RESONANCE AT TWO CONSECUTIVE EIGENVALUES FOR SEMILINEAR ELLIPTIC PROBLEM: A VARIATIONAL APPROACH

A. R. El AMROUSS And M. MOUSSAOUI

RÉSumÉ. Ce travail traite de l'existence de solutions d'un problème elliptique semilinéaire satisfaisant certaines conditions de résonnance de Ahmad-Lazer-Paul.

Abstract. This paper deals with the existence of solutions for a semilinear elliptic problem in some resonance conditions of Ahmad-Lazer-Paul occur.

1. Introduction. Let Ω be a bounded domain in \mathbb{R}^{n}, and let $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a non-linear function satisfying the Carathéodory conditions. We consider the Dirichlet problem

$$
\begin{cases}-\Delta u=\lambda_{k} u+f(x, u)+h(x) & \text { in } \Omega \tag{1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $h \in L^{p}(\Omega)$, for some suitable $p \geq 2$, is given, and $\lambda_{k}, k=1,2, \ldots$, denote the (order distinct) eigenvalues of problem $-\Delta u=\lambda u$ in $\Omega, u=0$ on $\partial \Omega$.

Let us denote by $F(x, s)$ the primitive $\int_{0}^{s} f(x, t) d t$, and write

$$
\begin{array}{cc}
l_{ \pm}(x)=\liminf _{s \rightarrow \pm \infty} \frac{f(x, s)}{s}, & k_{ \pm}(x)=\limsup _{s \rightarrow \pm \infty} \frac{f(x, s)}{s} \\
L_{ \pm}(x)=\liminf _{s \rightarrow \pm \infty} \frac{2 F(x, s)}{s^{2}}, & K_{ \pm}(x)=\limsup _{s \rightarrow \pm \infty} \frac{2 F(x, s)}{s^{2}}
\end{array}
$$

with, for an autonomous non-linearity $f(x, s)=f(s), l_{ \pm}$instead of $l_{ \pm}(x)$. Assume that

$$
\begin{equation*}
0 \leq l_{ \pm}(x) \leq k_{ \pm}(x) \leq \lambda_{k+1}-\lambda_{k} \tag{2}
\end{equation*}
$$

uniformly for a.e. $x \in \Omega$.
There exists a rich literature devoted to this kind of problems, starting from Berestycki and DeFigueiredo [3], Dancer [6], Mawhin [9] and references therein.

In [7], DeFigueiredo and Gossez considered (2) (in the autonomous case), where a so called positive density condition was introduced. Roughly speaking, this condition imposes to $f(s) / s$ to remain greater than 0 and less than $\lambda_{k+1}-\lambda_{k}$ for sufficiently

Reçu le 18 décembre 1997 et, sous forme définitive, le 28 décembre 1998.
many values of s as $s \rightarrow \pm \infty$. They showed that (1) is solvable for any h. After that, in [5], Costa and Oliveira proved an existence result when (2) occurs and

$$
\begin{equation*}
0 \leq L_{ \pm}(x) \leq K_{ \pm}(x) \leq \lambda_{k+1}-\lambda_{k} \tag{3}
\end{equation*}
$$

uniformly for a.e. $x \in \Omega$, with strict inequalities $\lambda_{k}<L_{ \pm}(x), K_{ \pm}(x)<\lambda_{k+1}$ holding on subsets of Ω of positive measure.

Beside the above considered non-resonance conditions, many papers have been devoted to resonance ones (see e.g. $[1,8,10,11]$).

In the present paper, we will extend the cited above non-resonance conditions to resonance ones. First, we prove the existence of solutions for (1) in some situations of (2), on one side of (3) we will have a classical resonance conditions of Ahmad-LazerPaul and, on the other hand side, we will impose the following condition:

$$
\int_{z>0}\left(\alpha-k_{+}\right) z^{2} d x+\int_{z<0}\left(\alpha-k_{-}\right) z^{2} d x>0,
$$

for every $z \in E_{k+1}$.
To state our main result, let us denote by E_{j} the λ_{j}-eigenspace and for each real valued function u defined on Ω, we define $\Omega^{-}(u)=\{x \in \Omega: u(x)<0\}$ and $\Omega^{+}(u)=\{x \in \Omega: u(x)>0\}$.

Theorem 1.1. Assume that,

$\left.F_{0}\right) \sup _{|s| \leq R}|f(x, s)| \in L^{2}(\Omega)$, for all $R>0$,
$\left.F_{1}\right) 0 \leq f(x, s) / s, \quad$ for $|s| \geq r>0$ and a.e. $x \in \Omega$,

$$
k_{ \pm}(x)=\limsup _{s \rightarrow \pm \infty} \frac{f(x, s)}{s} \leq \lambda_{k+1}-\lambda_{k}=\alpha, \quad \text { uniformly on } \Omega,
$$

$\left.F_{2}\right) \lim _{\left\|u^{0}\right\| \rightarrow \infty, u^{0} \in E_{k}} \int F\left(x, u^{0}(x)\right) d x=\infty$,
F_{3})

$$
\int_{z>0}\left(\alpha-k_{+}\right) z^{2} d x+\int_{z<0}\left(\alpha-k_{-}\right) z^{2} d x>0
$$

for every $z \in E_{k+1}$.
F4) $h \in\left(E_{k}\right)^{\perp}$.
Then (1) has at least one solution.
Remark 1. F_{3}) occurs if F verified the following condition:

$$
\left\{\begin{array}{l}
\text { there exists a subset } \Omega^{\prime} \text { of } \Omega \text { such that mes }\left(\Omega^{\prime} \cap \Omega^{+}(v)\right)>0, \\
\left(\text { resp. mes }\left(\Omega^{\prime} \cap \Omega^{-}(v)\right)<0\right) \quad \text { for every } v \in E_{k+1} \text { and } \limsup _{s \rightarrow \infty} \frac{2 F(x, s)}{s^{2}}, \\
\left(\text { resp. } \limsup _{s \rightarrow-\infty} \frac{2 F(x, s)}{s^{2}}\right)<\lambda_{k+1}-\lambda_{k}, \text { a.e. in } \Omega^{\prime} .
\end{array}\right.
$$

Second, we prove the weak solvability when $f(x, s) / s$ stays between 0 and $\lambda_{k+1}-\lambda_{k}$ for large values of $|s|$ and we will replace (3) by Ahmad-Lazer-Paul conditions, precisely we will prove the following.

