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SOME MECHANICAL AND MATHEMATICAL

ASPECTS ON TRANSONIC FLOWS

M. POGU AND G. TOURNEMINE

RÉSUMÉ. Dans cet article ońetudie deśecoulements stationnaires en régime trans-
sonique. On propose une modélisation de ceux-ci puis une approche fonctionnelle
du probl̀eme. Afin de contraindre les ondes de chocà apparâıtre, on introduit une
inégalit́e de saut mettant en jeu la composante tangentielle du flux de masse. Une
nouvelle ḿethode de ŕesolution baśee sur la minimisation d’une fonctionnelle agis-
sant sur un espace compact est proposée.

ABSTRACT. In this paper steady transonic flows are considered. A modelization
and a functional approach are proposed. In order to constrain the shock waves to
appear, a jump inequality, involving the tangential component of the mass flux is
introduced. A new solution procedure is given by minimizing a functional acting
on a compact set.

Introduction. This article is concerned with steady transonic plane flows of a non-
dissipative compressible ideal gaz around a profile set in unbounded atmosphere. For
background notions, see for instance [1, 2, 3, 4]. Generally, transonic flows are the seat
of weak shock waves. More precisely, ifε denotes the shock strength, it is shown [3]
that the increasing of the jump with entropy is of orderε3, and that the same holds for
the vorticity. It is then advisable to deal with isentropic and irrotational flows. Under
these conditions, the equations governing the velocity field reduce to a quasi-linear
first order partial differential system of elliptic hyperbolic type. From the functional
standpoint, the question of existence of a solution to such systems is still with us. The
main difficulty derives from the lack of monotonicity, see for instance for this notion
[4, 5, 6]. In the previous literature on the subject [7] the existence of a solution to the
system is proved under significant conjectures. To the best of our knowledge, passing
over these conjectures, only partial results are proved within functional frames. Usually
the associated methods lead essentially to approach the equation of continuity while
the irrotational character is preserved: the vorticity equates zero, see, for instance, [8,
9, 10, 11, 12, 13] and Subsection 1.2.

In this article, we propose a model with a functional approach following a different
way. The equation of continuity holds exactly while the vorticity is minimized. Further,
in order to constrain the shock waves to appear, a jump inequality, involving the
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c©Association math́ematique du Qúebec
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tangential component of the mass flux is introduced as soon as the governing equations
are set. Let us describe the main advantages of the proposed method. The equation
of continuity holds exactly. The minimization of the vorticity may imply it can be
small, this is in accordance with flows having weak shock waves and are therefore
weakly rotational downstream these waves. Let us point out that the minimization of
the divergence of the mass flux might imply solely this divergence equates zero, without
warranting the conservation of mass holds necessarily.

The method furnishes namely the sonic lines and shock waves. Let us mention that
most of the arguments concerning the functional approach become applicable to general
situations associated with quasi-linear first order partial differential systems of mixed
type, that is: elliptic, hyperbolic.

1. Statements.Steady transonic plane flows of a non-dissipative compressible ideal
gaz around a given profileP are considered. The flows are assumed to be symmetrical
so that we can reduce the study to the upper-half plane. In the frame of reference
(0;x1, x2), see Figure 1, the boundaryΓP of P cuts thex1-axis at pointN

(
−c/2,0

)
and at pointT

(
c/2,0

)
, wherec is the chord ofP. The governing equations are studied

in the domainΩ which is bounded by introducing the artificial boundaryΓ̃. To simplify
we takeΓ̃ as the half circle centered at 0 and of fixed radiusR, large enough. Thus the
boundary∂Ω of Ω consists of̃Γ, and of the curveΓ prolongingΓP to thex1-axis. The
unit outward normal to∂Ω is denoted by~ne = (ne1, ne2). The componentsne1 andne2

are taken here with respect to(0;x1, x2). The body forces are supposed negligible as
usual.
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Figure 1.
Before describing the model constructed in this article (Section 2), let us recall some

notions on the isentropic flows including weak shock waves (Subsection 1.1), then on
the system to solve if we only want approach the equation of continuity (Subsection 1.2).

