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LEGENDRE TYPE FORMULA FOR PRIMES
GENERATED BY QUADRATIC POLYNOMIALS

TAKASHI AGOH

Dedicated to Paulo Ribenboim on the occasion of his 80th birthday.

RÉSUMÉ. On en connaît très peu sur l’ensemble des entiers m tels que le poly-
nôme quadratique f(X) = aX2 + bX + c, avec a, b et c copremiers, est premier
lorsqu’évalué en X = m. Dans cet article, basé sur le crible d’Ératosthène décalé,
nous présentons une formule de type Legendre pour trouver explicitement la cardina-
lité des valeurs du polynôme f(X) qui sont des nombres premiers ne dépassant pas t
pour t > 0.

ABSTRACT. Very little is known about the set of integersm such that the quadratic
polynomial f(X) = aX2 + bX + c with relatively prime integer coefficients has a
prime value at X = m. In this paper, based on the shifted sieve of Eratosthenes, we
introduce a Legendre type formula for counting explicitly the number of prime values
taken by f(X) that are less than or equal to t for any t > 0.

1. Introduction

Consider an irreducible quadratic polynomial f with integer coefficients:

(1) f(X) := aX2 + bX + c, a > 0, (a, b, c) = 1.

There are only few corroborative results on the set of integersm such that the poly-
nomial f(X) of (1) has a prime value for X = m; moreover, no quadratic polynomial
producing infinitely many primes is known. However, Iwaniec [2] proved in 1978 that
there are infinitely many integers n such that n2 + 1 has at most 2 prime factors. For
other interesting results and heuristic arguments including ample numerical computa-
tions see, e.g., [5, 6].

Concerning the distribution of prime values of the polynomial f(X), there is a con-
jecture posed by Hardy-Littlewood [1], which is firmly supported by ample numerical
evidence. Let

(
∗
p

)
be the Legendre symbol. If D := b2 − 4ac is not a square and

a + b, c are not both even, then the number of prime values less than t taken by the
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polynomial f(X) is, asymptotically,

πf (t) ∼ ε
C√
a
·
√
t

log t

∏
p>2
p|(a,b)

p

p− 1
,

where

ε :=

1 if 2 - a+ b,

2 if 2 | a+ b
and C :=

∏
p>2
p|a

(
1−

(
D

p

)
1

p− 1

)
·

We now introduce the Legendre formula to count the number of primes less than t
for any real t > 0. Let pi be the i-th prime (i.e., p1 = 2, p2 = 3, p3 = 5, and so on),
and 

P := {pi | i = 1, 2, 3, . . .} (the set of all primes),
Pm := {p1, p2, . . . , pm},
Qm := p1p2 · · · pm,
π(t) := #{p ∈ P | p ≤ t}.

Based on the sieve of Eratosthenes, Legendre, in 1808, showed the following for-
mula for π(x). Denoting Pm := {p ∈ P | p ≤

√
x} for m = π(

√
x) and

Φ(x;Pm) := #{n ∈ Z | 1 ≤ n ≤ x, (n,Qm) = 1},

it follows that

Φ(x;Pm) =
∑
d|Qm

µ(d)
[x
d

]
and hence

(2) π(x) = m− 1 + Φ(x;Pm),

where µ is the Möbius function and [x/d] is the greatest integer less than or equal to
x/d.

Using the fact that Φ(x;Pm) = Φ(x;Pm−1) − Φ(x/pm;Pm−1), Meissel [4] ob-
tained a more efficient formula to compute π(x). Letting m = π(

√
x) and l = π( 3

√
x),

it follows that

π(x) = Φ(x;Pl) + l(m− l + 1) +
(m− l)(m− l − 1)

2
− 1−

m∑
i=l+1

π

(
x

pi

)
·

By means of this formula, Meissel himself obtained π(108) = 5 761 455, and subse-
quently Lehmer [3] computed π(1010) = 455 052 512 with an improved approach.

It is the main purpose of this paper to deduce a Legendre type formula analogous to
(2) for explicitly counting the number of prime values taken by the polynomial f(X) of
(1). We should note beforehand that our method is very elementary and we will apply
only the shifted sieve of Eratosthenes for finding primes.
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2. Prime values of quadratic polynomials

For a real t > 0, we denote

πf (t) := #{n ≥ 1 | f(n) ∈ P, |f(n)| ≤ t}.

In what follows, we assume that a + b and c are not simultaneously even and
that D = b2 − 4ac is not a square. To simplify our discussion, we also assume that
0 < f(n) < f(n+ 1) for each integer n ≥ 0, which is equivalent to a > 0, a+ b > 0
and c > 0.