Theorem 1.2. Assume F_{0}), F_{3}), and
$\left.F_{5}\right) 0 \leq f(x, s) / s \leq \lambda_{k+1}-\lambda_{k} \quad$ for $|s| \geq r>0$ and a.e. $x \in \Omega$,
F6) $\lim _{\left\|u^{0}\right\| \rightarrow \infty, u^{0} \in E_{k+1}} \int\left[\frac{1}{2}\left(\lambda_{k+1}-\lambda_{k}\right) u^{0^{2}}(x)-F\left(x, u^{0}(x)\right)\right] d x=\infty$,
F7) $h \in\left(E_{k}\right)^{\perp} \cap\left(E_{k+1}\right)^{\perp} \cap L^{2}(\Omega)$.
Then (1) has at least one solution.
Next, some variants of Theorem 1.1 and Theorem 1.2 will be given.
Our approach to theorems 1.1 and 1.2, is variational and uses the general minimax theorem proved by Bartolo et al. in [2]. The proofs of theorems 4.2 and 4.3 (see section 4) use the preceding results and an approximation argument.

We also mention that our approach can be adapted to study higher order self adjoint elliptic partial differential equations.

2. Preliminaries.

2.1. A compactness condition. We denote by $\|\cdot\|$ the norm in $H_{0}^{1}(\Omega)$ induced by the inner product

$$
\langle u, v\rangle=\int_{\Omega} \nabla u \nabla v, \quad u, v \in H_{0}^{1}(\Omega)
$$

and by $\|\cdot\|_{H^{-1}}$, the norm in $H^{-1}(\Omega)$, the dual space of $H_{0}^{1}(\Omega)$.
In this section, we start by recalling a compactness condition of the Palais-Smale type which was introduced by Cerami in [4] and which allows rather general minimax results of [2].

A functional $\Phi \in C^{1}(E, R), E$ being a real Banach space, is said to satisfy condition (C) at the level $c \in \mathbb{R}$ if the following holds:
$(C)_{c}$ i) any bounded sequence $\left(u_{n}\right) \subset E$ such that $\Phi\left(u_{n}\right) \rightarrow c$ and $\Phi^{\prime}\left(u_{n}\right) \rightarrow 0$ possesses a convergent subsequence;
ii) there exist constants $\delta, R, \alpha>0$ such that

$$
\left\|\Phi^{\prime}(u)\right\|\|u\| \geq \alpha \text { for any } u \in \Phi^{-1}([c-\delta, c+\delta]) \text { with }\|u\| \geq R .
$$

It was shown in [2] that condition (C) actually suffices to get a deformation theorem and then, by standard minimax arguments (see [2]), the following result was proved.

Theorem 2.1. Suppose that $\Phi \in C^{1}(E, \mathbb{R})$, E being a real Banach space, satisfies condition $(C)_{c} \forall c \in \mathbb{R}$ and that there exist a closed subset $S \subset E$ and $Q \subset E$ with boundary ∂Q verifying the following conditions:
i) $\sup _{u \in \partial Q} \Phi(u) \leq \alpha<\beta \leq \inf _{u \in S} \Phi(u)$ for some $0 \leq \alpha<\beta$;
ii) S and ∂Q link;
iii) $\sup _{u \in Q} \Phi(u)<\infty$.

Then Φ possesses a critical value $c \geq \beta$.
2.2. Generalities and technical lemma. Since we are going to apply the variational characterisation of the eigenvalues, we shall decompose the space $H_{0}^{1}(\Omega)$ as following $E=E_{-} \oplus E_{k} \oplus E_{k+1} \oplus E_{+}$, where E_{-}is the subspace spanned by the λ_{j}-eigenfunctions with $j<k$ and E_{j} is the eigenspace generated by the λ_{j}-eigenfunctions and E_{+}is the
orthogonal complement of $E_{-} \oplus E_{k} \oplus E_{k+1}$ in $H_{0}^{1}(\Omega)$ and we shall decompose for any $u \in H_{0}^{1}(\Omega)$ as following $u=u^{-}+u^{k}+u^{k+1}+u^{+}$where $u^{-} \in E_{-}, u^{k} \in E_{k}$, $u^{k+1} \in E_{k+1}$ and $u^{+} \in E_{+}$.

We verify easily

$$
\begin{align*}
& \int|\nabla u|^{2} d x-\lambda_{k} \int|u|^{2} d x \geq \delta\|u\|^{2} \quad \forall u \in E_{+} \oplus E_{k+1} \tag{4}\\
& \int|\nabla u|^{2} d x-\lambda_{k} \int|u|^{2} d x \leq-\delta\|u\|^{2} \quad \forall u \in E_{-} \oplus E_{k} \tag{5}
\end{align*}
$$

where

$$
\begin{equation*}
\delta=\min \left\{1-\frac{\lambda_{k}}{\lambda_{k+1}}, \frac{\lambda_{k}}{\lambda_{k-1}}-1\right\} \tag{6}
\end{equation*}
$$

