ON THE TAMENESS OF TRIVIAL EXTENSIONS OF MONOMIAL ALGEBRAS

C. NOVOA AND J. A. DE LA PEÑA

Abstract

RÉSUMÉ. Soit k un corps algébriquement clos et A une k-algèbre de dimension finie. Nous supposons que $A=k Q / I$, où Q est un carquois sans cycles orientés et I est engendrée par des chemins de Q. Nous considérons l'extension triviale $T(A)$ et donnons des conditions sur A de sorte que $T(A)$ soit docile. En particulier, nous montrons que $T(A)$ est docile si, et seulement si, A est dérivablement docile.

Abstract. Let k be an algebraically closed field and A a finite dimensional k algebra. We assume that $A=k Q / I$ where Q is a quiver without oriented cycles and I is generated by paths in Q. We consider the trivial extension $T(A)$ of A and give conditions on A in order that $T(A)$ is tame. In particular we show that $T(A)$ is tame if, and only if, A is derived-tame.

Let k be an algebraically closed field and A be a finite dimensional k-algebra (associative, with identity) which moreover we assume to be basic and connected, hence of the form $A=k Q / I$ where Q is a finite connected quiver and I is an ideal of the path algebra $k Q($ see [10]). We denote by $\bmod A$ the category of finite dimensional left A-modules, and by $D=\operatorname{Hom}_{k}(-, k)$ the standard duality between $\bmod A$ and $\bmod A^{o p}$.

The trivial extension $T(A)=A \ltimes D A$ of A by its minimal injective cogenerator bimodule ${ }_{A} D A_{A}$, has as additive structure that of the group $A \oplus D A$ and multiplication defined by

$$
(a, f)(b, g)=(a b, a g+f b)
$$

for $a, b \in A$ and $f, g \in D A$. Trivial extensions are self-injective algebras which have played an important role in the representation theory of algebras. The problem of studying the representation type of $T(A)$ has been considered in the work of several authors (see [2, 21, 22, 24]). For example, in [2] it is shown that $T(A)$ is representationfinite if, and only if, A is an iterated tilted algebra of a hereditary algebra $k \Delta$ where Δ is of Dynkin type. In this paper, we characterize those algebras of the form $A=k Q / I$, where Q has no oriented cycles (that is, A is triangular) and I is generated by a set of paths in Q (that is, A is monomial), for which $T(A)$ is tame. We recall here that an algebra B is tame if for each dimension n, the indecomposable B-modules

Reçu le 27 mars 2001 et, sous forme définitive, le 19 septembre 2001.
(C)Association mathématique du Québec
of dimension n may be described by a finite number of one-parametric families of modules. Our results generalize previous statements in the literature [13, 26].

Let $A=k Q / I$ be as above. If Q is a tree, then $T(A)$ is tame if, and only if, A is derived equivalent to a hereditary algebra of Dynkin or Euclidean type, to a tubular algebra or to an algebra of type $S(n, m)$ - see also [13]. In case Q is not a tree, we shall use covering techniques as introduced in $[11,20]$ to show that $T(A)$ is tame if, and only if, A is derived equivalent to a deformation of a skewed-gentle algebra as defined in [15]. Moreover, in any of these cases, $T(A)$ is tame if, and only if, A is derived-tame.

1. Fundamental concepts.

1.1. Let A be a finite dimensional k-algebra of the form $A=k Q / I$. We denote by e_{x} the primitive idempotent corresponding to a vertex x in Q, hence $1_{A}=\sum_{x \in Q_{0}} e_{x}$, where Q_{0} is the set of vertices of Q. Following [10], we shall sometimes consider the algebra A as a locally bounded k-category with $A(x, y)=e_{y} A e_{x}$ for any $x, y \in Q_{0}$.

Given an A-module M, the one-point extension $A[M]$ is defined as the k-algebra

$$
\left(\begin{array}{cc}
A & M \\
0 & k
\end{array}\right)
$$

with the usual matrix operations. For a sink $x \in Q_{0}$, the reflection $S_{x}^{+} A$ of A at x is the quotient of the extension $A\left[I_{x}\right]$ by the two-sided ideal generated by e_{x}, where I_{x} denotes the injective envelope of the simple A-module S_{x} associated with the vertex x. Dually, for a source $y \in Q_{0}, S_{y}^{-} A$ is the quotient of the coextension $\left[P_{y}\right] A$ by the two-sided ideal generated by e_{y}, where P_{y} is the projective cover of S_{y}.

