling into case (v)
of Theorem 13 above.

3. Sturmian and periodic balanced sequences

In what follows, we will use the following notation and terminology from combina-
torics on words (see, e.g., [19]). Letw = x1x2 · · ·xm be a word over a finite non-empty
alphabet A (where each xi is a letter in A). The length of w, denoted by |w|, is equal
to m. The empty word is the unique word of length 0, denoted by ε. The number
of occurrences of a letter x in w is denoted by |w|x. The reversal of w is defined by
w̃ = xm · · ·x2x1, and by convention ε = ε̃. If w = w̃, then w is called a palindrome.
An integer ` ≥ 1 is said to be a period of w if, for all i, j with 1 ≤ i, j ≤ m, i ≡ j
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(mod `) implies xi = xj . Note that any integer ` ≥ |w| is a period of w with this
definition. The word w is said to be primitive if it is not a power of a shorter word, i.e.,
if w = un, then n = 1. A finite word z is said to be a factor of w if z = xixi+1 · · ·xj
for some i, j, with 1 ≤ i ≤ j ≤ m. Similarly, a factor of a sequence s := s0s1s2s3 · · ·
is any finite word of the form sisi+1 · · · sj , with i ≤ j.

Recall from the introduction that the shift map T is defined on sequences as follows:
if s := (sn)n≥0 then T (s) = T ((sn)n≥0) := (sn+1)n≥0. This operator naturally
extends to finite words as a circular shift by defining T (xw) = wx for any letter x and
finite word w.

Under the operation of concatenation, the setA∗ of all finite words overA is a free
monoid with identity element ε and set of generators A. If x is a letter, then we use x∗

to denote {x}∗, the set of all finite powers of x. From now on, all words and sequences
will be over the alphabet {0, 1}.

3.1. Balanced sequences
All Sturmian sequences are “balanced” in the following sense (see for instance

[22, 10, 5, 6, 19]).

Definition 14. A finite word or sequencew over {0, 1} is said to be balanced if, for
any two factors u and v of w, with |u| = |v|, we have ||u|1− |v|1| ≤ 1 (or equivalently
||u|0 − |v|0| ≤ 1).

Recall from Remark 3 that Sturmian sequences are aperiodic. Morse, Hedlund,
and Coven [22, 10] proved that the Sturmian sequences are precisely the aperiodic
balanced sequences on two letters (also see [19, Theorem 2.1.3]). “Periodic balanced
sequences” (as specified in Definition 1) are also balanced in the sense of the above
definition (which justifies their name); moreover, they constitute the set of all periodic
balanced sequences on two letters (see [19, Lemma 2.1.15] or [24]).

3.2. Characteristic Sturmian sequences
In [11], characteristic Sturmian sequences were characterized using iterated palin-

dromic closure, defined as follows. The palindromic (right-)closure of a finite word
w, denoted by w(+), is the (unique) shortest palindrome beginning with w. That is, if
w = uv where v is the longest palindromic suffix of w, then w(+) := uvũ. For ex-
ample, (011)(+) = 0110. The iterated palindromic closure function, denoted by Pal,
is defined by iteration of the palindromic right-closure operator (see, e.g., [17]). More
precisely, Pal is defined recursively as follows: set Pal(ε) = ε, and for any word w
and letter x, define Pal(wx) := (Pal(w)x)(+). For example,

Pal(011) = (Pal(01)1)(+) = (0101)(+) = 01010.

Note that Pal is injective; and moreover, it is clear from the definition that Pal(w) is a
prefix of Pal(wx) for any word w and letter x. Hence, if v is a prefix of w, then Pal(v)
is a prefix of Pal(w). The following theorem provides a combinatorial description of
characteristic Sturmian sequences in terms of Pal.

Theorem 15. ([11]) For any sequence s ∈ {0, 1}N, the following properties are
equivalent:

(i) s is a characteristic Sturmian sequence.
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(ii) There exists a (unique) sequence

∆ := x0x1x2x3 . . . ∈ {0, 1}N \ ({0, 1}∗0∞ ∪ {0, 1}∗1∞)

(i.e., not eventually constant), called the directive sequence of s, such that

s = lim
n→∞

Pal(x0x1x2 · · ·xn) = Pal(∆).

