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NON TRIVIAL OBJECT-FIXING ENDOFUNCTORS

OF FULL SUBCATEGORIES OF FINITE SETS

PIERRE DAMPHOUSSE, RENÉ GUITART AND FARHAN ISMAIL

RÉSUMÉ. L’objet de cet article est l’existence d’endofoncteurs des sous-catégories
pleines de Ens fixant les objets (les « fixobs ») mais non isomorphes à l’endofoncteur
identité. Ces endofoncteurs sont appelés « NTF » (Non Trivial Fixobs).

Cet article présente des résultats partiels sur ce problème qui, dans sa forme
générale ou dans le cas de la sous-catégorie pleine des ensembles infinis, reste à
résoudre: nous résolvons complètement le problème dans le cas des sous-catégories
pleines engendrées par des ensembles finis. Plus précisément, les NTF des sous-
catégories pleines engendrées par un ensemble fini ou par deux ensembles finis de
cardinaux différents sont totalement décrits, et il est établi que les sous-catégories
pleines engendrées par au moins trois ensembles finis non vides de cardinaux
différents ne possèdent pas de NTF. Comme il est expliqué à la section 1.3, le
problème général de l’existence de NTF se pose naturellement dans le contexte de
la recherche de quantificateurs non « standards ».

ABSTRACT. We investigate the question of the existence of endofunctors of full
subcategories of Ens fixing all objects but not isomorphic to the identity endofunctor
(we call such endofunctors non trivial fixobs or NTF). Some results are given on the
general problem, which remains open, and in the case of Inf (the full subcategory of
infinite sets). However, the problem is totally solved for full subcategories generated
by finite sets. We give a full and effective description of all NTF of full subcategories
generated by one or two finite sets, and we show that any full subcategory generated
by at least three non empty non isomorphic finite sets has no NTF. The origin of this
research is in the question of the existence of non standard quantifiers.

1. Introduction.

1.1. Trivial and non trivial fixobs. We shall use throughout 0/, 1/, 2/ , . . . , n/, etc. for 0, 1, 2,
. . . , n, etc. when it will please us to explicitely consider finite ordinals as the sets ∅, {0},
{0, 1}, etc.; Endn/ will mean “the monoid of endomorphisms of n/ = {0, 1, . . . , n−1}”,
and similar remarks hold for Sn/, An/, and so on. A constant map with value a will be
written �a�. If X, Y, Z, . . . are sets, 〈X, Y, Z, . . . 〉 is the full subcategory of Ens (the
category of sets and maps) generated by X, Y, Z, . . . ; if α = {αX , αY , αZ , . . . } is a
family of automorphisms of X, Y, Z, . . . (respectively), then α̂ is the endofunctor of
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〈X, Y, Z, . . . 〉 defined by α̂ : (f : X → Y ) �→ (αY ◦ f ◦α−1
X ), i.e. by the commutative

diagram

X
αX ��

f �� Y
αY��

X
α̂f

�� Y
.

The cardinal of X will be noted |X |.
We call “fixob” of a category C an endofunctor F of C fixing each object, i.e.

satisying FX = X for each object X . A fixob F isomorphic to the identity endofunctor
is canonically the same as the data of an isomorphism ϕ = {ϕX}X : IdC → F and it
is then given by ϕ̂; thus a fixob on C isomorphic to the identity just “reproduces” C in
a category isomorphic to C; on the other hand, a fixob F not isomorphic to the identity,
as a non inner endomorphism of group, “reorganizes” the structure of the arrows of the
category. We shall speak of Non Trivial Fixobs (NTF), as opposed to trivial or inner
fixobs for fixobs isomorphic to the identity. Note that an NTF can be an isomorphism.

A case of importance here is when C is 〈0/, 1/, 2/ 〉, and F is given by diagram (1.1). In
this case, arrows are obtained through quotienting, but this is not always the case, as
we will see in the next section.

0/

1/ 2/

�0�

��
�0� ��
�1�

��

∅

����
��

��
�� ∅

���
��

��
��

�

Id

��

Id,¬

��

�0�,�1�

��

Id

��
�−→

0/

1/ 2/

�0�

��
�0� ��

∅

����
��

��
�� ∅

���
��

��
��

�

Id

��

Id

��

�0�

��

Id

��
(1.1)

1.2. The category of infinite sets possesses NTF. Let Inf = Ens∞ be the category of
infinite sets and maps. Let us be given a functor G : Inf → Ens which does not increase
cardinals, i.e. |GX| ≤ |X| for each infinite set X —then

∐
GX X is of cardinal |X|;

we will write
∐

G X for
∐

GX X . For t ∈ GX , we write jt for the canonical injection
X → ∐

G X sending X “identically” on the t-th copy of X in
∐

G X . Then, to each
map f : X → Y , we associate

∐
G f :

∐
G X → ∐

G Y by mean of the rule “
∐

G f
sends s in the t-th copy of X in

∐
G X to f(s) in the Gf(t)-th copy of Y in

∐
G Y ”

that is f �→
(∐

G f : jt(s) �→ jGf(t)(f(s))
)
. This defines a functor

∐
G : Inf → Inf.

Let us also be given for each infinite set X a bijection αX :
∐

G X → X , through
which α̂ = {αX}X infinite yields a fixob α̂

∐
G : Inf → Inf given by

f : X → Y �−→ α̂
∐

Gf = αY ◦ ∐
Gf ◦ α−1

X


∐

G X

∐
Gf

��

αX

��

∐
G Y

αY=

��
X

α̂
∐

Gf
�� Y

 .

In the particular case when G = U for each X , with |U | = u, and Gf = IdU for
each f , α̂

∐
G transforms maps with an image of cardinal k into maps with an image
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of cardinal ku. Such a α̂
∐

G cannot be isomorphic to the identity endofunctor when
u > 1.

In the particular case when G is the imbedding of Inf in Ens, α̂
∐

G transforms maps
with an image of cardinal k into maps with an image of cardinal k · k = k2. Such a
α̂

∐
G cannot be isomorphic to the identity endofunctor. Here Inf is “reorganized” via

a fixob that “expands” (“unquotients”) it rather than “quotients” it.
More generally, if P ∈ N[X], then α̂

∐
P transforms maps with an image of finite

cardinal k into maps with an image of cardinal γ(k) = kP (k). Thus, {P}P∈N[X] is
an infinite family of NTF of Inf, no two of which are isomorphic. Another interesting
possibility is with G given by G(X) = Pfinite(X) (the set of finite subsets of X),
Gf : A �→ f(A); in this case, γ(k) = k2k.

Still more generally, if from a family {Gn}n≥1 we form the infinite series
∑

n≥1 Gn,
or some finite product Gn1 × · · · ×Gnk

, again we obtain a “cardinal reducing” functor
Inf → Ens, and hence new NTF.

1.3. A word of motivation. The data of a set X virtually entails all what X generates
in a model of a set theory (Zermelo-Fränkel, Gödel-Bernays, etc.), that is all what is
“constructible” from X in the theory; for example, it entails the elements of the trans-
finite sequence X , P1X , . . . , PkX , . . . , ∪k∈NPkX , P1

(
∪k∈NPkX

)
, . . . Mathematical

structures live as points of some terms of this sequence. For example, a topology on
X may be seen as a point on P2X , the cartesian product X × X as a point in P3X ,
mappings, relations as points in some PnX , the free monoid X∗ on X is a point in
P1

(
∪k∈N PkX

)
, etc.

The natural links between the structures on X are constrained by the natural links
between the terms of this transfinite sequence. And so basically we have to know what
are the natural links between the Pγ ’s, and moreover what “natural” means here.

For example, let us consider the links between P1 and P2. There are three known
endofunctors P of Ens with PX = P1X: the direct image functor ∃, the inverse
image functor C (contravariant), and ∀, defined respectively on X

f→ Y by A �→ f(A),
B �→ f−1(B), and A �→ Y \f(X\A) (the complement of the image of the complement).
Now, the apparently simple question: “How is PX naturally imbedded in P2X?” has at
least 14 meanings, for it means: “What are the natural transformations imbedding PX
in QRX?”, while P, Q and R may take their values in {∃, C,∀} with the constraint that
P and QR have the same variance. Here “at least” means that there might well be other
functors L like ∃, C and ∀ satisfying LX = PX , so that the question may have more
than 14 meanings (in the case with 14 meanings, i.e. with just {∃, C,∀}, a complete
classification of the natural links between IdEns, P1 and P2 is stated in [DaGu1], with
the details to be found in [DaGu2].

If Ens had an NTF L, then ∃L, CL and ∀L would form a new (“non standard”)
triplet of functors with adjunctions relations “parallel” to the well known adjunction
relations between ∃, C and ∀ (when P is seen as ordered by inclusion), and that would
mean a lot of non usual relations between the PγX’s. Whence the question: “Has Ens
non trivial fixobs, and hence non standard quantifiers?”

1.4. Results. This paper deals with the finite version of this problem. We give an
effective procedure to list all NTF of any full subcategory 〈X, Y 〉 of Fin = Ens fin (the
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category of finite sets and maps); using the resulting description, we get that any full
subcategory of Fin has no NTF if it contains three non empty non isomorphic objects
X, Y, Z. Hence, Fin itself has no NTF (this is also proved separately when studying
initial sections). Intermediate results, not depending on finiteness, are given in their full
generality. Part of the results of this paper form the material of an explicit developement
in the thesis of Farhan Ismail ([FI]).

2. NTF of initial sections of Ens.

2.1. A natural intrinsic criterion. An initial section of Ens is a full subcategory of
Ens such that if it has an object X , it has all objects Y with |Y | ≤ |X|. We shall write
Ens<κ for the full subcategory of Ens generated by all sets of cardinal strictly less than
κ (the initial section bounded by κ); without loss of generality, we may restrict to the
skeleton of Ens<κ, written ens<κ, whose objects are the cardinals that are elements of
κ; we also write ens for the skeleton of Ens which is the full subcategory generated by
all cardinals. Lower case greek letters µ, ν, . . . represent cardinals, while m, n, . . .
represent only finite cardinals. We write [µ, ν : (xι)ι∈µ] the map µ → ν given by
ι �→ xι for each ι ∈ µ, and (as above) simply �a� for a constant map with value a. F
will be used only to mean a fixob.

