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ENDOFUNCTIONS OF GIVEN CYCLE TYPE

HARALD FRIPERTINGER AND PETER SCHÖPF

RÉSUMÉ. L’itération d’une endofonction f sur un ensemble fini X définit les cycles
de f . Étant donné un ensemble L de longueurs et une fonction m : L → 0, le
nombre d’endofonctions de X ayant m(l) cycles de longueur l ∈ L et possiblement
d’autres cycles de longueur l �∈ L sera déterminé. De plus, les classes d’isomorphie
de telles endofonctions sous l’action du groupe symétrique peuvent être dénombrées
à l’aide du Lemme de Cauchy-Frobenius (alias Burnside). Nous comparons ces
solutions avec les résultats que l’on peut déduire de la théorie combinatoire des
espèces de structures.

ABSTRACT. Iteration of an endofunction f on a finite set X defines cycles of f . To
a given set L of lengths and to a given function m : L→ 0, the number of all those
functions having m(l) cycles of length l ∈ L and possibly other cycles of length
l �∈ L will be computed. Furthermore, by introducing group actions, the number of
patterns of these functions can be derived from the Cauchy-Frobenius Lemma. We
compare these solutions with the results derived from combinatorial species theory.

An endofunction on the set X is a function f with domain and range X . The term
endofunction comes from species theory. See for instance [2, 3, 4, 5, 10]. Bijective
endofunctions are usually called permutations. We are only dealing with endofunctions
on a finite set X , so without loss of generality each n-set (i. e. a set of cardinality n)
can be replaced by n := {1, 2, . . . , n}.

Denoting the k-th iterate of an endofunction f by fk we define f to have a cycle of
length k, if and only if there is some i ∈ n such that fk(i) = i and f l(i) �= i for all
1 ≤ l < k, and the elements of {i, f(i), . . . , fk−1(i)} form a cycle of f (of length k).
Furthermore f restricted to a cycle is a cyclic permutation of the elements of this cycle.
It is obvious that each endofunction on a finite set must have at least one cycle. The
cycle type of an endofunction f can be considered as a multi-set L := {lm(l) | l ∈ n},
where m(l) ∈ 0 is the number of cycles of f of length l. Let s be the number of
elements lying in cycles of f , then

s =
∑
l∈n

l ·m(l) and 1 ≤ s ≤ n.
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174 Endofunctions of given cycle type

Renaming the elements of n leads to the following group action of the symmetric
group Sn on the set of all endofunctions:

Sn × nn → nn, (π, f) �→ π ◦ f ◦ π−1 =: πfπ−1, (1)

which describes the relabelling of f (or more precisely of its sagittal graph) along the
bijection π. It is obvious that f and πfπ−1 are of the same cycle type. The Sn-orbit of
f is the set

Sn(f) = {πfπ−1 | π ∈ Sn}.

The set of orbits under the action of Sn will be denoted by Sn\\nn. These orbits of
endofunctions will be called classes of endofunctions, mapping types, mapping patterns,
unlabelled endofunctions or isomorphism types of endofunctions.

Reading S. Beckett’s “Watt” [1] the authors came across the following problem:
There are 5 people sitting around a table trying to form pairs by glancing at each other.
In how many situations do they form at least one pair?

This problem can be solved by finding the number of endofunctions on 5, having no
cycles of length 1, and having one or two cycles of length 2. Another way of solving it
can be described as subtracting the number of endofunctions having no cycles of length
1 and no cycles of length 2 from the number of endofunctions having no cycles of length
1. The general aim of this paper is the following: For a given set L of cycle lengths and
a multi-set L = {lm(l) | l ∈ L} enumerate all labelled and unlabelled endofunctions on
n having exactly m(l) cycles of length l ∈ L and possibly other cycles of length l �∈ L.

One possibility to enumerate endofunctions (or classes of endofunctions) of given
type is to identify them with functional digraphs (with loops permitted) which can be
counted by using the generating function of the numbers of labelled (or unlabelled)
rooted trees as was pointed out by F. Harary. In [12] he first proves that a finite digraph is
functional, if and only if each of its maximal connected components consists of exactly
one directed cycle, and when deleting all the edges in this cycle each of the remaining
vertices is the root of a directed rooted tree. The same idea is applied in species theory
(cf. [2]). A species is a rule S which associates to each finite set X a finite set S[X] of
S-structures, and to each bijection β : X → Y a mapping S[β] : S[X] → S[Y ] which
satisfies