Example 16. Recall from Example 2 that the (binary) Fibonacci sequence

f = 01001010010 · · ·
is the characteristic Sturmian sequence cα with α = (3 −

√
5)/2; it has directive

sequence (01)∞. That is,

f = Pal(0101 · · · ) = 01001010010 · · · ,
where the underlined letters indicate at which points palindromic closure is applied.
The simple continued fraction expansion of α = (3 −

√
5)/2 is [0; 2, 1, 1, 1, . . .].

More generally, if α ∈ (0, 1) is an irrational number with simple continued frac-
tion expansion [0; d1 + 1, d2, d3, d4, . . .], where d1 ≥ 0 and di ≥ 1 for i > 1, then
cα = Pal(0d11d20d31d4 · · · ) (see [15, 7] and also [2, p. 206]).

3.3. Characteristic periodic balanced sequences
We will now recall some known combinatorial descriptions of the characteristic

periodic balanced sequences in {0, 1}N (see Proposition 17 and Remark 18 below).

Let us first recall from the introduction that the characteristic balanced sequences
of slopes 0 and 1 are c0 = 0∞ and c1 = 1∞, respectively. For all other rational slopes
p/q ∈ (0, 1), with gcd(p, q) = 1, there are exactly two characteristic periodic balanced
sequences of slope p/q, given by

sp/q,p/q = T (sp/q,0) = (wp,q10)∞ and s′p/q,p/q = T (s′p/q,0) = (wp,q01)∞,

where wp,q is a word of length q − 2 in {0, 1}∗. For example, with p = 2 and q = 5,
we obtain the following two characteristic periodic balanced sequences of slope 2/5:

s2/5,2/5 = (01010)∞ and s′2/5,2/5 = (01001)∞,

where w2,5 = 010. Note that w2,5 is a palindrome and |w2,510|1 = |w2,501|1 = 2 = p.
More generally, one can verify that all words wp,q are palindromes and

|wp,q10|1 = |wp,q01|1 = p.

Furthermore, the words wp,q10 and wp,q01 (which have length q) are primitive since
gcd(p, q) = 1. Hereafter, the word wp,q will be called the central word of slope p/q; it
is the unique central word of length q − 2 containing p− 1 occurrences of 1.

Note. The set of all central words of slope p/q ∈ (0, 1), where p and q are coprime
integers, coincides with the family of “central words” in {0, 1}∗ as defined in [19,
Chapter 2] (in particular, see [19, Theorem 2.2.11 and Proposition 2.2.12]).

The following proposition collects together some equivalent definitions of central
words. For many more, see the nice survey [3].

Proposition 17. For any wordw ∈ {0, 1}∗, the following properties are equivalent:

(i) w is a central word;
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(ii) 0w1 and 1w0 are balanced (see [12]);

(iii) w = Pal(v) for some word v ∈ {0, 1}∗ (see [12, 11]);

(iv) w has two periods ` and m such that gcd(`,m) = 1 and |w| = `+m− 2 (see
[10, 12]);

(v) w ∈ 0∗ ∪ 1∗ ∪ (P ∩ P10P ), where P is the set of all palindromes in {0, 1}∗
(see [12]);

(vi) w ∈ 0∗ ∪ 1∗, or there exists a unique pair of words w1, w2 ∈ {0, 1}∗ such that
w satisfies the equation w = w101w2 = w210w1 (see [12, 11]).

Moreover, in (vi), w1 and w2 are central words, `1 := |w1|+ 2 and `2 := |w2|+ 2
are coprime periods of w, and min{`1, `2} is the minimal period of w (see [9]).

Note. P ∩ (P10P ) = P ∩ (P01P ).

Furthermore, by [19, Proposition 2.2.12], the central word wp,q of slope p/q is the
central word with coprime periods ` and m, where ` + m = q and mp ≡ 1 (mod q).
For example, the central wordw2,5 = 010 has coprime periods ` = 2 andm = 3, where
2 + 3 = q and mp = 6 ≡ 1 (mod 5). Also note that w1,q = 0q−2 and wq−1,q = 1q−2;
in particular w1,2 = ε.

