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PENTAGON PARTITIONS OF POLYGONS

AND A SPECIAL CLASS OF PLANAR MAPS

DIDIER ARQUÈS AND ANNE MICHELI

RÉSUMÉ. Nous présentons ici une bijection géométrique entre les partitions d’un
polygone en pentagones et une famille de cartes planaires pointées, appelées les
cartes d’ordre un (chaque arête possède au moins une extrémité incidente à la face
extérieure), dont l’arête pointée est un isthme.

ABSTRACT. A geometrical one-to-one correspondence is given between partitions
of a rooted polygon into pentagons and a family of rooted planar maps, called planar
maps of order one (each edge having at least one extremity incident to the exterior
face), with a bridge root edge.

1. Introduction. In 1870, E. Schröder raised the following question: How many dif-
ferent parenthesizing possibilities is there for a sum of n terms? He split this question
in four combinatorial problems (case I to case IV) (see [6]). Case I and II involve a
non-commutative sum of n terms. Case I is about whole parenthesizing, in which each
pair of brackets encloses a sum of exactly two terms or expressions included in brackets.
Case II is about part parenthesizing, in which each pair of brackets encloses a sum of
two or more terms or expressions included in brackets. Third and fourth cases deal
respectively with first and second problems, but with a commutative sum of n terms.

In 1940, I. M. H. Etherington illustrated these problems with convex polygons
partitions (see [4]). He gave an equation characterizing the generating function which
enumerates the partitions of a convex (n+1)-gon, the final sub-polygons being (ai +1)-
gons, i ≥ 1, (in which ai, i ≥ 1, are given positive integers). The resolution of this
equation in a particular case (i = 1, a1 = 4) gives the number of partitions into
pentagons for a given polygon. In this paper a shorter demonstration to obtain the
enumeration is presented. The resulting enumeration of partitioned (3n + 2)-gons into
pentagons is (4n)!/(n!(3n + 1)!).

In 1984, D. Arquès obtained the same value in the enumeration of rooted planar
maps of order one (i.e. for planar maps in which each edge has at least one extremity
incident to the exterior face) with n edges including a bridge root edge (see [1]). A
new and direct geometrical proof to enumerate this set of maps is presented. As the
set of polygons partitioned into pentagons and the set of planar maps of order one
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102 Pentagon partitions of polygons and a special class of planar maps

with a bridge root edge, are objects that can be drawn on the sphere, one could expect
a geometrical one-to-one correspondence between these two families, the number of
edges being taken into account. We exhibit such a one-to-one correspondence.

Bijections involving polygons partitions have already been studied, as for example
the one exhibited by R. P. Stanley between convex (n + 2)-gon partitions and some
standard Young tableaux (see [7]). A similar problem to the one presented here, a
geometrical one-to-one correspondence between a family of hypermaps and partitions
of polygons (see [2]), was shown by D. Arquès and A. Giorgetti in 1997. But the method
could not be adapted to our problem. Starting from a hypermap belonging to a given
family, they transformed the hypermap into a partitioned polygon, by inserting edges
and vertices, opening some hyperfaces and gluing some edges. Thus a new method had
to be developed and is presented in this paper.

In Section 2 of this paper, an enumeration of polygons partitioned into pentagons,
according to edge’s number, is presented. Then in Section 3, planar maps of order one
with n edges including a bridge root edge are enumerated. For this enumeration, a
geometrical proof is shown. This geometrical aspect is also used in Section 4 to exhibit
a one-to-one correspondence between the two families enumerated in Sections 2 and 3.

2. Enumeration of pentagon partitions of polygons. A polygon with 3n + 2 edges
can be partitioned into pentagons. The number of partitions into pentagons of a given
rooted polygon can be obtained easily using a simple geometrical argument. There are
several other proofs of this enumeration. We have already explained the proof showed
by I. M. H. Etherington [4]. R. P. Stanley [8] exhibited a bijection between plane S-trees
(any non-endpoint vertex has degree in a set S of positive integers) with l vertices and m
endpoints and partitions of a m+1-gon into l−m regions, each a k-gon with k−1 ∈ S.
He also gave an enumeration of these S-trees. In the case S = {4}, m = 3n + 1 and
l = 4n + 1, we obtain the number of partitions of a 3n + 2-gon into pentagons.

convex polygon partitioned into pentagons

f x( )f x( )

f x( ) f x( )

distinguished 
pentagon

rooted edge

Figure 1. Convex polygon partitioned into pentagons

Definition 1. A rooted polygon is a polygon with a selected edge (see Figure 1), called
the root edge of the polygon.

A partition of the polygon corresponds to cuts along diagonals of the polygon,
reiterated until only triangles are left or stopped earlier. When r cuts have been made,
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the original polygon is divided into r + 1 sub-polygons. Geometrically, a partition may
be described as a set of r diagonals which do not intersect (except perhaps at the
vertices). The polygon itself (r = 0) is included among its partitions. Two partitions of
the same rooted polygon are non-identical if relatively to the root edge the two sets of
cutting diagonals are different.