1.1. Isentropic flows including weak shock waves.The velocity field acts fromΩ
intoR2. The limit speed is taken to be unity. The densityρ and the magnitude|~v| of the
velocity are connected by the isentropic relation:

ρ
(
|~v|2
)

= ρ0
(
1− |~v|2

)1/(γ−1)
, |~v| ∈ (0,1). (1)



M. Pogu and G. Tournemine 89

In the latter, the densityρ0 at the stagnation point and the ratioγ > 1 of specific
heats are given constants. The critical speed reads as:

vc =
(
γ − 1
γ + 1

)1/2

. (2)

Function~v satisfies the equations and conditions below:
div
(
ρ
(
|~v|2
)
~v
)

= 0 in Ω (3.1)

rot~v = 0 in Ω (3.2)

0≤ |~v| ≤ 1 in Ω (3.3)

ρ
(
|~v|2
)
~v · ~ne = g on∂Ω (3.4)

Relation (3.1) is the equation of continuity. Let us denote byv1, v2 the components
of ~v with respect to(0;x1, x2) and by∂1 and∂2 the first partial derivatives with respect
tox1 andx2. In (3.2) we set rot~v = ∂1v2−∂2v1. We introduce Equation (3.2) since the
flow is supposed isentropic here. Condition (3.3) means the magnitude of the velocity
does not exceed the limit speed. In (3.4), the given functiong satisfies:{

g = 0 onΓ (4.1)

g = t∞ne1 on Γ̃ (4.2)

In (4.2) we have set:t∞ = ρ
(
u2
∞
)
u∞, with u∞ taken fixed within the interval

] 0, vc [ . Equality (4.2) simulates that the flow is uniform at infinity with velocity
(u∞,0). Accordingly artificial boundarỹΓ is set at finite distance far enough fromP,
and not intersecting the supersonic pockets. Moreover,g obeys the necessary condition∫

∂Ω
gdΓ = 0. (5)

The latter is imposed by (3.1) and (3.4).

1.2. System to solve - the equation of continuity being approached.A possible
functional approach of (3) consists in minimizing expressions equivalent to the lefthand
side in (3.1) while Equation (3.2) remains preserved. Then this approach leads to find
~v so that 

div
(
ρ
(
|~v|2
)
~v
)

= d in Ω (6.1)

rot~v = 0 in Ω (6.2)

0≤ |~v| ≤ 1 in Ω (6.3)

ρ
(
|~v|2
)
~v · ~ne = g on∂Ω (6.4)

holds.
In (6.1), functiond is a parameter to be minimized using a suitable norm.
Let us mention some results concerning the study of (6) within the frame of Sobolev

spaces.
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a) Among the possible solutions to (6) (if they exist) one considers those which
satisfy an entropy condition. It is shown these solutions obey a variational inequality.
The latter is solved by minimizing the associated functional on a convex compact subset
equipped with an entropy condition. See for instance, [8, 9, 13].

b) The possible solutions to (6) (if they exist) obey an equality, expressed in terms
of the projection of the mass flux onto a linear subspace. By means of a suitable norm,
one proves the gap between the projection and zero is accurate to anyε > 0. See, for
instance, [4, 10, 11, 12].

2. Construction of the model. Since the studied flow is transonic then a curveΣ
dividesΩ into a subsonic zone:Ω−Σ and a supersonic zone:Ω +

Σ (see Figure 2). The
supersonic zones corresponds to the supersonic pockets. An oriented unit tangent toΣ
is denoted byτΣ. Let us define the functions~v±Σ deduced from~v by setting

Ω±Σ −→ R2

x 7−→ ~v(x) .
(7)

CurveΣ is partitioned into the sonic lineΣs and the shock lineΣc. The construction
of these curves will be precised in Subsection 2.3.

The jump of a quantitya throughΣc is denoted by[[a]] = a− − a +. Herea− (a +

respectively) corresponds with the limit ofa, from the left (from the right) of shock line
Σc.
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Figure 2.

2.1. System to solve - the vorticity being approached.Let us introduce the mass flux

~q(~v) = ρ
(
|~v|2
)
~v. (8)

Function~v is sought to satisfy:
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div (~q (~v)) = 0 in Ω (9.1)

rot~v = r in Ω (9.2)

0≤
∣∣~v−Σ ∣∣ ≤ vc in Ω−Σ (9.3)

vc ≤ |~v +
Σ| ≤ 1 in Ω +

Σ (9.4)

[[~q(~v)]] · ~tΣ ≥ σ onΣc (9.5)

~q (~v) · ~ne = g on∂Ω (9.6)

In (9.2) functionr is a parameter to be minimized using a suitable norm.
Requirement (9.2) is in accordance with the assumption already mentioned in the

introduction, and concerning the magnitude of the entropy, that way, of the vorticity via
Crocco’s theorem. Conditions (9.3) and (9.4) are introduced to involve the domainΩ−Σ
(Ω +

Σ) where the fluid is lower (exceeds) the speed of sound. Condition (9.5) constrains
a shock wave to appear onΣc by means of a functionσ chosen such as:{

σ > 0 onΣc (10.1)

σ′ < 0 onΣc (10.2)

Conditions (10.1) and (10.2) ensure that the shock strength exists actually, and is
decreasing alongΣc (we will move fromB toC, with σ = 0 atC only). More details
concerning the motivation of (9.5), (10) will be given in the next subsection.