Fixobs of initial sections preserve epis and monos as do all endofunctors of any full
subcategory of Ens. Consequently, given a morphism f : X → Y of an initial section,
|Im f | = |Im Ff | because F transforms

λ
		 i

		�
��

X

p 

 

���� f �� Y

into
λ

		 Fi
		�

��

X

Fp 

 

���� Ff �� Y
.

In particular, F transforms constant maps into constant maps. Let us remark here that
“|Im f | = |Im Ff | for fixobs of initial sections” implies that the examples of NTF of
Inf = Ens∞ (see 1.0) cannot extend to NTF of Ens for they fail to send constant maps
on constant maps.

If a fixob F of ens<κ sends 1/
�x�−→ µ (µ ∈ κ) on 1/

�y�−→ µ, then, for any constant map

λ
�x�−→ µ in the initial section ens<κ, F�x� = �y�, for

λ 1 µ
��

�x�

�0� �� �x� ��

is transformed into

λ 1 µ
��

F�x�

�0� �� �y� �� ,

i.e. a fixob F transforms all constant maps with a given value to constant maps with
another given value, thus inducing an endomorphism of each object in the initial section.
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Given a fixob F : ens<κ → ens<κ, for each λ < κ, let F̃λ : λ → λ be the induced
endomorphism at level λ, i.e. F �x0� = �F̃λx0�: F [1, λ : x0] = [1, λ : �F̃λx0�]. For
µ, ν < κ,

1 µ ν��

[1,ν :xι]

[1,µ:ι]
��

[µ,ν :(xι)ι∈µ]
��

is transformed into

1 µ ν��

[1,ν :F̃ νxι]

[1,µ:F̃ µι]
��

[µ,ν :(yι)ι∈µ]
�� ,

which means y
F̃ µι

= F̃νxι, i.e. that F̃ = {F̃µ}µ∈κ is a natural transformation:

µ

F̃ µ ��

x �� ν

F̃ ν��
µ

y
�� ν

.

It is immediate that, given fixobs R and H of an initial section, R̃H̃ is the natural
transformation induced by RH , and that if G extends a fixob F of ens<κ to a fixob
of ens<λ, (κ ≤ λ), then for each ι ∈ κ, F̃ι = G̃ι. Moreover, given a family of
automorphisms α = {αa}a∈κ of elements of κ, we immediately check that ˜̂α = α.
Hence:

A fixob F of ens (resp. ens<κ) is isomorphic to the identity endofunctor if,
and only if, the induced natural transformation F̃ is a natural equivalence,
or equivalently, if, and only if, it transforms bijectively each set of constant
maps 1/ → λ into itself. One easily checks that this exactly means that a
fixob F is isomorphic to the identity endofunctor if, and only if, it commutes
with coproducts.

(2.1)

2.2. The identity naturally imbeds in fixobs of initial sections. The fixobs of ens<0

(the empty category), ens<1 and ens<2 can only be the identity endofunctor. Let now
F be a fixob of ens<3. If F̃2/ is an isomorphism (i.e. the identity map or the negation,
which we write ¬), then F is isomorphic to the identity endofunctor, as observed in
(2.1) above, since F̃0/ and F̃1/ are obviously isomorphisms. If F̃2/ = �0�, then F must
send all non isomorphisms (i.e. here the constant maps) on �0�, and the negation (in
this case, essentially all isomorphisms), on the identity

1/

F̃ 1/
��

�x�
�� 2/

F̃ 2/ =�0�
��

1/
F�x� �� 2/

, 1/ 2/ 2/��
�¬x�

�x� �� ¬ �� F�−→ 1/ 2/ 2/��
�0�

�0� �� F¬ ��

 .

It is immediate that this defines a fixob of ens<3, which we write R(0). If F̃2/ = �1�, we
have in a similar way F = R(1), with R(1) as in

R(i), (i = 0, 1),
{

isomorphisms �→ identities

non isomorphisms �→ constant maps �i� .
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For instance, R(0) is depicted in (1.1) above.

Proposition 2.1. R(0) and R(1) are isomorphic NTF and do not extend to fixobs of
ens<4.

Proof. α = {Id0, Id1,¬} is an isomorphism R(0) → R(1); both R(0) and R(1) are NTF

by (2.1) since R
(i)
2/ = �i�, (i = 0, 1). R(0) and R(1) being isomorphic, we now restrict

to R(0). So, let F be a fixob of ens<4 extending R(0). Letting x vary through injections
2/ �� �� 3/ in

2/

F̃ 2/ =�0���

x �� 3/

F̃ 3/��
2/

Fx
�� 3/

,

we see that F̃3/ must be �∗� : 3/ → 3/ for some element ∗ ∈ 3/ , and that for any

injection 2/ ��x �� 3/ , Fx(0) = ∗. Upon composing these injections with the negation,

and knowing that F (¬) = Id2/ (since F extends R(0)), we obtain

F [2/ , 3/ : 0, 1] = F [2/ , 3/ : 1, 0] = [2/ , 3/ : ∗, a]

F [2/ , 3/ : 0, 2] = F [2/ , 3/ : 2, 0] = [2/ , 3/ : ∗, b]
F [2/ , 3/ : 1, 2] = F [2/ , 3/ : 2, 1] = [2/ , 3/ : ∗, c]

with a, b, c ∈ 3/ − {∗}. Since F preserves the cardinal of the image, ∗ �∈ {a, b, c} ⊂ 3/ ;
thus {a, b, c} is of cardinal 1 or 2. But upon evaluating F on commutative diagrams of
the form

2/ 3/ 2/
�� �� �� �� ,

we reach the contradictory conclusion that a, b, c must be different. The argument goes
as below for a �= b ,

2/ 3/ 2/��
�0�

��
[2/ ,3/ ; 0,1]

��
f=[3/ ,2/ ; 0,0,1]

�� �� �−→ 2/ 3/ 2/��
�0�

��
[2/ ,3/ ; ∗,a]

�� Ff �� �� : Ff(a) = 0

2/ 3/ 2/��
Id

��
[2/ ,3/ ; 0,2]

��
f=[3/ ,2/ ; 0,0,1]

�� �� �−→ 2/ 3/ 2/��
Id

��
[2/ ,3/ ; ∗,b]

�� Ff �� �� : Ff(b) = 1


: a �= b

and similarly for b �= c and a �= c (considering for example Id2/ = [3/ , 2/ ; 1, 0, 1] ◦
[2/ , 3/ ; 1, 2] & �1� = [3/ , 2/ ; 1, 0, 1]◦[2/ , 3/ ; 0, 2] for b �= c and Id2/ = [3/ , 2/ ; 0, 0, 1]◦[2/ , 3/ ; 1, 2]
& �0� = 3/ , 2/ ; 0, 0, 1] ◦ [2/ , 3/ ; 0, 1] for a �= c). �

Corollary 2.2. If 4 ≤ κ, for any fixob F of ens<κ or Ens, the components of F̃
are injections, i.e. the identity endofunctor naturally imbeds in F . Moreover, F is
isomorphic to the identity if, and only if, this imbedding is an isomorphism.
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Let F be such a fixob. Since F can neither extend R(0) nor R(1), F̃2/ is bijective; the
result follows then from the commutative diagrams

2/
��

F̃ 2/ ��

�� i �� α

F̃α��
2/ ��

Fi
�� α

,

when i runs through all injections 2/ �� �� α .

So, given a fixob F of ens<ω, the components of F̃ are injective endomorphisms of
finite sets, i.e. F̃ is a natural equivalence.

Corollary 2.3. For all n ≥ 4, all fixobs of ens<n/ are isomorphic to the identity
endofunctor.

Thus, the identity endofunctor of Ens<ω is, up to an isomorphism, determined by its
value on objects. We now go at the analysis of IdC for C any full subcategory of Fin.

3. The endomorphisms of Endn/. The aim of this section is to fully describe endo-
functors F of Endn/. Results whose proof does not require finiteness are given in their
full generality. The endofunctors of Endn/ are characterized in Theorems 3.1 and 3.8.
We begin with a few simple facts.

The identity endofunctor of any full subcategory of Ens is the only endo-
functor fixing all constant maps (i.e. F �k� = �k� for all k ∈ X).

(3.1)

Indeed, for each k ∈ X and each f : X → Y , we have, f ◦ �k� = �fk�; if F fixes all
constant maps, then we have Ff ◦ �k� = �fk�, which implies Ff(k) = f(k) for all
k, i.e. Ff = f ; since f is an arbitrary map X → Y , F = Id.

Observation (3.1) immediately implies that fixobs of any full subcategory of Ens are
exactly those that are bijective on the set of constant maps; however, in general, a fixob
is not determined by its value(s) on constant maps; for example, F, G : End7/ → End7/

given by

Ff = (0, 1)(2, 3) if S7/ � f is odd, Id if it is even, and u if §7/ �� f ;

Gf = (0, 1) if S7/ � f is odd, Id if it is even, and u if S7/ �� f ;

where u : {0, 1, 2, 3, 4} �→ 4, {5, 6} �→ 6, take the same unique value on constant maps
but are not even isomorphic.

Given h, k ∈ X and F an endofunctor of EndX , F �h� and F �k� induce
the same partition of X in fibers. Moreover, F �k� = F �h� if, and only if,
Im F �k� = Im F �h�.