A partition of the polygon into pentagons is a partition in which the original polygon
is divided into pentagons only. We point out that a convex rooted polygon with 3n + 2
edges (we will call it a (3n + 2)-gon), will be separated into n pentagons.

Notation 1. Let Πn be the set of partitions of a rooted 3n + 2-gon into n pentagons and
Π = ∪n≥0Πn. Π0 is the set reduced to the unique partition of the flat polygon (polygon
with only two sides).

Let f(x) be the generating function for the number of convex polygons partitions
into pentagons, the degree of x representing the number of edges of the polygon minus
one. The coefficient pn of x3n+1 in f(x) is then the number of partitions of the rooted
3n + 2-gon into n pentagons.

Theorem 1. The number of partitions of a (3n + 2)-gon into pentagons is

pn =
1

3n + 1

(
4n

n

)
.

Proof. Let P be an element of Πn (n > 0). If the pentagon including the root edge
in P is selected, there are left four polygons partitioned into pentagons, glued to
the four non-root sides of the selected pentagon (see Figure 1). The four partitions
obtained, describe the following set:

∑
i1+i2+i3+i4=n−1 Πi1 × Πi2 × Πi3 × Πi4 in which

Πi1 × Πi2 × Πi3 × Πi4 represents the set of partitions of Πn obtained in gluing four
partitions chosen respectively in Πi1 ,Πi2 ,Πi3 ,Πi4 to the four sides (other than the root
side) of the selected pentagon.

As Π represents the set of polygons partitions into pentagons, this implies that there
is a one-to-one correspondence between Π \ Π0 and Π4.

We deduce the following expression for f(x) : f(x) = x + f(x)4. This equation can
be solved with the Lagrange’s inversion and we obtain the following result: coefficient
pn of x3n+1 in f(x) = 1

3n+1

(4n
n

)
. �

3. Enumeration of planar maps of order one with a bridge root edge. A set of
definitions related to planar maps of order one are given in Section 3 (see [1, 3] for
further details). In the next section, some vertices in the planar maps of order one are
selected and are used in Section 3.3 to obtain a decomposition of the set of maps of
order one with a non-bridge root edge. Therefrom, we easily deduce an enumeration of
this set in Section 3.4. This is used in Section 3.5 to find an enumeration of the set of
planar maps of order one with a bridge root edge.

From now on, a counterclockwise orientation on the sphere is considered.

3.1. Definitions.

Definition 2. A planar map is a partition of the sphere of R
3 in three finite sets of cells:

• the set of vertices, which are dots on the sphere;
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• the set of edges, which are simple open Jordan arcs, pairwise disjoint. Their
extremities (coinciding or not) are vertices;

• the set of faces, which are simply connected domains, the borders being the
union of vertices and edges.

Two cells are incident if one is in the border of the other.
We call half-edge of a planar map, an oriented edge of this map. There is a natural

association of the half-edge with its initial and final vertices, its underlying edge and
the opposite half-edge.

A rooted planar map is a planar map with a distinguished half-edge b̃, called root
half-edge.

We define α (respectively σ) as the permutation on the set of half-edges which
associates each half-edge to its opposite half-edge (respectively to the first one met
when turning counterclockwise around its initial vertex).

We name σ̄ the permutation σ ◦α on the set of half-edges. b being a half-edge, σ̄∗(b)
is the oriented side of a face of the map (the face incident to the right side of b).

A bridge is an edge incident on both sides to the same face.
If b̃ is not a bridge, we will call exterior face (respectively interior face) of a rooted

planar map, the face σ̄∗(b̃) (respectively σ̄∗(α(b̃))) located on the right side (respectively
on the left side) of the root half-edge b̃.

Let b1 = α(b̃). Then σ̄∗(b1) = (b1, . . . , br) is the circuit (oriented border) of half-
edges incident on their right to the interior face. We call respectively (s1, . . . , sr) the
initial vertices of (b1, . . . , br), not necessarily all distinct (in Figure 2, s3 = s5, s7 = s9,
s11 = s12 and s13 = s1).

Definition 3. [A special class of planar maps, maps of order one]
A rooted planar map is said to be of order one, if each edge has at least one extremity

incident to the exterior face.
Let bi be a half-edge belonging to the interior face. There are two cases:

I. bi has both extremities incident to the exterior face (see b1, b2, b9, b10, b11, b12, b13

in Figure 2).
II. bi has one extremity non-incident to the exterior face (the other being incident

to the exterior face by definition of order one maps) (see b3, b4, b5, b6, b7, b8 in
Figure 2).

A map of order one is of type I if, and only if, every edges of the interior face of this
map belong to case I.

Notation 2. {p} is the planar map reduced to a single vertex.
Let In (respectively Nn) be the set of planar maps of order one with n edges, the root

edge being a bridge (respectively the root edge not being a bridge) and I = ∪n≥1In

(respectively N = ∪n≥1Nn).
The set Λ of rooted planar maps of order one is: Λ = {p} ∪ I ∪ N .
By convention the name of the half-edge is shown on the figures near its initial

extremity.
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exterior face

s s13 1= b1 b̃ s2

b2
b3s4

b4
b5

s s9 7=

s s3 5=

s6

b6

b7

s8
b8
b9

s10

b10

b11

b12 b13
s s12 11=

interior face

Figure 2. A planar map belonging to N

3.2. Characteristic vertices in maps of order one. We now present some transfor-
mations on a map M of Λ that will allow us to introduce, in Definition 5, some
characteristics of the vertices. These definitions are used in the next section (3.3).