S[α ◦ β] = S[α] ◦ S[β] and S[idX ] = idS[X]

for all bijections β : X → Y and α : Y → Z. The mapping S[β] is called the transport
of the S-structures along β. Furthermore we associate with each species three generating
functions: The exponential generating function of all S-structures

S(x) =
∑
n≥0

|S[n] | x
n

n!
,

the type generating function

S̃(x) =
∑
n≥0

|Sn\\S[n] | xn,
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where Sn\\S[n] is the set of all Sn-orbits on S[n], and the cycle index series ZS which
is the sum of the cycle index polynomials of the stabilizers of the orbits of structures in
S[n] for all n ≥ 0. The cycle index Z(G, X) of a group G acting on a finite set X is a
standard tool of the Pólya Enumeration Theory (cf. [7, 13, 14, 16]). Especially we will
need the cycle index of the natural action of Sn on n which is the polynomial

Z(Sn, n) =
∑
λ��n

n∏
l=1

1
lλlλl!

xλl
l ∈ [x1, . . . , xn],

where the sum must be taken over all cycle types λ �� n of n, which means that
λ = (λ1, . . . , λn) fulfils

∑
l l · λl = n.

Let EndL,L̄ denote the species of endofunctions having exactly m(l) cycles of length
l ∈ L and possibly other cycles of length l �∈ L. Then EndL,L̄ can be written as the
product of two species

EndL,L̄ = PerL(Rtr) · PerL̄(Rtr), (2)

where PerL denotes the species of permutations of cycle type L, PerL̄, that of permu-
tations having no cycles of length l ∈ L, and Rtr, that of rooted trees. These species of
permutations can be decomposed in the form

PerL =
∏
l∈L

Setm(l)(Cycl), PerL̄ =
∏
l �∈L

Set(Cycl), (3)

where Set denotes the species of sets, Setm, that of sets of cardinality m, and Cycl, that
of cyclic permutations of length l. The following formulæ hold:

Set(x) =
∑
n≥0

xn

n!
, S̃et(x) =

1
1− x

ZSet(x1, x2, x3 . . . ) = exp
(
x1 +

x2

2
+

x3

3
+ . . .

)
,

Setm(x) =
xm

m!
, S̃etm(x) = xm, ZSetm(x1, x2, x3 . . . ) = Z(Sm, m),

Cycl(x) =
xl

l
, C̃ycl(x) = xl, ZCycl

(x1, x2, x3 . . . ) = Z(Cl, l) =
1
l

∑
d|l

ϕ(d)xn/d
d ,

where ϕ is the Euler ϕ-function, and Cl is a cyclic group of order l, e.g. Cl =
〈(1, 2, . . . , l)〉.

The species of rooted trees is also well known. When deleting all the edges incident
with the root, and when considering the vertices previously connected with the root as
roots of smaller rooted trees, then it is obvious that Rtr fulfils the following functional
equation:

Rtr = Sin · Set(Rtr),
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where Sin is the species characteristic of singletons. Since Sin(x) = S̃in(x) = x the
following equations hold for the exponential generating function Rtr(x) of rooted trees
and the type counting generating function R̃tr(x)

Rtr(x) = x · exp(Rtr(x)) R̃tr(x) = x · exp

( ∞∑
n=1

R̃tr(xn)
n

)

which were already given by G. Pólya in [16]. They can be used for recursively
computing the numbers of labelled or unlabelled rooted trees. (See for instance formula
(4.1.44) of [2].)

Theorem 1. The exponential generating function EndL,L̄(x) of the numbers of labelled
endofunctions and the generating function ẼndL,L̄(x) of the numbers of unlabelled
endofunctions having exactly m(l) cycles of length l ∈ L and possibly other cycles of
length l �∈ L can be computed according to the decompositions (2) and (3). �

To find the exact numbers of structures over n elements involves coefficient extraction
and various other techniques.

Next we want to describe another approach, which is using the Cauchy–Frobenius
Lemma and the Principle of Inclusion and Exclusion in order to enumerate such endo-
functions. In the following two theorems we are going to show that the problem of
enumerating (classes of) endofunctions in EndL,L̄ defined on an n-set, we will write
EndL,L̄[n], can be replaced by the determination of the number of (classes of) functions
defined on a restricted domain having no cycles of length l for all l ∈ L.

Theorem 2. Given a set L of cycle lengths and a function m: L → 0. Then the
cardinality of EndL,L̄[n] for

n ≥ s :=
∑
l∈L

l ·m(l)

is given by

|EndL,L̄[n] |=
(

n

s

)
s!∏

l∈L lm(l)m(l)!
|nn\s

L̄
|,

where n
n\s
L̄

denotes the set of all functions g from n \ s to n having no cycles of length
l ∈ L.