(3.2)

Indeed, for all k, h ∈ X , �k� ◦ �h� = �k�, whence F �k� ◦ F �h� = F �k�. Thus,
for all h, k ∈ X , (mod F �h�) ⊂ (mod F �k�) (Notation: for a mapping g, (mod g)
is the equivalence partitioning the domain of g into fibers). Since this is for all h, k,
(mod F �k�) = (mod F �h�). Moreover, F �k� and F �h� are idempotent maps, and
idempotents having the same fibers are equal if, and only if, they have the same image.
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3.1. When F induces an automorphism of AutX . If F induces an automorphism of
AutX , then F transforms constant endomaps of X into constant maps since, for all
f ∈ AutX ,

X

f
��

�k� �� X

X
�k�

��������

is transformed into

X

Ff
��

F�k� �� X

X
F�k�

��������
,

and Ff could be any g ∈ AutX . Let F̃ be the endomorphism of X defined through
�F̃k� = F �k�. As for F̃ in the case of a fixob F of an initial section, this is a natural

transformation:

Ff(F̃(x))=
(
Ff ◦�F̃(x)�

)
(x)= (Ff ◦F �x�)(x)

= F (f ◦�x�) (x)=
(
F �f(x)�

)
(x)

=�F̃(f(x))�(x)= F̃(f(x))

i.e.

X

F̃
��

f �� X

F̃
��

X
Ff �� X

is commutative. In fact, F̃ is bijective; indeed, for each f ∈ AutX , the diagram

X

f
��

�k� �� X

f
��

X
�fk� �� X

is transformed into

X

Ff
��

F�k�def
=�̃F k� �� X

Ff
��

X
F�fk�def

=�̃F fk� �� X

whence �F̃fk� = �Ff F̃k�. If f runs through AutX , FfF̃k runs through X for any
fixed k, which establishes the surjectivity of F̃; moreover, if F̃ identifies k1 and k2, then
F̃ shall identify fk1 and fk2 for all f ∈ AutX . Therefore, either F̃ is injective or it is
constant; if |X| ≤ 1, F̃ is clearly injective, and if not, F̃ being already surjective, it
cannot be constant, and thus it is injective. Therefore, we just showed that

An endofunctor F of EndX inducing an automorphism of AutX is
isomorphic to the identity endofunctor. It is then expressible as the
inner automorphism ̂̃

F.
(3.3)
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As the converse is true, we have

Theorem 3.1. An endofunctor F of EndX is isomorphic to the identity if, and only if,
it induces an automorphism of AutX .

Proposition 3.2. The mapping (̂ ) : AutX → Aut EndX given by ϕ �→ ϕ̂ is an isomor-
phism of groups.

Proof. (̂ ) is clearly a homomorphism of groups. (3.3) implies its surjectivity. If ϕ ∈
Ker (̂ ), then for each k, ϕ̂ �k� = �k�, is, �ϕk� = �k� for all k, i.e. ϕ = IdX ; thus

Ker (̂ ) = {IdX}, and (̂ ) is injective. �

Thus AutX imbeds in End EndX : AutX
∼ �� Aut EndX

� � � �� End EndX . Proposi-
tion 3.2 implies that all automorphisms of EndX are inner, and therefore induce inner
automorphisms of AutX . Conversely, an inner automorphism ϕ̂ of AutX clearly extend
to the inner automorphisms ϕ̂ of EndX .

Proposition 3.3. [1] The automorphisms of AutX which extend to endomorphisms of
EndX are those extending to automorphisms of EndX , and they are exactly the inner
automorphisms; [2] moreover, an inner automorphism of AutX extends uniquely as an
automorphism of EndX .

Proof. [1] results from (3.3). It remains to prove [2]. For |X| ≤ 2, AutAutX = {IdAutX},
and there is nothing to prove. Thus, we need just check the unicity when |X| ≥ 3. Let

F induce the inner automorphisms ϕ̂ of AutX . Then ϕ̂−1 ◦ F induces the identity on
AutX . It is sufficient to prove that the only endofunctor F inducing the identity on

AutX is the identity endofunctor, for then ϕ̂−1 ◦ F = Id EndX , which implies F = ϕ̂.
Thus let F induce the identity on AutX . Let k ∈ X and ψ be an automorphism having
only k as a fixed point. Then F �k� = Fψ ◦F �k�, i.e. F �k� = ψ ◦F �k�. This implies
that F �k� = �k�, which implies in turn that F = Id EndX by (3.1). �

Corollary 3.4. A fixob F of an initial section is isomorphic to the identity if, and only
if, it induces an automorphism of each AutX .

Proof. We need just prove that if F induces an automorphism of each AutX , then it is
isomorphic to the identity. Without loss of generality, we may suppose that F fixes each

AutX for we may compose F with
̂
F̃X

−1
. In this case, by (3.3), F fixes each EndX ,

and from that we deduce that F fixes all constant maps in the initial section since

∀f :
X

�h� ���
��

��
�

f �� Y

�h�
��

Y

�−→
X

F�h� ���
��

��
�
Ff �� Y

�h�
��

Y

implies that F �h� = �h�, and thus, as observed in (3.1), that F = IdEns. �

The following diagram sums up the situation, where In EndX , InAutX are the “inner”
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endofunctors (i.e. the trivial fixobs):

EndAutX End EndX
��

(Pullback) Aut EndX

��
��

AutX
( )̂
↙ (Proposition 3.2)

��

∼����������

AutAutX

��

��

InAutX
��(3.3)�� In EndX

∼��

∼
��

(in fact, the four isomorphisms of this diagram are also obtained by Schreier in [Sch1]).
In the study of fixobs of initial sections, we associated with each fixob F of Ens

a natural transformation also written F̃, which imbeds, up to within an isomorphism,
the identity endofunctor in F ; this transformation F̃ came from the value of F on
constant maps which were transformed into constant maps, and coincide therefore with
the transformation F̃X (for a fixob FX of EndX ) when FX induces an automorphism
of AutX and is induced by a fixob of an initial section containing X .

3.2. When F kills Sn/. We shall say that two endomorphisms f, g of X are isoweighted
if they have the same “number” of fibers of any given cardinal. In particular,

∣∣� Im f
∣∣ =∣∣� Im g

∣∣ (the same number of empty fibers). One easily checks that f, g are isoweighted
if, and only if, there exists ϕ, ψ ∈ AutX for which

X
ϕ ��

f �� X
ψ��

X g
�� X

is commutative (see Clifford [ClPr1] for similar considerations). Clearly, an endofunctor
F of EndX preserves “isoweightedness”, and if F kills AutX , F is constant on any
class of isoweighted maps.

For any f ∈ EndX , if |Im f | < |X|, then f is isoweighted to an idempotent. (3.4)

To prove (3.4), we may restrict to the case where X is infinite since (3.4) is immediate
for X finite. When X is infinite, it is then always possible to “construct” a partition
{Au}u∈Im f of X with, for each u ∈ Im f , u ∈ Au and |Au| =

∣∣f−1(u)
∣∣. Indeed, (a)

since |Im f | < |X|, � Im f = |X|; choose a bijection ψ : X → � Im f and create the
partition of � Im f :

{
Cu = ψ(f−1(u))

}
u∈Im f

; (b) for each u ∈ Im f , choose tu ∈ Cu

and set Bu = (Cu\tu) ∪ {u}; also, set T = {tu}u∈Im f ; (c) because |Im f | < |X|, one
of the Bu is of cardinal |X|, say Bu0 ; set

Au =
{

Bu if u �= u0

Bu ∪ T if u = u0 .

Then, g(t) = “the unique u such that t ∈ Au” defines an idempotent g isoweighted
to f .

Note that (3.4) is true without any restriction on Im f if X is finite; the restriction
|Im f | < |X| is necessary if X is infinite (e.g. the shift ω → ω is isoweighted to no
idempotent).
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Since constant maps X → X are conjugate (and hence a fortiori isoweighted) to
each other, if F kills AutX , then F assumes the same value on all constant maps. Let
αF be this value of F on any constant map; note that αF is an idempotent in EndX .

Proposition 3.5. Let F be an endofunctor of EndX killing AutX . Then, for all f such
that |Im f | < |X|, F = αF .

Proof. The statement is vacuously true if |X| ≤ 1. It is trivially true if |X | = 2 since
then |Im f | < |X | means “constant”. So we suppose |X | ≥ 3.

—Case 1: |Im f | is finite. Let us suppose that there exists endomorphisms of X
such that 1 < n = |Im f | < |X |, with Ff �= αF . Let us consider the smallest n for
which such an f exists. Since f isoweighted to an idempotent (by (3.4)), we suppose
f idempotent. Clearly, one of the fibers A1, A2, . . . , An of f , say A1, has at least two
elements. Let B1, B2, . . . , Bn be a partition of X with |Bi | = |Ai |, b1 ∈ B1 ∩ A1,
b2 ∈ B2 ∩ A1, b3 ∈ B3, . . . , bn ∈ Bn, and let g(t) = bk if t ∈ Bk. Then (1) f and g
are isoweighted, whence Ff = Fg, and (2) | Im(f ◦ g) | ≤ n − 1; so we have

αF = F (f ◦ g) = Ff ◦ Fg = Ff ◦ Ff = Ff (♦)

which is a contradiction as we supposed Ff �= αF .
—Case 2: |Im f | is infinite. Since f is isoweighted to an idempotent (by (3.4)), we

suppose f idempotent. Since Im f < |X|, one of the fibers of f is of cardinal strictly
larger than |Im f |, say X0 = f−1(x0). Then, we choose a partition of X “isomorphic
to the partition induced by (mod f)”, with a system of representatives in X0. Let g be
the projection of this partition to its system of representants. (1′) f ◦ g is constant, (2′)
f and g are isoweighted. Then we have again (♦). �
Corollary 3.6. The endofunctors of Endn/ killing Sn/ are classified by the idempotents
of Endn/: each such endofunctor of Endn/ is of the form

Fhf =
{

Idn/ if f ∈ Sn/

h otherwise.

for an idempotent h ∈ Endn/, and for each idempotent h ∈ Endn/, this defines an
endofunctor of Endn/.