Remark 18. Let p and q be coprime integers, with 0 < p < q. Then p/q has two
distinct simple continued fraction expansions:

p/q = [0; d1 + 1, . . . , dn, 1] and p/q = [0; d1 + 1, . . . , dn + 1],

where d1 ≥ 0 and di ≥ 1 for i > 1. It is known (see, e.g., [3, Proposition 27]) that the
word v ∈ {0, 1}∗ such thatwp,q = Pal(v) takes the form v = 0d11d20d3 · · ·xdn , where
x = 0 if n is odd, and x = 1 if n is even. For example, 2/5 = [0; 2, 1, 1] = [0; 2, 2] and
w2,5 = 010 = Pal(01). Moreover, as in the case of characteristic Sturmian sequences
(see Theorem 15 and Example 16), the two characteristic periodic balanced sequences
of slope p/q can be obtained by iterated palindromic closure. More precisely, with the
above notation, we have

(wp,qxy)∞ = Pal(0d11d2 · · ·xdn+1y∞)

and
(wp,qyx)∞ = Pal(0d11d2 · · ·xdnyx∞),

where {x, y} = {0, 1}. For example,

(w2,510)∞ = (01010)∞ = Pal(0110∞)

and
(w2,501)∞ = (01001)∞ = Pal(0101∞).

In [23], Pirillo proved that a word w ∈ {0, 1}∗ is a palindromic prefix of some
characteristic Sturmian sequence in {0, 1}N, i.e., w = Pal(v) for some v ∈ {0, 1}∗
(see Theorem 15), if and only if w01 is a circular shift of w10. From this fact and
Proposition 17, we thus deduce the following result.

Proposition 19. A word w ∈ {0, 1}∗ is central if and only if w01 is a circular shift
of w10.
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Consequently, for any two coprime integers p and q, with 0 < p < q, the two
characteristic periodic balanced sequences of slope p/q, namely sp/q,p/q = (wp,q10)∞

and s′p/q,p/q = (wp,q01)∞, are shifts of each other, and therefore they have the same
set of factors.

Remark 20. Recall from Remark 12 that the closure of the shift-orbit of a charac-
teristic Sturmian sequence s is precisely the set of all Sturmian sequences having the
same slope as s. Moreover, the (Sturmian) sequences inO(s) are exactly the sequences
that have the same set of factors as s (see for instance [19, Propositions 2.1.25 and
2.1.18], or [21]). Likewise, the shift-orbit of a characteristic periodic balanced sequence
u consists of all the periodic balanced sequences with the same set of factors (and also
the same slope) as u. However, in contrast to the aperiodic case, we deduce from
Proposition 19 that, if u is a characteristic periodic balanced sequence containing both
0’s and 1’s, then O(u) contains exactly two distinct characteristic periodic balanced
sequences, which take the form (w01)∞ and (w10)∞, where w is the central word
having the same slope as u.

The following useful result is due to de Luca [11]; in particular, see [11, Remark 1
and Proposition 9] and also [9, Lemma 5].

Proposition 21. Let w be a central word in {0, 1}∗. If w = w101w2 = w210w1,
where w1 and w2 are (central) words, then

Pal(w0) = (w0)(+) = w210w101w2 and Pal(w1) = (w1)(+) = w101w210w1.

We end this section with a result (Corollary 23 below) that will be particularly
useful in the proof of our main combinatorial theorem. Let us first recall that a non-
empty finite word v over an alphabet A is said to be a Lyndon word (resp. anti-Lyndon
word) if v is a primitive word that is lexicographically less (resp. lexicographically
greater) than all of its circular shifts with respect to a given total order on A.

Proposition 22. ([4, Theorem 3.2 and Corollary 3.1]) A non-empty finite word
v ∈ {0, 1}∗ is a balanced Lyndon word (resp. balanced anti-Lyndon word) with respect
to the lexicographic order if and only if v = 0w1 (resp. v = 1w0) for some central
word w ∈ {0, 1}∗.

As a direct consequence of the above proposition, we have the following result.

Corollary 23. For any central word w ∈ {0, 1}∗, the (primitive) words 0w1 and
1w0 are the lexicographically least and greatest words amongst their circular shifts.