For tilting theory, tubular algebras and other concepts, we refer the reader to [25].
1.2. The repetitive category \hat{A} of A is the self-injective locally finite dimensional matrix algebra defined by

$$
\hat{A}=\left[\begin{array}{ccccc}
\ddots & & & & 0 \\
\ddots & A & & & \\
& D A & A & & \\
& & D A & A & \\
0 & & & \ddots & \ddots
\end{array}\right]
$$

where matrices have only finitely many non-zero coefficients. Clearly, there is an automorphism $\nu_{A}: \hat{A} \rightarrow \hat{A}$ such that the orbit space $\hat{A} /\left(\nu_{A}\right)$ is isomorphic to the trivial extension $T(A)$. Hence, the orbit map $\hat{A} \rightarrow T(A)$ is a Galois covering defined by the action of the cyclic group generated by $\nu_{A}($ isomorphic to $\mathbb{Z})$, and the category $\bmod \hat{A}$ is equivalent to the \mathbb{Z}-graded $T(A)$-modules. We shall consider the push-down functor $F_{\lambda}: \bmod \hat{A} \rightarrow \bmod T(A)$ as defined in [11].

Observe that for a source $x \in Q_{0}$, there is an isomorphism $\widehat{S_{x}^{-} A} \cong \hat{A}$. Moreover, in [17] it is shown that for triangular algebras A and B, we have $\hat{A} \cong \hat{B}$ if, and only if, there is an admissible sequence of vertices $x_{1}, x_{2}, \ldots, x_{t}$ such that $B=S_{x_{t}}^{-} \ldots S_{x_{2}}^{-} S_{x_{1}}^{-} A$.
1.3. Recall that an algebra A is said to be tame if for every dimension $d \in \mathbb{N}$, the indecomposable A-modules of dimension d may be parametrized by a finite number $\nu(d)$ of families $M_{i} \otimes_{k[t]} S_{\lambda}$ (with $\lambda \in k$) where M_{i} is an $A-k[t]$-bimodule, finitely
generated free as right $k[t]$-module, $1 \leq i \leq \nu(d)$. If A is tame, then A is domestic (resp. of polynomial growth) if $\nu(d) \leq$ constant (resp. $\nu(d) \leq d^{m}$ for some $m \in \mathbb{N}$).

By [9], given a Galois covering $F: B \rightarrow A$ defined by the action of a group G, if A is tame (resp. domestic, polynomial growth), then so B is. The converse may fail [14].

In [5], it is shown that the repetitive category \hat{A} is tame and the push-down functor $F_{\lambda}: \bmod \hat{A} \rightarrow \bmod T(A)$ is dense if, and only if, A is tilting-cotilting equivalent to a hereditary algebra of Dynkin or Euclidean type or a tubular algebra. It follows that $T(A)$ is tame in these cases.
1.4. For a triangular algebra A, the stable module category $\bmod \hat{A}$ is equivalent as triangulated category to the derived category $D^{b}(A)$ of the module category $\bmod A$, [16]. Further, by [27], if A and B are tilting-cotilting equivalent, then $\underline{\bmod } \hat{A} \simeq \underline{\bmod } \hat{B}$ (as triangulated categories). It is shown in [3] that this implies that $T(A)$ is tame if, and only if, $T(B)$ is tame. Moreover, \hat{A} is tame if, and only if, so \hat{B} is.

Following [23], we say that A is derived-tame if $\mathrm{g} \ell \operatorname{dim} A<\infty$ and \hat{A} is tame. By [19] or [23], if A is derived-tame and derived equivalent to B, then B is derived-tame. We give some examples:
(a) If A is hereditary of Dynkin or Euclidean type or a tubular algebra, then A is derived-tame.
(b) Let $A=S(n, m)$ be the (semichain) poset algebra given by the quiver:

Figure 1.
As observed in [23], A is derived-tame. The trivial extension $T(A)$ is Morita equivalent to a quotient of the "clannish" algebra (see [8]):

Figure 2.
bounded by $\varepsilon_{i}^{2}=\varepsilon_{i}, \alpha_{i-1} \alpha_{i}=0$ for $i=1, \ldots, m+1$. Therefore $T(A)$ is tame.
(c) Let $A=k Q / I$, where Q is the quiver

Figure 3.
and I is generated by $\alpha_{1} \beta_{1}$ and $\alpha_{2} \beta_{2}$. Then $T(A)$ is tame but A is not derived equivalent to any of the examples given in (a) and (b).