Corollary 3.7.

[1] Let F be a fixob of 〈X, Y 〉 with |X | < |Y |. Then, if F kills AutX and AutY ,
it also kills EndX .

[2] Let F be a fixob of 〈X, Y 〉 with 0 �= |X | < |Y |. Then, F cannot kill EndY .
[3] Let F be a fixob of 〈X, Y, Z〉 with 0 �= |X | < |Y | < |Z |. Then, F cannot kill

AutY and AutZ .
[4] There are no fixobs of Inf killing all groups of automorphisms.

Proof. [1] Let i : X → Y imbed X in Y , and let X0 = Im i. For each g : X → X , let
g : Y → Y be an “extension” of g with

Im g = i(Im g) :
X

g
��

�� i �� Y
g��

X �� i �� Y

.
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This diagram is transformed into

X
Fg ��

��Fi �� Y
Fg=αY��

X ��Fi �� Y

(we write αZ for the value of F on all u’s in EndZ with | Im u | < |Z |). With g = IdX ,
we see that αY behaves on X0 as IdX0 , and with g a constant map, that it behaves on
X0 as αX , if we identify X and X0 via i. Therefore, αX = IdX , i.e. F kills EndY .

[2] Let ε : Y �� �� X be a surjection. Let us suppose that a fixob F kills EndY .
Then

Y X Y��
ε◦i

ε �� �� �� i ��

is transformed into

Y X Y��
IdY

Fε �� �� �� Fi �� ,

which implies that Fi : X �� �� Y is also surjective, hence bijective. Contradiction!
[3] Let 0 < |X | < |Y | < |Z |, with F killing AutY and AutZ . Then, by (1)

(applied to Y, Z), F kills EndY , and by (2) (applied to X, Y ), F cannot kill EndY .
Contradiction.

[4] This is an immediate consequence of (3). �

3.3. When F induces a proper endomorphism of Sn/.

3.3.1 The classification theorem. For each σ ∈ AutX , we say that u ∈ EndX is
σ-idempotent when u = u ◦ u = u ◦ σ = σ ◦ u, i.e. when the following diagram is
commutative,

X

σ

��
u

���
��

��
��

��
��

��
��

X

u

[c]

���
��

��
��

�

X

u

															

[b]

u

��








u

[a]
�� X

i.e. when [a] u is idempotent, [b] u takes its values in the fixed points of σ, and [c] u
“quotients” each orbit of σ to one point (i.e. the partition of X into σ-orbits is finer than
the partition into u-fibers). These criteria correspond to triangles [a], [b] and [c] being
commutative. Given a subgroup G of AutX , we say that u is G-idempotent when it is
σ-idempotent for all σ in G; note that {IdX}-idempotent simply means idempotent,
and that there are no AutX -idempotent.

Now, given an endomorphism Φ of Sn/, and an (Im Φ)-idempotent λ in Endn/,

Φλf =
{

Φf if f ∈ Sn/

λ otherwise
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defines a functor Φλ : Endn/ → Endn/. First, Φλ(Idn) = Φ(Idn) = Idn. Next, let
f, g ∈ Endn/. There are four cases to consider when calculating Φλ(f ◦ g), depending
on f, g being or not isomorphisms. (α) f and g are both isomorphisms: then f ◦ g is
an isomorphism, whence Φλ(f ◦ g) = Φ(f ◦ g) = Φf ◦ Φg = Φλf ◦ Φλg. (β) Only f
is an isomorphism: then f ◦ g is not an isomorphism, whence Φλ(f ◦ g) = λ; on the
other hand, Φλf ◦Φλg = Φf ◦λ = λ (the last equality comes from the fact that λ takes
its values in the fixed points of Im Φ). (γ) Only g is an isomorphism: then, as in (β),
Φλ(f ◦ g) = λ, and Φλf ◦ Φλg = λ ◦ Φg = λ (the last equality comes from the fact
that λ quotients Im Φ-orbits to one point). (δ) Neither f nor g are isomorphisms: then,
because n is finite, f ◦ g is not an isomorphism, and Φλ(f ◦ g) = λ ; on the other hand,
Φλf ◦ Φλg = λ ◦ λ = λ (the last equality comes from λ being idempotent). Let us
remark that finiteness is necessary for G-idempotence to allow for Φλ being a functor
only when neither f nor g are isomorphisms, but it is then essential. For the remaining
of the subsection, all sets will be finite. The aim of this subsection is the following
theorem.

Theorem 3.8. [1] The endofunctors F of Endn/ inducing a non invertible endomorphism
Φ of Sn/ are of the form

Ff = Φhf =
{

Φf if f is an isomorphism

h otherwise

where h is a Φ(Sn/)-idempotent; moreover, each Φ(Sn/)-idempotent defines in this way
an endofunctor of Endn/. Therefore, NTF of 〈n/〉 are classified by pairs (Φ, h) with Φ a
non invertible endomorphism of Sn/ (see Theorem 3.1) and h a Φ(Sn/)-idempotent.

[2] On the other hand, an endomorphism F of Endn/ inducing an automorphism Φ
of Sn/ is of the form Ff = ϕ̂f = ϕ ◦ f ◦ ϕ−1 for a unique ϕ ∈ Sn/ (this is Theorem
3.1).

Statement [2] is already contained in Theorem 3.1 and Proposition 3.3. The second
part of statement [1] is proved above, and the first part has already been proved when
F kills Sn/ for it is then Corollary 3.6. So, for the remaining of this subsection, we may
suppose, to prove [1], that F induces an endomorphism of Sn/ with a proper kernel (we
speak of a proper endomorphism).

Let Φ be an endomorphism of Sn/. For n ≥ 5, Im Φ is generated by an involution,
since An/ is the only normal subgroup of Sn/. The same is true for n = 3. The only singular
case is with n = 4, since S4/ has two proper normal subgroups. The cases n = 0, 1, 2
are not concerned with this section since Sn/ has no proper normal subgroup. So, we
will consider separately the case [n ≥ 3, ker Φ = An/], where Im Φ is generated by an
involution, and the case [n = 4, ker Φ �= A4/].

3.3.2 Case [n ≥ 3, ker Φ = An/]. In these cases Φ(Sn/) is generated by an involution,
say Φ(Sn/) = 〈τ〉. We first observe that

For all k ∈ n, F �k� is a single 〈τ〉-idempotent mapping. (3.5)

Indeed, (1) F �k� is an idempotent taking its values in the fixed points of τ , for if 0, i, k
are different, (0, i) ◦ �k� = �k� is transformed into τ ◦ F �k� = F �k�. (2) F �k� is
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the same for all k: for n = 3, τ ◦ F �k� = F �k� implies that F �k� = �h�, with h the
unique fixed point of τ , while for n ≥ 4, with 0, i, j, k different,

n/ n/ n/
��

�j�

�k� ��
(0,i)(j,k)

��

is transformed into

n/ n/ n/
��

F�j�

F�k� �� Idn �� .

(3) F �k� quotients each 〈τ〉-orbit to one point for, i, j, k being different, �k� ◦ (i, j) =
�k� is transformed into F �k� ◦ τ = F �k� (this proves (3.5)). As before, we write αF

for the single value of F on constant maps.
Next, we observe that if n ≥ 4, two isoweighted maps f, g, which are not isomor-

phisms, may be “connected” by two even permutations

n/

ϕ
��

f
�� n/

ψ��
n/

g �� n/

,

which implies that F is constant on each isoweighted of non isomorphisms. From this
observation, it follows that for n ≥ 4, F is constant on Endn/ − Sn/, with value αF .
This is proved by induction on | Im f | (f ∈ Endn/ −Sn/). Without loss of generality, we
may suppose Ff idempotent (see (3.4)). For | Im f | = 1 (ie f constant), this has been
proved above. Let f have k + 1 < n elements in its image. Then select g isoweighted
to f (hence | Im g | = | Im f |) with | Im g | = k + 1 in such a way that g ◦ f has an
image of cardinal at most k (this is always possible if k + 1 < n). If we suppose that
F takes the value αF on maps u with | Im u| ≤ k, then we have (♦) (see the proof of
Proposition 3.5), which completes the proof.

For n = 3, F is also constant on End3/ − S3/ . Let

Φ =
(

(0, 1) (0, 2)
σk σk

)
,

with σk a transposition fixing some k ∈ 3/ . F �h� = �k� for all h ∈ 3/ (see (2) in the
proof of (3.5) above). This implies that for any f (bijective or not) Ff fixes k since F
transforms

3/ 3/ 3/
�fh�

�h� �� f ��

into

3/ 3/ 3/
�k�

�k� �� Ff �� .

Now,

π =
(

0 1 2
0 0 2

)
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being idempotent, Fπ is idempotent; it follows that Fπ is (1) either conjugate to π
itself, or (2) a constant map, or (3) Id3/ — which are the only idempotents of End3/ . (1)
is impossible; indeed, we may suppose without loss of generality that F fixes π; then,

µ =
(

0 1 2
2 1 2

)
being conjugate to π by the cyclic transposition ρ = (0, 1, 2) (whose image by F is
Id3/ ), we would have Fπ = Fµ = π, and thus,

3/ 3/ 3/
�2�

π �� µ �� F�−→ 3/ 3/ 3/
�k�

π �� π ��
(

= 3/ 3/��
�k�

π ��
)

(∗)

which is impossible, the right-hand side being not commutative. (3) is also impossible,
for then F would send conjugates of π to Id3/ , and we would have, for ν = ρ−1 ◦ µ ◦ ρ,
Id3/ = Id3/ ◦ Id3/ = Fν ◦ Fπ = F (ν ◦ µ) = F �0� = �k�. Thus, we have (2), i.e.
Fπ = �k� (see (∗) above). As all f with | Im f | = 2 differ from a conjugate of π by
ρ or ρ−1, Ff = �k� for all these f . This completes the proof that Ff is constant on
End3/ − S3/ . Thus

For n ≥ 3, if Φ(Sn/) � S2/ , F is constant on Endn/ − Sn/, with value αF . (3.6)

And (3.6) implies directly Theorem 3.8 when ker Φ = An/.

