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A GENERALIZATION OF SYMMETRIC ALGEBRAS

ZYGMUNT POGORZALY

RÉSUMÉ. Une classe d’alg̀ebresn-symétriques est introduite pour chaque entier
positif n. Il est d́emontŕe que, pour toute algèbren-symétriqueA et toutA-module
à gauche sans facteur direct projectif, on aτn(M) ∼= Ω2n(M), où τ désigne la
translation d’Auslander-Reiten etΩ le foncteur lacet de Heller.

ABSTRACT. For every positive integern a class ofn-symmetric algebras is intro-
duced. It is proved that for everyn-symmetric algebraA and for every leftA-module
M without projective direct summands it holdsτn(M) ∼= Ω2n(M), whereτ is the
Auslander-Reiten translation andΩ is the Heller’s loop-space functor.

0. Introduction. LetK be a fixed algebraically closed field. We use the term algebra to
mean finite-dimensional associativeK-algebra with a unit element. Algebras, as usual
in representation theory, are assumed to be basic and connected.

We are interested in self-injective algebrasA, e.g.A ∼= D(A) as leftA-modules,
whereD = HomK(−,K) stands for the usual duality. An important class of self-
injective algebras is formed by symmetric algebras. This class includes blocks of group
algebras. A symmetric algebra can be characterized as an algebraA for which there is
anA-bimodule isomorphismA ∼= D(A).

For any algebraA, (A)mod (resp. mod(A)) mean the category of finite-dimensional
left (resp. right)A-modules and by(A)mod (resp. mod(A)) its stable category mod-
ulo projectives. IfA is self-injective then there are two interesting equivalencesΩ :
(A)mod→ (A)modandτ : (A)mod→ (A)mod, whereΩ is the Heller’s loop-space
functor [11] andτ is the Auslander-Reiten translation [2]. IfA is symmetric then for
every objectM ∈ (A)mod, we haveτ(M) ∼= Ω2(M).

The aim of this note is to indicate for any positive integern a class of self-injective
algebras for which it holdsτn(M) ∼= Ω2n(M). This note is organized in the following
way. In Section 1, for any positive integern, ann-symmetric algebra is defined. In
Section 2, we prove that for anyn-symmetric algebraA and anyM ∈ (A)modit holds
τn(M) ∼= Ω2n(M). In Section 3, we prove that for any positive integern, there exist
n-symmetric algebras. Finally, in Section 4, we show that the class ofn-symmetric
algebras is closed under derived equivalences.

Reçu le 4 d́ecembre 1998 et, sous forme définitive, le 1er d́ecembre 1999.

c©Association math́ematique du Qúebec
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1. Preliminaries.

1.1. A quiver is a pairQ = (Q0, Q1), whereQ0 is the set of vertices ofQ andQ1 is
the set of arrows ofQ between vertices fromQ0. A quiver is said to befinite if Q0, and
Q1 are finite sets. Apath in a quiverQ is a sequence of arrowsw = α1 . . . αn, such
that for eachi = 1, . . . , n− 1, the targett(αi) of αi coincides with the sources(αi+1)
of αi+1. Moreover, to every vertexx ∈ Q0, we attach a trivial pathex.

For every finite quiverQwe consider itspath algebraKQ overK [6, 8]. The algebra
KQ is aK-vector space spanned by the paths inQ (including the trivial ones). The
multiplication of basis elements is given by the formula

(α1 . . . αn)(β1 . . . βm) =
{
α1 . . . αnβ1 . . . βm if t(αn) = s(β1)

0 otherwise .

For every nontrivial pathw = α1 . . . αn in a quiverQ, we denote byn the length
l(w) of w. Moreover, for every trivial pathex we putl(ex) = 0. Denote by(KQ)n the
two-sided ideal inKQwhich is generated by the paths of length at leastn. A two-sided
idealI in KQ is said to beadmissibleif I ⊂ (KQ)2 and for each vertexx ∈ Q0 there
is a non-negative integernx such that for ally ∈ Q0 we haveI(x, y) ⊃ (KQ)nx(x, y),
I(y, x) ⊃ (KQ)nx(y, x), where for anyz, v ∈ Q0, KQ(z, v) is theK-subspace in
KQ spanned by the paths sourced atz and targeted atv, andI(z, v) = I ∩KQ(z, v).

