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ON THE TAMENESS OF TRIVIAL

EXTENSIONS OF MONOMIAL ALGEBRAS

C. NOVOA AND J. A. DE LA PEÑA

RÉSUMÉ. Soit k un corps algébriquement clos et A une k-algèbre de dimension
finie. Nous supposons que A = kQ/I , où Q est un carquois sans cycles orientés et
I est engendrée par des chemins de Q. Nous considérons l’extension triviale T (A)
et donnons des conditions sur A de sorte que T (A) soit docile. En particulier, nous
montrons que T (A) est docile si, et seulement si, A est dérivablement docile.

ABSTRACT. Let k be an algebraically closed field and A a finite dimensional k-
algebra. We assume that A = kQ/I where Q is a quiver without oriented cycles
and I is generated by paths in Q. We consider the trivial extension T (A) of A and
give conditions on A in order that T (A) is tame. In particular we show that T (A)
is tame if, and only if, A is derived-tame.

Let k be an algebraically closed field and A be a finite dimensional k-algebra
(associative, with identity) which moreover we assume to be basic and connected,
hence of the form A = kQ/I where Q is a finite connected quiver and I is an ideal of
the path algebra kQ (see [10]). We denote by mod A the category of finite dimensional
left A-modules, and by D = Homk(−, k) the standard duality between mod A and
mod Aop.

The trivial extension T (A) = A � DA of A by its minimal injective cogenerator
bimodule ADAA, has as additive structure that of the group A⊕DA and multiplication
defined by

(a, f)(b, g) = (ab, ag + fb)

for a, b ∈ A and f, g ∈ DA. Trivial extensions are self-injective algebras which have
played an important role in the representation theory of algebras. The problem of
studying the representation type of T (A) has been considered in the work of several
authors (see [2, 21, 22, 24]). For example, in [2] it is shown that T (A) is representation-
finite if, and only if, A is an iterated tilted algebra of a hereditary algebra k∆ where ∆
is of Dynkin type. In this paper, we characterize those algebras of the form A = kQ/I ,
where Q has no oriented cycles (that is, A is triangular) and I is generated by a
set of paths in Q (that is, A is monomial), for which T (A) is tame. We recall here
that an algebra B is tame if for each dimension n, the indecomposable B-modules
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200 On the tameness of trivial extensions of monomial algebras

of dimension n may be described by a finite number of one-parametric families of
modules. Our results generalize previous statements in the literature [13, 26].

Let A = kQ/I be as above. If Q is a tree, then T (A) is tame if, and only if, A is
derived equivalent to a hereditary algebra of Dynkin or Euclidean type, to a tubular
algebra or to an algebra of type S(n, m) – see also [13]. In case Q is not a tree, we shall
use covering techniques as introduced in [11, 20] to show that T (A) is tame if, and only
if, A is derived equivalent to a deformation of a skewed-gentle algebra as defined in
[15]. Moreover, in any of these cases, T (A) is tame if, and only if, A is derived-tame.

1. Fundamental concepts.

1.1. Let A be a finite dimensional k-algebra of the form A = kQ/I . We denote by
ex the primitive idempotent corresponding to a vertex x in Q, hence 1A =

∑
x∈Q0

ex,
where Q0 is the set of vertices of Q. Following [10], we shall sometimes consider the
algebra A as a locally bounded k-category with A(x, y) = eyAex for any x, y ∈ Q0.

Given an A-module M , the one-point extension A[M ] is defined as the k-algebra
(

A M
0 k

)

with the usual matrix operations. For a sink x ∈ Q0, the reflection S+
xA of A at x is

the quotient of the extension A[Ix] by the two-sided ideal generated by ex, where Ix

denotes the injective envelope of the simple A-module Sx associated with the vertex
x. Dually, for a source y ∈ Q0, S−

y A is the quotient of the coextension [Py]A by the
two-sided ideal generated by ey, where Py is the projective cover of Sy.

For tilting theory, tubular algebras and other concepts, we refer the reader to [25].