The idea to establish results of existence of solution to problem (1) is to use Theorem 2.1. For this purpose, we shall consider the functional $\Phi: E \rightarrow \mathbb{R}$ defined by

$$
\Phi(u)=\frac{1}{2} \int|\nabla u|^{2} d x-\lambda_{k} \int|u|^{2} d x-\int F(x, u)-\int h u
$$

where hereafter the integrals are over Ω.
We have the following important lemma.
Lemma 2.1. Let $\left(u_{n}\right) \subset H_{0}^{1}(\Omega)$ and $\left(p_{n}\right) \subset L^{\infty}(\Omega)$ be sequences, and let A a non-negative constant such that

$$
0 \leq p_{n}(x) \leq A \quad \text { a.e. on } \Omega \text { and for all } n \in \mathbb{N}
$$

and $p_{n} \rightharpoonup 0$ in the weak* topology of L^{∞}, as $n \rightarrow \infty$. Then, there are subsequences $\left(u_{n}\right),\left(p_{n}\right)$ satisfying the above conditions and, there is a positive integer n_{0} such that for all $n \geq n_{0}$, one has

$$
\begin{equation*}
\int p_{n} u_{n}\left(\left(u_{n}^{-}+u_{n}^{k}\right)-\left(u_{n}^{k+1}+u_{n}^{+}\right)\right) d x \geq \frac{-\delta}{2}\left\|u_{n}^{+}+u_{n}^{k+1}\right\|^{2} \tag{7}
\end{equation*}
$$

where $\delta>0$ is given in (6).
Proof. Since $p_{n} \geq 0$ a.e. in Ω, we see that

$$
\begin{align*}
\int p_{n} u_{n}\left(\left(u_{n}^{-}+u_{n}^{k}\right)\right. & \left.-\left(u_{n}^{k+1}+u_{n}^{+}\right)\right) \geq-\int p_{n}\left(u_{n}^{+}+u_{n}^{k+1}\right)^{2} d x \\
& \geq-\left[\int p_{n}\left(\frac{u_{n}^{+}+u_{n}^{k+1}}{\left\|u_{n}^{+}+u_{n}^{k+1}\right\|}\right)^{2} d x\right]\left\|u_{n}^{+}+u_{n}^{k+1}\right\|^{2} . \tag{8}
\end{align*}
$$

Moreover, by the compact imbedding of $H_{0}^{1}(\Omega)$ into $L^{2}(\Omega)$ and $p_{n} \rightharpoonup 0$ in the weak* topology of L^{∞}, when $n \rightarrow \infty$, then there are subsequences relabelled $\left(u_{n}\right),\left(p_{n}\right)$ such that

$$
\int p_{n}\left(\frac{u_{n}^{+}+u_{n}^{k+1}}{\left\|u_{n}^{+}+u_{n}^{k+1}\right\|}\right)^{2} d x \rightarrow 0
$$

Therefore, there exists $n_{0} \in \mathbb{N}$ such that for $n \geq n_{0}$ we have

$$
\begin{equation*}
\int p_{n}\left(\frac{u_{n}^{+}+u_{n}^{k+1}}{\left\|u_{n}^{+}+u_{n}^{k+1}\right\|}\right)^{2} d x \leq \frac{\delta}{2} \tag{9}
\end{equation*}
$$

Combining inequalities (8) and (9), we get inequality (7).
3. Proof of theorems. We begin by proving the following lemmas.

Lemma 3.1. Φ satisfies the (C) condition on H_{0}^{1}.
Proof. Let $\left(u_{n}\right)_{n} \subset H_{0}^{1}$ be a (C) sequence, i.e.

$$
\begin{align*}
\left\|\Phi\left(u_{n}\right)\right\| & \leq A \tag{10}\\
\left\|u_{n}\right\|\left\langle\Phi^{\prime}\left(u_{n}\right), v\right\rangle_{H_{0}^{1}, H^{-1}} & \leq \varepsilon_{n}\|v\| \quad \forall v \in H_{0}^{1}, \tag{11}
\end{align*}
$$

where A is a constant and $\varepsilon_{n} \rightarrow 0$.
It clearly suffices to shows that $\left(u_{n}\right)_{n}$ remains bounded in H_{0}^{1}. Assume by contradiction and defining $z_{n}=u_{n} /\left\|u_{n}\right\|$, we have $\left\|z_{n}\right\|=1$ and, passing if necessary to a subsequence, we may assume that $z_{n} \rightharpoonup z$ weakly in $H_{0}^{1}, z_{n} \rightarrow z$ strongly in $L^{2}(\Omega)$ and $z_{n}(x) \rightarrow z(x)$ a.e. in Ω.

We consider $\left(f\left(\cdot, u_{n}(\cdot)\right) /\left\|u_{n}\right\|\right)$ which, by the linear growth of f, remains bounded in L^{2}. Thus, for a subsequence $\left(f\left(\cdot, u_{n}(\cdot)\right) /\left\|u_{n}\right\|\right)$ converges weakly in L^{2} to some $\tilde{f} \in L^{2}$ and by standard arguments based on assumptions F_{0}), F_{1}), \tilde{f} can be written as

$$
\tilde{f}(x)=m(x) z(x)
$$

where the L^{∞}-function m satisfies

$$
0 \leq m(x) \leq \lambda_{k+1}-\lambda_{k} \text { a.e. in } \Omega
$$

(cf. e.g. [5]).
Moreover, divide (11) by $\left\|u_{n}\right\|^{2}$ and go to the limit to get

$$
\begin{equation*}
\int \nabla z \nabla v-\lambda_{k} \int z v d x-\int m(x) z v d x=0 \text { for all } v \in H_{0}^{1} \tag{12}
\end{equation*}
$$

and we verify easily that $z \not \equiv 0$.
We now distinguish three cases:
i) $m(x) \equiv 0$;
ii) $0<m(x)$ and $m(x)<\lambda_{k+1}-\lambda_{k}$ on subsets of positive measure; iii) $m(x) \equiv \lambda_{k+1}-\lambda_{k}$.

Case ii). Since $z \not \equiv 0$, this case cannot occur in view of lemma 4 in [3].
Case i). In this case, it follows from (12) that z is a λ_{k}-eigenfunction.
On the other hand, by F_{1}), for $\varepsilon>0$ there exists a constant $r_{\varepsilon}>r$ such that

$$
\begin{equation*}
0 \leq \frac{f(x, s)}{s} \leq \lambda_{k+1}-\lambda_{k}+\varepsilon \quad \forall|s| \geq r_{\varepsilon} \tag{13}
\end{equation*}
$$

Let $f_{n}(x)=f\left(x, u_{n}(x)\right) / u_{n}(x) \chi_{\left[\left|u_{n}(x)\right| \geq r_{\varepsilon}\right]}$, which remains bounded in L^{∞}, converges weakly in L^{∞} to some $l \in L^{\infty}$.