A bound quiveris a pair(Q, I), whereQ is a quiver andI is an admissible ideal in
the path algebraKQ.

1.2. It was shown in [6] that for every basic and connected finite-dimensionalK-
algebraA there is a finite connected quiverQA and an admissible idealIA in KQA
such thatA ∼= KQA/IA. Thus all considered algebras in this note will be of the form
A = KQA/IA. An algebraA ∼= KQA/IA is said to betriangular if QA has no oriented
cycle.

Let A = KQA/IA be a self-injectiveK-algebra. Consider a mapπA : (QA)0 →
(QA)0 which sends a vertexx ∈ (QA)0 onto a vertexy ∈ (QA)0 as follows. Letw be
a path inQA of maximal length withw 6∈ IA andx be the source ofw. Theny is the
target ofw. We infer by [16] thatπA is a well-defined map which is bijective.

1.3. Lemma. Let A = KQA/IA be a self-injectiveK-algebra. For every vertex
x ∈ (QA)0 there is a positive integermx such thatπmxA (x) = x.

Proof. For the proof consider an infinite sequencex = π0
A(x), πA(x), π2

A(x), . . . of
vertices in(QA)0. SinceQA is a finite quiver, there are minimal non-negative distinct
integersm1,m2 such thatπm1

A (x) = πm2
A (x). SinceπA : (QA)0→ (QA)0 is bijective,

we infer by minimality ofm1 thatm1 = 0. Hencem2 satisfiesπm2
A (x) = x. ¤

1.4. Proposition. Let A = KQA/IA be a self-injectiveK-algebra. Then there is a
minimal positive integermA such that for everyx ∈ (QA)0 it holdsπmAA (x) = x.

Proof. We know from Lemma 1.3 that for every vertexx ∈ (QA)0 there is a positive
integermx such thatπmxA (x) = x. Takemx minimal with this property. LetmA be the
least common multiplicity of all minimalmx, x ∈ (QA)0. Then it is clear that for every
x ∈ (QA)0 we havemA = cx · mx andπmAA (x) = πcx·mxA (x) = (πmxA )cx(x) = x.
Moreover, minimality ofmA is obvious. ¤
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1.5. Let A = KQA/IA be a self-injectiveK-algebra. Then the bijectionπA : (QA)0

→ (QA)0 induces an isomorphism of leftA-modulesµA : A → D(A) which is the
K-linear morphism attaching to every nonzero pathw in QA theK-linear morphism
µA(w) ∈ HomK(A,K) in the following way: ifw starts atx then fix aK-basis of
maximal non-zero paths of the formvw with v ending inπA(x). ThenµA(w) is the
K-linear morphism fromA toK such that[µA(w)](v) = 1 if vw is an element of the
fixedK-basis and[µA(w)](z) = 0 for everyz 6= v.

Furthermore, for everya ∈ A we have a mapνA(a) : A → A given by the
formula νA(a)(b) = µ−1

A (µA(b) · a), b ∈ A. It is easily seen thatνA(a) : A →
A is a homomorphism of leftA-modules. HenceνA(a) ∈ HomA(AA,AA) = A
for every a ∈ A. Moreover, for anyb ∈ A, we haveµA(b · νA(a)) = µA(b) · a.
ThusµA(b · νA(aa′)) = µA(b) · aa′ = µA(b · νA(a)) · a′ = µA(b · νA(a) · νA(a′)).
Hence specifyingb = 1 and applyingµ−1

A one gets that the mapνA : A → A is an
automorphism of the algebraA. But the mapµA : 1AνA → D(A) is anA-bimodule
isomorphism, where1AνA is anA-bimodule with multiplication given by the formula
a ∗ c ∗ b = a · c · νA(b), a, b, c ∈ A. We infer by Lemma 12.16 of [5] that for any two
automorphismsα, β : A→ A, there is anA-bimodule isomorphism1Aα⊗1Aβ ∼=1 Aαβ
given by1Aα ⊗A 1Aβ ∼= α−1A1⊗A 1Aβ ∼= α−1Aβ ∼= 1Aαβ, where in the sequence
we use theA-bimodule isomorphismηAδ ∼= ληAλδ given byx → λ(x) for any
automorphismsη, λ, δ of A. Furthermore,1Aα ∼= A asA-bimodules if, and only if,α
is an inner automorphism ofA, e.g.α(a) = λ−1aλ for some invertibleλ ∈ A.