1.2. The repetitive category Â of A is the self-injective locally finite dimensional matrix
algebra defined by

Â =




. . . 0

. . . A
DA A

DA A

0 . . . . . .




where matrices have only finitely many non-zero coefficients. Clearly, there is an
automorphism νA : Â → Â such that the orbit space Â/(νA) is isomorphic to the trivial
extension T (A). Hence, the orbit map Â → T (A) is a Galois covering defined by the
action of the cyclic group generated by νA (isomorphic to Z), and the category mod Â
is equivalent to the Z-graded T (A)-modules. We shall consider the push-down functor
Fλ: mod Â → mod T (A) as defined in [11].

Observe that for a source x ∈ Q0, there is an isomorphism Ŝ−
x A ∼= Â. Moreover, in

[17] it is shown that for triangular algebras A and B, we have Â ∼= B̂ if, and only if, there
is an admissible sequence of vertices x1, x2, . . . , xt such that B = S−

xt
. . . S−

x2
S−

x1
A.

1.3. Recall that an algebra A is said to be tame if for every dimension d ∈ N, the
indecomposable A-modules of dimension d may be parametrized by a finite number
ν(d) of families Mi ⊗k[t] Sλ (with λ ∈ k) where Mi is an A − k[t]-bimodule, finitely
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generated free as right k[t]-module, 1 ≤ i ≤ ν(d). If A is tame, then A is domestic
(resp. of polynomial growth) if ν(d) ≤ constant (resp. ν(d) ≤ dm for some m ∈ N).

By [9], given a Galois covering F : B → A defined by the action of a group G, if A
is tame (resp. domestic, polynomial growth), then so B is. The converse may fail [14].

In [5], it is shown that the repetitive category Â is tame and the push-down functor
Fλ: mod Â → mod T (A) is dense if, and only if, A is tilting-cotilting equivalent to
a hereditary algebra of Dynkin or Euclidean type or a tubular algebra. It follows that
T (A) is tame in these cases.

1.4. For a triangular algebra A, the stable module category modÂ is equivalent as
triangulated category to the derived category Db(A) of the module category mod A,
[16]. Further, by [27], if A and B are tilting-cotilting equivalent, then modÂ � modB̂
(as triangulated categories). It is shown in [3] that this implies that T (A) is tame if, and
only if, T (B) is tame. Moreover, Â is tame if, and only if, so B̂ is.

Following [23], we say that A is derived-tame if g� dim A < ∞ and Â is tame. By
[19] or [23], if A is derived-tame and derived equivalent to B, then B is derived-tame.
We give some examples:

(a) If A is hereditary of Dynkin or Euclidean type or a tubular algebra, then A is
derived-tame.

(b) Let A = S(n, m) be the (semichain) poset algebra given by the quiver:

Figure 1.

As observed in [23], A is derived-tame. The trivial extension T (A) is Morita equiv-
alent to a quotient of the “clannish” algebra (see [8]):

Figure 2.

bounded by ε2
i = εi, αi−1αi = 0 for i = 1, . . . , m + 1. Therefore T (A) is tame.

(c) Let A = kQ/I , where Q is the quiver

Figure 3.

and I is generated by α1β1 and α2β2. Then T (A) is tame but A is not derived equivalent
to any of the examples given in (a) and (b).

For A as in the above examples, the Euler form χA of A is non-negative. Recall that
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χA is defined on the Grothendieck group K0(A) as the quadratic form satisfying

χA([M ]) =
∞∑
i=0

(−1)i dimk ExtiA(M, M),

for any module M .

1.5. Let A = kQ/I be a k-category. Then A is said to be special biserial if the
following holds:

(B1) At every vertex of Q at most two arrows start and at most two stop;
(B2) For every arrow β in Q, there is at most one arrow α with αβ /∈ I and at most

one arrow γ with βγ /∈ I .

A special biserial category A is said to be gentle if moreover:

(B3) The set I is generated by monomial relations of length two;
(B4) For every arrow β, there is at most one arrow α′ with α′β ∈ I and at most one

arrow γ′ with βγ′ ∈ I .

We have the following result.