4. Proof of Theorem 13

Assertions (i) and (ii) are straightforward (see [16, Lemma 2.4]). In order to prove
the other assertions, we first recall the inequalities that are equivalent to s = φ(0u)
from Theorem 11:

(1) 0u ≤ T k(s) ≤ 1u and T k(s) ≤ s, for all k ≥ 0.

Assertion (iii) is a consequence of Gan’s result (Theorem 11) together with Theorem 9
(see Remark 12).
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We will now prove assertions (iv) and (v). Suppose that u is not a characteristic
Sturmian sequence and that u contains both 0’s and 1’s. Then we know from Theo-
rem 11 that s := φ(0u) is a periodic balanced sequence satisfying the inequalities in
(1). Indeed, s cannot be Sturmian, for otherwise u would be a characteristic Sturmian
sequence by Remark 12.

By Remark 20, O(s) contains exactly two distinct characteristic periodic balanced
sequences, given by

s01 := (w01)∞ and s10 := (w10)∞,

where w ∈ {0, 1}∗ is the central word with the same slope as s. We now deduce from
Corollary 23 that the lexicographically least sequence in O(s) is

(0w1)∞ = 0(w10)∞ = 0s10

and the lexicographically greatest sequence in O(s) is

(1w0)∞ = 1(w01)∞ = 1s01.

Hence,

(2) 0s10 ≤ T k(s) ≤ 1s01, for all k ≥ 0.

Moreover, since s is the lexicographically greatest sequence in its shift-orbit (by the
second inequality in (1)), we have s = (1w0)∞ = 1s01.

We will now show that s01 ≤ u ≤ s10. Since 0s10 and 1s01 are the lexicographi-
cally least and greatest elements in O(s), the inequalities in (1) imply that

0u ≤ 0s10 and 1s01 ≤ 1u.

Hence s01 ≤ u ≤ s10; that is, (w01)∞ ≤ u ≤ (w10)∞.

Furthermore, we note that there does not exist another central word z such that
(z01)∞ ≤ u ≤ (z10)∞. For if so, then the set

[0u, 1u] := {s ∈ {0, 1}N | 0u ≤ s ≤ 1u}

would contain the periodic balanced sequences

0(z10)∞ = (0z1)∞ and 1(z01)∞ = (1z0)∞,

and hence all of the shifts of the characteristic periodic balanced sequence (z01)∞,
since the former two sequences are the lexicographically least and greatest sequences
in the shift-orbit of (z01)∞ (by Proposition 19 and Corollary 23). But by [16, Lemma
5.4], the set [0u, 1u] contains a unique periodic balanced shift-orbit. Therefore, since
O((w01)∞) ⊆ [0u, 1u], we must have z = w. We have thus established the following
lemma.

Lemma 24. Suppose that u is a sequence in {0, 1}N \ {0∞, 1∞} that is not char-
acteristic Sturmian. Then there exists a unique central word w ∈ {0, 1}∗ such that
(w01)∞ ≤ u ≤ (w10)∞. Moreover, φ(0u) = (1w0)∞.

Assertions (iv) and (v) are direct consequences of the above lemma, and the last
statement in the theorem follows from Theorem 11.
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5. A corollary

By Theorem 15, the set of all characteristic Sturmian sequences in {0, 1}N is given
by

S = {u ∈ {0, 1}N | ∃v ∈ {0, 1}N \ ({0, 1}∗0∞ ∪ {0, 1}∗1∞) , u = Pal(v)}.
And it follows from Proposition 17 that the set of all characteristic periodic balanced
sequences in {0, 1}N is given by

P = {0∞, 1∞} ∪ P01 ∪ P10,

where
P01 := {u ∈ {0, 1}N | ∃v ∈ {0, 1}∗, u = (Pal(v)01)∞}

and
P10 := {u ∈ {0, 1}N | ∃v ∈ {0, 1}∗, u = (Pal(v)10)∞}.

Given a characteristic periodic balanced sequence in {0, 1}N of the form

s := (Pal(v)xy)∞,

where v ∈ {0, 1}∗ and {x, y} = {0, 1}, we let s̄ denote the other characteristic periodic
balanced sequence in the shift-orbit of s, i.e., s̄ := (Pal(v)yx)∞ (see Remark 20).