The problem now is to find function~v satisfying (9), curveΣ dividingΩ and function
σ obeying (10).

Let us point out the fundamental difficulty. When considering subsonic flows, con-
ditions (9) reduce to (9.1), (9.2), (9.6) with: 0≤ |~v| ≤ vc, see for instance [4]. This
essential difference makes precisely the difficulty to solve (9) taken as a whole: mono-
tonicity properties are no more available, see [4] for further explanations.

2.2. The shock condition introduced in the model.Before developing the solution
method of (9), let us give some lines on the motivation of condition (9.5). One has

[[~q]] = [[~q · ~nΣ]]~nΣ + [[~q · ~τΣ]]~τΣ, onΣc (11.1)

here~nΣ is a unit normal toΣc and oriented fromΩ +
Σ to Ω−Σ .

From (9.1) one obtains:

[[~q]] · ~nΣ = 0 onΣc. (11.2)

From (11.1) and (11.2) it follows

[[~q]] = [[~q · ~τΣ]]~τΣ onΣc. (11.3)

Introducing the projection on~τΣ of the jump condition associated with Euler’s
equation, one deduces from (8) and (11.3)

[[~q]] = [[ρ
(
|~v|2
)
]] (~v · ~τΣ)~τΣ onΣc. (11.4)
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The second principle of the thermodynamics implies densityρ increases throughΣc

that is
ρ
(
|~v−Σ |2

)
> ρ

(
|~v +

Σ|2
)
. (11.5)

The observation of the shock polar, namely, leads to consider the inequality:

~v · ~τΣ > 0 onΣc. (11.6)

Gathering (11.4), (11.5) and (11.6) it is inferred:

[[~q]] · ~τΣ > 0 , onΣc. (11.7)

Inequality (11.7) has been taken into account by (9.5) precisely.
From the above considerations it follows that our aim is not to deal with the Rankine-

Hugoniot relations taken as a whole, but to propose a model using a significant part of
these relations.

2.3. Curves dividing the domain. Owing to informations from mechanics (see for
instance [3] for these informations) the shape ofΣ is simulated to the best, see Figure
2. We will choose the equation ofΣ such that:

(α) T does not belong to the closure ofΩ +
Σ (see (12.5) below).

(β) Σ does not reduce to a point ofΓP (see (12.6) below).
(γ) Σ lies under curvẽΣ with Σ ∩ Γ̃ = ∅ (see (12.7) below).
(δ) Σ is concave (see (12.8) below).

In order to simplify, given strictly positive numbers (small enough) will generally be
denoted byα.

Let 0′ be the point of coordinates(`,0), we assume:

− c
2

+ α ≤ ` ≤ c

2
− α. (12.1)

We denote by(r, θ) the polar coordinates with respect to(0;x1, x2), and byI the
interval[α, π − α]. The equations of curvesΓP , Σ, Γ̃ read:

r = F`(θ), r = F (θ), r = F̃`(θ), θ ∈ I. (12.2)

It is supposed:
α ≤ F (θ), θ ∈ I, (12.3)

and
F` ∈ C2(I), F ∈ C2(I). (12.4)

Actually (12.4) will result from hypothesis (19) in the sequel.
Now, we can expressed conditions (α)-(δ) by the following:

F (θ) ≤
( c

2
− α

)
− ` (12.5)

F`

(π
2

)
+ α ≤ F

(π
2

)
(12.6)
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F (θ) ≤ F̃`(θ)− α, θ ∈ I (12.7)

α ≤ 1
F (θ)

+

(
1

F (θ)

)′′
, θ ∈ I. (12.8)

From (12.8), it followsΣc cutsΓ at a unique pointB. The polar angleθB belongs to
] 0, π2 [, adaptating theα’s in (12.1), (12.3) if necessary.

The shock line is the part ofΣ described byθ ∈ (0, θc) where:

θB + α ≤ θc ≤
π

2
− α. (12.9)

Let us setθc = (O′x1, O
′X), (12.8) implies the axis 0′X cutsΣ at a unique pointC.

The slip condition (see (9.6) and (4.1)), combined with the properties of the shock
polar, shows that this curve has a foot atB, and is oriented perpendicularly toΓP atB.
This is taken into account by choosing tangent~τΣ in a parallel direction to normal~ne,
that is:

F (θB)F`(θB) + F ′(θB)F ′`(θB) = 0. (12.10)

Sometimes, it will be useful to writeΣ in terms of cartesian coordinates with respect
to (0;x1, x2). From (12.2) the equation ofΣ reads

Σ(x) = 0 (12.11)

whereΣ(x) = F (θ)− r, with

θ(x) =



r − Arctg

( −x2

x1− `

)
, x1 < `

π

2
, x1 = `

Arctg

(
x2

x1− `

)
, x1 > `

(12.12)

r(x) =
√

(x1− `)2 + x2
2. (12.13))

From (12.1), expressions (12.12), (12.13)) are considered only when(x1, x2) does
not equate(`,0).