Proposition. [4, 21, 24, 26]. Let A be a triangular algebra. Then Â is special biserial
if, and only if, A is gentle. In this case, Â is of polynomial growth (resp. domestic)
if, and only if, T (A) is of polynomial growth (resp. domestic). Moreover, T (A) is of
polynomial growth if, and only if, A contains at most one cycle.

1.6. Let A = kQ/I be a triangular monomial algebra. Then the universal Galois
covering F : UA → A is defined by the action of a free group G acting on the tree
category UA. Let r(G) be the rank of the group G, hence Q is a tree if, and only if,
r(G) = 0.

Clearly, we may define a functor F̂ : ÛA → Â, (u, n) 
→ (Fu, n) in such a way
that G acts on ÛA with F̂ g = F̂ for every g ∈ G. Then, there is a covering functor
T (F ): T (UA) → T (A) invariant under the action of G and such that the following
diagram commutes

ÛA

ν
UA ��

F̂
��

T (UA)

T (F )

���
�
�

Â ν
A

�� T (A)

In particular, if T (A) is tame, then Â, T (UA) and ÛA are also tame.

1.7. Finally, we recall some concepts from [15]. Let Q be a quiver with a subset L of
loops in Q. The arrows in Q but not in L are called ordinary arrows. Let I be an ideal
of kQ which includes ε2 − ε ∈ I for every ε ∈ L. Then A = kQ/I is a skewed-gentle
algebra if it satisfies:

(C1) At any vertex of Q there start at most two arrows and at most two end.
(C2) For every ordinay arrow β, there is at most one arrow α with αβ /∈ I and at

most one arrow γ with βγ /∈ I .
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(C3) The ideal I is generated by paths of length two.
(C4) For every ordinary arrow β, there is at most one arrow α′ with α′β ∈ I and at

most one arrow γ′ with βγ′ ∈ I .

Proposition. [15, (4.9)]. Let A be an algebra derived equivalent to a skewed-gentle
algebra. Then T (A) is tame.

Sketch of proof. Let B be a skewed-gentle algebra such that A and B are derived
equivalent. Then Â and B̂ are stably equivalent, which implies by [17] that T (A) and
T (B) are stably equivalent. Recall from [15] that T (B) is tame (in fact, quasi-clannish
in the notation of [15]). By [19] or [23], T (A) is also tame. �
2. The main result.

2.1. We state the main theorem of our work.

Theorem. Let A be a triangular monomial algebra. Consider the universal covering
F : UA → A defined by the action of the free group G. The following are equivalent:

(1) T (A) is tame
(2) A is derived-tame
(3) One of the following holds for UA:

(i) r(G) = 0 and UA = A is derived equivalent to a hereditary algebra of
Dynkin or Euclidean type or a tubular algebra or a semichain S(n, m);

(ii) r(G) > 0 and every convex subcategory B of UA is derived equivalent to
a hereditary algebra of type An;

(iii) r(G) > 0 and there are convex subcategories Bn of UA such that Bn ⊂
Bn+1, limn→∞ Bn = UA and Bn is derived equivalent to a semichain
S(n, c(n)) with limn→∞ c(n) = ∞.

(4) One of the following holds for A:
(i) r(G) = 0 and A is derived equivalent to a hereditary algebra of Dynkin

or Euclidean type or a tubular algebra or a semichain S(n, m);
(ii) r(G) > 0 and A is tilting-cotilting equivalent to a deformation of a

skewed-gentle algebra.

Recall that an algebra A1 is said to be a deformation of A0 if A0 lies in the Zariski
closure of the GLd(k)-orbit of A1 in the variety alg (d) of k-algebras of dimension d.

2.2. We shall proof the implication (3) ⇒ (4) in Section (2.6). In the rest of this section
we complete the demonstration of other implications.

(1) ⇒ (2) was observed in (1.4).
(2) ⇒ (3): Assume that Â is tame. If r(G) = 0, A is a tree algebra and Geiss [13]

has shown that A is derived equivalent to one of the 4 types of algebras stated.
Suppose that r(G) > 0. By (1.6), UA is a tree category such that ÛA is tame. Hence

condition (2) holds for UA. Moreover by [13], the Euler form χB of any finite subcate-
gory B of UA is non-negative and by [6], UA does not accept any convex subcategory
derived equivalent to Ep (p = 6, 7, 8) or to a tubular algebra (since otherwise, UA would
be finite).