Proof. It is easy to prove that the function F defined below is a bijection.

F : EndL,L̄[n]→
{

(A, σ, g) | A ∈
(

n

s

)
, σ ∈ SA of cycle type L, g ∈ n

n\A
L̄

}
. (4)

(In order to make the notation clearer, the set of all s-subsets of n is indicated by(
n
s

)
.) An endofunction f is mapped under F onto the triple (Af , σf , gf ), where Af is

the s-subset of n on which f determines m(l) cycles of length l for all l ∈ L. The
permutation σf is the restriction f |Af

, which is indeed a permutation of cycle type L.
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Finally gf := f |n\Af
is a function from n \ Af to n having no cycles of length l ∈ L.

So the cardinality of EndL,L̄[n] is the cardinality of F (EndL,L̄[n]) which is(
n

s

)
s!∏

l∈L lm(l)m(l)!
|nn\s

L̄
| . �

Since the group action of (1) can be restricted to an action of Sn on the set EndL,L̄[n]
we also want to enumerate the number of Sn-orbits on EndL,L̄[n]. Let F = F(σ, L)

be the set F−1({(s, σ, g) | g ∈ n
n\s
L̄
}), where F is defined in (4), and where σ is a

permutation of s of cycle type L. For f ∈ F let G be the subgroup of those π ∈ Sn for
which πfπ−1 is also in F . Investigating this group G we realize that G does not depend
on the special choice of f ∈ F . Since Aπfπ−1 = πAf = πs, the restriction π|s must
be a permutation of s. Furthermore for π ∈ G we have σ = πfπ−1|s = π|sσπ−1|s, so

G = {π ∈ Sn | π|s ∈ StabSs
(σ)} ≈ StabSs

(σ)⊕ Sn\s.

This direct sum of the centralizer StabSs
(σ) of σ and a symmetric group Sn\s is a

permutation representation of the direct product StabSs
(σ)× Sn\s acting on n defined

by

(π1, π2)(i) =

{
π1(i), if i ≤ s

π2(i), if i > s

for (π1, π2) ∈ StabSs
(σ) × Sn\s. Since σ is of cycle type L, the centralizer of σ is

similar to the direct sum of plethysms of cyclic and symmetric groups,

StabSs
(σ) ≈

⊕
l∈L

(Cl � Sm(l)).

This plethysm is a group action of the wreath product

Cl � Sm(l) :=
{

(ψ, π) | ψ ∈ C
m(l)
l , π ∈ Sm(l)

}
on the set l ·m(l). From that it is clear that the centralizer of σ consists of∏

l∈L

lm(l)m(l)!

elements. (For more details about the plethysm of two group actions see [14].)
For each f ∈ EndL,L̄[n] the intersection of F and the orbit Sn(f) is not empty.

Especially this intersection Sn(f) ∩ F equals the orbit G(f̄) where f̄ is an arbitrary
element of Sn(f) ∩ F . A bijection between the set of Sn-orbits on EndL,L̄[n] and the
set of G-orbits on F is given by

Sn\\EndL,L̄[n]→ G\\F , Sn(f) �→ Sn(f) ∩ F .

So

|Sn\\EndL,L̄[n] |=|G\\F |= 1
|G |

∑
π∈G
|Fπ |,
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where Fπ denotes the set of all fixed points of π in F , i. e.

Fπ = {f ∈ F | πfπ−1 = f}.

Each endofunction f ∈ F = F(σ, L) can be identified with a pair (f |s, f |n\s) =

(σ, f |n\s) ∈ {σ} × n
n\s
L̄

, and G = StabSs
(σ)⊕ Sn\s acts on F in the following way:

StabSs
(σ)⊕ Sn\s × ({σ} × n

n\s
L̄

)→ {σ} × n
n\s
L̄

,

((π1, π2), (σ, g)) �→ (σ, (π1, π2) ◦ g ◦ π−1
2 ).

Then |F(π1,π2) |, the number of fixed points of the permutation (π1, π2) ∈ G in F , is

|{g ∈ n
n\s
L̄
| (π1, π2) ◦ g ◦ π−1

2 = g}| .

So we have proved the following theorem:

Theorem 3. The number of Sn-orbits on EndL,L̄[n] is given by

|Sn\\EndL,L̄[n] |= 1∏
l∈L lm(l)m(l)!

1
(n− s)!

∑
π1∈StabSs (σ)

∑
π2∈Sn\s

|F(π1,π2) |,

where σ is any permutation of s of cycle type L and where StabSs
(σ) denotes the

centralizer of σ.