Definition 4. Let M be any map of Λ and b̃ its root half-edge. The new rooted maps
are created as follow:

• M (1) (see Figure 3), by adding a root half-edge r to M (which is the root
half-edge of M (1)), such as:

1. its final extremity is glued to the initial vertex of b̃, with σ̄(r) = b̃;
2. its initial extremity is glued to the final vertex of the last half-edge e1

belonging to σ̄−1∗(b̃) = (σ̄−1(b̃), σ̄−2(b̃), . . . , σ̄(b̃), b̃), with σ̄(e1) = r
and such as M (1) is of type I.

• M (i) (i = 2, 3) (see Figure 3), by adding a root half-edge r to M (which is the
root half-edge of M (i), i = 2, 3), such as:

1. its initial extremity is glued to the initial vertex of b̃, with σ(r) = b̃;
2. its final extremity is glued to the final vertex of the last half-edge ei

(i = 2, 3) belonging to σ̄∗(b̃) = (b̃, . . . , σ̄−1(b̃)), with σ̄(ei) = α(r)
(i = 2, 3) and such as M (2) is of type I and M (3) is of order one.

Lemma 1. Let M be any map of Λ and b̃ its root half-edge. A map M (i), i = 1, 2, 3,
issued from M as described in Definition 4 can always be build.

Proof. We can always construct the following maps, by adding a root half-edge r to
M . r is added in two different ways, giving two different maps:

1. the final extremity is glued to the initial vertex of b̃, with σ̄(r) = b̃ (see the first
drawing in the first row of Figure 3). Its initial extremity is glued to the final
vertex of the half-edge he = σ̄−1(b̃) belonging to σ̄−1∗(b̃), with σ̄(he) = r and
the map obtained is then of type I.

2. The initial extremity is glued to the initial vertex of b̃, with σ(r) = b̃ (see the first
drawing in the second and third rows of Figure 3). Its final extremity is glued to
the final vertex of the half-edge he = b̃ belonging to σ̄∗(b̃), with σ̄(he) = α(r)
and the map obtained is then of type I and consequently of order one.
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Figure 3. Exhibition of map M (1) (respectively M (i), i = 2, 3) issued
from M and the associated vertex of type i, i = 1, 2, 3,
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Following 1, one obtains Map M (1), he being now the last half-edge belonging to
σ̄−1∗(b̃), such as M (1) is of type one. Following 2, one obtains Map M (2), he being
now the last half-edge belonging to σ̄∗(b̃), such as M (2) is of type I. Following 2, one
obtains Map M (3), he being now the last half-edge belonging to σ̄∗(b̃), such as M (3) is
of order one. �
Definition 5. Let M be any map of Λ and M (i), i = 1, 2, 3, the maps deduced from
M by Definition 4. The final vertex vi, i = 1, 2, 3, of the half-edge ei, i = 1, 2, 3,
described in Definition 4, is said to be of type i, i = 1, 2, 3, in M (see Figure 3).

3.3. A topological decomposition of planar maps ofN . A topological decomposition
of a map N of N into two maps of I×I∪{p} is given. At first N is split into two maps
(see cut algorithm). One of these maps belongs to I (see Theorem 2) and the other one
can be transformed bijectively into a map belonging to I ∪ {p} (see Theorem 3).

3.3.1. Exterior sub-maps.

Lemma 2. [König, Hamiltonian circuit] Let N be a planar map in which the root half-
edge is not a bridge. From the sequence σ̄∗(b̃), a unique sub-sequence of half-edges
constituting a circuit, including b̃, that does not cross two times the same edge or the
same vertex can be extracted.

Proof. The proof being straightforward is omitted. �
The sub-sequence described in the previous lemma (see in Figure 4 the circuit drawn

in bold) is a rooted polygon dividing the plane into two open connected domains,
one exterior, including the point at infinity, and one interior. Let (g1, . . . , gr) be r
maximal planar maps incident respectively to (s1, . . . , sr) (see Definition 2) and formed
exclusively of half-edges belonging to the exterior domain (see g1 = g13, g3 = g5,
g7 = g9 and g10 drawn dotted in Figure 4). gi, 1 ≤ i ≤ r, can be reduced to {p} (in
Figure 4, we have g2 = g4 = g6 = g8 = g11 = g12 = {p}).

b̃ s
b bs

b
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g g
s s

s
b

s
b b
b
s s

g g
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3 24
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3 5

3 5
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7 9

=
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b
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11
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b1