It is supposed that curvesΣ are within a fixed domainΩ0, included inΩ, so that
assumptions and conditions of this subsection hold true up to the closure ofΩ (see
Figure 3).

2.4. Decomposition of the vorticity field constraining the shocks to occur.In this
subsection we introduce the decomposition

~q = ~u + ~wΣσ

with
div ~q = 0.

Functions~u are selected smooth, namely they involve no shock throughΣ, while
wΣσ is constructed to simulate the shocks.
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Now let us show we can construct~u and ~wΣσ, actually.
a) We denote byg1 the function obtained fromg by substitutingt∞ for 1 into (4)

that is
g1 = 0 onΓ

g1 = ne1 on Γ̃.

Introducing a functionη ∈ C∞
(
Ω
)

such that:

η = 1 in a neighbourhood of̃Γ

η = 0 in a neighbourhood ofΓP

setting:
u1

1 = ∂2(ηx2), u1
2 = −∂1(ηx2)

one obtains a function~u1 satisfying:
~u1 ∈ C2 (Ω)
div ~u1 = 0 in Ω

~u1 · ~ne = g1 on∂Ω .

(13.1)

The function:
~u = t∞~u

1 (13.2)

is so that: 
~u ∈ C2 (Ω) (13.3)

div ~u = 0 in Ω (13.4)

~u · ~ne = g on∂Ω . (13.5)

holds.
b) We setI0 = [ϕB0, ϕA0] (see Figure 3 and the end of Subsection 2.3).

R

j

i

N

C

OR−
B0

ϕϕ

A0
ϕ

+

Ω
Ω

0

Σ

A
B B0

A0

T X1

X2

Figure 3.



M. Pogu and G. Tournemine 95

Function ~wσΣ is constructed involvingσ (see (9.5), (10)) andΣ by the following
procedure:

i) Introduce a functionσ : ϕ 7→ σ(ϕ).
We suppose

σ ∈ C1(I0). (14.1)

Let us denote byϕc the polar angle ofC with respect to(0;x1, x2). In
order to perform the passage:(0;x1, x2) → (0′;x1, x2), the decomposition:
OC = OO′ +O′C can be used.

Further, we assume
σ(ϕ) = 0 , ϕ ∈ (ϕc, ϕA0) (14.2)

σ(ϕ) ≥ σ0(ϕ) , ϕ ∈ (ϕB0, ϕc) (14.3)

σ′(ϕ) ≤ −α , ϕ ∈ (ϕB0, ϕc) (14.4)

here the given functionσ0 belongs toC1(I0) and satisfies:
σ0(ϕ) = 0 , ϕ ∈ (ϕc, ϕA0)

σ0(ϕ) ≥ 0 , ϕ ∈ (ϕB0, ϕc)

σ0(ϕc) = 0,

σ′0(ϕc) = 0 ,

ii) Consider the equation ofΓP andΣ in polar coordinates with respect to(0;x1,
x2), that is

r = FP(ϕ), r = FΣ(ϕ). (15.1)

It is assumed
FP ∈ C2(I0), FΣ ∈ C2(I0). (15.2)

By means of these expressions, we define onΩ0 (see the end of Subsection
2.3) the function

ψ = −(r − FP)σ
[
1−

(
r − FP
FΣ − FP

)]
. (15.3)

Let us note that in (15.3), functionψ is not the stream function of the flow.
iii) Calculate inΩ +

Σ:

∂rψ = −σ
[
1−

(
r − FP
FΣ − FP

)]
+ (r − FP)σ

1
(FΣ − FP)

(16.1)

∂ϕψ = σF ′P

[
1−

(
r − FP
FΣ − FP

)]
− (r − FP)σ′

[
1−

(
r − FP
FΣ − FP

)]
− (r − FP)σ

[
F ′P

(FΣ − FP)
+

r − FP
(FΣ − FP)2(F "Σ − F "P)

]
.

(16.2)

OnΣ, one has {
∂rψ = −σ
∂ϕ = σF ′Σ .

(16.3)
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In relations (16.4) and (17) below, the coordinates are taken with respect to
(0; i, j) (see Figure 3).