By (13) this function satisfies

$$
0 \leq l(x) \leq \lambda_{k+1}-\lambda_{k}+\varepsilon .
$$

Multiply f_{n} by z_{n}^{2}, integrate on Ω and take the limit to get

$$
\int f_{n}\left(z_{n}\right)^{2} d x \longrightarrow \int l(x) z^{2} d x=\int m(x) z^{2}(x) d x=0
$$

By the unique continuation property of Δ and $l \geq 0$, we must have $l \equiv 0$ a.e. on Ω.
The contradiction of case ii) will be divided into several steps:
Step 1. We claim that $u_{n}^{k} /\left\|u_{n}\right\| \rightarrow z$ strongly in H_{0}^{1}.
By using the fact that E_{k} is finite dimensional and the compact imbedding of $\left(E_{k}\right)^{\perp}$ into $L^{2}(\Omega)$, it follows that there are $z_{1} \in E_{k}, z_{2} \in\left(E_{k}\right)^{\perp}$ such that (by using an appropriate subsequence similarly relabelled if necessary)

$$
\begin{gathered}
\frac{u_{n}^{k}}{\left\|u_{n}\right\|} \rightarrow z_{1} \text { strongly in } H_{0}^{1} \text { and in } L^{2}, \\
\frac{u_{n}^{-}+u_{n}^{+}+u_{n}^{k+1}}{\left\|u_{n}\right\|} \rightarrow z_{2} \quad \text { strongly in } L^{2} .
\end{gathered}
$$

On the other hand, we have $z \in E_{k}$ and $u_{n} /\left\|u_{n}\right\| \rightarrow z$, which implies that $z=z_{1}+z_{2}$. Thus, $z=z_{1}$ and $z_{2}=0$. The result follows.
Step 2. We are now ready to prove that the sequence $\left(\left\|u_{n}^{-}+u_{n}^{+}+u_{n}^{k+1}\right\|\right)_{n}$ is uniformly bounded in n.

Take $v=\left(u_{n}^{-}+u_{n}^{k}\right)-\left(u_{n}^{+}+u_{n}^{k+1}\right)$ in (11) and $p_{n}(x)=f_{n}(x)$, we get

$$
\begin{equation*}
\Lambda \leq \Gamma \tag{14}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Lambda=\left\{-\int\left|\nabla u_{n}^{-}\right|^{2}+\lambda_{k} \int\left|u_{n}^{-}\right|^{2} d x+\int\left|\nabla\left(u_{n}^{+}+u_{n}^{k+1}\right)\right|^{2}\right. \\
&\left.\quad-\lambda_{k} \int\left|u_{n}^{+}+u_{n}^{k+1}\right|^{2} d x+\int p_{n} u_{n}\left(\left(u_{n}^{-}+u_{n}^{k}\right)-\left(u_{n}^{k+1}+u_{n}^{+}\right)\right) d x\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \Gamma=\left\{\varepsilon_{n}+\int h\left(\left(u_{n}^{+}+u_{n}^{k+1}\right)-u_{n}^{-}\right) d x\right. \\
&+\int_{\left|u_{n}(x)\right| \leq r_{\varepsilon}} \mid f\left(x, u_{n}(x)| |\left(u_{n}^{+}+u_{n}^{k+1}\right)-\left(u_{n}^{-}+u_{n}^{k}\right) \mid d x\right\}
\end{aligned}
$$

By the Poincaré inequality and from (4), (5), (7), (14), there exist two constants $A_{\varepsilon}, B_{\varepsilon}$ such that

$$
\frac{\delta}{2}\left\|u_{n}^{-}+\left(u_{n}^{+}+u_{n}^{k+1}\right)\right\|^{2} \leq \varepsilon_{n}+A_{\varepsilon}\left\|u_{n}^{-}+\left(u_{n}^{+}+u_{n}^{k+1}\right)\right\|+B_{\varepsilon} .
$$

This gives that $\left(\left\|u_{n}^{-}+\left(u_{n}^{+}+u_{n}^{k+1}\right)\right\|\right)_{n}$ is uniformly bounded in n.
Step 3. We will now reach a contradiction with assumption F_{2}).
From (10), and Poincaré inequality, we have

$$
\begin{aligned}
\int F\left(x, u_{n}^{k} / 2\right) d x \leq A+ & \int\left[F\left(x, u_{n}^{k} / 2\right)-F\left(x, u_{n}\right)\right] d x \\
& +\frac{1}{2}\left\|u_{n}^{+}+u_{n}^{k+1}+u_{n}^{-}\right\|^{2}+\frac{1}{\sqrt{\lambda_{1}}}\|h\|_{L^{2}}\left\|u_{n}^{+}+u_{n}^{k+1}+u_{n}^{-}\right\| .
\end{aligned}
$$

However, by the mean value theorem, we get for a.e. $x \in \Omega$ and $t=t(x) \in[0,1]$ such that

$$
\begin{align*}
& \int\left[F\left(x, u_{n}^{k} / 2\right)-F\left(x, u_{n}\right)\right] d x=\int f\left(x, t u_{n}^{k} / 2+(1-t) u_{n}\right)\left(u_{n}^{k} / 2-u_{n}\right) d x \\
& =\int_{\left|t u_{n}^{k} / 2+(1-t) u_{n}\right| \leq r \varepsilon} f\left(x, t u_{n}^{k} / 2+(1-t) u_{n}\right) d x \\
& +\int_{\left|t u_{n}^{k} / 2+(1-t) u_{n}\right| \geq r \varepsilon} \frac{f\left(x, t u_{n}^{k} / 2+(1-t) u_{n}\right)}{t u_{n}^{k} / 2+(1-t) u_{n}} t\left(u_{n}^{k} / 2-u_{n}\right)^{2}+\left(u_{n}^{k} / 2-u_{n}\right) u_{n} d x . \tag{16}
\end{align*}
$$