For A as in the above examples, the Euler form χ_{A} of A is non-negative. Recall that
χ_{A} is defined on the Grothendieck group $K_{0}(A)$ as the quadratic form satisfying

$$
\chi_{A}([M])=\sum_{i=0}^{\infty}(-1)^{i} \operatorname{dim}_{k} \operatorname{Ext}_{A}^{i}(M, M),
$$

for any module M.
1.5. Let $A=k Q / I$ be a k-category. Then A is said to be special biserial if the following holds:
(B1) At every vertex of Q at most two arrows start and at most two stop;
(B2) For every arrow β in Q, there is at most one arrow α with $\alpha \beta \notin I$ and at most one arrow γ with $\beta \gamma \notin I$.
A special biserial category A is said to be gentle if moreover:
(B3) The set I is generated by monomial relations of length two;
(B4) For every arrow β, there is at most one arrow α^{\prime} with $\alpha^{\prime} \beta \in I$ and at most one arrow γ^{\prime} with $\beta \gamma^{\prime} \in I$.
We have the following result.
Proposition. [4, 21, 24, 26]. Let A be a triangular algebra. Then \hat{A} is special biserial if, and only if, A is gentle. In this case, \hat{A} is of polynomial growth (resp. domestic) if, and only if, $T(A)$ is of polynomial growth (resp. domestic). Moreover, $T(A)$ is of polynomial growth if, and only if, A contains at most one cycle.
1.6. Let $A=k Q / I$ be a triangular monomial algebra. Then the universal Galois covering $F: U_{A} \rightarrow A$ is defined by the action of a free group G acting on the tree category U_{A}. Let $r(G)$ be the rank of the group G, hence Q is a tree if, and only if, $r(G)=0$.

Clearly, we may define a functor $\hat{F}: \hat{U}_{A} \rightarrow \hat{A},(u, n) \mapsto(F u, n)$ in such a way that G acts on \hat{U}_{A} with $\hat{F} g=\hat{F}$ for every $g \in G$. Then, there is a covering functor $T(F): T\left(U_{A}\right) \rightarrow T(A)$ invariant under the action of G and such that the following diagram commutes

In particular, if $T(A)$ is tame, then $\hat{A}, T\left(U_{A}\right)$ and \hat{U}_{A} are also tame.
1.7. Finally, we recall some concepts from [15]. Let Q be a quiver with a subset L of loops in Q. The arrows in Q but not in L are called ordinary arrows. Let I be an ideal of $k Q$ which includes $\varepsilon^{2}-\varepsilon \in I$ for every $\varepsilon \in L$. Then $A=k Q / I$ is a skewed-gentle algebra if it satisfies:
(C1) At any vertex of Q there start at most two arrows and at most two end.
(C2) For every ordinay arrow β, there is at most one arrow α with $\alpha \beta \notin I$ and at most one arrow γ with $\beta \gamma \notin I$.
(C3) The ideal I is generated by paths of length two.
(C4) For every ordinary arrow β, there is at most one arrow α^{\prime} with $\alpha^{\prime} \beta \in I$ and at most one arrow γ^{\prime} with $\beta \gamma^{\prime} \in I$.

Proposition. [15, (4.9)]. Let A be an algebra derived equivalent to a skewed-gentle algebra. Then $T(A)$ is tame.
Sketch of proof. Let B be a skewed-gentle algebra such that A and B are derived equivalent. Then \hat{A} and \hat{B} are stably equivalent, which implies by [17] that $T(A)$ and $T(B)$ are stably equivalent. Recall from [15] that $T(B)$ is tame (in fact, quasi-clannish in the notation of [15]). By [19] or [23], $T(A)$ is also tame.