If a, b and c are integers that satisfy any one of the conditions

(3)

 (i) a, b are even and c is odd,

(ii) all of a, b and c are odd,

then f(X) ≡ 0 (mod 2) has no solution. Moreover, if p ≥ 3 and p - a, then we easily
see that f(X) ≡ 0 (mod p) has no solution if and only if

(
D
p

)
= −1.

Based on these observations, we have the following proposition.

Proposition 2.1. Let f be the quadratic polynomial indicated above. Let a, b
and c be such that they satisfy any one of the conditions in (3) and

(
D
p

)
= −1 for

p = p2, . . . , pm. Then f has prime values at X = 0, 1, . . . , n, where n is the largest
integer satisfying

√
f(n) < pm+1.

Proof. Indeed, if 0 ≤ k ≤ n, then f(k) 6≡ 0 (mod pi) for i = 1, . . . ,m and this
implies f(k) ∈ P as desired. �

Example 2.2. Consider the polynomial f(X) = X2 + 3X + 19. In this case we
have D = −67 and

(
D
p

)
= −1 for each p = 3, 5, 7, 11, 13, but

(
D
17

)
= 1. Since the

largest integer n satisfying
√
f(n) < 17 is n = 14, f(X) must have prime values at

X = 0, 1, . . . , 14. Indeed, these values are 19, 23, 29, 37, 47, 59, 73, 89, 103, 127, 149,
173, 193, 227 and 257 which are all primes, but f(15) = 172 is not a prime.

For a prime q ∈ P , consider the congruence

(4) f(X) = aX2 + bX + c ≡ 0 (mod q), 0 ≤ X ≤ q − 1,

where a, b and c satisfy the conditions stated above.

Here and in what follows, we shall use the following notations:

(i) ρ(q) is the number of distinct solutions of (4), hence ρ(q) = 0, 1 or 2,

(ii) S := {q ∈ P | ρ(q) 6= 0} is the infinite subset of P corresponding to f ,

(iii) Sm := {q1, q2, . . . , qm} is the set of the first m primes in S, hence ρ(qi) = 1
or 2,

(iv) Qm := Qm(Sm) = q1q2 · · · qm is the product of all primes in Sm.



118 LEGENDRE TYPE FORMULA FOR PRIMES

Given n ≥ 1, if qm is the largest prime in S such that qm ≤
√
f(n), then it is

obvious that f(n) is prime if and only if f(n) 6≡ 0 (mod q) for all q ∈ Sm. For a
prime q ∈ Sm, suppose that the solutions of (4) are

(5) X ≡

u1(q) (mod q) when ρ(q) = 1,

u1(q), u2(q) (mod q) when ρ(q) = 2.

Let d ≥ 2 be a divisor of Qm. Since d is square-free and there are ρ(q) distinct
solutions of (4) for each q ∈ Sm, we know from the Chinese Remainder Theorem that
the number of non-negative common solutions less than or equal to d − 1 modulo d is
equal to

ρ(d) :=
∏
q|d

ρ(q).

Without loss of generality, we order all distinct solutions of the congruence

(6) aX2 + bX + c ≡ 0 (mod d), 0 ≤ X ≤ d− 1,

as follows:
0 ≤ u1(d) < u2(d) < · · · < uρ(d)(d) ≤ d− 1.

Before discussing πf (t), we calculate, as a preliminary, the value of

(7) εm :=
∑
d|Qm

µ(d)
ρ(d)∑
i=1

δi(d),

where, for i = 1, 2, . . . , ρ(d),

(8) δi(d) :=

{ 0 if ui(d) = 0,

1 if ui(d) 6= 0.

Using the smallest solution u1(q) in (5), we define

k := #{q ∈ Sm | ρ(q) = 1} and s := #{q ∈ Sm | u1(q) = 0}.

Then the above εm can be calculated as follows.

Lemma 2.3. We have

εm =


0 if k 6= 0 and s 6= 0,

−1 if k 6= 0 and s = 0,

(−1)m if k = 0 and s 6= 0,

(−1)m − 1 if k = 0 and s = 0.

Proof. Since ρ(qi) ∈ {1, 2}, we have

∑
d|Qm

µ(d)ρ(d) =
m∏
i=1

(1− ρ(qi)) =

 0 if k ≥ 1,

(−1)m if k = 0.
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Now, let ρ′(d) ∈ {0, 1} denote the number of ui(d)’s equal to 0. Then

∑
d|Qm

µ(d)ρ′(d) =
m∏
i=1

(1− ρ′(qi)) =

0 if s ≥ 1,

1 if s = 0.