3.3.3 Case [n/ = 4/, ker Φ = K4/]. The normal subgroups of S4/ are

K4/ = {Id, (0, 1)(2, 3), (0, 2)(1, 3), (0, 3)(1, 2)} and A4/ ;

K4/ is isomorphic to the Klein four-group. It is the kernel of 24 endomorphisms of S4/,
which are easily seen as follows. If Ψ is the endomorphism of S4/ given by

Ψ =
(

(0, 1) (0, 2) (0, 3)
(0, 1) (0, 2) (1, 2)

)
,

whose kernel is K4/, then Ψ maps S4/ onto S3/ ; when Ψ is followed by any of the six
automorphisms of S3/ , and then by any of the the four embeddings of S3/ in S4/, we get
the 24 endomorphisms of S4/ with kernel K4/.

S4/
Ψ �� S3/

∼
6 choices

�� S3/ ��
4 choices

�� S4/

It amounts also to considering ϕ̂ ◦ Ψ when ϕ runs through S4/. So, when looking at
endofunctors of End4/, up to within an isomorphism of functors, inducing an endomor-
phism of S4/ with kernel K4/ we may suppose, without loss of generality, that F induces
Ψ. On the other hand, Ψ is induced by

Ψ�3�f =
{

Ψf if f ∈ S4/

�3� otherwise.
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Thus, Theorem 3.8, when the kernel of the induced endomorphisms of Sn/ is not An/

(the case is with n = 4), is proved if we can prove that Ψ�3� is the only endofunctor of
End4/ inducing Ψ.

So, let F be an endofunctor of End4/ inducing Ψ on S4/. We observe that

(1) if f, g are isoweighted with Ff = �3�, then F = �3�, since g = ψ ◦ f ◦ ϕ−1 is
transformed into Fg = Ψ(ψ) ◦ �3� ◦ Ψϕ−1 with Ψϕ, Ψψ fixing 3;

(2) F �k� = �3� for all k; since �k� is isoweighted to �0�, it is sufficient (by (1)) to
prove that F �0� = �3�; this in turn comes from Fx �0� = F ((1, 2) ◦ �0�) =
Ψ((1, 2)) ◦ F �0� = (1, 2) ◦ F �0� and F �0� = F ((2, 3) ◦ �0�) = Ψ((2, 3)) ◦
F �0� = (0, 1) ◦ F �0�;

(3) for all f in End4/, Ff fixes 3 for

4/ 4/ 4/
�f0�

�0� �� f �� F�−→ 4/ 4/ 4/
�3�

�3� �� Ff �� .

To prove that Ff = �3� for all non injective f , it is sufficient to prove, in view
of observations (1) and (2), that in each isoweighted class of a non injective and non
constant map f , there is a g with Fg = �3�.The isoweighted classes of such f are:

•••�� ���� �� •�� ���� ��

(A)
One three-point fiber,
One one-point fiber.

• •
••�� ���� �� ••�� ���� ��

(B)
Two two-point fibers.

• •
••�� ���� �� •�� ���� �� •�� ���� ��

(C)
One two-point fiber,
Two one-point fibers.

• • •

We can prove, through various compositions and conjugations (see below) that

F

(
0 1 2 3
0 0 0 3

)
= �3� F

(
0 1 2 3
0 0 3 3

)
= �3� F

(
0 1 2 3
0 0 1 2

)
= �3�

Here are the details.
� Case (A) – Let f be

f =
(

0 1 2 3
0 0 0 3

)
.

Letting σ run through S3/ ⊂ S4/, we have Ff = F (f ◦σ) = Ff ◦Fσ = Ff ◦σ, whence
Ff({0, 1, 2}) is a singleton. On the other hand, Ff = F ((1, 2)◦f) = (1, 2)◦Ff , and
similarly Ff = (0, 2) ◦ Ff , whence Ff never takes a value in {0, 1, 2}. We conclude
that F = �3�.

� Case (B) – Let f be

f =
(

0 1 2 3
0 0 3 3

)
.

Ff = F

[(
0 1 2 3
0 0 0 3

) (
0 1 2 3
0 1 3 3

)]
= �3� ◦ F

(
0 1 2 3
0 1 3 3

)
= �3�

� Case (C) – Let f be

f =
(

0 1 2 3
0 0 1 2

)
.
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C.1. Ff = F (f ◦ (0, 1)) = Ff ◦ (0, 1), whence Ff is of the form(
0 1 2 3
k k t 3

)
(recall that it fixes 3 by observation (3)). As �0� = f3, we have �3� = (Ff)3, and
therefore k �∈ {0, 1}, t �= 2
C.2. In fact k �= 2. Indeed, with k = 2

– t ∈ {0, 1} would be impossible because

(Ff)3 =
(

0 . . .
2 . . .

)
;

– t = 3 would be impossible because, then

Ff =
(

0 1 2 3
2 2 3 3

)
,

and we would have, by case (B), �3� = F

(
0 1 2 3
1 2 1 2

)
, that is

�3� = F ((0, 2)f(0, 2)(1, 2)f(1, 2)) =
(

0 . . .
0 . . .

)
;

C.3. It remains to eliminate the two following cases

M1 =
(

0 1 2 3
3 3 1 3

)
and M2 =

(
0 1 2 3
3 3 0 3

)
(i.e. with k = 3, t = 0, 1).

– If Ff = M1, then, by case (A),

�3� = F

(
0 1 2 3
2 0 0 0

)
,

that is �3� = F ((1, 2)f(1, 2)(0, 2)f(0, 2)) =
(

0 . . .
2 . . .

)
;

– If Ff = M2, then, by case (B),

�3� = F

(
0 1 2 3
1 0 0 1

)
,

that is �3� = F ((0, 1)f(0, 1)(0, 2)f(0, 2)) =
(

0 . . .
1 . . .

)
.

This completes the proof of Theorem 3.8 as the only remaining case is(
0 1 2 3
3 3 3 3

)
.

Remark 3.9. It would be interesting to connect Theorem 3.8 with the theorem of [ScTe2]
on page 2580.
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4. Fixobs of full subcategories of Fin. The core of this section is the description of all
fixobs F of the full subcategory 〈m/, n/〉 of Ens generated by m/, n/ with m < n. Given
such an F, it induces endofunctors of Endm/ and Endn/; if this restriction to Endm/ (resp.
Endn/) is not isomorphic to the identity endofunctor, we write αm/ (resp. αn/) its constant
value on Endm/ − Sm/ (resp. Endn/ − Sn/).

4.1. Characterizing the trivial fixobs of 〈m/, n/〉 and 〈m/, n/, p/, . . . 〉.
4.1.1 A first characterization of the trivial fixobs of 〈m/, n/〉. Since the monoid of

fixobs of 〈0/, n/〉 is canonically isomorphic to the monoid of fixobs of 〈n/〉 = Endn/, we
assume 0 < m < n.

Theorem 4.1. A fixob F of 〈m/, n/〉 is isomorphic to Id〈m/,n/〉 if (and only if) it induces an
automorphism of Sn/.

Proof. We first suppose that F induces automorphisms of both Sm/ and Sn/. In this case,
from Theorem 3.1, F induces endofunctors of Endm/ and Endn/ both isomorphic to the
identities on Endm/ and Endn/. Therefore, composing F if necessary with an endofunctor
of 〈m/, n/〉 isomorphic to the identity, we may assume in full generality that F fixes both
Endm/ and Endn/. Then F fixes all constant maps m/ → n/ or n/ → m/ because, for all
possible f and k we have:

m/
�k� ��

f ���
��

�
n/

n/
�k�

������
�−→

m/
F�k� ��

Ff ���
��

�
n/

n/
�k�

������
and

n/
�k� ��

f ���
��

� m/

m/
�k�
�� �−→

n/
F�k� ��

Ff ���
��

� m/

m/
�k�
�� .

Finally, this implies that F fixes all maps by (3.1); therefore, at the outset, F was
isomorphic to the identity endofunctor on 〈m/, n/〉.

Let us now suppose that F induces an automorphism of Sn/, without any assumption
on its behaviour on Sm/. We prove that F induces then an automorphism of Sm/; is
sufficient to prove that F is injective on Sm/.

Let ϕ1, ϕ2 ∈ Sm/ with Fϕ1 = Fϕ2, and let µ1, . . . , µ(n−m)!, λ1, . . . , λ(n−m)! be the
extensions of ϕ1 and ϕ2 (respectively) to n/. We have the 2 × (n − m)! commutative
diagrams

m/ �� Fi ��

Fϕ1=Fϕ2
��

n/

Fµk, Fλk
��

m/ ��
Fi

�� n/

(k = 1, 2, . . . , (n − m)!).

Because of the injectivity of Fi, there must be repetition in the finite sequence

Fµ1, Fµ2, . . . , Fµ(n−m)!, Fλ1, Fλ2, . . . , Fλ(n−m)!.

The Fµi (resp. Fλj) are different since F induces an automorphism of Sn/; therefore,
there are indices p, q such Fµp = Fλq, and this implies µp = λq, which in turn implies
ϕ1 = ϕ2. This completes the proof. �
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4.1.2 A second characterization of the trivial fixobs of 〈m/, n/〉. Let F be a fixob of
〈m/, n/〉 not isomorphic to the identity. By the preceeding section, F does not induce an
automorphism of Sn/. There are possible cases:

(1-a) F kills Sn/,
(1-b) Ker Fn/ = An/ (in which case FSn/ is of order 2, say FSn/ = 〈τ〉),

(2) n/ = 4/ with F4/ isomorphic to the Klein four-group (in which case FS4/ � S3/ ).