~τΣ =
1[

1 +
(
F ′Σ
FΣ

)2
] 1

2

 F ′Σ
FΣ

1

 (16.4)

iv) Set

~wΣσ =


0 in Ω−Σ(
1
r
∂ϕψ,−∂rψ

)
in Ω +

Σ .
(17)

From (17 ), (15.1), (16.3), (16.4) the relations

div ~wΣσ = 0 in Ω (18.1)

~wΣσ · ~ne = 0 on∂Ω (18.2)

~w +
Σσ · ~τΣ = −

[
1 +

(
F ′Σ
FΣ

)2
] 1

2

σ onΣ (18.3)

hold.
Conditions (14) and (18.3) warrant (10) and (9.5), while (13.5) and (18.2)

imply (9.6).

3. Outlines of the solution method.
a) The construction of Subsection 2.4 enables us to consider a vector field:~q =

~u + ~wΣσ satisfying: 
div ~q = 0 in Ω ,

[[~q ]] · ~τΣ ≥ σ onΣc ,

~q · ~ne = g on∂Ω .

b) Equations of continuity (9.1) remains preserved. Actually we determine by solving
Equations (8) for a given~q. The rootsK −(~q) andK +(~q) are selected wether we are in
Ω−Σ (Condition (9.3)) or inΩ +

Σ (Condition (9.4)).
c) Introducing thet-uples:

z = (`, FΣ, ϕc, u, σ)

condition (9.2) is approached to the best by minimizing the magnitude of rot~v(z) in
a suitable norm. Compactness arguments are applied, involving embedding theorems
within Sobolev spaces.

4. Some basic notations.Concerning the introductory matter and properties of Sobolev
spaces, used in the following, see for instance [14, 15].

Let us give some notations. The vectorial terms are no more quoted by arrows in
order to simplify. Letp be an integer, the spaceL2(O) of square summable functions
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acting from an open setO ⊂ R2 toRp is equipped with the inner product:

(u, v)0,O =
∫
O
u · vdx.

The associated norm is denoted by

|u|0,O =
(∫
O
|u|2dx

)1/2

.

The absolute value of a real number or the Euclidean norm of a vector will be denoted
by | · | independently.

Let m be an integer, the Sobolev spaceHm(O) is supplied with the usual inner
product:

(u, v)m,O =
∑
|µ|≤m

(∂µu, ∂µv)0,O,

here∂µ denotes the partial derivatives∂1, ∂2 of orderµ with respect tox1, x2. The
corresponding norm reads:

|u|m,O =

 ∑
|µ|≤m

|∂µu|20,O

1/2

.

In the sequel, given strictly positive numbers, chosen large enough, will be denoted
byN for some expressions, independently.

5. Minimization of the magnitude of the vorticity. We observe that expression rotv
(introduced already in Subsection 3.c) is non-linear and not necessarily convex with
respect tot-uplez. Owing to the minimization of the magnitude of rotv, it is usually
advisable to consider compactness arguments. The latter will imply, on the one hand,
some tuple components are continuous or derivable, on the other hand, some subsets
are suitably embedded inducing compactness properties. Some preliminary results
concerning the bounds are required.

5.1. Preliminary results. It is assumed thatF`, F , σ, FP , FΣ (introduced in (12.2),
(14.1), (15.1) respectively) satisfy:

F` ∈ H3(I), (19.1)

F ∈ H3(I) : |F |3,I ≤ N, (19.2)

σ ∈ H2(I0) : |σ|2,I0 ≤ N, (19.3)

|FP |3,I0 ≤ N, (19.4)

|FΣ|3,I0 ≤ N. (19.5)

By means of embedding theorems, we deduce that: (19.1)-(19.5) implies (12.4), (14.1),
(15.2) respectively.
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From the expressions ofρ, vc, q(v) given in (1), (2) and (8) respectively, it follows
that:

|q(v)| ≤ tc,
where we have set:

tc = ρ(v2
c)vc. (20.1)

Coming back to the definition oft∞ ((4.2) below) one has in the same way:

t∞ ≤ tc. (20.2)

Proposition 1. ParametersN andt∞ can be chosen so that functionu (introduced in
(13.2)) satisfies:

|u| ≤ tc in Ω−Σ , (20.3)

|u +wΣσ| ≤ tc in Ω +
Σ ,

independently ofΣ.

Proof. From (13.2) one has:
|u| ≤ t∞N0 in Ω (1i)

with N0 = sup{|u1(x)| ; x ∈ Ω}.
In order to estimate|wΣσ| it sufficies from relation (17) to bound|∇ψ| in Ω +

Σ,
independently ofΣ. Thus, we have:

|wΣσ| ≤ |∇ψ|. (2i)

Using an embedding theorem (mentioned by E.T.) (for the latter, see for instance [14]
or [15] and the associated references), Relation (19.4) (respectively (19.5)) implies:

|FP | ≤ N , (respectively|FΣ| ≤ N). (3i)

Since one has:
r ≥ FP in Ω +

Σ ,

from (3i), it follows:
r − FP ≤ N. (4i)

Since onΩ +
Σ, the inequalities:

r ≥ FP , r ≤ FΣ

hold, we obtain: (
r − FP
FΣ − FP

)
≤ 1 . (5i)

Combining estimates (4i), (5i) and (16.1), (16.2), leads to:

|∇ψ| ≤ C[(1 + |F ′P | + |F ′Σ|)σ +N |σ′|] .