2. The main result.

2.1. We state the main theorem of our work.

Theorem. Let A be a triangular monomial algebra. Consider the universal covering $F: U_{A} \rightarrow A$ defined by the action of the free group G. The following are equivalent:
(1) $T(A)$ is tame
(2) A is derived-tame
(3) One of the following holds for U_{A} :
(i) $r(G)=0$ and $U_{A}=A$ is derived equivalent to a hereditary algebra of Dynkin or Euclidean type or a tubular algebra or a semichain $S(n, m)$;
(ii) $r(G)>0$ and every convex subcategory B of U_{A} is derived equivalent to a hereditary algebra of type \mathbb{A}_{n};
(iii) $r(G)>0$ and there are convex subcategories B_{n} of U_{A} such that $B_{n} \subset$ $B_{n+1}, \lim _{n \rightarrow \infty} B_{n}=U_{A}$ and B_{n} is derived equivalent to a semichain $S(n, c(n))$ with $\lim _{n \rightarrow \infty} c(n)=\infty$.
(4) One of the following holds for A :
(i) $r(G)=0$ and A is derived equivalent to a hereditary algebra of Dynkin or Euclidean type or a tubular algebra or a semichain $S(n, m)$;
(ii) $r(G)>0$ and A is tilting-cotilting equivalent to a deformation of a skewed-gentle algebra.

Recall that an algebra A_{1} is said to be a deformation of A_{0} if A_{0} lies in the Zariski closure of the $G L_{d}(k)$-orbit of A_{1} in the variety alg (d) of k-algebras of dimension d.
2.2. We shall proof the implication $(3) \Rightarrow(4)$ in Section (2.6). In the rest of this section we complete the demonstration of other implications.
(1) \Rightarrow (2) was observed in (1.4).
$(2) \Rightarrow$ (3): Assume that \hat{A} is tame. If $r(G)=0, A$ is a tree algebra and Geiss [13] has shown that A is derived equivalent to one of the 4 types of algebras stated.

Suppose that $r(G)>0$. By (1.6), U_{A} is a tree category such that \hat{U}_{A} is tame. Hence condition (2) holds for U_{A}. Moreover by [13], the Euler form χ_{B} of any finite subcategory B of U_{A} is non-negative and by [6], U_{A} does not accept any convex subcategory derived equivalent to $\mathbb{E}_{p}(p=6,7,8)$ or to a tubular algebra (since otherwise, U_{A} would be finite).

Let B be a convex subcategory of U_{A} not derived equivalent to a hereditary algebra of type \mathbb{A}_{n}, then B is derived equivalent to a hereditary algebra of type \mathbb{D}_{n} or to
a semichain $S(n, c)$ (because $\chi_{B} \geq 0$). Assume that B is derived equivalent to an algebra of type \mathbb{D}_{n}, then take $1 \neq g \in G$ and B_{1} the connected closure of B and $g(B)$ in U_{A}. By the description of the algebras derived equivalent to \mathbb{D}_{n} (as given for example in [18]), B_{1} is not of Dynkin type \mathbb{D}_{n}. Hence B_{1} is of type $S\left(n_{1}, c_{1}\right)$ with $c_{1} \geq 1$. Let B_{2} be a connected convex subcategory of U_{A} containing B_{1} and $g\left(B_{1}\right)$, which clearly is of type $S\left(n_{2}, c_{2}\right)$ with $c_{2}>c_{1}$. Choosing an increasing sequence $\left(B_{n}\right)_{n}$ of convex subcategories of U_{A} with $\lim _{n \rightarrow \infty} B_{n}=U_{A}$, it is clear that U_{A} is of type (iii).
$(4) \Rightarrow(1)$: The case $r(G)=0$ was observed in (1.4). Suppose $r(G)>0$ and A is tilting-cotilting equivalent to an algebra B_{1} which is a deformation of a skewed-gentle algebra B_{0}. Take a family of algebras $\left(B_{\lambda}\right)_{\lambda \in k}$ such that $B_{\lambda} \cong B_{1}$ for $\lambda \neq 0$. By [1], $T(A)$ is derived equivalent to $T\left(B_{1}\right) \cong T\left(B_{\lambda}\right)$ for $\lambda \neq 0$ and clearly $\lim _{\lambda \rightarrow 0} T\left(B_{\lambda}\right)=$ $T\left(B_{0}\right)$. Then $T(A)$ is a deformation of the algebra $T\left(B_{0}\right)$ which is tame by (1.7). By [12], $T(A)$ is tame.
2.3. Let $F: U_{A} \rightarrow A$ be the universal covering of A defined by the action of the free group G of $\operatorname{rank} r(G)>0$. Assume moreover that every convex subcategory B of U_{A} is derived equivalent to a semichain $S(n, m)$. Then, we know that U_{A} does not accept convex subcategories which are derived equivalent to $\mathbb{E}_{p}(p=6,7,8)$ or to a tubular algebra and moreover $\chi_{U_{A}} \geq 0$. The next Proposition follows from the main technical result in [7].