=

=

=

Figure 4. A planar map belonging to N

3.3.2. Decomposition of the map N into two maps. The following cut algorithm
describes how to cut the polygon of N into two parts.
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Cut algorithm
Let σ̄−1∗(b1) = (br, br−1, . . . , b1) (in Figure 9, r = 13);
Let b be the half-edge br;
while b distinct from b1 and b belongs to case I
b = σ̄−1(b);
(a) If b is the half-edge b1 /* all half-edges br, br−1, . . . , b1 belong to case I */

then {a cut after b2 in the circuit σ̄−1∗(b1) is put, i.e. between b2 and b1, such as
g2 stays glued to the root vertex;} (see Figure 5)

half-edges
vertices
sub-maps

b b b b
s s s
g g g

r r

r r

r r

, , ,
, ,
, ,

 

−

−

−

1 2 1

1 2

1 2

�

� ��� ���

�

�

case I
,

,
,

unique cut

Figure 5. Case (a) of the cut algorithm

(b) else {a first cut between bj+1 = σ̄(b) and bj = b (j + 1 = 1 when j = r) is put,
gj+1 going along with bj (see Figure 9, j = 8);
Let σ̄∗(b1) = (b2, b3, . . . , br, b1);
Let b be the half-edge b2;
while b belongs to case I
b = σ̄(b);
A second cut is put between bi−1 = σ̄−1(b) and bi = b, such as gi goes along
with bi (see Figure 9, i = 3);} (see Figure 6)
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1 map N2 map N1

first cut second cut

half edges

vertices

sub-maps

σ σ
−1

1 1
* ( ) * ( )b b

Figure 6. Case (b) of the cut algorithm

End of algorithm.

Decomposition of N . As N belongs to N and the two cuts (coinciding or not) are
incident to the interior and exterior face of N , we obtain two maps. Let us call the map
including b1, N1, rooted in b̃ and the map including bi and bj (that can be reduced to
{p} if we are in case (a) of the cut algorithm), N2, rooted in bi.

Notation 3. The removal of b̃ in N1 disconnects the map into two sub-maps: the sub-
map N11 glued to the final vertex of b̃ in N1, rooted in σ̄(b̃), and the sub-map N12 glued
to the root vertex in N1, rooted in σ(b̃).

Let k be such as sk is the vertex of type 3 in N2. N2bis is the sub-map N2 deprived
of gk.
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Proposition 1. properties of maps N1 and N2 (see Figure 9)

a) b̃ belongs in N1 to a bridge edge, so N1 belongs to I.
b) N2 belongs to Λ.
c) sj+1 is the vertex of type 1 in N11.
d) si is the vertex of type 2 in N12.
e) sj+1 is the vertex of type 3 in N2bis (see Figure 7).

Proof. a) and b) are straightforward.
c) is a consequence of the cut algorithm as b̃, with its root vertex glued to the vertex

sj+1, represents the half-edge r if M is here the map N11 (see Definition 4).
d) is a consequence of the cut algorithm as b̃, with its final vertex glued to the vertex

si, represents the half-edge r if M is here the map N12 (see Definition 4).
e) Let us construct from the map N2bis, the map N

(3)
2bis (see Definition 4). N

(3)
2bis is

obtained by gluing the final extremity of the root half-edge r to the final extremity of bj ,
sj+1. In fact this map is of order one, as N is, and sj+1 is of type 3 in N2bis. Besides note
that as bj belongs to case II in N , its initial extremity sj is not incident to the exterior
face of N . Therefore if a root half-edge r is added to N2bis with its initial extremity
glued to the initial extremity of bi, with σ(r) = bi, and its final extremity glued to the
final extremity of σ̄(bj), with σ̄(σ̄(bj)) = α(r), the map obtain is no more of order
one (see Figure 7). In that case, both the extremities of bj do not belong to the exterior
face. �
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Figure 7. Search of the vertex of type 3 in N2bis

Theorem 2. The family of maps N1 obtained by the previous decomposition is I.

Proof. N1 being obviously a map of I, it remains to prove that N1 can be any map of
I, i.e. it remains to prove that for any map of I the two vertices v1 and v2 can be found,
which when glued to another map N2 allow to recover map N . N11 and N12 belong to
Λ as N1 belongs to I. Then from Lemma 1, it is known that there exists a unique vertex
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of type 1 in N11 and a unique vertex of type 2 in N12. We saw in the cut algorithm that
these vertices are the vertices v1 and v2 (see Figure 9). We now know where to attach
map N1 to reconstruct map N . �
Theorem 3. The set of maps N2 is in one-to-one correspondence with I ∪ {p}.

Proof. Let us consider that N2 is not reduced to a single vertex (case (a) of the cut
algorithm). Note that the place of the second cutting is showed by the root half-edge
of N2. As it is, the place of the first cutting can not be recovered. For that N2 must be
transformed.

a- Transformation of a map N2 not reduced to {p} into a map belonging to I (see
Figure 9)

Step 1 To transform N2 into a map belonging to I, the final extremity si+1 of the
root half-edge bi is glued to sj+1 such as bj does not belong to the exterior
domain but map gj+1 does (see step 1 in Figure 9). So as sj+1 is of type 3
in N2 deprived of gj+1 (see Proposition 1.e), it is still of type 3 in this new
map deprived of gj+1 for the same reasons. Map N21 is obtained.