Since εm =
∑

d|Qm
µ(d)(ρ(d)− ρ′(d)), the result follows. �

For a real number x ≥ 1 and an integer m ≥ 1, put

Φ(x;Sm) := #{n | 1 ≤ n ≤ x, f(n) 6≡ 0 (mod q) for all q ∈ Sm}.
Based on the shifted sieve of Eratosthenes, we can easily deduce an explicit formula
for Φ(x;Sm).

Proposition 2.4. We have Φ(x;Sm) =
∑
d|Qm

µ(d)
ρ(d)∑
i=1

[
x− ui(d)

d

]
+ εm.

Proof. For each divisor d ≥ 1 of Qm, set

η(x;u(d)) := #{n | 1 ≤ n ≤ x, n ≡ u(d) (mod d)}.
Then for i = 1, 2, . . . , ρ(d), we have

η(x;ui(d)) =
[
x− ui(d)

d

]
+ δi(d),

where δi(d) = 0 or 1 as defined in (8). Therefore, it follows from the principle of
inclusion-exclusion that

Φ(x;Sm) =
∑
d|Qm

µ(d)
ρ(d)∑
i=1

η(x;ui(d))

=
∑
d|Qm

µ(d)
ρ(d)∑
i=1

([
x− ui(d)

d

]
+ δi(d)

)

=
∑
d|Qm

µ(d)
ρ(d)∑
i=1

[
x− ui(d)

d

]
+ εm,

which completes the proof. �

Given n ≥ 1, we assume that Sm is the set of all primes in S up to
√
f(n). Then

Φ(n;Sm) expresses the number of prime values taken by f(X) = aX2 + bX+ c in the
interval

(√
f(n), f(n)

]
. Using this function, we are able to deduce an explicit formula

for πf (t).

For any t ≥ f(1) = a + b + c, we first look for the largest prime qm1 ∈ S such
that qm1 ≤ t1/2. Next, if qm1 6= q1, then we look for the largest prime qm2 ∈ S such
that qm2 ≤ t1/2

2
. We repeat this procedure until we arrive at qmk

= q1 to obtain the
sequence

(9) q1 = qmk
≤ t1/2k

< · · · < qm2 ≤ t1/2
2
< qm1 ≤ t1/2 < t
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and the descending chain of subsets

{q1} = Smk
⊂ Smk−1

⊂ · · · ⊂ Sm2 ⊂ Sm1 ⊂ S.

With the above notations, we can state the following theorem.

Theorem 2.5. We have πf (t) =
k∑
i=1

Φ
(√

t1/2i−1 − 1;Smi

)
.

Proof. Since Φ
(√

t1/2i−1 − 1;Smi

)
is the number of integers n in the interval[

1,
√
t1/2i−1 − 1

]
with f(n) 6≡ 0 (mod q) for all q ∈ Smi , this expresses the num-

ber of prime values taken by f(X) in the interval
(
t1/2

i
, t1/2

i−1
]
. Connecting these

intervals for i = 1, 2, . . . , k, we obtain immediately the above formula. �

Proposition 2.6. For any fixed m ≥ 1, it follows that lim
x→∞

Φ(x;Sm) =∞.

Proof. Since |εm| ≤ 2 by Lemma 2.3 and ρ is multiplicative for relatively prime
divisors of Qm, we obtain, for a fixed m,

Φ (x;Sm) =
∑
d|Qm

µ(d)
ρ(d)∑
i=1

[
x− ui(d)

d

]
+ εm

=
∑
d|Qm

µ(d)
ρ(d)∑
i=1

x− ui(d)
d

+ εm +O

∑
d|Qm

ρ(d)|µ(d)|


= x

∑
d|Qm

µ(d)ρ(d)
d

−
∑
d|Qm

µ(d)
d

ρ(d)∑
i=1

ui(d)

+ εm +O (4m)

= x
∏
q∈Sm

(
1− ρ(q)

q

)
+O(1).

The right-hand side diverges as x tends to infinity which, however, is absurd. �

We give here an example of how to compute πf (x) using the shifted sieve method
of Eratosthenes.

Example 2.7. For the special polynomial f(X) = X2 +1, we see that there exists
a solution ofX2 +1 ≡ 0 (mod q), 0 ≤ X ≤ q−1, if and only if q = 2 and

(
−1
q

)
= 1

for an odd q ∈ P . Hence we have S = {2} ∪ {q ∈ P | q ≡ 1 (mod 4)} and all the
solutions of this congruence are given, for each q ∈ S, as

X =

u1(q) = 1 for q = q1 = 2,

u1(q), u2(q) for q ≡ 1 (mod 4).