Letn be a positive integer. A self-injectiveK-algebraA is defined to ben-symmetric
if n = mA, wheremA is as in Proposition 1.4, andνnA is an inner automorphism ofA.
Observe that by Theorem 2.3.1 of [16], we have an equivalence:A is a 1-symmetric
algebra if, and only if,A is symmetric.

2. The Auslander-Reiten translate forn-symmetric algebras.

2.1. Let A = KQA/IA be ann-symmetricK-algebra. LetΩ : (A)mod→ (A)mod
be the Heller’s loop-space functor [11]. Recall from [2] that for an algebraA a functor
Tr : (A)mod→ mod(A) is defined for objects as follows. For anyM ∈ (A)mod
let P1

f→P0→M → 0 be a minimal projective resolution ofM in (A)mod. Then
Tr(M) = coker(HomA(f,A)). Denote the composed functorsDTr by τ andTrD by
τ−1.

2.2. Lemma. If A is a self-injectiveK-algebra, then for anyM ∈ (A)modwe have
τ(M) ∼= D(HomA(Ω2(M), A)).

Proof. It is clear that for anyM ∈ (A)mod there is the following exact sequence in
(A)mod : 0→ Ω2(M)→ P1

f→P0→M → 0, whereP0, P1 are projective. Applying
the functor HomA(−, A) we obtain the following exact sequence in mod(A) : 0 →
HomA(M,A) → HomA(P0, A)

HomA(f,A)−→ HomA(P1, A) → HomA(Ω2(M), A) → 0.
Thus coker(HomA(f,A)) ∼= HomA(Ω2(M), A). HenceTr(M) ∼= HomA(Ω2(M), A),
and soτ(M) = DTr(M) ∼= D(HomA(Ω2(M), A)). ¤

2.3. Lemma. If A is a self-injectiveK-algebra andM ∈ (A)mod thenτΩ−2(M) ∼=
M ⊗A 1AνA .
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Proof. We know from [6] that the functorD(HomA(−, A)) is naturally equivalent to
−⊗A D(A). ThusτΩ−2(M) ∼= D(HomA(M,A)) by Lemma 2.2. ThenτΩ−2(M) ∼=
M ⊗A D(A). But we know from 1.5 thatD(A) ∼=1 AνA asA-bimodules, hence
τΩ−2(M) ∼= M ⊗A 1AνA . ¤

2.4. Theorem. LetA = KQA/IA be ann-symmetricK-algebra. Then for anyM ∈
(A)mod it holdsτn(M) ∼= Ω2n(M).

Proof. We infer by Lemma 2.3 that

(τΩ−2)n(M) ∼= M ⊗A 1AνA ⊗ · · · ⊗ 1AνA︸ ︷︷ ︸
n×

.

But we know from 1.5 that

1AνA ⊗ · · · ⊗ 1AνA︸ ︷︷ ︸
n×

∼=1 AνnA
∼= A

asA-bimodules, becauseA is n-symmetric. Thus(τΩ−2)n(M) ∼= M . Since the func-
torsτ , Ω commute for the objects [3, 4],τn(M) ∼= Ω2n(M). ¤

3. Examples ofn-symmetric algebras.

3.1. Let B be a finite-dimensionalK-algebra which is triangular. Following [12]
and [15] therepetitive algebraB̂ of the algebraB is a self-injective, locally finite-
dimensional matrix algebra without unit

B̂ =


... 0 0 · · · 0
... B−1 0 · · · 0

E−1 B0 0 · · ·
· · · 0 E0 B1 0

0 · · · 0
... ...

 ,

where matrices have only finitely many non-zero coefficients and for every integeri,
Bi = B,Ei is the minimal injective cogeneratorE = D(B). The addition is the usual
matrix addition, and the multiplication is induced by the canonicalB-bimodule structure
onE and the zero mapE ⊗B E → 0 [12]. Let νB̂ be the Nakayama automorphism
of the algebraB̂ which is induced byπB̂ from 1.5. Then for every positive integer
n the infinite cyclic group(νn

B̂
) generated byνn

B̂
acts freely onB̂ in such a way that

the quotient categorŷB/(νn
B̂

) in the sense of [6] is a finite-dimensional self-injective
K-algebra with a unit element.