Proposition. Under the above hypothesis, U_{A} is tilting-cotilting equivalent to a semitree $T\{E\}$.

We recall that $T\{E\}$ is a semi-tree if the following holds:
(D0) $T=k Q^{\prime} / J$ is a tree algebra and E is a set of vertices of Q_{0}^{\prime}.
(D1) At each vertex of E starts at most one arrow and at each vertex of E stops at most one arrow.
(D2) The ideal J is generated by paths of length 2 and 3 .
(D3) If $a \xrightarrow{\alpha} b \xrightarrow{\beta} c$ is an element of J, then $b \notin E$. Moreover, all other relations in J containing α stop at the vertex b, and those containing β start at b.
(D4) The generators of J of length 3 have the form $\varepsilon: a \longrightarrow a^{\prime} \xrightarrow{\alpha} b \xrightarrow{\beta} c^{\prime}$ with c^{\prime} an end vertex of Q^{\prime} or dually $\varepsilon^{\prime}: a^{\prime} \xrightarrow{\alpha} b \xrightarrow{\beta} c^{\prime} \longrightarrow c$ with a^{\prime} an end vertex or they come as a pair $\left(\varepsilon: a \longrightarrow a^{\prime} \xrightarrow{\alpha} b \xrightarrow{\beta} c^{\prime}, \varepsilon^{\prime}: a^{\prime} \xrightarrow{\alpha} b \xrightarrow{\beta} c^{\prime} c\right)$. In each case, the vertices a^{\prime}, b and c^{\prime} do not belong to E, no other generator of J contains one of the arrows α or β, and in a^{\prime} and c^{\prime} do not start or stop any other arrow.
(D5) Each convex hereditary subcategory of T is of type \mathbb{A}_{n}.
Then, by definition $T\{E\}=k \bar{Q} / \bar{I}$, where \bar{Q}_{0} are those vertices of Q^{\prime} not in E and e^{+}, e^{-}for every $e \in E$; the arrows of \bar{Q} are $t \rightarrow t^{\prime}$ if $t, t^{\prime} \notin E$, for every $e \rightarrow t$ with $e \in E$, two arrows $e^{+} \rightarrow t, e^{-} \rightarrow t$ and dually for $t \rightarrow e$ with $e \in E$. Finally, $\bar{I}=\pi^{-1}(J)$ for the natural epimorphism $\pi: k \bar{Q} \rightarrow k Q^{\prime}$.

In the Proposition, we may choose T and E in such a way that there is a free action of G on T and on E satisfying that $g \psi=\psi g$, where $\psi: D^{b}\left(U_{A}\right) \xrightarrow{\sim} D^{b}(T\{E\})$ is the triangular equivalence induced by the tilting-cotilting sequence.
Proof. From [7], we may find T and E satisfying (D1)-(D5). Indeed, observe that every
step in the proof is carried by means of either (APR)-tilts or reflections S_{x}^{+}and S_{y}^{-}, hence all steps remain in the domain of tilting-cotilting equivalences.

Choose E a maximal possible set satisfying (D1)-(D5). By definition G acts on E and hence on T. Clearly the action is compatible with the (APR)-tilts and reflections.

Corollary. Let $F: U_{A} \rightarrow A$ be a covering as indicated above. Then there is a pair (\bar{T}, \bar{E}) satisfying (D1) to (D4) and
(D5') Each convex hereditary subcategory of \bar{T} is of type \mathbb{A}_{n} or $\tilde{\mathbb{A}}_{n}$, and such that A is tilting-cotilting equivalent to $\bar{T}\{\bar{E}\}$.

Proof. Choose the pair (T, E) as in the Proposition. Clearly we may define $\bar{T}=T / G$ and $\bar{E}=E / G$ satisfying (D1)-(D4) and (D5'). Since G is a free group, acting freely on T, then results of Asashiba [1] imply that A is tilting-cotilting equivalent to $T\{E\} / G=$ $\bar{T}\{\bar{E}\}$.
2.4. Lemma. Let $B=C\{E\}$ be a finite dimensional algebra, where the pair (C, E) satisfies (D1) to (D4) and (D5'). Then B is a deformation of B_{0} such that $B_{0}=C_{0}\left\{E_{0}\right\}$ and C_{0} is a gentle algebra.