So that using (16) and the Poincaré inequality again, we have

$$
\begin{align*}
\int\left[F\left(x, u_{n}^{k} / 2\right)-\right. & \left.F\left(x, u_{n}\right)\right] d x \leq \frac{2}{\sqrt{\lambda_{1}}}\left\|\sup _{|s| \leq r \varepsilon}|f(x, s)|\right\|_{L^{2}}\left\|u_{n}^{-}+u_{n}^{+}+u_{n}^{k+1}\right\| \\
& +r_{\varepsilon}\left\|\sup _{|s| \leq r \varepsilon}|f(x, s)|\right\|_{L^{1}}+\frac{\lambda_{k+1}-\lambda_{k}+\varepsilon}{4 \lambda_{1}}\left\|u_{n}^{-}+u_{n}^{+}+u_{n}^{k+1}\right\|^{2} . \tag{17}
\end{align*}
$$

From (15) and (17), there exists $M>0$ such that

$$
\int F\left(x, u_{n}^{k} / 2\right) d x \leq M
$$

This is a contradiction with assumption F_{2}).
Case iii). If $m(x) \equiv \lambda_{k+1}-\lambda_{k}=\alpha$
Dividing (11) by $\left\|u_{n}\right\|^{2}$, then we have

$$
\frac{\Phi\left(u_{n}\right)}{\left\|u_{n}\right\|^{2}} \rightarrow 0, \text { as } n \rightarrow \infty
$$

Since $z_{n} \rightarrow z$ strongly in $H_{0}^{1}(\Omega)$, we get

$$
\int \frac{F\left(x, u_{n}(x)\right)}{\left\|u_{n}\right\|^{2}} d x \rightarrow \frac{1}{2}\left[\int|\nabla z|^{2} d x-\lambda_{k} \int|z|^{2} d x\right]
$$

and using Fatou's lemma, we also have

$$
\begin{aligned}
\alpha \int z^{2} & \leq \int \lim \sup \frac{2 F\left(x, u_{n}(x)\right)}{\left|u_{n}\right|^{2}} \frac{u_{n}^{2}}{\left\|u_{n}\right\|^{2}} d x \\
& \leq \int_{z>0} \lim \sup \frac{2 F\left(x, u_{n}(x)\right)}{\left|u_{n}\right|^{2}} z^{2} d x+\int_{z<0} \lim \sup \frac{2 F\left(x, u_{n}(x)\right)}{\left|u_{n}\right|^{2}} z^{2} d x .
\end{aligned}
$$

Therefore, we obtain

$$
\int_{z>0}\left(\alpha-k_{+}\right) z^{2} d x+\int_{z<0}\left(\alpha-k_{-}\right) z^{2} d x>0 .
$$

But this gives us once more a contradiction from F_{3}). This completes the proof.
Lemma 3.2. Under hypotheses of Theorem 1.1, the functional Φ has the following properties:
i) $\Phi(w) \rightarrow \infty$, as $\|w\| \rightarrow \infty, w \in E_{k+1} \oplus E_{+}$
ii) $\Phi(v) \rightarrow-\infty$, as $\|v\| \rightarrow \infty, v \in E_{k} \oplus E_{-}$

Proof. i) Suppose by contradiction that

$$
\begin{equation*}
\Phi\left(w_{n}\right)=\frac{1}{2}\left[\int\left|\nabla w_{n}\right|^{2} d x-\lambda_{k} \int\left|w_{n}\right|^{2} d x\right]-\int F\left(x, w_{n}\right)-\int h w_{n} d x \leq B \tag{18}
\end{equation*}
$$

for some constant B and some sequence $\left(w_{n}\right) \subset E_{+}$with $\left\|w_{n}\right\| \rightarrow \infty$.
Let $\varepsilon>0$. From F_{1}), there exists $B_{\varepsilon}(x) \in L^{1}(\Omega)$ such that

$$
\begin{equation*}
F(x, s) \leq \alpha \frac{s^{2}}{2}+\varepsilon s^{2} B_{\varepsilon}(x) \text { a.e. in } \Omega, \forall s \in \mathbb{R} \tag{19}
\end{equation*}
$$

However, by (18) and (19) we get that $\left\|w_{n}\right\|_{2} \rightarrow \infty$, as $n \rightarrow \infty$, otherwise, we would obtain

$$
\left\|w_{n}\right\|^{2} \leq \lambda_{k+1}\left\|w_{n}\right\|_{2}^{2}+2 \varepsilon\left\|w_{n}\right\|^{2}+2 \int B_{\varepsilon}(x) d x+\int\left|h w_{n}\right| d x+2 B .
$$

If we take $0<\varepsilon<\frac{1}{2}$, we obtain

$$
\left\|w_{n}\right\| \leq c s t
$$

Letting $z_{n}=w_{n} /\left\|w_{n}\right\|_{2}$ and dividing (18) by $\left\|w_{n}\right\|_{2}^{2}$, we obtain in view of (19) and of the continuous imbedding $H_{0}^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$ that

$$
\left\|z_{n}\right\|^{2}-\lambda_{k} \leq \lambda_{k+1}-\lambda_{k}+2 \varepsilon\left\|z_{n}\right\|^{2}+\frac{2 \int B_{\varepsilon}(x) d x+2 B}{\left\|w_{n}\right\|_{2}}+\frac{\int\left|h z_{n}\right| d x}{\left\|w_{n}\right\|_{2}} .
$$

As $\left\|w_{n}\right\|_{2} \rightarrow \infty$, there exist constants $M, N>0$ such that

$$
\left\|z_{n}\right\|^{2}-\lambda_{k} \leq \varepsilon M\left\|z_{n}\right\|^{2}+N .
$$