Step 2 Then bi with map gj+1 are untied from sj+1 (see step 2 in Figure 9). A map
N22 is obtained. N22 belongs to I. Let us call N221 the sub-map glued to
the final vertex of the root edge, this root edge excluded. It can be any map
of Λ, as it corresponds to map gj+1 incident to sj+1 in N2. Let call N222

the map N22 deprived of N221. It belongs to Λ. sj+1 being still of type 3 in
N222, N21 can be recovered from N22.

It will be shown now that any map of I can be transform into a map N2 and
thus prove that the set of maps N2 is in bijection with I.

b- Reciprocal transformation
Let N22 be any map of I, with its root half-edge called bi. Thanks to a we

know how to recover N21 from N22. The vertex v of type 3 in N222 must be
found (see Figure 9). Lemma 1 leads to the existence of v. When v is founded,
the final extremity of the root half-edge bi is glued to v such as the sub-map gj+1

incident to the final vertex of bi, belongs to the exterior domain. N21 has been
recovered (see step 3 in Figure 9) and v is still of type 3 in N21 deprived of gj+1.
To recover N2 from N21, the sub-set S of all edges that must be unglued from
v and glued to a new vertex si+1 must be found (S corresponds to all the edges
that have an extremity equal to si+1 in N2). In the ordered set σ−1∗(α(bi)) in
N21, starting from α(bi), there are two cases as v is of type 3 in N21 deprived
of gj+1 (see Figure 8):

• There is a loop l such as σ(l) = α(l), then l corresponds to bj . Then S
is the set of all half-edges met in σ−1∗(α(bi)) until meeting l for the first
time (meaning bj).

• There is a half-edge with its final vertex non-incident to the exterior face.
This last half-edge corresponds to α(bj). Then S is the set of all half-edges
met in σ−1∗(α(bi)) until meeting α(bj), α(bj) excluded.

Therefore to recover N2 from N21, v is untied with all half-edges belonging
to S (see step 4 in Figure 9). �
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3.4. Enumeration of N and Λ. From the precedent topological decomposition an
expression of the generating function of N is obtained in Theorem 4.
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Figure 8. Different cases of maps N21 and recovering of N2

Notation 4. Let G1 be the generating function for planar maps of order one. Let F1

(respectively I1) be the generating function for planar maps of order one with a non-
bridge (respectively bridge) root edge, i.e. the generating function of N (respectively
I). The degree of z represents the number of edges. Henceforth in equations, we will
consider implicitly that generating functions are function of z (writing I1 instead of
I1(z), and so on...).

Theorem 4. a) The generating function F1 of N is: F1 = I1 × (1 + I1).
b) The generating function G1 of Λ is: G1 = (1 + I1)2.

Proof. Two lemmas are needed (see Lemmas 3 and 4 in a)) to prove Theorem 4 (see
b)).

a) From the decomposition described in the precedent section, a generating func-
tion of N is obtained.

Lemma 3. Maps N1 are enumerated by the generating function I1.

Proof. The proof is straightforward since by Theorem 2, the set of maps N1 is
in one to one correspondence with I. �

Lemma 4. Maps N2 are enumerated by the generating function 1 + I1.

Proof. The proof is straightforward since by Theorem 3, the set of maps N2 is
in one to one correspondence with I ∪ {p}. �

As N is the union of N1 and N2, we obtain F1 = I1 × (1 + I1).

b) The set of maps of order one Λ is the union of I, N and {p}. So, G1 =
I1 + F1 + 1 = I1 + I1 × (1 + I1) + 1 = (1 + I1)2. �
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3.5. Enumeration of I. We deduce from 3.4 an enumeration of I.

Theorem 5. The generating function of I is: I1 = z(1 + I1)4.
And thus the number of planar maps of order one with n edges including a bridge

root edge is given by: 1/(3n + 1)
(4n

n

)
.

Proof. As G1 = (1 + I1)2 and I1 = zG2
1, it follows that I1 = z(1 + I1)4. Applying the

Lagrange’s inversion to this later equation, the following result is obtained: coefficient
of zn in I1 = 1/(3n + 1)

(4n
n

)
. �

4. A geometrical one-to-one correspondence between Πn and In. First of all let us
recall that a (3n + 2)-gon is partitioned into n pentagons and that the set of partitions
of a (3n + 2)-gon and the set of maps of order one with a bridge root edge have the
same number of elements. So there is a natural idea which is to associate one edge of a
map belonging to In with a pentagon. The first step is to transform the root bridge into
a first pentagon with one root side. We show this first step in Section 4.1.

But then we have to know what to do with the two remaining planar maps of order
one. If each map of order one can be split into two maps belonging to I ∪ {p} (which
seems possible as G1 = (1 + I1)2 from Theorem 4), four maps belongings to I ∪ {p}
are obtained. We reiterate the transformation of the bridge root edge of each of these
maps into a new pentagon and the four rooted edges of this four pentagons are glued to
the four non-root sides of the first pentagon. Then this decomposition and gluing can be
reiterated until each edge has been transformed into a pentagon. Therefore each bridge
becomes a pentagon and each pentagon represents a bridge. In Section 4.2, it is seen
how to transform bijectively a map belonging to Λ into two maps belonging to I ∪{p}.
Then in Section 4.3, it is shown how to transform a map of In into a unique partition of
Πn. It will then be easily seen that this transformation is a one-to-one correspondence.