Proof. Observe that in case C does not contain relations of length 3, then C is gentle. Suppose $\varepsilon: a^{\prime} \xrightarrow{\alpha} b \xrightarrow{\beta} c^{\prime} \xrightarrow{\gamma} c$ is a relation in C with a^{\prime} an end vertex. By (D4), the module $M=\operatorname{rad} P_{a^{\prime}}$ is indecomposable and there is an exact sequence

$$
0 \rightarrow N \rightarrow M \rightarrow S_{b} \rightarrow 0 .
$$

The algebra C is the one-point extension $C_{1}=C^{\prime}[M]$ and we may define algebras $C_{\lambda}=C^{\prime}\left[M_{\lambda}\right]$, for $\lambda \in k$, where $M_{\lambda}: C^{\prime} \rightarrow \bmod k$ is the representation

$$
M_{\lambda}(\delta)=\left[\begin{array}{cc}
N(\delta) & 0 \\
\lambda f_{\delta} & S_{b}(\delta)
\end{array}\right], \quad \text { where } \quad M(\delta)=\left[\begin{array}{cc}
N(\delta) & 0 \\
f_{\delta} & S_{b}(\delta)
\end{array}\right] .
$$

The algebra $C_{0}=C^{\prime}\left[N \oplus S_{b}\right]$ is a degeneration of $C_{1}=C$ which has the quiver of C_{1} plus an additional arrow $a^{\prime} \xrightarrow{\theta} c^{\prime}$ and instead of the relation ε we have two relations $\alpha \beta$ and $\theta \gamma$.

Since by (D4), $b, c^{\prime} \notin E$, then the pair $\left(C_{0}, E\right)$ satisfies (D1) to (D4) and (D5'). Hence $B_{0}=C_{0}\{E\}$ is a degeneration of $B=C\{E\}$. Proceeding inductively along all relations of length 3 in B, we get an algebra B^{\prime} degeneration of B such that $B^{\prime}=C^{\prime}\left\{E^{\prime}\right\}$ with the pair $\left(C^{\prime}, E^{\prime}\right)$ satisfying (D1) to (D4) and (D5') but no relations in C^{\prime} of length 3 . Hence C^{\prime} is a gentle algebra.
2.5. Lemma. Let C be a gentle algebra and E a set of vertices of C such that (C, E) satisfies (D1), (D2), (D3) and (D5'). Then $C\{E\}$ is Morita equivalent to a skewed-gentle algebra.

Proof. Define \bar{C} an algebra obtained from C by adding a loop ε_{e} at $e \in E$. Moreover, $\varepsilon_{e}^{2}=\varepsilon_{e}$ in \bar{C} and whenever $a \xrightarrow{\alpha} b \xrightarrow{\beta} c$ in C with $b \in E$, then $\alpha \beta=0$ in \bar{C}.

We show that $C\{E\}$ and \bar{C} are Morita equivalent. Since C is gentle, up to duality, a vertex $e \in E$ appears in one of the ways illustrated by Figure 4. Then $C\{e\}$ is Morita
equivalent to the algebras of Figure 5 and $\varepsilon_{e}^{2}=\varepsilon_{e}$ in every case.

Figure 4.

Figure 5.
Finally, to check that \bar{C} is skewed-gentle is routine.
2.6. Proof of $(3) \Rightarrow$ (4) of (2.1). Let $F: U_{A} \rightarrow A$ be a Galois covering defined by the action of the free group G. Without loss of generality, we may assume that $r(G)>0$.

In case every convex subcategory of U_{A} is derived equivalent to a hereditary algebra of type \mathbb{A}_{n}, then U_{A} (and hence A) is a gentle category.

In the remaining case, we are in the situation considered in (2.3). Therefore by (2.3) and (2.4), then A is tilting-cotilting equivalent to an algebra which is a deformation of $A_{0}=C_{0}\left\{E_{0}\right\}$ where C_{0} is a gentle algebra and the pair (C_{0}, E_{0}) satisfies (D1), (D2), (D3) and (D5'). By (2.5), A_{0} is a skewed-gentle algebra.

Figure 6.