As an immediate consequence of Theorem 13, we obtain the following description
of the lexicographic world.

Corollary 25. We have L = {(01∞, 1∞)} ∪ L0 ∪ L1 ∪ L01 ∪ L10 ∪ L∗, where

L0 := {(0∞,v) | v ∈ {0, 1}N},

L1 = {(1u, 1∞) | u ∈ {0, 1}N},

L01 = {(0u,v) ∈ 0(S ∪ P01)× {0, 1}N | v ≥ 1u},

L10 = {(0u,v) ∈ 0P10 × {0, 1}N | v ≥ 1ū},

L∗ = {(0u,v) ∈ ({0, 1}N \ 0(S ∪ P))× {0, 1}N | ∃s ∈ P01, s ≤ u ≤ s̄,v ≥ 1s}.

6. How to determine φ(0u) for a generic sequence u

The following theorem provides a method for determining the central word w such
that φ(0u) = (1w0)∞ for any “generic” sequence u ∈ {0, 1}N falling into case (v) of
Theorem 13. Hereafter, a prefix of u that is a central word is called a central prefix of
u.

Theorem 26. Suppose u is a sequence in {0, 1}N \ {0∞, 1∞} that is neither a
characteristic Sturmian sequence nor a characteristic periodic balanced sequence. Let
v be the longest central prefix of u. Then v is finite (v 6= ε), and φ(0u) is determined
as follows:

(i) If v = 1k for some k ≥ 1, then φ(0u) = (1k0)∞ = (1wp,q0)∞, where p = k
and q = k + 1.

(ii) If v = 0k for some k ≥ 1, then φ(0u) = (10k)∞ = (1wp,q0)∞, where p = 1
and q = k + 1.
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(iii) Suppose that v contains both 0’s and 1’s. Let v1 and v2 be the unique pair of
central words such that v = v101v2 = v210v1, where `1 := |v1|+ 2 and `2 := |v2|+ 2
are coprime periods of v. Consider the prefix of length 2|v|+ 4 of u, namely the prefix
vxyz, where x, y ∈ {0, 1} and |z| = |v|+ 2.

(a) If either xy = 01 and z > v01, or xy = 10 and z < v10, then

φ(0u) = (1v0)∞ = (1wp,q0)∞,

where p = |v|1 + 1 and q = |v|+ 2 = `1 + `2.

(b) If either xy = 01 and z < v01, or xy = 00, then

φ(0u) = (1v20)∞ = (1wp,q0)∞,

where p = |v2|1 + 1 and q = `2.

(c) If either xy = 10 and z > v10, or xy = 11, then

φ(0u) = (1v10)∞ = (1wp,q0)∞,

where p = |v1|1 + 1 and q = `1.

Note. In assertion (iii), it cannot happen that z = vxy when x 6= y. For instance,
if xy = 01 and z = v01, then u would begin with the word

v01v01 = v210v101v210v101,

where the prefix v210v101v2 = v01v2 is a central word, by Propositions 17 and 21.
But then u has a central prefix longer than v; thus z 6= v01. Similarly, if xy = 10, then
z 6= v10.

The following lemma is needed for the proof of Theorem 26.

Lemma 27. Suppose that v is a central word in {0, 1}∗\(0∗∪1∗). Let v1 and v2 be
the unique pair of central words such that v satisfies the equation v = v101v2 = v210v1.
Then v01v2 (resp. v10v1) is a prefix of the characteristic periodic balanced sequence
(v210)∞ (resp. (v101)∞).

Note. By Propositions 17 and 21, the words v01v2 and v10v1 are central words
since v01v2 = Pal(v0) and v10v1 = Pal(v1).