Now the main problem is the determination of |F(π1,π2) |for (π1, π2) ∈ StabSs
(σ)×

Sn\s. In order to avoid confusion between cycles of a function and cycles of a per-
mutation π the latter will be called π-cycles. It is well known (cf. [3, 4, 5, 6]) how to
construct all functions g ∈ nn\s, which are fixed points of (π1, π2). (From now on the

set of these functions will be denoted by n
n\s
(π1,π2)

.) Such a function g maps the elements
of a π2-cycle of length k onto the elements of a π1-cycle or π2-cycle of length l, where
l is a divisor of k. After determining g on one point of the π2-cycle g is determined on
the whole π2-cycle, since gπj

2 = (πj
1, π

j
2)g. Now it is obvious that only those elements

of n \ s, which lie in a π2-cycle that is mapped onto a π2-cycle of the same length, can

lie in a cycle of the function g ∈ n
n\s
(π1,π2)

. Let g ∈ nn\s be a fixed point of (π1, π2) and
let C1, . . . , Ct be π2-cycles of length i. The set of elements of Ck will be indicated as
C̄k. If g maps C̄k (bijectively) onto C̄k+1 for 1 ≤ k < t and C̄t onto C̄1, then we will
call (C1, . . . , Ct) a big (t, i)-cycle of g. We have already seen that cycles of g can only
occur on big (t, i)-cycles of g. In the next Lemma (cf. [5, 6]) we compute the length of
such cycles which are defined on a big (t, i)-cycle of g.

Lemma 4. For (π1, π2) ∈ StabSs
(σ) × Sn\s let (C1, . . . , Ct) be a big (t, i)-cycle of

g ∈ n
n\s
(π1,π2)

, where the π2-cycle C1 is given by C1 = (c1, . . . , ci). Suppose furthermore

that g satisfies gt(c1) = c1+j , where j ∈ {0, 1, . . . , i − 1}. Then all t · i elements of⋃t
k=1 C̄k lie in gcd(i, j) cycles of length

t · i
gcd(i, j)
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of the function g.

So far we have demonstrated that the length of cycles of g ∈ nn
(π1,π2)

, defined on a
big (t, i)-cycle of g, is a multiple of t. Or in other words, cycles of length l occur only
on big (t, i)-cycles of g, where t is a divisor of l, and l/t is a divisor of i. Let π2 ∈ Sn\s
be a permutation of cycle type (λ1, λ2, . . . ). We want to denote the λi π2-cycles of
length i by Ci

1, . . . , C
i
λi

. Let Xi be the union

Xi :=
λi⋃

j=1

C̄i
j ,

then the set of all functions g from n \ s to n can be described as a cartesian product

nn\s = n
⋃n−s

i=1 Xi =
n−s
×
i=1

nXi ,

and

Y : nn\s →
n−s
×
i=1

nXi , g �→
(
g|X1 , . . . , g|Xn−s

)
is a bijection between nn\s and ×n−s

i=1 nXi . Since Xi is a union of π2-cycles, π2|Xi is a
permutation of Xi and for g ∈ nXi the composition (π1, π2)gπ−1

2 |Xi is again in nXi .
Using n

Xi

(π1,π2)
as a short notation for the set {g ∈ nXi | (π1, π2)gπ−1

2 |Xi = g}, then

Y (nn\s
(π1,π2)

) =
n−s
×
i=1

n
Xi

(π1,π2)
.

If n
Xi

L̄,(π1,π2)
denotes the set of all functions g ∈ n

Xi

(π1,π2)
which have no cycles of length

l ∈ L, then Y (F(π1,π2)) = ×n−s
i=1 n

Xi

L̄,(π1,π2)
. So we conclude that

|F(π1,π2) |=
∣∣∣∣n−s
×
i=1

n
Xi

L̄,(π1,π2)

∣∣∣∣ =
n−s∏
i=1

∣∣∣ n
Xi

L̄,(π1,π2)

∣∣∣ .

As usual in such computations the cardinality of F(π1,π2) depends only on the cycle
types of π1 and π2 but not on the special choice of π1 and π2. For computing this
cardinality we can assume that L consists only of cycle lengths l ≤ n− s. Furthermore
define a set D = D(L) of positive integers by

D :=

(⋃
l∈L

D(l)

)
,

where D(l) is the set of all positive divisors of l.