Let B be a convex subcategory of UA not derived equivalent to a hereditary algebra
of type An, then B is derived equivalent to a hereditary algebra of type Dn or to
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a semichain S(n, c) (because χB ≥ 0). Assume that B is derived equivalent to an
algebra of type Dn, then take 1 �= g ∈ G and B1 the connected closure of B and g(B)
in UA. By the description of the algebras derived equivalent to Dn (as given for example
in [18]), B1 is not of Dynkin type Dn. Hence B1 is of type S(n1, c1) with c1 ≥ 1. Let
B2 be a connected convex subcategory of UA containing B1 and g(B1), which clearly
is of type S(n2, c2) with c2 > c1. Choosing an increasing sequence (Bn)n of convex
subcategories of UA with limn→∞ Bn = UA, it is clear that UA is of type (iii).

(4) ⇒ (1): The case r(G) = 0 was observed in (1.4). Suppose r(G) > 0 and A is
tilting-cotilting equivalent to an algebra B1 which is a deformation of a skewed-gentle
algebra B0. Take a family of algebras (Bλ)λ∈k such that Bλ

∼= B1 for λ �= 0. By [1],
T (A) is derived equivalent to T (B1) ∼= T (Bλ) for λ �= 0 and clearly limλ→0 T (Bλ) =
T (B0). Then T (A) is a deformation of the algebra T (B0) which is tame by (1.7). By
[12], T (A) is tame. �

2.3. Let F : UA → A be the universal covering of A defined by the action of the free
group G of rank r(G) > 0. Assume moreover that every convex subcategory B of UA

is derived equivalent to a semichain S(n, m). Then, we know that UA does not accept
convex subcategories which are derived equivalent to Ep (p = 6, 7, 8) or to a tubular
algebra and moreover χUA

≥ 0. The next Proposition follows from the main technical
result in [7].

Proposition. Under the above hypothesis, UA is tilting-cotilting equivalent to a semi-
tree T{E}.

We recall that T{E} is a semi-tree if the following holds:

(D0) T = kQ′/J is a tree algebra and E is a set of vertices of Q′
0.

(D1) At each vertex of E starts at most one arrow and at each vertex of E stops at
most one arrow.

(D2) The ideal J is generated by paths of length 2 and 3.
(D3) If a

α−→ b
β−→ c is an element of J , then b /∈ E. Moreover, all other relations in

J containing α stop at the vertex b, and those containing β start at b.
(D4) The generators of J of length 3 have the form ε: a −→ a′

α−→ b
β−→ c′ with c′ an

end vertex of Q′ or dually ε′: a′
α−→ b

β−→ c′ −→ c with a′ an end vertex or they
come as a pair (ε: a −→ a′

α−→ b
β−→ c′, ε′: a′

α−→ b
β−→ c′ −→ c). In each case,

the vertices a′, b and c′ do not belong to E, no other generator of J contains
one of the arrows α or β, and in a′ and c′ do not start or stop any other arrow.

(D5) Each convex hereditary subcategory of T is of type An.

Then, by definition T{E} = kQ̄/Ī , where Q̄0 are those vertices of Q′ not in E
and e+, e− for every e ∈ E; the arrows of Q̄ are t → t′ if t, t′ /∈ E, for every e → t
with e ∈ E, two arrows e+ → t, e− → t and dually for t → e with e ∈ E. Finally,
Ī = π−1(J) for the natural epimorphism π: kQ̄ → kQ′.

In the Proposition, we may choose T and E in such a way that there is a free action

of G on T and on E satisfying that gψ = ψg, where ψ: Db(UA)
∼ �� Db(T{E}) is

the triangular equivalence induced by the tilting-cotilting sequence.

Proof. From [7], we may find T and E satisfying (D1)-(D5). Indeed, observe that every
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step in the proof is carried by means of either (APR)-tilts or reflections S+
x and S−

y ,
hence all steps remain in the domain of tilting-cotilting equivalences.