Let B̂ = KQB̂/IB̂ for some infinite quiverQB̂ and an admissible ideal in the path
categoryKQB̂. Then for any vertexx ∈ (QB̂)0 we haveνB̂(ex) = eπB̂(x) and for any
arrowα inQB̂, νB̂(α) is an arrow inQB̂. Thus for any pathw inQB̂, the imageνB̂(w)
is a path inQB̂.

3.2. Theorem. The algebraB̂/(νn
B̂

) is n-symmetric and is not(n− 1)-symmetric.
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Proof. It is well-known that there is a Galois covering functorF : B̂ → B̂/(νn
B̂

) in-
duced by the free action of the group(νn

B̂
) on B̂. Moreover, the group(νn

B̂
) acts freely

on the quiverQB̂ in such a way that there is a quiverQ and an admissible idealI inKQ
such thatB̂/(νn

B̂
) ∼= KQ/I = A and every(νn

B̂
)-orbit of a vertexx in QB̂ is mapped

onto a vertexF (x) in Q. Moreover, every(νn
B̂

)-orbit of an arrowα in QB̂ is mapped
onto an arrowF (α) in Q. It is also well-known that every(νn

B̂
)-orbit of a vertex inQB̂

consists only of vertices and every(νn
B̂

)-orbit of an arrow inQB̂ consists only of arrows.
Thus for every vertexx ∈ (QB̂)0 it holdsπA(F (x)) = F (πB̂(x)). If we choose the
induced morphismsµA andνA in such a way that for every arrowα ∈ (QB̂)1 it holds
νA(F (α)) = F (νB̂(α)) thenνnA = idA andπn−1

A 6= idA. Consequently, the algebraA
is n-symmetric and is not(n− 1)-symmetric. ¤
4. Derived equivalences ofn-symmetric algebras.

4.1. We shall freely make use of results on triangulated and derived categories from [9,
10, 13]. We shall use the notations of [13].

Given aK-algebraA, denote by Mod(A) the category of all rightA-modules. Con-
sider the derived categoryD−(Mod(A)) in the sense of Hartshorne [10]. For any object
X∗ ∈ D−(Mod(A)) denote by ˜νAX∗ the objectX∗⊗LAD(A) ofD−(Mod(A)). Rickard
proved in [13] that for any derived equivalenceF : D−(Mod(A)) → D−(Mod(B))
we haveF (ν̃AX∗) ∼= ν̃B(FX∗) for every objectX∗ of D−(Mod(A)).

4.2. It was proved in [13] that ifF : D−(Mod(A))→ D−(Mod(B)) is a derived equiv-
alence then there is an object∆∗ andΘ∗ ofDb(Mod(Bop⊗A)) andDb(Mod(Aop⊗B))
such thatF = −⊗LA ∆∗ and∆∗ ⊗LB Θ∗ ∼= AAA andΘ∗ ⊗LA ∆∗ ∼= BBB.

4.3. Theorem. LetA andB be two basic and connectedK-algebras which are derived
equivalent. ThenA is n-symmetric if, and only if,B is n-symmetric.

Proof. Suppose thatA andB are two basic and connectedK-algebras which are
derived equivalent, e.g.Db(Mod(A)) andDb(Mod(B)) are equivalent as triangulated
categories. We infer by Theorem 1.1 of [13] thatD−(Mod(A)) andD−(Mod(B)) are
equivalent as triangulated categories.