Proof of Lemma 27. We prove only that (v210)∞ begins with the central word
Pal(v0) = v01v2, since the proof of the other case is very similar. By Proposition 17,
`1 := |v1|+ 2 and `2 := |v2|+ 2 are coprime periods of v, where |v| = `1 + `2 − 2. In
particular, since `2 = |v210| is a period of v with `2 < |v|, there exists an integer k ≥ 1
such that v = (v210)kv′2, where v′2 is a (possibly empty) prefix of v210, in which case
v1 = (v210)k−1v′2 since v = v210v1. Moreover, since v is a palindrome, ṽ′2 is a prefix
of v, and therefore v′2 = ṽ′2, i.e., v′2 is a palindrome. Furthermore, v′201 is a prefix
of v since its reversal 10v′2 is a suffix of v. We will now show that the central word
Pal(v0) = v01v2 is a prefix of the characteristic periodic balanced sequence (v210)∞

by considering five different cases according to the length of the palindrome v′2.
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Case 1: If v′2 = v210, then v = (v210)k+1 and v1 = (v210)k. Since v is a palin-
drome, v210 is a palindrome and we have v = (v210)k+1 = (01v2)k+1. Therefore,

(v210)∞ = (v210)k+1 01v2︸︷︷︸
v210

(v210)∞ = v01v2(v210)∞.

Thus, the central word Pal(v0) = v01v2 is a prefix of (v210)∞.

Case 2: If v′2 = v21, then since v′2 and v2 are palindromes, we have v21 = 1v2,
and hence v2 is a power of 1; in particular, v2 = 1`2−2. Therefore

(v210)∞ = (v210)kv210v210(v210)∞

= (v210)kv21︸ ︷︷ ︸
v

0 11`2−2︸ ︷︷ ︸
1v2

0(v210)∞

= v01v20(v210)∞

= Pal(v0)0(v210)∞.

Case 3: If v′2 = v2, then v = (v210)kv2, and therefore v1 = (v210)k−1v2. But this
implies that `1 = k`2, which is impossible since `1 and `2 are coprime integers greater
than 1.

Case 4: If v2 = v′20, then since v2 and v′2 are palindromes, we have v′20 = 0v′2.
Therefore v′2 (and hence v2) is a power of 0; in particular, v2 = 0`2−2. Thus

(v210)∞ = (v210)kv210v210(v210)∞

= (v210)kv′2︸ ︷︷ ︸
v

01 v20︸︷︷︸
0v2

10(v210)∞

= v01v2010(v210)∞

= Pal(v0)010(v210)∞.

Note that we cannot have v2 = v′21 because v′201 and v2 are both prefixes of v.

Case 5: If |v′2| ≤ |v2|−2, then v2 = v′201v′′2 for some (possibly empty) word v′′2 in
{0, 1}∗, in which case v = (v′201v′′210)kv′2. (Note that neither v′21 nor v′200 is a prefix
of v2 because v′201 and v2 are both prefixes of v.) Since v is a palindrome that begins
with the palindrome v2 = v′201v′′2 and therefore ends with ṽ2 = v2 = ṽ′′210v′2, we see
that ṽ′′210v′2 = v′′210v′2. Hence v′′2 is a palindrome. Moreover, v′′2 is a central word since
v′′2 is a palindromic prefix (and also a palindromic suffix) of the central word v2 and
any palindromic prefix (or suffix) of a central word is central (see [12] or [19, Corollary
2.2.10]). Thus, by Proposition 17, v2 satisfies the equation v2 = v′′210v′2 = v′201v′′2 .
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Hence, we have

(v210)∞ = (v210)k v′201v′′210︸ ︷︷ ︸
v210

v210(v210)∞

= (v210)kv′201 v′′210v′201︸ ︷︷ ︸
v201

v′′210(v210)∞

= v01v201v′′210(v210)∞

= Pal(v0)01v′′210(v210)∞.

In all of the above cases (with the exception of the impossible case (3)), we have
shown that the central word Pal(v0) = v01v2 is a prefix of (v210)∞, as required. �

Proof of Theorem 26. Suppose that u is a sequence in {0, 1}N \ {0∞, 1∞} that
is neither a characteristic Sturmian sequence nor a characteristic periodic balanced se-
quence. Then the longest central prefix of u, say v, is non-empty since it could (at
the very least) be a letter. Furthermore, v is finite; otherwise, if v were infinite, then u
would be either a characteristic Sturmian sequence or a characteristic periodic balanced
sequence (see Theorem 15 and Remark 18).

We know from Theorem 13 (or Lemma 24) that there exists a unique central word
w ∈ {0, 1}∗ such that (w01)∞ < u < (w10)∞, in which case φ(0u) is equal to the
periodic balanced sequence (1w0)∞. We will show how to determine w in terms of the
longest central prefix v. Note that w is either empty or a (palindromic) prefix of v, by
the maximality of v.