Notation 5. Let us name p1 the root edge of the pentagon, and p1, p2, p3, p4, p5 the five
sides of the pentagon as showed in Figure 10. Let I be a map of In with a root half-edge
b̃, m1 the map of order one glued to the root vertex v1 of I (b̃ �∈ m1), and m2 the map
of order one attached to the final extremity v2 of b̃ (α(b̃) �∈ m2).

4.1. First stage of the bijective transformation of a map of In into a map of Πn. The
root edge b̃ becomes a pentagon. Then the vertex of m1 that was glued to v1, is glued
at the intersection of p4 and p5, and the vertex of m2 that was glued to v2, is glued at
the intersection of p2 and p3 (see Figure 10).
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Figure 10. First stage of the geometrical one-to-one transformation
between a map belonging to In and a partition belonging to Πn
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4.2. A geometrical one-to-one correspondence between Λ and (In ∪ {p})2. The set
Λn of planar maps of order one with n edges, n > 0, is split into three sets, {p}, In

and Nn. This one to one correspondence is detailed in three parts:

1. {p} is placed into one-to-one correspondence with {p}2.
2. In is placed into one-to-one correspondence with In × {p} (see Figure 11).

, )(
planar map of order one

Figure 11. Decomposition of a map of I into a pair of
maps, the first belonging to I and the second is {p}

3. Nn is put into one-to-one correspondence with (In ∪ {p}) × In. To show
geometrically this correspondence, we start with the decomposition of a map
of N showed in Section 3.3. This decomposition gives two maps N1 and N2,
in which the root edge of N belongs to N1. N1 belongs to I, and N2 can be
bijectively transformed into a map N22 ofI∪{p} (see Section 3.3.2). Therefore a
map belonging to N has been bijectively associated to two maps, one belonging
to I ∪ {p} and one to I (see Figure 12).
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Figure 12. Decomposition of map of Figure 2,
into two maps belonging to (I ∪ {p}) × I

Example. A particular case
Let us recall that if each half-edge of σ̄∗(b1) belongs to case I (see Definition 3) only,

just one cut is put between b1 and b2, such as g2 goes with b1. Thus one map belonging
to I and one map N22 reduced to {p} are obtained (see Figure 13).

( ),.

Figure 13. Decomposition of the map glued to the root vertex of the map
showed in Figure 10, into a pair of maps, {p} and one belonging to I

4.3. Bijective transformation of a map of In into a map of Πn. σ(b̃) (respectively
σ̄(b̃)) becomes the root half-edge of map m1 (respectively m2). Section 4.2 shows that
mi, i = 1, 2, are bijectively associated to pairs of maps (mi1 , mi2), each map belonging
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Figure 14. Second to last stage of the geometrical one-to-one transformation
between map on the left of Figure 10 and a partition belonging to Πn

to I ∪ {p}. So after step showed in Section 4.1 we glue:

• the root half-edge of m11 to p5,
• the root half-edge of m12 to p4,
• the root half-edge of m21 to p2,
• the root half-edge of m22 to p3.

Then each of these root half-edges are transformed into pentagons and the two maps
glued to their root vertex and final extremity are rooted and glued as in Section 4.1 to
this new pentagon (see Figure 14). This process is reiterated until a polygon partitioned
into pentagons is obtained (see Figures 14 and 15). Each step of this transformation is
a one-to-one correspondence as it is always possible to go back. In fact, the orientation
of the sphere gives an easy way to go back. Each time that a pentagon is created, it is
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implicitly rooted, and so can be transformed back to a root half-edge.

5. Conclusion. A one-to-one correspondence between rooted polygons partitions and
the set of rooted planar maps of order one with a bridge root edge has been shown with
the use of a geometrical proof. The difficulty lay in the fact of finding for any rooted
planar map of order one a decomposition into two maps, each one belonging to the set
of rooted planar maps of order one with a bridge root edge, the map reduced to a unique
vertex included, I ∪ {p}. It is interesting to note that the work on rooted polygons
partitions is linked to the theory of rooted planar maps, which has many results found
in an extensive literature (see for example [1], [3], [5], [10], [11]).

Let remark that the bijection between 4-trees with 4n+1 vertices and 3n+1 endpoints
and partitions of a polygon into pentagons given by R. P. Stanley [8], leads to a new
bijection between the set of planar maps of order one with a bridge root edge and 4-trees
with 4n + 1 vertices and 3n + 1 endpoints.

An edge with number n written beside represents actually n edges
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Figure 15. Last stage of Figure 14 giving the convex polygon
issued from map situated on the left of Figure 10

Résumé substantiel en français.

Énumération des partitions d’un polygone en pentagones. Un polygone convexe
pointé ayant 3n + 2 arêtes ((3n + 2)-gone), se découpe en n pentagones.

Théorème 1. Le nombre de partitions d’un (3n + 2)-gone en pentagones est

pn =
1

3n + 1

(
4n

n

)
.