Suppose thatA is n-symmetric. Then for every objectX∗ of D−(Mod(A)) we
have(ν̃A)nX∗ ∼= X∗ by 4.1, Lemma 2.3 and 1.5. Moreover, we know from 4.2 that
there is a triangulated equivalenceF : D−(Mod(A)) → D−(Mod(B)) given by
F = −⊗LA ∆∗. Furthermore, we infer by 4.1 that for every objectY ∗ ofD−(Mod(B))
we have(ν̃B)nY ∗ ∼= Y ∗ andn is the least number with this property. Thus we infer by
Lemma 2.3 thatνnB is an inner automorphism ofB, because

1BνB ⊗ · · · ⊗ 1BνB︸ ︷︷ ︸
n×

∼= B

asB-bimodules by 4.1 and 4.2. Consequently,B is ann-symmetric algebra.
ReplacingAandBwe obtain the converse implication and our theorem is proved.¤

4.4. Remark. Applying Theorem 4.3 one can easily obtain the main results of Sec-
tions 4 and 5 of [1] without the need to apply covering techniques to derived categories.
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Résuḿe substantiel en français. Soit K un corps alǵebriquement clos. Toutes les
algèbres consid́eŕees ici sont associatives, unifères et deK-dimension finie. Toute
algèbre auto-injectiveA donne lieuà deuxéquivalences intéressantesΩ : (A)mod→
(A)mod et τ : (A)mod→ (A)mod, où Ω désigne le foncteur lacet de Heller etτ la
translation d’Auslander-Reiten.

SiA est syḿetrique, alors, pour chaque objetM ∈ (A)mod, on aτ(M) ∼= Ω2(M).
SoitA = KQA/IA uneK-algèbre auto-injective donnée par un carquois lié (QA, IA).
Il existe alors un plus petit entier positifmA tel que, pour chaque sommetx deQA, on ait
πmAA (x) = x, où πA désigne la permutation de Nakayama qui induit l’automorphisme
de NakayamaνA : A→ A.

Pour chaque entier positifn, uneK-algèbre auto-injectiveA est diten-symétrique
si n = mA etνnA est un automorphisme interne deA.

Évidemment, une alg̀ebre est syḿetrique si et seulement si elle est 1-symétrique.
Les th́eor̀emes suivants sont les résultats principaux du présent travail.

Théorème 1. SoitA = KQA/IA uneK-algèbren-syḿetrique. Alors, pour chaque
M ∈ (A)mod, on aτn(M) ∼= Ω2n(M).

Théorème 2. SoitB̂ l’alg èbre ŕeṕetitive d’une alg̀ebre triangulaireB, alors l’algèbre
B̂/(νn

B̂
) estn-syḿetrique, mais non(n− 1)-syḿetrique.

Théorème 3. Soit A et B deuxK-algèbres sobres et connexes qui sont dérivées-
équivalentes. AlorsA estn-syḿetrique si et seulement siB estn-syḿetrique.

REFERENCES

1. H. Asashiba,A covering technique for derived equivalence, J. Algebra191(1997), 382–415.
2. M. Auslander and I. Reiten,Representation theory of Artin algebras III. Almost split

sequences, Comm. Algebra3 (1975), 239–294.
3. M. Auslander and I. Reiten,Representation theory of Artin algebras VI. A functional

approach to almost split sequences, Comm. Algebra6 (1978), 257–300.
4. M. Auslander, I. Reiten and S. Smalo,Representation Theory of Artin Algebras, Cambridge

Studies in Advanced Math., vol. 36, Cambridge Univ. Press, Cambridge, 1997.
5. C. Faith,Algebra: Rings, Modules and Categories I, Springer-Verlag, New York-Heidelberg,

1973.
6. P. Gabriel,Auslander-Reiten sequences and representation-finite algebras, Springer Lecture

Notes in Math., vol. 831, Springer, Berlin, 1980, pp. 1–71.
7. P. Gabriel,The universal cover of a representation-finite algebra, Springer Lecture Notes

in Math., vol. 903, Springer, Berlin-New York, 1981, pp. 68–105.
8. P. Gabriel and A.V. Roiter,Representations of finite dimensional algebras, Encyclopedia

Math. Sci., vol. 73, Springer, Berlin, 1992.
9. D. Happel,Triangulated categories in the representation theory of finite-dimensional alge-

bras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University
Press, Cambridge-New York, 1988.

10. R. Hartshorne,Residues and duality, Lecture Notes in Mathematics, vol. 20, Springer-
Verlag, Berlin-New York, 1966.

11. A. Heller,The loop-space functor in homological algebra, Trans. Amer. Math. Soc.96
(1960), 382–394.
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