First suppose that v = xk for some x ∈ {0, 1} and k ≥ 1. Then by the maximality
of v as a central prefix of u, it follows that u begins with xky = vy, where y ∈ {0, 1}
and y 6= x. Further, the prefix of length 2k+1 of u takes the form xkyu, where |u| = k
and |u|x ≤ k− 1; otherwise u would begin with xkyxk = Pal(xky), contradicting the
fact that v (= Pal(xk)) is the longest central prefix of u. If x = 1, then we easily see
that

(1k−101)∞ < u (= 1k0u · · · ) < (1k0)∞,

where the latter inequality follows from the fact that |u| = k and u < 1k (since u
contains at most k − 1 occurrences of the letter 1). Hence, it follows from Lemma 24
that φ(0u) = (1k0)∞ = (1wp,q0)∞, where p = k and q = k + 1. Similarly, if x = 0,
we have

(0k1)∞ < u (= 0k1u · · · ) < (0k−110)∞,

where the first inequality follows from the fact that |u| = k and 0k < u (since u
contains at most k − 1 occurrences of the letter 0). Therefore, by Lemma 24 again,
φ(0u) = (10k)∞ = (1wp,q0)∞, where p = 1 and q = k + 1. We have thus proved
assertions (i) and (ii) of the theorem.

Now suppose that the longest central prefix v of u contains both 0’s and 1’s. Then,
by Proposition 17, there exists a unique pair of central words v1, v2 ∈ {0, 1}∗ such that
v = v101v2 = v210v1, where `1 := |v1|+ 2 and `2 := |v2|+ 2 are coprime periods of
v, and min{`1, `2} is the minimal period of v. Consider the prefix of length 2|v|+ 4 of
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u, namely the prefix vxyz, where x, y ∈ {0, 1} and |z| = |v| + 2. We will now prove
each of the cases (a), (b), and (c) of assertion (iii).

Case (a): Let us first suppose that u begins with v01z, where |z| = |v01| and
z > v01. Then it is easy to see that

(v01)∞ < u < (v10)∞.

Consequently, by Lemma 24, we have φ(0u) = (1v0)∞. Moreover, v = wp,q, where
p = |v|1 + 1 and q = |v| + 2 = `1 + `2. Similarly, if u begins with v10z, where
|z| = |v10| and z < v10, then (v01)∞ < u < (v10)∞, and therefore φ(0u) = (1v0)∞

by Lemma 24.

Case (b): In this case, either u begins with v00 or u begins with v01z, where
|z| = |v01| and z < v01. Since v210 is a prefix of v (which in turn is a prefix of u), we
have (v201)∞ < u. Furthermore, by Lemma 27, the characteristic periodic balanced
sequence (v210)∞ begins with the central word Pal(v0) = v01v2. Thus, if u begins
with v00, then u < (v210)∞.

Alternatively, if u begins with v01z, where |z| = |v01| and z < v01, then we will
show that u < (v210)∞ by considering the prefix of length |v|+`2 of u, namely v01z2,
where |z2| = |v2|. We first note that z2 ≤ v2 since v2 is a prefix of v and z2 is a prefix
of z, where z and v satisfy z < v01. Furthermore, z2 < v2 (i.e., z2 6= v2). Otherwise,
if z2 = v2, then u would begin with the central word Pal(v0) = v01v2. But then u
would have a central prefix that is longer than v; a contradiction. Therefore z2 < v2,
and hence u < (v210)∞ since (v210)∞ begins with v01v2, where v2 > z2, as shown
above.

Case (c): This case is symmetric to case (b). �

Example 28. The following examples demonstrate the computation of φ(0u) for
sequences u in {0, 1}N that are neither characteristic Sturmian nor periodic and bal-
anced. Where appropriate, the longest central prefix of the sequence is highlighted in
boldface.

(1) The following two general facts can easily be deduced from the proofs of parts
(i) and (ii) of Theorem 26:

(a) φ(0u) = (1k0)∞ for any sequence u having a prefix of the form 1k0v, where
k ≥ 1, |v| = k and |v|1 ≤ k − 1.