If we take $0<\varepsilon<\min \left\{\frac{1}{2}, \frac{1}{M}\right\}$, we get

$$
\left\|z_{n}\right\| \leq c s t
$$

Using a subsequence if necessary, we obtain

$$
z_{n} \rightarrow z \quad \text { a.e. on } \Omega \text { and in } L^{2}
$$

for some $z \in H_{0}^{1}(\Omega)$ with $\|z\|_{2}=1$ (since $\left\|z_{n}\right\|_{2}=1$).
As $z \in E_{k+1} \oplus E_{+}$we have necessarily that z is λ_{k+1}-eigenfunction. Dividing (18) by $\left\|w_{n}\right\|_{2}^{2}$ and using Fatou's lemma, we get

$$
\alpha \int z^{2} d x \leq \int_{z>0} k_{+}(x) z^{2} d x+\int_{z<0} k_{-}(x) z^{2} d x>0 .
$$

Hence

$$
\int_{z>0}\left(\alpha-k_{+}\right) z^{2} d x+\int_{z<0}\left(\alpha-k_{-}\right) z^{2} d x>0 .
$$

But this yields us a contradiction.
ii) Assume by contradiction there exist a constant B and a sequence $\left(v_{n}\right) \subset V$ such that

$$
B \leq \Phi\left(v_{n}\right) \leq-\delta\left\|v_{n}^{-}\right\|^{2}-\int h v_{n}^{-} d x .
$$

Therefore, $\left\|v_{n}^{-}\right\|$is bounded and by a similar argument to that one given in step 3 , we obtain

$$
\lim \inf \int F\left(x, \frac{v_{n}^{k}}{2}\right) d x \leq c s t
$$

This is a contradiction with assumption F_{2}).
Proof of Theorem 1.1. In view of Lemmas 3.1 and 3.2, we may apply Theorem 2.1 letting $S=W$ and $Q=\left\{v \in E_{-} \oplus E_{k}:\|v\| \leq R\right\}$, with $R>0$ being such that

$$
\alpha=\max _{\partial Q} \Phi<\inf _{E_{+} \oplus E_{k+1}} \Phi=\beta
$$

It follows that the functional Φ has a critical value $c \geq \beta$ and, hence, problem (1) has a solution $u \in H_{0}^{1}$.

In the following result we will be interested in the case when the Ahmad-Lazer-Paul conditions at λ_{k} and at λ_{k+1} are considered.
Proof of Theorem 1.2. The proof of Theorem 1.2 will be divided into two steps.
Step 1. We prove that Φ satisfies the condition (C) on $H_{0}^{1}(\Omega)$.
As in the proof of lemma 3.1, we put

$$
f_{n}(x)=\frac{f\left(x, u_{n}(x)\right)}{u_{n}(x)} \chi_{\left[\left|u_{n}(x)\right| \geq r\right]}
$$

and $l \in L^{\infty}$ such that

$$
f_{n} \rightarrow l \quad \text { in the weak* topology of } L^{\infty}, \quad \text { as } n \rightarrow \infty .
$$

After dividing (11) by $\left\|u_{n}\right\|^{2}$ and taking the limit, we get

$$
\int \nabla z \nabla v-\lambda_{k} \int z v d x-\int l(x) z v d x=0 \quad \text { for all } v \in H_{0}^{1}
$$

with $z \not \equiv 0$.
We now separate three cases:
i) $l(x) \equiv 0$. It is similar to case i) of Lemma 3.1 and therefore, this case cannot occur.
ii) $0<l(x)$ and $l(x)<\lambda_{k+1}-\lambda_{k}$ on subsets of positive measure. Since $z \not \equiv 0$, this case cannot occur in view of lemma 4 in [3].
iii) $l(x) \equiv \lambda_{k+1}-\lambda_{k}$. In this case we are just going to follow the same lines of case i) as in Lemma 3.1.

So we write (11) as follows

$$
\begin{equation*}
\left.\int \nabla u_{n} \nabla v-\lambda_{k+1} \int u_{n} v d x+\int\left[\lambda_{k+1}-\lambda_{k}\right) u_{n}-f\left(x, u_{n}\right)\right] v-\int h v d x \leq \varepsilon_{n}\|v\| . \tag{20}
\end{equation*}
$$

Then let $v=\left(u_{n}^{-}+u_{n}^{k}\right)-\left(u_{n}^{k+1}+u_{n}^{+}\right)$in (19) and

$$
p_{n}(x)=\frac{\left(\lambda_{k+1}-\lambda_{k}\right) u_{n}(x)-f\left(x, u_{n}(x)\right)}{u_{n}(x)} \chi_{\left[\left|u_{n}(x)\right| \geq r\right]} .
$$

We obtain that a sequence $\left(\|\left(u_{n}^{-}+u_{n}^{k}+u_{n}^{+} \|\right)_{n}\right.$ is uniformly bounded in n. In a way similar to the followed in step 3 of case i) of Lemma 3.2, we get

$$
\int\left[\frac{\lambda_{k+1}-\lambda_{k}}{2}\left(u_{n}^{k} / 2\right)^{2}-F\left(x, u_{n}^{k} / 2\right)\right] d x \leq M .
$$

This is a contradiction with assumption F_{3}).
Step 2. Φ has the following properties:
i) $\Phi(w) \rightarrow \infty$, as $\|w\| \rightarrow \infty, w \in E_{k+1} \oplus E_{+}$
ii) $\Phi(v) \rightarrow-\infty$, as $\|v\| \rightarrow \infty, v \in E_{k} \oplus E_{-}$.

We verify easily as in ii) of Lemma 3.2, that Φ has the preceding properties. Then Theorem 1.2 follows from Theorem 2.1. The proof is complete.
4. Variant results. When $k>2$ we can state a "dual" version of Theorem 1.1.