Choose E a maximal possible set satisfying (D1)-(D5). By definition G acts on E and
hence on T . Clearly the action is compatible with the (APR)-tilts and reflections. �

Corollary. Let F : UA → A be a covering as indicated above. Then there is a pair
(T̄ , Ē) satisfying (D1) to (D4) and

(D5’) Each convex hereditary subcategory of T̄ is of type An or Ãn, and such that A
is tilting-cotilting equivalent to T̄{Ē}.

Proof. Choose the pair (T, E) as in the Proposition. Clearly we may define T̄ = T/G
and Ē = E/G satisfying (D1)-(D4) and (D5’). Since G is a free group, acting freely on
T , then results of Asashiba [1] imply that A is tilting-cotilting equivalent to T{E}/G =
T̄{Ē}. �

2.4. Lemma. Let B = C{E} be a finite dimensional algebra, where the pair (C, E)
satisfies (D1) to (D4) and (D5’). Then B is a deformation of B0 such that B0 = C0{E0}
and C0 is a gentle algebra.

Proof. Observe that in case C does not contain relations of length 3, then C is gentle.
Suppose ε: a′

α−→ b
β−→ c′

γ−→ c is a relation in C with a′ an end vertex. By (D4), the
module M = rad Pa′ is indecomposable and there is an exact sequence

0 → N → M → Sb → 0.

The algebra C is the one-point extension C1 = C ′[M ] and we may define algebras
Cλ = C ′[Mλ], for λ ∈ k, where Mλ: C ′ → mod k is the representation

Mλ(δ) =
[

N(δ) 0

λfδ Sb(δ)

]
, where M(δ) =

[
N(δ) 0

fδ Sb(δ)

]
.

The algebra C0 = C ′[N ⊕ Sb] is a degeneration of C1 = C which has the quiver of C1

plus an additional arrow a′ θ−→ c′ and instead of the relation ε we have two relations
αβ and θγ.

Since by (D4), b, c′ /∈ E, then the pair (C0, E) satisfies (D1) to (D4) and (D5’).
Hence B0 = C0{E} is a degeneration of B = C{E}. Proceeding inductively along
all relations of length 3 in B, we get an algebra B′ degeneration of B such that
B′ = C ′{E′} with the pair (C ′, E′) satisfying (D1) to (D4) and (D5’) but no relations
in C ′ of length 3. Hence C ′ is a gentle algebra. �

2.5. Lemma. Let C be a gentle algebra and E a set of vertices of C such that (C, E)
satisfies (D1), (D2), (D3) and (D5’). Then C{E} is Morita equivalent to a skewed-gentle
algebra.

Proof. Define C̄ an algebra obtained from C by adding a loop εe at e ∈ E. Moreover,
ε2
e = εe in C̄ and whenever a

α−→ b
β−→ c in C with b ∈ E, then αβ = 0 in C̄.

We show that C{E} and C̄ are Morita equivalent. Since C is gentle, up to duality, a
vertex e ∈ E appears in one of the ways illustrated by Figure 4. Then C{e} is Morita
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equivalent to the algebras of Figure 5 and ε2
e = εe in every case.

Figure 4.

Figure 5.

Finally, to check that C̄ is skewed-gentle is routine. �
2.6. Proof of (3) ⇒ (4) of (2.1). Let F : UA → A be a Galois covering defined by the
action of the free group G. Without loss of generality, we may assume that r(G) > 0.

In case every convex subcategory of UA is derived equivalent to a hereditary algebra
of type An, then UA (and hence A) is a gentle category.

In the remaining case, we are in the situation considered in (2.3). Therefore by (2.3)
and (2.4), then A is tilting-cotilting equivalent to an algebra which is a deformation of
A0 = C0{E0} where C0 is a gentle algebra and the pair (C0, E0) satisfies (D1), (D2),
(D3) and (D5’). By (2.5), A0 is a skewed-gentle algebra. �

Figure 6.