Here note that if q 6= 2, then u1(q) 6= u2(q) and u1(q) + u2(q) = q.
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As a practical application, we will now compute πX2+1(t) for t = 104. First find
the sequence of all primes qmi ∈ S , i = 1, 2, . . . , k, given in (9). Then we have
qm1 = q12 = 97, qm2 = q2 = 5, qm3 = q1 = 2, and so k = 3. Therefore, consider the
following chain of subsets of S:

S1 = {2} ⊂ S2 = {2, 5} ⊂ S12 = {2, 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97}.
We enumerate all solutions ui(q) of X2 + 1 ≡ 0 (mod q) for each q ∈ S12 in the
following table:

q 2 5 13 17 29 37 41 53 61 73 89 97
u1(q) 1 2 5 4 12 6 9 23 11 27 34 22
u2(q) − 3 8 13 17 31 32 30 50 46 55 75

Write all positive integers less than or equal to 99 =
[√

104 − 1
]

and cross out
integers n such that n ≡ u1(q), u2(q) (mod q) for all q ∈ S12. Then we get the set of
integers that survive:

M1 := {10, 14, 16, 20, 24, 26, 36, 40, 54, 56, 66, 74, 84, 90, 94}.
Hence the number of primes in (102, 104] of the form X2 + 1 is

Φ
(√

104 − 1;S12

)
= #M1 = 15.

Similarly, we have M2 := {4, 6} and M3 := {2}, which are the sets of integers in the
intervals [1,

√
99] and [1, 3], respectively, not satisfying (4). Hence

Φ
(√

99;S2

)
= #M2 = 2, Φ (3;S1) = #M3 = 1.

Noticing that 12 + 1 = 2 is a prime, we finally have

πX2+1(104) = # (M1 ∪M2 ∪M3) + 1 = 19.

Indeed, the set M of primes in the interval [1, 104] of the form f(X) = X2 + 1 is
precisely given by

M =
{
n2 + 1 | n ∈ {2} ∪M1 ∪M2 ∪M3

}
.

The next proposition seems to be trivial, but its proof gives us a certain piece of
information about the value of each term in the function Φ(x;Sm).

Proposition 2.8. Let n ≥ 2, m ≥ 1 and u(q) be a solution of (4). If
n 6≡ u(q) (mod q) for all q ∈ Sm, then Φ(n;Sm) = Φ(n− 1;Sm) + 1.

Proof. By the division algorithm we have

(10) (n− 1)− u(q) =
[
(n− 1)− u(q)

q

]
q + rq(n− 1), 0 ≤ rq(n− 1) < q.

If we choose especially an integer n ≥ 2 satisfying n 6≡ u(q) (mod q) for all q ∈ Sm,
then rq(n − 1) 6= q − 1, i.e., 0 ≤ rq(n − 1) ≤ q − 2. Indeed, if rq(n − 1) = q − 1,
then n ≡ u(q) (mod q), which is contrary to the assumption. From (10) we obtain

n− u(q) =
[
(n− 1)− u(q)

q

]
q + rq(n− 1) + 1,
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where 1 ≤ rq(n− 1) + 1 ≤ q − 1. This implies rq(n) = rq(n− 1) + 1 and hence

[(n− u(q))/q] = [((n− 1)− u(q))/q] , for all q ∈ Sm.

Since the condition n 6≡ u(q) (mod q) for all q ∈ Sm yields n 6≡ u(d) (mod d) for
all divisors d > 0 of Qm, we also have

[(n− u(d))/d] = [((n− 1)− u(d))/d] .

Consequently, it follows from Proposition 2.4 that

Φ(n;Sm) = n+
∑
d|Qm

d 6=1

µ(d)
ρ(d)∑
i=1

[
n− ui(d)

d

]
+ εm

= (n− 1) +
∑
d|Qm

d6=1

µ(d)
ρ(d)∑
i=1

[
(n− 1)− ui(d)

d

]
+ εm + 1

= Φ(n− 1;Sm) + 1,

which completes the proof. �

To conclude this paper, we would like to mention that all above discussions can
be extended to a polynomial f(X) with arbitrary degree ≥ 2. Indeed, let S and Sm
be the sets of primes corresponding to f , similarly to the quadratic case. Then it will
be possible to compute Φ(x;Sm) and πf (t) without difficulty by the same method as
above, except for a treatment of the number ρ(q) (where q ∈ S) of distinct solutions of
the congruence

(11) f(X) ≡ 0 (mod q), 0 ≤ X ≤ q − 1.

It is easy to show that the value of εm in this case is formally given by εm = g(1) (with
00 = 1) for the polynomial

g(X) :=
∏
q∈Sm

(X − ρ(q))−Xm−s(X − 1)s,

where s := #{q ∈ Sm | u1(q) = 0} and u1(q) is the smallest solution of (11).
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