Theorem 5. The number of fixed points of (π1, π2) ∈ StabSs
(σ) × Sn\s in F is given

by

|F(π1,π2) |

=
n−s∏
i=1

λi(π2)∑
j=0

j!Z̃(Sj , L, i)
(

λi(π2)
j

) ∑
k|i

k(λk(π1) + λk(π2))

λi(π2)−j
 , (5)
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where Z̃(Sj , L, i) is defined by

Z̃(Sj , L, i) := Z

(
Sj , j | xk =

{
(−1)ik−1ψ(L, k, i), if k ∈ D

0, if k �∈ D

)
.

This means that we have to replace each variable xk in the cycle index Z(Sj , j) by the
given expression. The numbers ψ(L, t, i) are cardinalities

ψ(L, t, i) :=|{j ∈ {0, 1, . . . , i−1} | i · t
gcd(i, j)

= l ∈ L}|=
∑
l∈L

t|l|t·i

ϕ(l/t) =
∑
d|i

d·t∈L

ϕ(d),

where ϕ is the Euler ϕ-function. Finally the cycle types of the permutations πi are
indicated by (λ1(πi), λ2(πi), . . . ) for i = 1, 2.

Proof. For t ∈ D and for each t-set A ⊆ λi(π) let Bi
A be the set of all those functions

g ∈ n
Xi

(π1,π2)
with the property that there is a cyclic arrangement of the Ci

j for j ∈ A

which forms a big (t, i)-cycle of g on which g defines cycles of length l ∈ L. Then

n
Xi

L̄,(π1,π2)
= n

Xi

(π1,π2)
\

⋃
A∈A

Bi
A,

where

A =
⋃
t∈D

(
λi(π)

t

)
.

Application of the Principle of Inclusion and Exclusion yields

|nXi

L̄,(π1,π2)
|=

∑
Y ∈2A

(−1)|Y | |
⋂

A∈Y

Bi
A |, (6)

where 2A denotes the power set of A. If there are A, A′ ∈ Y , A �= A′, such that
A ∩A′ �= ∅, then

⋂
A∈Y Bi

A = ∅; so all elements of Y must be pairwise disjoint. Each
such Y consisting of pairwise disjoint subsets of λi(π) defines a function r: D → 0

by r(t) :=| {A ∈ Y | |A |= t} |, which satisfies
∑

r(t)t ≤ λi(π2). The cardinality of⋂
A∈Y Bi

A can be computed by

∏
(t− 1)!r(t)

(
it−1ψ(L, t, i)

)r(t)

∑
j|i

j(λj(π1) + λj(π2))

λi(π2)−
∑

r(t)t

,

where all sums and products which are not specified run over all t ∈ D. There are
(t − 1)! different ways to arrange t objects in cyclic order. On a big (t, i)-cycle a
function g can be defined in it−1ψ(L, t, i) ways, such that g has cycles of length l ∈ L.
This can be proved in the following way: As was already mentioned above, a function
g ∈ n

Xi

(π1,π2)
is defined on the whole cycle after determining g on one point of the cycle.

So there are it−1 possibilities to define g on C̄1, C̄2, . . . , C̄t−1 (if we use the notation of
Lemma 4). According to the definition of g on C̄t the function g has cycles of length l
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on the big (t, i)-cycle (C1, C2, . . . , Ct), if and only if t is a divisor of l and there exists
j ∈ {0, 1, . . . , i− 1}, such that ti/ gcd(i, j) = l, so there are ψ(L, t, i) possibilities to
define g on C̄t. Now the function g is defined on

∑
r(t)t π2-cycles of length i. The

remaining π2-cycles of length i, these are λi(π2)−
∑

r(t)t π2-cycles, must be mapped
under g onto π1 or π2-cycles of length dividing i, which leads to∑

j|i
j(λj(π1) + λj(π2))

λi(π2)−
∑

r(t)t

possibilities. So the cardinality |⋂A∈Y Bi
A | depends only on the function r, but does

not depend on the special choice of the elements of Y (i. e. for all sets Y , which define
the same function r, we compute the same value of | ⋂A∈Y Bi

A |.) For that reason
we have to determine the number of those Y ∈ 2A, which define the same function
r: D → 0, where r satisfies

∑
r(t)t ≤ λi(π2). There are(

λi(π2)∑
r(t)t

)
possibilities to choose

∑
r(t)t π2-cycles of length i from λi(π2) π2-cycles of length i.

The set of chosen π2-cycles can be partitioned into r(t) subsets consisting of t π2-cycles
each (for all t ∈ D) in (∑

r(t)t
)
!∏

t!r(t)r(t)!

ways. For making notation easier let λj be λj(π2) and let λ′j stand for λj(π1) + λj(π2).
Then from (6) we derive that the cardinality |nXi

L̄,(π1,π2)
| is given by

∑
r∈ D

0∑
r(t)t≤λi

(−1)
∑

r(t)

(
λi∑
r(t)t

)(∑
r(t)t

)
!∏

tr(t)r(t)!