We will consider (1-a) and (1-b) together by allowing the involution τ to be Idn/. In what
follows, we consider separately cases m/ = 1/ and m > 1. The plan is as follows:

4.1.2.A. Case 〈1/, n/〉.
A.1: FSn/ = 〈τ〉 for some involution τ ∈ Sn/;
A.2: FSn/ � S3/ ;
A.3: Conclusion

4.1.2.B. Case 〈m/, n/〉 (m > 1).
B.1: n/ = m/ ∪ {m/} (i.e. n = m + 1);
B.2: m/ = 3/ , n/ = 4/ with FS4/ � S3/ ;
B.3: n/ and m/ differ by at least 2 elements.

4.1.2.A. We first consider the case 〈1/, n/〉. If n/ = 2/ , we are in the case 〈1/, 2/ 〉, which is
canonically isomorphic to Ens<3, whose non trivial fixobs are R(i), (i = 0, 1), as given
in section 2. So let n ≥ 3.

••– A.1. Let us first suppose that FSn/ = 〈τ〉 for some involution τ (possibly Idn/),
with Ff = αn/ a fixed τ -idempotent map when f ∈ Endn/−Sn/. Choosing two elements
i, j of n/ different from 0, we have

n/

1/

�i�
��������������� �0� �� n/

(0,i,j)

��
�−→

n/

1/

F�i�
��������������� F�0� �� n/

which proves that F is constant on hom(1/, n/), say with value �i0� : 1/ → n/. For any
f ∈ Endn/ − Sn/ we then have

n/

1/

�f(0)�
��������������� �0� �� n/

f

��
�−→

n/

1/

�i0�
��������������� �i0� �� n/

Ff=αn/

��

which proves that i0 is a fixed point of the idempotent αn/. Finally,

n/ 1/ n/
��

�0�

�� �0� ��
�−→

n/ 1/ n/
��

αn/

�� �i0� ��

proves that αn/ is constant, and hence that αn/ = �i0�. Thus, when FSn/ = 〈τ〉 for
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involution τ (possibly Idn/), F is given (for some i0 ∈ n/) by

Ff =


�i0� : 1/ → n/ if f : 1/ → n/

�i0� : n/ → n/ if f ∈ Endn/ − Sn/

τ s if f ∈ Sn/, with sgn f = s.

••– A.2. Let us next suppose that FSn/ � S3/ , i.e. that we are in the case 〈1/, 4/〉. If
F|S4/

is described by

Φ =
(

(0, 1) (0, 2) (0, 3)
(b0, b1) (b0, b2) (b1, b2)

)
then, for any non isomorphism f : 4/ → 4/, with b3 the unique element of 4/−{b0, b1, b2},
we have (by Theorem 3.8)

1/ 4/ 4/
��

�f0�

�0� �� f ��
�−→

1/ 4/ 4/
��

F�f0�

F�0� �� �b3� ��

which proves that, on End4/ − S4/, Ff is constant with value the only possible FS4/-
idempotent map, namely �b3�.

••– A.3. Conclusion. Collecting all this information, we have

Theorem 4.2. Let F be a non trivial fixob of 〈1/, n/〉 inducing a non invertible endomor-
phism Φ of Sn/. Then F is of the form

Ff =


�i� if f : 1/ → n/

�i� if f : n/ → n/ is not an isomorphism

Φf if f : n/ → n/ is an isomorphism

where �i� is ΦSn/-idempotent. In other words, the non trivial fixobs of 〈1/, n/〉 are clas-
sified by the ΦSn/-idempotent constant maps n/ → n/, with Φ being a non invertible
endomorphism of Sn/.

In the proof of this theorem, the involution τ may be Idn/. Therefore, this theorem
entails the case 〈1/, 2/ 〉, with τ = Id2/ , i.e. it entails the case Ens<3.

4.1.2.B. We next consider the case 〈m/, n/〉 with m > 1. For technical reasons, we
treat separately the cases 〈m/, m/ ∪ {m/}〉 and 〈m/, n/〉 with n ≥ m + 2. Before going into
the details, we state the result: there are no NTF of 〈m/, n/〉 inducing an automorphism
of Sm/ if m > 1; in other words, the cases 〈1/, n/〉 are the only cases where non trivial
fixobs exist that induce an automorphism of Sm/. Stated positively, this is the following
theorem.

Theorem 4.3. If m > 1, a fixob of 〈m/, n/〉 is isomorphic to the identity endofunctor if
(and only if) it induces an automorphism of Sm/.
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B.1. Proof of Theorem 4.3 for 〈m/, m/∪ {m/}〉 with FSm/∪{m/} = 〈τ〉 for an involution
τ . Let F induce an automorphism of Sm/. In the case 〈m/, m/ ∪ {m/}〉, we can always
uniquely extend each ϕ ∈ Sm/ to m/ ∪ {m/}, and we must have

m/ � � i ��

ϕ
��

m/ ∪ {m/}
ϕ

��
m/ � � i �� m/ ∪ {m/}

�−→
m/ �� Fi ��

Fϕ
��

m/ ∪ {m/}
τ sgn ϕ

��
m/ �� Fi �� m/ ∪ {m/}

.

We conclude that Fϕ is some fixed involution when ϕ runs through odd permutations
in Sm/; since F induces an automorphism of Sm/, Sm/ contains just one odd involution,
and the only possibility is 〈2/ , 3/ 〉. Then FS3/ = 〈τ〉 with τ �= Id3/ , for with τ = Id3/ we
would have

2/ � � i ��

(0,1)
��

3/
(0,1)

��
2/ � � i �� 3/

�−→
2/ �� Fi ��

(0,1)
��

3/

2/ �� Fi �� 3/

which is impossible. Let τ = (a, b) with c its fixed point. By Theorem 3.8, we then
have Ff = �c� for all non isomorphism f : 3/ → 3/ . But now, for k = 0, 1

2/ � �
i

���
��

��

2/

�k�
�������� �k� ��

� �

i ���
��

��
3/

3/
�k�

��������

�−→

2/ � �
Fi

���
��

��

2/

�k�
��������
F�k� ��

� �

Fi ���
��

��
3/

3/
�c�

��������

.

The commutativity of the lower triangles implies F �0� = F �1� = �c�, which, with
the commutativity of the upper triangles, implies Fi(0) = Fi(1) = c, contradicting the
injectivity of Fi.

So, if m > 1 there exist no NTF of 〈m/, m/∪{m/}〉 inducing an automorphism of Sm/.

B.2. Proof of Theorem 4.3 for 〈m/, m/ ∪ {m/}〉 = 〈3/ , 4/〉 with FS4/ � S3/ .. Let F

induce an automorphism of S3/ . Composing if necessary with an endofunctor of 〈3/ , 4/〉
isomorphic to the identity, we may suppose that F induces(

(0, 1) (0, 2) (0, 3)
(0, 1) (0, 2) (1, 2)

)
on S4/ (and that F fixes End3/ ). Then by Theorem 3.8, F �k� = �3� for any constant map
�k� : 4/ → 4/, and so, for k = 0, 1, we have

3/ � �
i

���
��

��

3/

�k�
�������� �k� ��

� �

i ���
��

��
4/

4/
�k�

��������

�−→

3/ � �
Fi

���
��

��

3/

�k�
��������
F�k� ��

� �

Fi ���
��

��
4/

4/
�3�

��������

. (�)
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From the commutativity of the lower triangles we get F �0� = F �1� = �3�, and
from the commutativity of the upper triangles, Fi(0) = Fi(1) = 3, contradicting the
injectivity of Fi. Therefore, there are no NTF of 〈3/ , 4/〉 inducing an automorphism of
S3/ .

Collecting the above information, Theorem 4.3 is true in the case 〈m/, m/ ∪ {m/}〉.

B.3. Proof of Theorem 4.3 for the cases 〈m/, n/〉 with n ≥ m + 2. Let F induce an
automorphism of Sm/.

The first case is when FSn/ = 〈τ〉 for some involution τ . Since n ≥ m + 2, any
ϕ ∈ Sm/ may be extended to an even automorphism of Sn/, and we have

m/ � � i ��

(0,1)
��

n/

ϕ (even)
��

m/ � � i �� n/

�−→
m/ �� Fi ��

F(0,1)
��

n/

m/ �� Fi �� n/

which is in contradiction with F inducing an automorphism of Sm/. Therefore, there are
no NTF of 〈m/, n/〉 inducing an automorphism of Sm/, with FSn/ � S2/ and n ≥ m + 2.

The second case is 〈2/ , 4/〉, with FS4/ � S3/ and, without loss of generality, F fixing S2/.
But this is also impossible, and the argument is the same as for 〈3/ , 4/〉 above, replacing
3/ by 2/ in (�) and the lines following it. Therefore, there are no non trivial fixobs of
〈2/ , 4/〉 inducing an automorphism of S2/, with FS4/ � S3/ .

This completes the proof of Theorem 4.3. �

4.1.3 Characterizing the trivial fixobs of 〈m/, n/, p/, . . . 〉. An immediate consequence
of the above results on the fixobs of 〈m/, n/〉 is the following:

Proposition 4.4. Given an at-least-two-element set {m/, n/, p/ . . . }, with m < n < p <
. . . , a fixob of 〈m/, n/, p/, . . . 〉 is isomorphic to the identity endofunctor if, and only if, for
some i/ ∈ {m/, n/, p/, . . . }, with 1 < i, it induces an automorphism of Si/.

4.2. Characterizing NTF of 〈m/, n/〉 and 〈m/, n/, p/, . . . 〉.

4.2.1 The classification theorem. In view of Theorems 4.2 and 4.3, we suppose that
m > 1 with F not inducing an automorphism of Sm/.

Theorem 3.8 stated that an NTF F of Endn/ is determined by the data of a non
invertible endomorphism Φ of Sn/ together with the data of a ΦSn/-idempotent h : n/ → n/
through the rule

Fg =
{

Φg if g is an isomorphism

h if g is not an isomorphism.