3. Some examples and remarks.

3.1. The algebra A in example (1.4.c) accepts a universal covering $U_{A}=k \tilde{Q} / \tilde{I}$ defined by the action of \mathbb{Z}, where \tilde{Q} is given as in Figure 6 and \tilde{I} is generated by all relations of the form $\alpha_{1} \beta_{1}, \alpha_{2} \beta_{2}$. Consider the schematic representation of U_{A}, where each D_{i}
denotes a hereditary algebra of type $\tilde{\mathbb{D}}_{6}$. The full subcategory B of U_{A} formed as the connected hull of $D_{1}, D_{2}, \ldots, D_{m}$ is tilting-cotilting equivalent to $S(8 m-1,2 m-1)$, showing that U_{A} is of type ($3, \mathrm{iii}$) in the theorem.

Moreover, as shown in (2.4), the algebra A is a degeneration of $B=k Q^{\prime} / I^{\prime}$ where Q^{\prime} is the quiver of Figure 7 and I^{\prime} is generated by $\alpha \beta_{1} \beta_{2}$. The algebra B is of type (4,ii) in the Theorem.

Figure 7.

Figure 8.
3.2. For a locally bounded category A with possibly infinitely many objects, we say that the Euler form χ_{A} is non-negative (write $\chi_{A} \geq 0$) if for every full convex finite subcategory B of A we have $\chi_{B} \geq 0$. Using [13] and arguments similar to those in (2.2) we readily obtain:

Corollary. Let A be a triangular monomial algebra. Then $T(A)$ is tame if, and only if, $\chi_{U_{A}} \geq 0$.
3.3. It is not true that for a triangular algebra A, the condition $\chi_{A} \geq 0$ implies that A is tame. Consider $A=k Q / I$ given by the quiver of Figure 8 and I generated by $\alpha_{1} \beta_{1}-\alpha_{2} \beta_{2}$ and $\alpha_{1} \beta_{2}$. As shown in [14], if char $k=2$, then A is wild and

$$
\chi_{A}(a, b, c)=(a-b+c)^{2} .
$$

On the other hand, the algebra $A^{\prime}=k Q / I^{\prime}$ with I^{\prime} generated by $\alpha_{1} \beta_{1}$ and $\alpha_{2} \beta_{2}$ accepts a covering $U_{A^{\prime}} \rightarrow A^{\prime}$ defined by the action of a free group in two generators. The category $U_{A^{\prime}}$ is of type (3,ii) in the Theorem.

Acknowledgments This paper was done during a postdoctoral stay of the first named author at UNAM. Both authors thankfully acknowledge the finantial support of UNAM and CONACyT, México.

Résumé substantiel en français. Soit k un corps algébriquement clos et A une k algèbre de dimension finie. Nous supposons $A=k Q / I$ avec Q un carquois sans cycles orientés (on dit alors que A est triangulaire) et I engendré par des chemins de Q (on dit que A est une algèbre monomiale). Il est connu que l'extension triviale $T(A)$ est de représentation finie si, et seulement si, la catégorie dérivée $D^{b}(\bmod A)$ est équivalente à $D^{b}(\bmod k \Delta)$ pour Δ un carquois de type Dynkin. Dans ce travail, nous donnons une caractérisation de la docilité de $T(A)$. On démontre que $T(A)$ est docile si, et
seulement si, A est dérivablement docile, c'est-à-dire quand la catégorie répétitive \hat{A} est docile. On donne aussi une caractérisation de la docilité de $T(A)$ par des propriétés du revêtement universel $U_{A} \rightarrow A$.
Théorème. Soit $A=k Q / I$ une algèbre monomiale triangulaire. Soit $F: U_{A} \rightarrow A$ le revêtement universel déterminé par l'action du groupe libre G. Les conditions suivantes sont équivalentes:
(1) $T(A)$ est docile ;
(2) A est dérivablement-docile;
(3) U_{A} satisfait à une des conditions suivantes:
(i) $U_{A}=A$ et A est dérivée équivalente à une algèbre héréditaire de type Dynkin ou Euclidien ou à une algèbre tubulaire ou à une semichaîne $S(n, m)$;
(ii) Le rang $r(G)$ du groupe G est positif et toute sous-catégorie convexe de U_{A} est dérivé équivalente à une algèbre héréditaire du type \mathbb{A}_{n};
(iii) $r(G)>0$ et il existe une suite $\left(B_{n}\right)_{n}$ de sous-catégories convexes de U_{A} avec $B_{n} \subset B_{n+1}, \lim _{n \rightarrow \infty} B_{n}=U_{A}$ et chaque B_{n} est dérivée équivalente à une semichaîne $S(n, m)$.