∏(
it−1ψ(L, t, i)

)r(t)

∑
j|i

jλ′j

λi−
∑

r(t)t

=
λi∑

j=0

∑
µ�	j

k 
∈D⇒µk=0

(
1∏

k kµkµk!
(−1)

∑
k µk

∏
k

(
ik−1ψ(L, k, i)

)µk

)(
λi

j

)
j!

∑
k|i

kλ′k

λi−j

=
λi∑

j=0

j!Z

(
Sj , j | xk =

{
(−1)ik−1ψ(L, k, i), if k ∈ D

0, otherwise

) (
λi

j

) ∑
k|i

kλ′k

λi−j

,

where all sums and products which are not specified in the first line run over all t ∈ D.
The second sum in the second line must be taken over all cycle types µ �� j of j, with
the additional property that µk must be 0 for all k �∈ D. (A function r: D → 0 with∑

t∈D r(t)t = j defines a cycle-type µ �� j by µt = r(t) for t ∈ D and µk = 0 for all
k �∈ D.) So the proof is finished. �

The set n
n\s
L̄

turns out to be the set F(id,id). Specializing formula (5) gives
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Corollary 6. The number of functions g: n \ s → n having no cycles of length l ∈ L
is given by:

|nn\s
L̄
|=

n−s∑
j=0

j!Z

(
Sj , j | xk =

{
−1, if k ∈ L

0, if k �∈ L

)(
n− s

j

)
nn−s−j .

Returning to Beckett’s novel "Watt" there are 5 people glancing at each other. Among
the 1024 possibilities to do this, there are 1024−444 = 580 situations in which at least
2 of them are watching one another. Among the 13 mapping patterns on 5 points which
have no 1-cycle, there are 5 patterns which have no 2-cycle as well. Below, you can
see these 13 mapping patterns together with the number of different labellings of each
pattern.
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Figure 1. Classes of endofunctions on 5 without cycles of lenght one

In situations when all occurring cycles are described by L, i.e. no further cycles may
(or can) appear (so we can assume that L = n), then Theorem 5 specializes to:

Corollary 7. The number of fixed points of (π1, π2) ∈ StabSs
(σ)×Sn\s inF = F(σ, n)

is given by

|F(π1,π2) |

=
n−s∏
i=1


∑

k|i
k(λk(π1) + λk(π2))

λi(π2)

−iλi(π2)

∑
k|i

k(λk(π1) + λk(π2))

λi(π2)−1


=
n−s∏
i=1


∑

k|i
k(λk(π1) + λk(π2))

λi(π2)−1∑
k|i

k(λk(π1) + λk(π2))− iλi(π2)


 .
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Proof. If d | i and k ≤ λi(π2) then d · k ≤ i · λi(π2) ≤ n so that

ψ(L, k, i) =
∑
d|i

ϕ(d) = i

since we can assume that L = n. From that we deduce that

Z̃(Sj , L, i) = Z(Sj , j | xk = −ik) =


1, if j = 0

−i, if j = 1

0, else.

In the cases j = 0 or 1 we have Z(S0, 0) = 1 and Z(S1, 1) = x1, so nothing is to
prove. Let j ≥ 2 then

Z(Sj , j | xk = −ik) =
1
j!

∑
π∈Sj

j∏
k=1

(−ik)λk(π) =

1
j!

∑
π∈Sj

(−1)
∑j

k=1 λk(π) · i
∑j

k=1 kλk(π) = ij
1
j!

∑
π∈Sj

(−1)c(π), (7)

where c(π) is the number of cycles in the cycle decomposition of π. Since the sign of π
can be computed as (−1)j−c(π) all even permutations give rise to a summand (−1)jij in
(7) and all odd permutations contribute to a summand (−1)j+1ij such that (7) vanishes
for j ≥ 2. �

Finally we want to investigate some special cases:

Examples 8.