Soit Πn l’ensemble des partitions d’un (3n + 2)-gone pointé en n pentagones.

1. Énumération de carte planaires d’ordre 1 dont l’arête pointée est un isthme. On
choisit une orientation anti-trigonométrique sur la sphère.
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1.1. Définitions.

Définition 1. Soit α (respectivement σ) la permutation sur l’ensemble des brins qui
associe à chaque brin, son brin opposé (respectivement le premier brin rencontré en
tournant autour du sommet pointé dans le sens positif). Alors σ̄ est la permutation σ◦α.

Si b̃ n’est pas un isthme (arête incidente sur ses deux côtés à une même face),
nous appellerons face extérieure (respectivement face intérieure) d’une carte planaire
pointée, la face σ̄∗(b̃) (respectivement σ̄∗(α(b̃))) située sur le côté droit (respectivement
sur le côté gauche) du brin pointé b̃.

Soit b1 = α(b̃). Alors σ̄∗(b1) = (b1, . . . , br) est le circuit orienté des brins incidents
sur leur droite à la face intérieure. Nous appellerons respectivement (s1, . . . , sr) les
sommets initiaux de (b1, . . . , br), non nécessairement tous distincts (à la figure 2,
s3 = s5, s7 = s9, s11 = s12 et s13 = s1).

Définition 2. (Les cartes d’ordre un) Une carte planaire pointée est dite d’ordre un si
chaque arête a au moins une extrémité incidente à la face extérieure.

Soit bi le brin appartenant à la face intérieure. Il y a deux cas :

I. bi a ses deux extrémités incidentes à la face extérieure (voir b1, b2, b9, b10, b11,
b12, b13 à la figure 2).

II. bi a une extrémité non-incidente à la face extérieure (l’autre étant incidente à la
face extérieure par définition des cartes d’ordre un) (voir b3, b4, b5, b6, b7, b8 à la
figure 2).

Une carte d’ordre un est de type I si et seulement si chaque arête de la face intérieure
appartient au cas I.

Notation 6. {p} est la carte planaire réduite à un unique sommet.
Soit In (respectivementNn) l’ensemble des cartes planaires d’ordre un avec n arêtes,

l’arête pointée étant un isthme (respectivement l’arête pointée n’étant pas un isthme) et
I = ∪n≥1In (respectivement N = ∪n≥1Nn).

L’ensemble Λ des cartes planaires pointées d’ordre un est : Λ = {p} ∪ I ∪ N .
Par convention, le nom du brin est montré sur la figure près de son extrémité initiale.

1.2. Une décomposition topologique des cartes planaires de N .

1.2.1. Sous-carte extérieure.

Lemme 1. (König, circuit hamiltonien)
Soit N une carte planaire dont le brin pointé n’est pas un isthme. De la séquence

σ̄∗(b̃), une unique sous-séquence de brins constituant un circuit, incluant b̃, qui ne
traverse pas deux fois la même arête ou le même sommet, peut être extraite.

La sous-séquence décrite dans le précédent lemme (voir à la figure 4 le circuit
dessiné en gras) est un polygone divisant le plan en deux domaines ouverts connexes, un
extérieur, incluant le point à l’infini, et un intérieur. Soit (g1, . . . , gr) r cartes planaires
maximales incidentes respectivement aux sommets (s1, . . . , sr) (voir définition 1),
composées exclusivement de brins appartenant au domaine extérieur (voir g1 = g13,
g3 = g5, g7 = g9 et g10 dessinés en pointillé à la figure 4). gi, 1 ≤ i ≤ r, peut être
réduit à {p} (à la figure 4, on a g2 = g4 = g6 = g8 = g11 = g12 = {p}).
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1.2.2. Décomposition de la carte N en deux cartes. Nous présentons une décompo-
sition topologique d’une carte N de N en deux cartes de I ×I ∪ {p}. L’algorithme de
coupure suivant décrit comment couper le polygone de N en deux parties.

Algorithme de coupure
Soit σ̄−1∗(b1) = (br, br−1, . . . , b1) (à la figure 9, r = 13)
Soit b le brin br;
Tant que b est distinct de b1 ou que b appartient au cas I
b = σ̄−1(b);
(a) Si b est le brin b1 /* tous les brins br, br−1, . . . , b1 appartiennent au cas I */

Alors {une coupure est faite après b2 dans le circuit σ̄−1∗(b1), i.e. entre b2 et b1,
tel que g2 reste collé au sommet pointé;} (voir figure 5)

(b) sinon {un première coupure est faite entre bj+1 = σ̄(b) et bj = b (j + 1 = 1
lorsque j = r), gj+1 restant avec bj (voir figure 9, j = 8);
Soit σ̄∗(b1) = (b2, b3, . . . , br, b1);
Soit b le brin b2;
Tant que b appartient au cas I
b = σ̄(b);
Une deuxième coupure est faite entre bi−1 = σ̄−1(b) et bi = b, tel que gi reste
avec bi (voir figure 9, i = 3);} (voir figure 6)

Fin de l’algorithme.