References

1. H. Asashiba, A covering technique for derived equivalence, J. Algebra 191 (1997), 382-415.
2. I. Assem, D. Happel and O. Roldán, Representation-finite trivial extension algebras, J. Pure Appl. Algebra 33 (1984), 235-242.
3. I. Assem and J.A. de la Peña, On the tameness of trivial extension of algebras, Fund. Math. 149 (1996), 171-181.
4. I. Assem and A. Skowroński, Iterated tilted algebras of type $\mathbb{A}, ~ M a t h . ~ Z . ~ 195 ~(1987), ~$ 269-290.
5. I. Assem and A. Skowroński, On tame repetitive algebras, Fund. Math. 142 (1993), 59-84.
6. M. Barot, T. Brüstle and J. A. de la Peña, Derived-tame tree algebras of type \mathbb{E}, Forum Math. 12 (2000), 713-721.
7. T. Brüstle, Derived tame tree algebras, Bielefeld (2000) (Preprint).
8. W.W. Crawley-Bœvey, Functorial filtrations II: Clans and the Gelfand problem, J. London Math. Soc. (2) 40 (1989), 9-30.
9. P. Dowbor and A. Skowroński, On Galois coverings of tame algebras, Arch. Math. (Basel) 44 (1985), 522-529.
10. P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, Representation theory, 1 (Proc. Workshop, Carleton Univ. Ottawa, Ont. 1979), 1-71; Lecture Notes in Math, vol. 831, Springer, Berlin, 1980.
11. P. Gabriel, The universal cover of a representation-finite algebra, Representations of algebras (Puebla, 1980), 68-105; Lecture Notes in Math., vol. 903, Springer, Berlin-New York, 1981.
12. C. Geiss, On degenerations of tame and wild algebras, Arch. Math. (Basel) 64 (1995), 11-16.
13. C. Geiss, Derived-tame algebras and Euler forms (2000) (Preprint).
14. C. Geiss and J. A. de la Peña, An interesting family of algebras, Arch. Math. (Basel) 60 (1993), 25-35.
15. C. Geiss and J. A. de la Peña, Auslander-Reiten components for clans, Bol. Soc. Mat. Mexicana (3) 5 (1999), 307-326.
16. D. Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988.
17. D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. (3) 46 (1983), 347-364.
18. B. Keller, Algèbres héréditaires par morceaux de type \mathbb{D}_{n}, C.R. Acad. Sci. Paris Sér. I Math. 312 (1991); no. 7, 483-486.
19. H. Krauze, Stable module categories and their representation type, Bielefeld (1996) (Preprint).
20. R. Martínez-Villa and J. A. de la Peña, The universal cover of a quiver with relations, J. Pure Appl. Algebra 30 (1983); no. 3, 277-292.
21. J. Nehring, Polynomial growth trivial extensions of non-simply connected algebras, Bull. Polish Acad. Sci. Math. 36 (1988), 441-445.
22. C. Novoa and J.A. de la Peña, On the representation type of certain trivial extensions (To appear in Proyecciones, Revista de la Universidad Católica de Chile).
23. J.A. de la Peña, Algebras whose derived category is tame, Trends in the representation theory of finite-dimensional algebras (Seattle, WA, 1997), 117-127; Contemp. Math., vol. 229, Amer. Math. Soc., Providence, RI, 1998.
24. Z. Pogorzaly and A. Skowroński, Selfinjective biserial standard algebras, J. Algebra 138 (1991), 491-504.
25. C.M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer-Verlag, Berlin, 1984.
26. C. M. Ringel, The repetitive algebra of a gentle algebra, Bol. Soc. Mat. Mexicana (3) 3 (1997), 235-253.
27. T. Wakamatsu, Stable equivalence between universal covers of trivial extension selfinjective algebras, Tsukuba J. Math. 9 (1985), 299-316.
C. NovoA

Dept. Matemática e Física
Universidad Católica de Goiás
Av. Universitaria 1440/ST. Universitario
CEP 74000-000 GOiÂNIA-Go
BRASIL
EMAIL: cristiannovoa@netscape.net
J.A. DE La Peña

Instituto de Matemáticas, UNAM
Circuito Exterior
Ciudad Universitaria
MÉXICO 04510, D.F.
MÉxICO
EMAIL: jap@penelope.matem.unam.mx