• In the case
∑

l∈L lm(l) = n the set EndL,L̄[n] is the set of all permutations in
Sn of cycle-type L.
• In the case L = ∅ we are counting endofunctions without prescribed cycle-

type. The results for unlabelled endofunctions specialize to formulæ given by
R. L. Davis [6] and by N. G. de Bruijn in [8]. Since endofunctions can be
considered as permutations of rooted trees the species of endofunctions is given
by

End = Per(Rtr)

so that

Ẽnd(x) = ˜Per(Rtr)(x) = ZPer(R̃tr(x), R̃tr(x2), . . . ) =
∏
n≥1

1

1− R̃tr(xn)
. (8)

• Sets of contractions on n (or forests of rooted trees) are endofunctions on n

all of whose cycles are of length one. For the special case L = {2, 3, . . . , n}
and m(l) = 0 for all l ∈ L we can find the number of all unlabelled sets of
contractions from Theorem 3 and Theorem 5. In this situation

ψ(L, k, i) =

{
i, if k > 1

i− 1, if k = 1
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such that

Z̃(Sj , L, i) =
1
j!

(1− j · i)

and the number of these unlabelled structures on n is given by

1
n!

∑
π∈Sn

n∏
i=1

λi(π)>0

1 +
∑
k|i

kλk(π)

λi(π)−1
1 +

∑
k|i
k 
=i

kλk(π)

 .

This formula is essentially the same expression as (13) in [4]. Let Con denote
the species of sets of contractions then we have

Con = Set(Rtr), so Sin · Con = Rtr

and consequently

C̃on(x) =
R̃tr(x)

x
. (9)

• Roughly speaking an endofunction having no cycles of length 1 is a functional
digraph. From Theorem 3 and Theorem 5 we compute for the special case of
L = {1} and m(1) = 0 the number of unlabelled functional digraphs on n
points as

1
n!

∑
π∈Sn

n∏
i=1

∑
j|i

jλj(π)− 1

λi(π)

.

Denoting the species of functional digraphs by Fun then

End = Con · Fun

which implies

F̃un(x) =
Ẽnd(x)

C̃on(x)
=

x · Ẽnd(x)

R̃tr(x)
. (10)

The following formulæ follow easily from (2) and (3). Since they were proved
before combinatorial species theory was invented we want to present them using
the cycle index notation. In [12] F. Harary took a graph theoretic approach for
the enumeration of functional digraphs and classes of endofunctions (when
allowing loops to occur) by successive applications of Pólyas Enumeration
Theorem. Harary computed the generating function of all unlabelled functional
digraphs as

F̃un(x) =
∞∑

all m(l)=0

∞∏
l=2

Z(Sm(l)[Cl], m(l)× l | xi = Rtr(xi)) =

= exp

( ∞∑
m=1

1
m

∞∑
l=2

Z(Cl, l | xi = Rtr(xim))

)
,
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where the composition Sm(l)[Cl] is a permutation representation of the wreath
product Cl � Sm(l) on m(l) × l, which is similar to the plethysm Cl � Sm(l)

acting on l ·m(l). So they have the same cycle indices. In the same way the
generating function Ẽnd(x) of the numbers of classes of endofunctions is given
by summing for l = 1, . . . ,∞. In [17] R. C. Read gave some simplification
of Harary’s formula, which lead to (8) and (10). In [9] the same generating
function for the classes of endofunctions is found by factorizing words over a
totally ordered alphabet into Lyndon words. This method was generalized by V.
Strehl [18] by introducing a cycle counting parameter.

As a special case of Harary’s formula we have the following result: The
number of unlabelled endofunctions on n having exactly m(l) cycles of length
l ∈ L and no further cycles is the coefficient of xn in∏

l∈L

Z(Sm(l)[Cl], m(l)× l | xi = Rtr(xi)).

• The following formula for the number of functions g: n \ s → n having no
cycles,

|nn\s
n̄ |= nn−s − (n− s)nn−s−1 = snn−s−1,

follows directly from Corollary 6 by using the same method as for proving that
(7) vanishes for j > 1. Combining this result with Theorem 2 we have shown
that the number of all endofunctions on n having exactly m(l) cycles of length
l ∈ L and no further cycles is given by

|EndL,n̄[n] |=
(

n

s

)
s!∏

l∈L lm(l)m(l)!
snn−s−1.

This formula corresponds to formula 3.3.13 in [11]. Moreover these numbers
follow easily from Lagrange inversion: They are special cases of (3.1.47) in [2]
for rs(n) = ns, fs = 1 if we only want to enumerate the forest of s-rooted trees,
or fs equals the number of permutations on s of cycle type L for endofunctions
of type L respectively.
For L = n, m(1) = 1 and m(l) = 0 for l > 1 we compute the number of all
unlabelled rooted trees on n points by

1
(n− 1)!

∑
π∈Sn−

n−1∏
i=1

λi(π)>0

1 +
∑
k|i

kλk(π)

λi(π)−1
1 +

∑
k|i
k 
=i

kλk(π)

 .