Applying E.T., Relations (19.3), (19.4), (19.5) imply:

|∇ψ| ≤ C(N +N2). (6i)
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Gathering estimates (1i), (2i), (6i), one has:
|u| ≤ t∞N1 ,

and

|u +wσΣ| ≤ C(N +N2) .

This enables us to taket∞ andN small enough so that (20.3) holds.¤

From (13.2) one has:

|u|2,Ω ≤ N1t∞ , (20.4)

with N1 = |u1|2,Ω.
It will be useful in the sequel to assume angleϕc (see Subsection 2.4.b) is chosen

such as:

ϕc ∈ [ϕ1, ϕ2], (20.5)

whereϕ1 andϕ2 are given constants within] 0, π [.
For technical reasons some of the estimates and conditions, stated until now, are

recorded (see: the constructions in Subsections 2.3 and 2.4, and the groups of relations
(19), (20)). We introduce thet-uplesz = (`, FΣ, ϕc, u, σ) with components satisfying:

` ∈
[
− c

2
+ α,

c

2
− α

]
(21.1)

|FΣ|3,I0 ≤ N (21.2)

ϕc ∈ [ϕ1, ϕ2] whereϕ1, ϕ2 are given constants (21.3)

|u|2,Ω ≤ N1t∞ (21.4)

|σ|3,I0 ≤ N (21.5)

so that the corresponding conditions:

F (θ)
( c

2
− `
)
− α

α ≤ F (θ), θ ∈ I

F`

(π
2

)
+ α ≤ F

(π
2

)
F (θ) ≤ F̃`(θ)− α, θ ∈ I

α ≤ 1
F (θ)

+

(
1

F (θ)

)′′
, θ ∈ I

θB + α ≤ θc ≤
π

2
− α

F (θB)F`(θB) + F ′(θB)F ′`(θB) = 0

(22.1)

{
divu = 0 in Ω

u · ne = g on∂Ω
(22.2)
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σ(ϕ) = 0, ϕ ∈ (ϕc, ϕA0)

σ(ϕ) ≥ σ0(ϕ), ϕ ∈ (ϕB0, ϕc)

σ′(ϕ) ≤ −α, ϕ ∈ (ϕB0, ϕc)

(22.3)



divwΣσ = 0 in Ω

wΣσ · ne = 0 on∂Ω

w +
Σσ · τΣ = −

[
1 +

(
FΣ′

FΣ

)2
] 1

2

σ onΣ

(22.4)

hold.
We denote byG the set of the aforementionedt-uples. Let us point out that estimates

(20.3), (20.4) implyG is non-empty.

5.2. Compactness arguments.It is advisable (see estimates (21)) to introduce the
following:

– the spaceE = R×H2−ε(I0)× R×H2−ε(Ω)×H3−ε(I0) equipped with the
norm:

|z|E = |`| + |FΣ|H3−ε(I0) + |ϕc| + |u|H3−ε(Ω) + |σ|H3−ε(I0)

hereε > 0 is taken small enough.
– the subsetEs of t-uplesz = (`, FΣ, ϕc, u, σ) satisfying (21).

Proposition 2. Es is a compact subset ofE, that is: from any sequence(zn) of elements
belonging toEs, one can extract a subsequence (denoted byzn alike) converging in
Es, under norm| · |E .

Proof. Let us consider a sequencezn = (`n, FΣn , ϕcn , un, σn) in Es. From (21.1),
(21.3), by applying the Bolzano-Weierstrass theorem it is deduced:

`n
R−→ `

ϕcn
R−→ϕc

with (`, ϕc) satisfying (21.1), (21.3).
From (21.2), (21.4), (21.5) and applying a weak compactness result (for the latter

see for instance, [14] or [15]), one obtains:
FΣn

H3(I0)
−−−−→F weakly

un
H2(Ω)
−−−−→u weakly

σn
H3(I0)
−−−−→σ weakly

(23)
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with (F, u, σ) satisfying (21.2), (21.4), (21.5). Letε > 0, applying an embedding
theorem (see [15] for instance), (23) imply

FΣn

H3−ε(I0)
−−−−→F

un
H2−ε(I0)
−−−−→u

σn
H3−ε(I0)
−−−−→σ . ¤

(24)

Let us recallG is the set of thet-uples belonging toEs so that (22) holds.