Theorem 4.1. Suppose $\left.\left.k>2, F_{0}\right), F_{4}\right)$ and

$$
\begin{aligned}
& \left.F_{1}^{\prime}\right) \frac{f(x, s)}{s} \leq 0 \quad \text { for }|s| \geq r>0 \text { and a.e. } x \in \Omega, \\
& \liminf _{s \rightarrow \pm \infty} \frac{f(x, s)}{s} \geq \lambda_{k-1}-\lambda_{k}=\alpha^{\prime} \quad \text { uniformly on } \Omega \\
& \left.F_{2}^{\prime}\right) \lim _{\left\|u^{0}\right\| \rightarrow \infty, u^{0} \in E_{k}} \int F\left(x, u^{0}(x)\right) d x=-\infty \\
& \left.F_{3}^{\prime}\right) \int_{z>0}\left(\alpha^{\prime}-l_{+}\right) z^{2} d x+\int_{z<0}\left(\alpha^{\prime}-l_{-}\right) z^{2} d x<0, \text { for every } z \in E_{k-1} .
\end{aligned}
$$

Then (1) has at least one solution.
Remark 2. For some $R>0$,

$$
c=\inf _{g \in H} \max _{u \in B_{R}} \Phi(g(u))
$$

where $B_{R}=\left\{u \in E_{1}:\|u\| \leq R\right\}$ and $H=\left\{g \in C\left(B_{R}, H_{0}^{1}\right): g(u)=u\right.$ if $u \in$ $\left.\partial B_{R}\right\}$ is a negative critical value of Φ when $k=1$.

Indeed, from theorem $1.1 c$ is a critical value of Φ. In the other hand, we have $c \leq \max _{u \in B_{R}} \Phi(u) \leq 0$ because $i: B_{R} \rightarrow E, x \mapsto x$ is continuous and $\Phi(u)=$ $-\int F(x, u) \leq 0$ for all $u \in E_{1}$.

In the next results we will be interested in the case where $k=1$ and where the Ahmad-Lazer-Paul conditions fails.

Theorem 4.2. Let Ω a bounded domain in $\mathbb{R}^{N}(N \geq 2)$ with a boundary of class C^{2} and $h \in L^{p}(\Omega)$ with $p>N$.

Assume $\left.\left.\left.k=1, F_{0}\right), F_{3}\right), F_{4}\right)$ and
$\left.F_{8}\right) 0 \leq \operatorname{sign}(s) f(x, s)$ for $s \in \mathbb{R}$ and a.e. $x \in \Omega$,

$$
\limsup _{s \rightarrow \pm \infty} \frac{f(x, s)}{s} \leq \lambda_{2}-\lambda_{1} \quad \text { uniformly on } \Omega
$$

Then (1) has at least one solution.
For the proof of Theorem 4.2, we shall use an approximation argument. So we consider the family of following problems.

$$
\left(\mathcal{P}_{n}\right) \quad \begin{cases}-\Delta u=\lambda_{1} u+f_{n}(x, u)+h(x) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

with

$$
f_{n}(x, s)= \begin{cases}f(x, s)+\frac{1}{n} & \text { if } s \geq \frac{1}{n} \\ f(x, s)+s & \text { if } \frac{-1}{n} \leq s \leq \frac{1}{n} \\ f(x, s)-\frac{1}{n} & \text { if } s \leq \frac{-1}{n}\end{cases}
$$

and the functional associated to our problem $\left(\mathcal{P}_{n}\right)$ is

$$
\Phi_{n}(u)=\frac{1}{2} \int|\nabla u|^{2} d x-\lambda_{1} \int|u|^{2} d x-\int F_{n}(x, u)-\int h u
$$

with $F_{n}(x, s)=\int_{0}^{s} f_{n}(x, t) d t$.
We see that f_{n} satisfies the conditions of Theorem 1.1, thus the existence of solutions u_{n} for the problem $\left(\mathcal{P}_{n}\right)$.
Lemma 4.1. The sequence $\left(u_{n}\right)_{n}$ is bounded in $H_{0}^{1}(\Omega)$.
Proof. Assume by contradiction that $\left\|u_{n}\right\| \rightarrow \infty$, as $n \rightarrow \infty$. Letting $z_{n}=u_{n} /\left\|u_{n}\right\|$, and take a subsequence such that $z_{n} \rightharpoonup z$ weakly in $H_{0}^{1}, z_{n} \rightarrow z$ strongly in L^{2}.

Dividing $\left\langle\Phi_{n}^{\prime}\left(u_{n}\right), v\right\rangle$ by $\left\|u_{n}\right\|$ and by an argument similar to that one given in (12), we obtain

$$
\begin{equation*}
\int \nabla z \nabla v-\lambda_{1} \int z v d x-\int m(x) z v d x=0 \text { for all } v \in H_{0}^{1} \tag{21}
\end{equation*}
$$

with $0 \leq m(x) \leq \lambda_{2}-\lambda_{1}$ a.e. in Ω.
We now distinguish three cases:
i) $m(x) \equiv 0$;
ii) $0<m(x)$ and $m(x)<\lambda_{2}-\lambda_{1}$ on subsets of positive measure;
iii) $m(x) \equiv \lambda_{2}-\lambda_{1}$.

Case i). From (21) we have z is λ_{1}-eigenfunction.
Dividing the equation

$$
\begin{equation*}
-\Delta u_{n}=\lambda_{1} u_{n}+f_{n}\left(x, u_{n}\right)+h(x) \tag{22}
\end{equation*}
$$

by $\left\|u_{n}\right\|$, the standard L^{p}-theory for the Dirichlet problem and the compact imbedding of $W^{2, p}(\Omega)$ in $C^{1}(\bar{\Omega})$, we can assume (by going if necessary to subsequences) that there exists $z \in W_{0}^{1 . p} \cap W^{2 \cdot p}$ such that

$$
\begin{equation*}
z_{n} \rightarrow z \quad \text { in } \mathcal{C}^{1}(\bar{\Omega}), \text { as } n \rightarrow \infty \tag{23}
\end{equation*}
$$