Let h have m fibers; then, the data of this ΦSn/-idempotent h with m fibers canonically
amounts to the data of an epimorphism f : n/ → m/ given by f(t) = σk if t ∈ Fk

(f stands for f iber) for some fixed σ in Sn/, together with an injection m/ �� v �� n/ ,

describing the value of h (v stands for value) on Fk : h(t) = v(σk) for all t ∈ Fk; that
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is, it amounts to

the data of an injection v and a surjection f with f ◦ v = Idm/,
(setting h = v ◦ f ):

Idm/

��
m/ �� v �� n/

f �� �� m/ �� v �� n/

h

��

(4.1)

We will call f the fiber component of h, and v its value component. Saying that h is
ΦSn/-idempotent just amounts then (besides idempotency) to the fact that the following
diagram is commutative for all σ ∈ ΦSn/

n/

σ
��

f
�� ���������

m/ ��
v �������

��
v �������

m/

n/ f

�� ���������

Defining an endofunctor F of Ens<n/ with a pair (Φ, h = v ◦ f), the notation being as
above, yields a way of defining an NTF of 〈m/, n/〉 as follows:

F : g �−→


Idm/ if g : m/ → m/

v if g : m/ → n/

f if g : n/ → m/

Fg if g : n → n/

(4.2)

It is easy to check that this indeed defines a functor.
Let us give two examples of such a fixob F.

[
m = 3/
n = 4/

]
: Fg =



Id3/ if g : 3/ → 3/(
0 1 2

0 1 2

)
if g : 3/ → 4/(

0 1 2 3

0 1 2 0

)
if g : 4/ → 3/

Id4/ if g : 4/ → 4/

[
m = 3/
n = 5/

]
: Fg =



Id3/ if g : 3/ → 3/(
0 1 2

2 3 4

)
if g : 3/ → 5/(

0 1 2 3 4

2 2 0 1 2

)
if g : 5/ → 3/

(0, 1)sgn g for g an isomorphism(
0 1 2 3 4

2 2 2 3 3

)
otherwise

 if g : 5/ → 5/

These examples show that NTF exist for some 〈m/, n/〉. In fact:
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Theorem 4.5. [1] NTF of 〈m/, n/〉 are all of the form (4.2) for some unique pair (Φ, h =
v ◦ f) made of an endomorphism Φ of Sn/ and a decomposition h = v ◦ f of an Im Φ-
idempotent as in (4.1). In this unique pair, the value component v of h is the value of F

on arrows m/ → n/, and the fiber component of h is the value of F on arrows n/ → m/.
[2] Each NTF F of 〈n/〉 extend to m! NTF of 〈m/, n/〉 where m is the number of fibers

of the value h of F on Endn/ −Sn/ (see Theorem 3.8). These m! possible extensions are
determined by the m! possible decompositions of h described in (4.1).

4.2.2 Proof of Theorem 4.5. Let F be an NTF of 〈m/, n/〉.
4.2.2.A First we suppose that FSn/ = 〈τ〉 for an involution τ ∈ Sn/. In this case, the

proof follows from observations A.1 to A.6.

••– A.1.– For each injection m/ �� k �� n/ , Fk imbeds each fiber of αm/ into a fiber
of αn/, sending fixed points of αm/ to fixed points of αn/, which in particular implies
that different fibers go into different fibers, and thus, that αn/ has at least m fibers. This
results immediately from

m/ ��k ��

�0�
��

n/

�k0�
��

m/ ��k �� n/

�−→
m/ ��Fk ��

αm/
��

n/

αn/
��

m/ ��Fk �� n/

.

••– A.2.– Given m/ �� k ����
l

�� n/ , then we have Fk = Fl or Fl = τ ◦ Fk; hence, since

αn/ is 〈τ〉-idempotent, all Fk (k : m/ → n/ an injection) imbed a given fiber of αm/ into
the same fiber of αn/. This results from

m/ ��k �� n/

ϕ
��

m/ �� l �� n/

�−→
m/ ��Fk �� n/

τ sgn ϕ

��
m/ ��Fl �� n/

,

where ϕ is an appropriate element of Sn/.
••– A.3.– F is constant on non-injective maps f : m/ → n/; more precisely, Ff sends

any fiber of αm/ with fixed point t to Fi(t) (where i : m/ � � �� n/ ; any other injection

could do as well by A.2). Indeed, any non injective f : m/ → n/ factors through a

non-isomorphism u : m/ → m/ and an injection k : m/ �� �� n/ , and F transforms

m/
�� k

���
��

�

m/

u
������� f �� n/

into
m/

�� Fk

���
��

�

m/

αm/
�������
Ff �� n/

.
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The result follows from A.2.
••– A.4.– For each f : n/ → m/, Ff maps each fiber of αn/ to one point, in such a

way that the fiber with fixed point of the form Fi(t) is mapped to t. This is so because
f , being not an isomorphism, factors through a non isomorphism u : n/ → n/, and F

transforms
n/

g

���
��

��

n/

u
������� f �� m/

into
n/

Fg

���
��

��

n/

αn/
������� Ff �� m/

,

which implies that Ff quotients fibers of αn/ to singletons. Moreover, again because f is

not injective, there exists a non isomorphism u : m/ → m/ and an injection k : m/ �� �� n/

such that u = f ◦ k, and then F transforms

m/
��

k
��

u

���
��

��
�

n/
f �� m/

into
m/
��

Fk
��

αm/

		�
��

��
��

n/
Ff �� m

;

therefore, if t is a fixed point of αm/ , Ff sends Fk(t) = Fi(t) (see A.2) to t.
••– A.5.– The fibers of αm/ are singletons (i.e. αm/ = Idm/). Therefore, F is null on

Endm/ and (by A.2 and A.3) is constant on hom(m/, n/). Indeed, given a left inverse e to

an injection k : m/ �� �� n/ ,

Idm/
		

m/ �� k �� n/
e �� �� m/

is transformed into
Idm/

��
m/ ��Fk �� n/

Fe �� �� m/ .

Since Fk imbeds fibers of αm/ into fibers of αn/, and since Fe quotients fibers of αn/ to
singletons (their “base point”), fibers of αm/ are singletons.

••– A.6.– αn/ has m fibers, and therefore, from A.4, F is constant on hom(n/, m/).
Indeed, we have

f
��

n/
g �� m/

h �� n/ �−→
αn/

		
n/

Fg �� m/ ��Fh �� n/
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(because h ◦ g is not an isomorphism), which implies that αn/ has at most m fibers. But,
from A.1, it has at least m fibers. The result follows.

It comes from A.1 to A.6 that, when FSn/ = 〈τ〉, we have the data of an FSn/-
idempotent map αn/, with m fibers indexed by m/, and that F is described by (4-1). This
completes the proof of Theorem 4.5 in the case FSn/ = 〈τ〉.

4.2.2.B. Next, we suppose that n/ = 4/ with FS4/ � S3/ . This concerns case 〈1/, 4/〉 and
cases 〈2/ , 4/〉 & 〈3/ , 4/〉 that will be considered together.

B.1.– Theorem 4.2 describes the nontrivial fixobs of 〈1/, 4/〉, and they correspond, in
the context of Theorem 4.5, to the idempotent component of the NTF on n/ being a
constant map. So Theorem 4.5 is proved for 〈1/, 4/〉.

On the other hand, there are no diagram of the following form, commutative for all
σ in FS4/ � S3/ :

4/
σ

��

r
�� ��������

m/ ��
f �������

��
f �������

m/

4/ r

�� ��������
(m/ = 2/ , 3/ )

for the injection of such a decomposition must take its value in the fixed points of FS4/,
and there is just one fixed point. Therefore, to complete the proof of Theorem 4.5, we
must show that

〈2/ , 4/〉 and 〈3/ , 4/〉 have no NTF F such that FS4/ � S3/ (4.3)

(i.e. we must show that Theorem 4.5 is vacuously true in these cases).
In fact, it is sufficient to prove that a non-trivial fixob of 〈m/, 4/〉, (m/ = 2/ , 3/ ), would

kill Endm/ for then we would have

m/
� � i

���
��

m/

�0� ��

� �

i 		�
��

4/

4/
�0�

��

�−→

m/
�� Fi

���
��

m/




		
Fi 		�

��
4/

4/
�c�

��

,

with c being the fixed point of FS4/, which contradicts the injectivity of Fi.
B.2.– The following lemma completes the proof of Theorem 4.5.

Lemma 4.6. If there exists a non trivial fixob F of 〈m/, 4/〉, m/ = 2/ , 3/ , with FS4/ � S3/ ,
then F kills Endm/.

Let F be a non trivial fixob of 〈m/, 4/〉, m/ = 2/ , 3/ , with FS4/ � 3/ .
1. Case m/ = 2/ . Let us suppose the contrary; then F would not kill End2/ and, by

Theorem 4.3, would not induce an automorphism of S2/. This implies that FS2/ = {Id2/}
so that F( End2/ − S2/) would be { �v�} for some v. Let F( End4/ − S4/) = { �u�}. Then
(commutative) diagrams of the form

2/ � � i ��

p
��

4/
q

��

g �� 2/
� �

i����
��

�

2/ � � i �� 4/
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are transformed into (commutative)

2/ ��Fi ��

Fp
��

4/
�u�

��

g �� 2/
!!

Fi!!��
��

�

2/ ��Fi �� 4/

since q is not an isomorphism. But for g the section of i with g(2) = g(3) = 0, we have
p = Id2/ and we get

2/ ��Fi �� 4/
�u�

��
2/ ��Fi �� 4/

.