(b) φ(0u) = (10k)∞ for any sequence u having a prefix of the form 0k1v, where
k ≥ 1, |v| = k and |v|0 ≤ k − 1.

(2) By part (iii)(a) of Theorem 26, φ(0u) = (10100100)∞ = (1w3,80)∞ for any
sequence u beginning with

Pal(010)011 = w3,8011 = 010010011.

(3) Let u be the (non-characteristic) Sturmian sequence

1f = 10100101001001010010100100101 · · · ,
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where f is the (binary) Fibonacci sequence (see Examples 2 and 16). Then the longest
central prefix of u is w3,5 = 101 = Pal(10) and u begins with w3,500. Therefore, by
part (iii)(b) of Theorem 26, we have φ(0u) = φ(01f) = (10)∞ = (1w1,20)∞.

(4) By part (iii)(c) of Theorem 26, φ(0u) = (10100)∞ = (1w2,50)∞ for any
sequence u beginning with

Pal(010)101 = w3,8101 = 010010101.

(5) By parts (iii)(b) and (iii)(c) of Theorem 26, φ(x) = (10)∞ = (1w1,20)∞ for
any sequence x beginning with 0011 or 0100. In particular, φ(0t) = (10)∞ for the
Thue-Morse sequence t, which is the fixed point beginning with 0 of the morphism
defined by 0 7→ 01 and 1 7→ 10, that is

t = 0110100110010110 · · · .
Also note that φ(t) = (110)∞ = (1w2,30)∞.

(6) Recall that the central word wp,q of slope p/q ∈ (0, 1), where gcd(p, q) = 1,
has length q − 2 and contains p − 1 occurrences of 1 (and q − p − 1 occurrences of
0). We observe that if p > 2q (i.e., if wp,q contains more 1’s than 0’s), then wp,q begins
with 1; otherwise, if p < 2q, then wp,q begins with 0. Hence, we deduce the following
general facts from part (iii)(a) of Theorem 26:

(a) If p > 2q, then φ(0u) = (1wp,q0)∞ for any sequence u beginning with
wp,q100.

(b) If p < 2q, then φ(0u) = (1wp,q0)∞ for any sequence u beginning with
wp,q011.

Remark 29. To determine the longest central prefix of a sequence u ∈ {0, 1}N
(which is neither a characteristic Sturmian sequence nor a characteristic periodic bal-
anced sequence), possibly the easiest way is to check each palindromic prefix of u (in
order of increasing length) to see if it is equal to Pal(u) for some u ∈ {0, 1}∗, until
there are no more palindromic prefixes or until one reaches a palindromic prefix that is
not in the image of Pal.

Note. Theorem 26 also provides a method for computing F (x) in case (v) of The-
orem 7. For example, F

(
1
4

)
= 2

3 since the base 2 expansion of 1
4 is 01000 · · · (or

00111 · · · ) and we have φ(01000 · · · ) = (10)∞ = φ(00111 · · · ), where (10)∞ is the
base 2 expansion of 2/3 (see part (1) of Example 28 above).

As a more complicated example, let us consider for instance the computation of
F
(

1
2π

)
. The base 2 expansion of the fractional part of 1

2π (= 0.15915 . . .) begins as
follows: (

1
2π

)
2

= 0 01010︸ ︷︷ ︸
Pal(011)

00101111100110 · · ·

and we have

(01001)∞ <

(
2 · 1

2π

)
2

< (01010)∞

where r((10100)∞) = 20/31. Thus F
(

1
2π

)
= 20

31 , i.e., the minimal interval containing
all the fractional parts

{
1
2π · 2

k
}

, with k ≥ 0, is
[

1
2π ,

20
31

]
.
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7. Larger bases

What precedes uses essentially base 2 expansions. One may ask what happens with
base b expansions, where b ≥ 3, or what can be said about the intervals containing all
{ξbn} for some ξ. The result of Bugeaud and Dubickas in [8] recalled at the beginning
(see Theorem 4) implies that Sturmian sequences (with values on an alphabet {k, k+1}
for some k ∈ {0, 1, . . . , b− 2}) should again play a fundamental rôle.
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