Proposition 3. G is a compact subset ofE.

Proof. Since thet-uples ofG satisfy (21), (22), it sufficies to show this set is a closed
subset ofEs under| · |E . Let us consider a subsequence

zn = (`n, FΣn , ϕcn , un, σn)

in G.
One haszn ∈ Es obviously. From Proposition 2, it follows

zn
| · |E
−−→ z,

that is convergence (24) holds. Further, one obtains

FΣn

H2(I0)
−−−−→F (25.1)

σn
H2(I0)
−−−−→σ (25.2)

From the latter, applying (E.T.), we have

FΣn

C0(I0)
−−−−→F (25.3)

σn
C0(I0)
−−−−→σ (25.4)

hereC0(I0) is the space of continuous functions acting fromI0 into R. From (25.3),
fixing θ, termrn = FΣn(θ) converges towardsr = F (θ), asn increases to infinity. The
last equation defines a curveΣ so that:F = FΣ, with:

FΣn(θ) −→ FΣ(θ) , ∀θ ∈ I0 . (25.5)

In the same way, (25.4) implies

σn(θ) −→ σ(θ) , ∀θ ∈ I0 . (25.6)

From convergences (25), it followsFΣ andσ satisfy (22.1)–(22.3). Coming back to
(17), (16.1), (16.2), the two first equalities in (22.4) are deduced.
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Let us show the last condition in (22.4) is preserved at the limit.
Takingξ ∈ D(Ω) with support(ξ) ∩ Σn 6= ∅, from (18.3) one has:

∫
Σn

(wΣnσn · τΣn)ξdΓ = −
∫ ϕAn

ϕBn

[
1 +

(
F ′Σn
FΣn

)2

(ϕ)

] 1
2

σ(ϕ)ξdϕ.

That way, convergences (25) imply the last equality remains preserved at the limit.¤
5.3. Determination of the velocity from the mass flux.For a givenq, the solutions
to (8) are obtained from (20.3) by setting:

v±Σ = h±
(
|q±|2

)
q±

with

|v−Σ | ∈ (0, vc)

|v +
Σ| ∈ (vc.1)

q− = u in Ω−Σ
q + = u +wΣσ in Ω +

Σ .

(26)

Let us introduce the continuous functions:

K±(λ) = h±(|λ|2)λ , λ ∈ R2.

In total the expression of the velocity field reads:

v(z) = K −(u)χ−Σ +K +(u +wΣσ)χ +
Σ (27)

whereχ±Σ is the indicator ofΩ±Σ .

5.4. The functional to minimize. Let us consider the functional

G
J−→R +

z 7−→ J(z) = | rotv(z)|−1

(28)

here the dual spaceH−1(Ω) of H1
0 is supplied with the norm| · |−1 (for these notions

concerning the dual spaces, see for instance [14] or [15]). We want to establish the
existence result hereunder.

Theorem. There existsz ∈ G satisfying:

J(z) = inf{J(z) , z ∈ G}. (29)

Proof. From (27), (28), functionalJ results in composing the mappings:

G
T1−→L2(Ω)

z 7−→ v(z)
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L2(Ω) T2−→H−1(Ω)

v 7−→ rotv

H−1(Ω) T3−→R +

w 7−→ |rotw|−1.

Since a norm is continuous, so is functionT3. From the definition of spaceH−1(Ω)
(see the previous reference concerning dual spaces),T2 is continuous from(L2(Ω), | · |0)
into (H−1(Ω), | · |−1) (recall| · |0 has already been introduced in Section 4).

Let us show thatT1 is well defined. From the expression ofK± in (27) one has alike:

v(z) = v−Σ χ
−
Σ + v +

Σχ
+
Σ.

From (26) it follows:
|v(z)| ≤ 2. (1i)

Convergence (25.3) implies:

χ±Σn −→ χ±Σ , ∀x ∈ Ω. (2i)

Let us introduce the function, acting fromΩ +
Σ into Ω0, defined by setting:

ΠwΣσ = (∂2ψ,−∂1ψ),

here functionψ has been considered in (15.3). Substituting(Σ, σ) for (Σn, σn), ΠwΣnσn

is defined in the same way.
From (15.1), (15.2) and (25.1), (25.2) one has:

ΠwΣnσn
(x) −→ ΠwΣσ(x) (∀x ∈ Ω0). (3i)

Let us use the identity

K +(un +wΣnσn)χ +
Σn = K +(un + ΠwΣnσn

)χ +
Σn in Ω +

Σn

sinceK + is continuous, convergences (25.1), (25.2), (2i), (3i) imply

K +(un +wΣnσn)χ +
Σn −→ K +(u +wΣσ)χ +

Σ. (4i)

In the same way, one obtains

K −(un)χ−Σn −→ K −(u)χ−Σ . (5i)

Gathering (4i) and (5i) leads to:

v(zn) −→ v(z) ∀x ∈ Ω. (6i)

From (1i) and (6i), the Lebesgue’s dominated convergence theorem shows that function
T1 is continuous. ¤
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6. Concluding remarks. The flow is symmetrical (see Section 1). This does not mean
a loss of generality, owing to the main difficulty involved by the mixed type (elliptic
hyperbolic) of the governing equations. However let us mention that non-symmetrical
flows could be dealt with, using the procedure of [10, 11], in order to take into account
the Kutta-Joukowski condition.