This is a ontradiction.
2. Case m/ = 3/ . Let us suppose the contrary; then F would not kill End3/ and, by

Theorem 4.3, would not induce an automorphism of S3/ . This implies that FS3/ = 〈τ〉
for some involution τ . Composing F with an endofunctor isomorphic to the identity if
necessary, we may suppose in all generality that FS3/ = 〈(0, 1)〉 or {Id3/ }, and that F

induces

(
(0, 1) (0, 2) (0, 3)
(0, 1) (0, 2) (1, 2)

)
on S4/. In the case FS3/ �= {Id3/ },

3/ � � i ��

(0,k)
��

4/
(0,k)

��
3/ � � i �� 4/

would be transformed into

3/ ��Fi ��

(0,1)
��

4/
(0,k)

��
3/ ��Fi �� 4/

(k = 1, 2), which contradicts the injectivity of Fi. In the case FS3/ = {Id3/ }, essentially
the same argument as for m/ = 2/ yields a contradiction. This completes the proof of the
and of Theorem 4.5. �

4.2.3 The case of 〈m/, n/, p/〉. Theorem 4.5 states among other things that non trivial
fixobs of 〈m/, n/〉 kill Endm/; this is the key fact in proving Theorem 4.7 below, which is
the main consequence of Theorem 4.5.

Theorem 4.7. Given 0 < m < n < p, all fixobs of 〈m/, n/, p/〉 are isomorphic to the
identity.

Proof. Let F be a fixob of 〈m/, n/, p/〉. It induces fixobs F1 of 〈m/, n/〉 and F2 of 〈n/, p/〉.
Let us suppose that F2 is isomorphic to the identity, say F2 = ϕ̂n/,p/ with ϕn/,p/ =

{ϕn/, ϕp/}. It follows from Theorem 4.1 that F1 is isomorphic to the identity, say F1 =
ϕ̂m/,n/ with ϕm/,n/ = {ϕm/, ϕn/}. Factoring morphisms m/ → p/ through n/, we immediately
conclude that for all f : m/ → p/, Ff = ϕp/◦f ◦ϕ−1

m/ and similarly for morphisms p/ → m/;
therefore F = ϕ̂m/,n/,p/ with ϕm/,n/,p/ = {ϕm/, ϕn/, ϕp/}.
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Using Theorem 4.3, a similar reasoning proves that if F1 is isomorphic to the identity,
then F is also isomorphic to the identity.

Let us suppose now that there exists a fixob F not isomorphic to the identity. Then,
from the discussion above, neither F2 nor F1 can be isomorphic to the identity. By
Theorem 4.5, αm/ and αn/ (see the beginning of section 4 for the notation) are respectively
Idm/ and Idn/, i.e. αm/ and αn/ have fibers which are singletons. But fibers of αn/ are indexed
by m/, and thus m/ = n/: contradiction. �

An immediate consequence is that any fixob of a full subcategory of Ens generated
by at least three non empty finite sets of different cardinals can be but a trivial fixob; in
particular, Ens<κ, with κ ≥ 4, has but trivial fixobs.

4.2.4 An effective enumeration. It results from the above study that, for each 1 ≤
m ≤ n, there exist NTF of 〈m/, n/〉. More precisely, the being as in Theorem 4.5:

Theorem 4.8. [1] The following algorithm yields all NTF of 〈m/, n/〉:
(1) Choose a surjection n/

f �� �� m/ ;

set Fk = f−1(k) for each k.

(2) Choose a right inverse n/ �� v �� m/ to f

set vk = v(k) for each possible k.

 Set h = v ◦ f ;

(A) if n/ �= 4/: 

(3) Partition each Fi into pairs and singleton,
each “base point” vk forming a singleton. Let
{a1, b1}, {a2, b2}, . . . , {ak, bk} be the pairs
in this partition;
set τ = (a1, b1)(a2, b2) . . . (ak, bk) (product
of transpositions). (cf. Figure 1 below)

 Set Φ(σ) = τ sgn σ.

When (Φ, h = v ◦ f) runs through the set of all possible values, (4.2) runs without
repetition through all NTF F of 〈m/, n/〉 with FSn/ � S2/.

(B) if n/ = 4/:



B.1 Do as in A to obtain all NTF with FS4/ �� S2/.
B.2 Do as follows to obtain all NTF with FS4/ � 3/ , which exist
only in the case 〈1/, 4/〉 (see (4.3)):

(1) Choose a “base point” of 4/, say d.

Let {a, b, c} be the remaining element.

Set


f : 4/ → 1/

v = �d� : 1/ → 4/

h = v ◦ f

(2)Choose an endomorphism Φ of S4/ killing Aut{a,b,c}

When (Φ, h = v ◦ f) runs through the set of all possible values, (4.2) runs without
repetition through all NTF F of 〈m/, 4/〉. There are 24 of them when FS4/ � S3/ , which
happens only with m = 1.
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[2] The union over all m, with 0 < m ≤ n, of the restrictions to 〈n/〉 of all the above
NTF of 〈m/, n/〉 is the set of NTF of 〈n/〉:

/

n/

m

f v

Figure 1.

5. Conclusion. Theorems 3.8, 4.5 and 4.7 yield a full description of fixobs of any full
subcategory 〈m/〉, 〈m/, n/〉, 〈m/, n/, p/, . . . 〉 (with m < n < p < . . . ) of the category of
finite sets and maps and an algorithm for enumerating them.

Combinatorial results, based on Theorems 4.8 are developed in a forthcoming paper,
such as the following result; in this theorem, Ci∗k

n is the number of i pairwise disjoint
subsets of n/ each of cardinal k, that is

Ci∗k
n =

Ck
nCk

n−k . . . Ck
n−(i−1)k

i!

and a ÷ b is the euclidean quotient of a by b.

Theorem 5.1. [1] For n/ not equal to 4/, the number of NTF of 〈n/〉 is

(n+1)÷2∑
s=0

n−2s∑
h=0

Cs∗2
n Ch

n−2sh
n−s−h

[2] For n/ equal to 4/, this number must be increased by 24 due to the 24 NTF of 〈1/, 4/〉
with FS4/ � S3/ ; this gives

24 +
4∑

h=0

Ch
4h4−h + 6

2∑
h=0

Ch
2h3−h = 89

Résumé substantiel en français. L’objet de cet article est l’existence d’endofoncteurs
des sous-catégories pleines de Ens fixant les objets (les « fixobs ») mais non isomorphes à
l’endofoncteur identité. Ces endofoncteurs sont appelés « NTF » (“Non Trivial Fixobs”).

On présente des résultats partiels sur ce problème, qui, dans sa forme générale ou dans
le cas de la sous-catégorie pleine des ensembles infinis reste à résoudre: nous résolvons
complètement le problème dans le cas des sous-catégories pleines engendrées par des
ensembles finis. Plus précisément, les NTF des sous-catégories pleines engendrées par
un ensemble fini ou par deux ensembles finis de cardinaux différents sont totalement
décrits, et il est établi que les sous-catégories pleines engendrées par au moins trois
ensembles finis non vides de cardinaux différents ne possèdent pas de NTF. Comme
il est expliqué à la section 1.3, le problème général de l’existence de NTF se pose
naturellement dans le contexte de la recherche de quantificateurs non « standards ».
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Les résultats essentiels sont donnés ci-dessous. Notons 〈X, Y, . . . 〉 la sous-catégorie
pleine engendrée par X , Y , etc. —ici des ensembles finis). Étant donné un sous-groupe
H de §X , une application u : X → X est dite H-idempotente si elle commute avec
tous les éléments de H .

• Cas des sous-catégories pleines 〈X〉:
1. Tout fixob de 〈X〉, induisant un automorpisme de SX est isomorphe à

l’endofoncteur identité.
2. Les NTF de 〈X〉 sont classifiés par le paires (Φ, h) où Φ est un endo-

morphisme non inversible de SX and H est un ΦSX -idempotent; plus
précisément, les NTF de 〈X〉 sont exactement les fixobs de la forme

Ff =
{

Φf si f ∈ SX

h sinon

• Cas des sous-catégories pleines 〈X, Y 〉, X �� Y :
3. Un fixob de 〈X, Y 〉, est isomorphe à l’endofoncteur identité si et seulement

si il induit un automorphisme de SY ; si |X| > 1, un fixob de 〈X, Y 〉,
est isomorphe à l’endofoncteur identité si et seulement si il induit un
automorphisme de SY .

4. Supposons 0 < |X| < |Y |, disons |X| = m et |Y | = n. Un NTF F de
〈Y 〉 correspondant à une paire (Φ, h) (voir (2.) ci dessus) se prolonge en
un NTF de 〈X, Y 〉 si et seulement si l’idempotent h a m fibres, et ces NTF
de 〈X, Y 〉 sont de la forme

Fg =


IdX si g : X → X

v si g : X → Y

f si g : Y → X

FG si g : Y → Y

où f : Y → X est surjectif et v : X → Y est injectif avec IdX = f ◦ v et
h = v ◦ f . Les NTF de 〈X, Y 〉 sont classifiés par les paires (Φ, h = v ◦ f)
où f et v sont comme ci-dessus, c’est-à-dire par les paires formées d’un
NTF de 〈X〉 dont l’idempotent a m fibres et d’une factorisation de cet
idempotent via X en une surjection suivie de son inverse à droite.

5. La description (4.) est effective, et permet de compter les NTF de 〈X, Y 〉;
leur nombre est

(n+1)÷2∑
s=0

n−2s∑
h=0

Cs∗2
n Ch

n−2sh
n−s−h

Si n = |Y | = 4, il faut ajouter 24 à ce nombre.
• Cas des sous-catégories pleines 〈X, Y, Z, . . . 〉:

6. Si 0 < |X| < |Y | < |Y | . . . , alors 〈X, Y, Z, . . . 〉 n’admet aucun fixob;
en d’autres mots, trois (ou plus) ensembles finis non vides de cardinaux
différents engendrent une sous-catégorie pleine sans NTF.
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Les démonstrations des résultats ont un caractère très ensembliste; dans un double
travail en cours, on s’intéresse aux résultats qui restent vrais au sens de la logique
intuitionniste, et aux questions de combinatoire et d’arithmétique qui s’y rattachent
naturellement.
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