3. Some examples and remarks.

3.1. The algebra A in example (1.4.c) accepts a universal covering UA = kQ̃/Ĩ defined
by the action of Z, where Q̃ is given as in Figure 6 and Ĩ is generated by all relations
of the form α1β1, α2β2. Consider the schematic representation of UA, where each Di
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denotes a hereditary algebra of type D̃6. The full subcategory B of UA formed as the
connected hull of D1, D2, . . . , Dm is tilting-cotilting equivalent to S(8m−1, 2m−1),
showing that UA is of type (3,iii) in the theorem.

Moreover, as shown in (2.4), the algebra A is a degeneration of B = kQ′/I ′ where
Q′ is the quiver of Figure 7 and I ′ is generated by αβ1β2. The algebra B is of type (4,ii)
in the Theorem.

Figure 7.

Figure 8.

3.2. For a locally bounded category A with possibly infinitely many objects, we say
that the Euler form χA is non-negative (write χA ≥ 0) if for every full convex finite
subcategory B of A we have χB ≥ 0. Using [13] and arguments similar to those in
(2.2) we readily obtain:

Corollary. Let A be a triangular monomial algebra. Then T (A) is tame if, and only
if, χUA

≥ 0.

3.3. It is not true that for a triangular algebra A, the condition χA ≥ 0 implies that
A is tame. Consider A = kQ/I given by the quiver of Figure 8 and I generated by
α1β1 − α2β2 and α1β2. As shown in [14], if char k = 2, then A is wild and

χA(a, b, c) = (a − b + c)2.

On the other hand, the algebra A′ = kQ/I ′ with I ′ generated by α1β1 and α2β2 accepts
a covering UA′ → A′ defined by the action of a free group in two generators. The
category UA′ is of type (3,ii) in the Theorem.
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Résumé substantiel en français. Soit k un corps algébriquement clos et A une k-
algèbre de dimension finie. Nous supposons A = kQ/I avec Q un carquois sans cycles
orientés (on dit alors que A est triangulaire) et I engendré par des chemins de Q (on
dit que A est une algèbre monomiale). Il est connu que l’extension triviale T (A) est de
représentation finie si, et seulement si, la catégorie dérivée Db (mod A) est équivalente
à Db (mod k∆) pour ∆ un carquois de type Dynkin. Dans ce travail, nous donnons
une caractérisation de la docilité de T (A). On démontre que T (A) est docile si, et
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seulement si, A est dérivablement docile, c’est-à-dire quand la catégorie répétitive Â
est docile. On donne aussi une caractérisation de la docilité de T (A) par des propriétés
du revêtement universel UA → A.

Théorème. Soit A = kQ/I une algèbre monomiale triangulaire. Soit F : UA → A le
revêtement universel déterminé par l’action du groupe libre G. Les conditions suivantes
sont équivalentes:

(1) T (A) est docile ;
(2) A est dérivablement-docile ;
(3) UA satisfait à une des conditions suivantes :

(i) UA = A et A est dérivée équivalente à une algèbre héréditaire de type
Dynkin ou Euclidien ou à une algèbre tubulaire ou à une semichaı̂ne
S(n, m) ;

(ii) Le rang r(G) du groupe G est positif et toute sous-catégorie convexe de
UA est dérivée équivalente à une algèbre héréditaire du type An ;

(iii) r(G) > 0 et il existe une suite (Bn)n de sous-catégories convexes de UA

avec Bn ⊂ Bn+1, limn→∞ Bn = UA et chaque Bn est dérivée équivalente
à une semichaı̂ne S(n, m).
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24. Z. Pogorzaly and A. Skowroński, Selfinjective biserial standard algebras, J. Algebra 138
(1991), 491–504.

25. C.M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics,
vol. 1099, Springer-Verlag, Berlin, 1984.

26. C. M. Ringel, The repetitive algebra of a gentle algebra, Bol. Soc. Mat. Mexicana (3) 3
(1997), 235–253.

27. T. Wakamatsu, Stable equivalence between universal covers of trivial extension self-
injective algebras, Tsukuba J. Math. 9 (1985), 299–316.

C. NOVOA

DEPT. MATEMÁTICA E FÍSICA
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