From (9) it is clear that this formula is similar to the formula for enumerating
unlabelled sets of contractions. An essentially equivalent formula for the num-
bers of rooted trees kept fixed under a given permutation is given in (3.2.61) of
[2]. It was proved by multidimensional Lagrange inversion (cf. [15]). In [3, 4]
you can find a bijective proof of this formula.

Using formula (4.1.45) of [2] together with these numbers it is possible to
enumerate unlabelled trees on n vertices.
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Most of these formulæ are implemented in SYMMETRICA [19], a computer algebra
system devoted to combinatorics and representation theory of finite symmetric groups
and related groups. It would be interesting to compare the computational complexity of
using the bottom up approach by the Cauchy-Frobenius lemma with the complexity of
the top down approach of species theory.
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Résumé substantiel en français. L’itération d’une endofonction f sur un ensemble
fini X détermine les cycles de f . Notant fk la k-ième itérée de f , on dit que f possède
un cycle de longueur l s’il existe un x ∈ X tel que f l(x) = x et fk(x) �= x pour
1 ≤ k ≤ l: l’ensemble {x, f(x), . . . , f l−1(x)} forme alors un cycle de f , de longueur
l. Étant donné un ensemble L de longueurs et une fonction m : L→ 0 de multiplicités,
on note EndL,L̄ l’espèce des endofonctions ayant exactement m(l) cycles de longueur
l ∈ L et peut-être d’autres cycles de longueur l �∈ L. Le groupe symétrique Sx agit par
réétiquetage (i.e. par conjugaison) sur l’ensemble End[X] toutes les endofonctions de
X et aussi sur le sous-ensemble EndL,L̄[x]. Les orbites de cette action sont appelées
types (ou classes) d’isomorphie d’endofonctions, schémas d’applications (mapping
patterns), ou encore endofonctions non étiquetées.

Dans cet article nous dénombrons les endofonctions de type EndL,L̄, aussi bien
dans les cas étiquetées que non étiquetées, sur l’ensemble n := {1, 2, . . . , n}. Il y
a deux façons de résoudre ce problème: une première approche (top-down) applique
les principes généraux de la théorie des espèces de structures alors qu’une deuxième
(bottom-up) fait appel au Lemme de Cauchy-Frobenius (alias Burnside) et utilise le
principe d’inclusion-exclusion.

Nous exprimons donc d’abord dans (2) et (3) l’espèce EndL,L̄ comme produit de
deux espèces qui s’écrivent elles-mêmes en termes de permutations d’arborescences.
Comme les séries associées à ces diverses espèces sont connues, les séries génératrices
EndL,L̄(x) et ẼndL,L̄(x) pour le dénombrement étiqueté et non étiqueté, respectivement,
peuvent être calculées explicitement (Théorème 1). Le calcul du nombre de structures
demande alors l’extraction de coefficients dans ces séries par diverses techniques.

Les théorèmes 2, 3 et 5 décrivent plutôt l’approche « bottom up»: le dénombrement
direct des orbites du groupe symétrique. On ramène d’abord le problème au dénombre-
ment des orbites d’endofonctions partielles, sous l’action d’un plus petit groupe et le
lemme de Cauchy-Frobenius est reformulé dans ce contexte. À l’aide d’un résultat connu
(Lemme 4, voir [5, 6]) et du principe d’inclusion-exclusion, nous arrivons à la formule
(5) permettant de dénombrer les endofonctions qui nous intéressent laissées fixes par
une permutation d’un type cycle donné. Cette formule fait appel à des substitutions
particulières, dépendant de L, dans des polynômes indicateurs de cycles de groupes
symétriques.

Dans les deux corollaires et les exemples qui suivent, nous examinons divers choix de
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longueurs et de multiplicités. On en déduit des résultats particuliers sur les endofonctions
quelconques, les assemblées de contractions, les graphes fonctionnels (=endofonctions
sans points fixes), et les arborescences.

REFERENCES

1. S. Beckett, Watt, suhrkamp taschenbuch, vol. 46, Suhrkamp Verlag, Frankfurt am Main, 1.
Auflage, 1972.

2. F. Bergeron, G. Labelle and P. Leroux, Combinatorial species and tree-like structures,
Encyclopedia of Mathematics and its Applications, vol. 67, Cambridge University Press,
Cambridge, 1998.

3. I. Constantineau and J. Labelle, Le nombre d’endofonctions et d’arborescences laissées
fixes par l’action d’une permutation, Ann. Sci. Math. Québec 13 (1989), 33–38.
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