Décomposition de N . Comme N appartient à N et que les deux coupures (coı̈ncidant
ou non) sont incidentes aux faces intérieure et extérieure de N , on obtient deux cartes.
Appelons la carte contenant b1, N1, pointée en b̃ et la carte contenant bi et bj (qui peut
être réduite à {p} si on se trouve dans le cas (a) de l’algorithme de coupure), N2, pointée
en bi.

Notation 7. La suppression de b̃ dans N1 déconnecte la carte en deux sous-cartes : la
sous-carte N11, collée au sommet final de b̃ dans N1, pointée en σ̄(b̃), et la sous-carte
N12, collée au sommet pointé dans N1, pointée en σ(b̃).

Théorème 2. La famille de cartes N1 obtenue par la décomposition précédente est I.

Théorème 3. L’ensemble des cartes N2 est en bijection avec I ∪ {p}.

Preuve. Considérons que N2 n’est pas réduite à un simple sommet (cas (a) de l’algo-
rithme de coupure). Pour transformer la carte N2 en une carte de I, on réalise les deux
étapes suivantes :

É. 1 : l’extrémité finale si+1 du brin pointé bi est collée à sj+1 telle que bj n’appartienne
pas au domaine extérieur, tandis que gj+1 en fait parti (voir l’étape 1 de la figure
9). On obtient une carte N21.

É. 2 : Alors bi avec la carte gj+1 est détaché de sj+1 (voir l’étape 2 de la figure 9). On
obtient une carte N22 qui appartient à I.

Cette transformation est bijective. �
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1.3. Énumération de N , Λ et I.

Théorème 4. a) La fonction génératrice F1 de N est : F1(z) = I1(z) × (1 + I1(z)).
b) La fonction génératrice G1 de Λ est : G1(z) = (1 + I1(z))2.

Théorème 5. La fonction génératrice de I est : I1(z) = z(1 + I1(z))4.
Ainsi le nombre de cartes planaires d’ordre un avec n arêtes incluant une arête

pointée isthme est : 1/(3n + 1)
(4n

n

)
.

2. Une bijection géométrique entre Πn et In.

Notation 8. Soit p1 l’arête pointée du pentagone, et p1, p2, p3, p4, p5 les cinq côtés du
pentagones comme décrit à la figure 10. Soit I une carte de In avec son brin pointé b̃,
m1 la carte d’ordre un collée au sommet pointé v1 de I (b̃ �∈ m1), et m2 la carte d’ordre
un rattachée à l’extrémité finale v2 de b̃ (α(b̃) �∈ m2).

2.1. Première étape de la transformation bijective d’une carte de In en une carte
de Πn. L’arête pointée b̃ devient un pentagone. Alors le sommet de m1 qui était attaché
à v1, est collé à l’intersection de p4 et p5, et le sommet de m2 qui était attaché à v2, est
collé à l’intersection de p2 et p3 (voir figure 10).

2.2. Une bijection géométrique entre Λ et (In ∪ {p})2. L’ensemble Λn des cartes
planaires d’ordre un avec n arêtes, n > 0, est séparé en trois ensembles, {p}, In et Nn.
Cette bijection se détaille en trois parties :

1. {p} est mis en bijection avec {p}2.
2. In est mis en bijection avec In × {p} (voir figure 11).
3. Nn est mis en bijection avec (In ∪ {p}) × In. Pour montrer géométriquement

cette bijection, nous commençons avec la décomposition d’une carte de N ,
montré au paragraphe 1.2. Cette décomposition donne deux cartes N1 et N2,
où l’arête pointée de N appartient à N1. N1 appartient à I, et N2 peut être
transformée bijectivement en une carte N22 de I ∪ {p} (voir section 2.2). Ainsi
une carte appartenant à N a été associée bijectivement à deux cartes, une
appartenant à I ∪ {p} et l’autre à I (voir figure 12).

2.3. Transformation bijective d’une carte de In en une carte de Πn. σ(b̃) (respec-
tivement σ̄(b̃)) devient le brin pointé de la carte m1 (respectivement m2). La section
2.2 montre que les cartes mi, i = 1, 2, sont associés bijectivement à des paires de cartes
(mi1 , mi2), chaque carte appartenant à I ∪ {p}. D’où après l’étape montrée en 2.1, on
colle :

• le brin pointé de m11 à p5;
• le brin pointé de m12 à p4;
• le brin pointé de m21 à p2;
• le brin pointé de m22 à p3.

Alors chacun de ces brins pointés est transformé en pentagone et les deux cartes, collées
à leur sommets pointés et extrémité finale, sont pointées et collées comme montré au
2.1, au nouveau pentagone (voir figure 14). Ce procédé est répété jusqu’à ce qu’un
polygone découpé en pentagones soit obtenu (voir figures 14 et 15). Chaque étape
de cette transformation est une bijection car on peut toujours revenir en arrière. En
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fait, l’orientation de la sphère permet un retour en arrière simple; chaque fois qu’un
pentagone est créé, il est implicitement pointé, et peut donc être retransformé en un
brin pointé.
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ÉQUIPE DE SYNTHÈSE D’IMAGES
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