The constructed model constrains the shocks to occur. The resulting equations are
rather difficult to solve so far that no performing functional spaces lead to a complete
solution (to the best of our knowledge). Under these unfavorable conditions, we have
reduced the solution to that of the minimization of a suitable functional. However a
basic difficulty remains: the functional and the corresponding domain are not convex
generally. This has been removed by applying compactness arguments in the frame of
Sobolev spaces, while the main features associated with the shocks remain preserved,
(see the choice of subsetG, (22) before).

Finally it is shown (see the theorem in Subsection 5.4) the functional reaches its
minimum (or its minima).

Concerning the minimization of non-convex functionals acting on Hilbert spaces, let
us mention the results of [16].

To the best of our knowledge, the modelization leading to (9) (Section 2) and the
corresponding solution procedure (Section 3) provide a new way to study transonic
flows from the functional point of view.

Résuḿe substantiel en français. Cet article concerne leśecoulements transsoniques
plans, stationnaires d’un gaz idéal non dissipatif qui s’établissent autour d’un profil placé
en atmosph̀ere infinie. L’́ecoulement̀a l’infini amont est donńe uniforme et les forces
volumiques sont supposées ńegligeables. En ǵeńeral, lesécoulements transsoniques
sont le sìege d’ondes de choc faibles. Plus préciśement, siε désigne la force du choc,
le saut d’entropie est de l’ordre deε3 ; il en va de m̂eme pour le tourbillon (voir [3]). Il
est donc aviśe de traiter deśecoulements transsoniques irrotationnels et isentropiques.
Dans ces conditions, leśequations gouvernant le champ des vitesses se réduisentà
un syst̀eme d’́equations aux d́erivées partielles quasi linéaire du premier ordre de type
elliptique-hyperbolique. Du point de vue de l’analyse fonctionnelle, la question de
l’existence d’une solution pour un tel système se pose toujours. Dans la littérature sur le
sujet l’existence d’une solution est montrée sous des conjectures significatives (voir [7]
par exemple).̀A notre connaissance, si l’on ne tient pas compte de ces dernières, seuls
des ŕesultats partiels sont́etablis dans les cadres fonctionnels introduits. Habituelle-
ment les ḿethodes associées conduisent pour l’essentielà approcher l’́equation de la
conservation de la masse alors que le caractère irrotationnel est conservé: le tourbillon
s’annule, voir par exemple les références [8]̀a [13] et le sous-paragraphe 1.2.

Dans cet article, nous proposons un modèle avec une approche fonctionnelle diffé-
rente. L’́equation de la conservation de la masse est prise exacte alors que le tourbillon
est minimiśe (voir le sous-paragraphe 2.1). De plus, afin de contraindre les ondes
de chocsà apparâıtre, une ińegalit́e de saut est introduite (voir (9.5)) dès que les
équations gouvernant l’écoulement sont posées. D́ecrivons les avantages principaux de
la méthode propośee. L’équation de la conservation de la masse est résolue exactement.
La minimisation du tourbillon peut entraı̂ner qu’il est petit, ce qui est en accord avec les
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écoulements ayant des ondes de choc faibles et sont de ce fait faiblement rotationnels
en aval de ces ondes. Observons que la minimisation de la divergence du flux de masse
impliquerait qu’elle est petite sans garantir exactement la conservation de la masse.

La méthode propośee ici fournit outre les champs de vitesse, de pression,. . . , les
lignes soniques et les ondes de choc.

Le tourbillon est minimiśe par l’introduction d’une fonctionnelle adaptée (voir (28)),
cependant il reste une difficulté fondamentale : la fonctionnelle et le domaine associés
ne sont pas convexes en ǵeńeral. Ceci est pris en compte en appliquant des arguments
de compacit́e dans le cadre des espaces de Sobolev alors que les principales propriét́es
des chocs sont maintenues (voir le choix deG apr̀es (22)). Finalement on montre (voir
le théor̀eme du sous-paragraphe 5.4) que la fonctionnelle atteint sa borne inférieure.
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