with $\|z\|_{\mathcal{C}^{1}}=1$.
Since $\|z\|_{\mathcal{C}^{1}}=1$, we have that either $z>0$ in Ω and $\partial z / \partial n<0$ on $\partial \Omega$, or $z<0$ in Ω and $\partial z / \partial n>0$ on $\partial \Omega$. Here $\partial / \partial n$ denotes the outward normal derivative. Assuming, for instance, that the first eventuality holds, we deduce from (23), that $u_{n}>0$ in Ω, for all large n. Now, multiplying (22) by the positive λ_{1}-eigenfunction ψ and integrating over Ω, we deduce that, for n sufficiently large

$$
\int f_{n}\left(x, u_{n}(x)\right) \psi(x) d x=0
$$

Hence

$$
\begin{equation*}
\frac{1}{n} \int_{0 \leq u_{n}(x) \leq \frac{1}{n}} u_{n}(x) \psi(x) d x=-\frac{1}{n} \int_{0 \leq u_{n}(x) \leq \frac{1}{n}} \psi(x) d x \tag{24}
\end{equation*}
$$

This is a contradiction, since by F_{8}) and $u_{n}>0$ in Ω, we have the first term of equality (24) is positive, but the second term of (24) is not positive.

Case ii). This case does not occur.
Case iii). If $m(x) \equiv \lambda_{2}-\lambda_{1}$, by a simple computation we have

$$
\int_{z>0}\left(\alpha-k_{+}^{n}\right) z^{2} d x+\int_{z<0}\left(\alpha-k_{-}^{n}\right) z^{2} d x>0,
$$

with $\lim \sup _{s \rightarrow \pm \infty} f_{n}(x, s) / s=k_{ \pm}^{n}(x)$.
On the other hand, by the Remark 2, we have $\Phi_{n}\left(u_{n}\right) \leq 0$ and thus similarly to case 3 of proof of Lemma 3.1, we have a contradiction.
Proof of Theorem 4.2. Since $\left(u_{n}\right)_{n}$ is bounded in $H_{0}^{1}(\Omega)$, we can assume (by going if necessary to a subsequence) that there exists $u \in H_{0}^{1}(\Omega)$ such that $u_{n} \rightharpoonup u$ weakly in $H_{0}^{1}(\Omega)$ and $u_{n} \rightarrow u$ strongly in $L^{2}(\Omega)$.

Letting n tend to ∞ in

$$
\left.\int \nabla u_{n} \nabla v-\lambda_{1} \int u_{n} v d x-\int f_{n}\left(x, u_{n}\right)\right] v-\int h v d x=0
$$

we obtain

$$
\int \nabla u \nabla v-\lambda_{1} \int u v d x-\int f(x, u) v-\int h v d x=0
$$

The proof is completed.
In a similar way, we have the following result.
Theorem 4.3. Assume $\left.k=1, F_{0}\right), F_{7}$) and

$$
\begin{aligned}
& \left.F_{5}^{\prime}\right) 0 \leq \operatorname{sign}(s) f(x, s) \text { for } s \in \mathbb{R} \text {, a.e. } x \in \Omega \text { and } \\
& \frac{f(x, s)}{s} \leq \lambda_{2}-\lambda_{1} \text { for }|s| \geq r>0 \text { and a.e. } x \in \Omega \\
& \left.F_{6}^{\prime}\right) \\
& \lim _{\left\|u^{0}\right\| \rightarrow \infty, u^{0} \in E_{k+1}} \int \frac{1}{2}\left(\lambda_{2}-\lambda_{1}\right) u^{0^{2}}(x)-F\left(x, u^{0}(x)\right) d x=\infty .
\end{aligned}
$$

Then (1) has at least one solution.
Remark 3. Similar results to previous theorems carry over to the problem

$$
\begin{cases}-L u=g(x, u)+h(x) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where L is given by:

$$
L u=\sum_{i, j=1, \ldots, n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{i}}\right)+a_{0}(x) u
$$

is a symmetric uniformly strongly elliptic second order differential operator, acting on real valued functions u defined on Ω. The coefficients $a_{i j}$ are real valued functions defined on $\bar{\Omega}$, with $a_{i j} \in C^{1}(\bar{\Omega})$ for $i, j=1, \ldots, n$ and $a_{0} \in C(\bar{\Omega}), a_{0} \geq 0$ in Ω. The unique continuation property which is needed in the proofs, now follows and it is well-known that the first eigenvalue of L in $H_{0}^{1}(\Omega)$ is simple and that there exists a corresponding smooth eigenfunction ϕ, with $\phi>0$ in Ω and $\partial \phi / \partial n<0$ on $\partial \Omega$.
Résumé substantiel en français. Soit Ω un domaine borné dans \mathbb{R}^{n}, et soit f : $\Omega \times \mathbb{R} \rightarrow \mathbb{R}$, une fonction de Carathéodory. Nous montrerons l'existence des solutions du problème semi-linéaire elliptique

$$
(\mathcal{P}) \begin{cases}-\Delta u=\lambda_{k} u+f(x, u)+h(x) & \operatorname{dans} \Omega \tag{P}\\ u=0 & \operatorname{sur} \partial \Omega\end{cases}
$$

où $h \in L^{p}(\Omega)$, pour $p \geq 2$.

Dans le premier résultat, nous ferons les hypothèses suivantes:
$\left.F_{0}\right) \sup _{|s| \leq R}|f(x, s)| \in L^{2}(\Omega)$ pour tout $R>0$;
$\left.F_{1}\right) \lambda_{k} \leq f(x, s) / s \quad$ pour $|s| \geq r>0$ et p.p. $x \in \Omega$;

$$
k_{ \pm}(x)=\limsup _{s \rightarrow \pm \infty} \frac{f(x, s)}{s} \leq \lambda_{k+1}-\lambda_{k}=\alpha \text { uniformément sur } \Omega ;
$$

$\left.F_{2}\right) \lim _{\left\|u^{0}\right\| \rightarrow \infty, u^{0} \in E_{k}} \int F\left(x, u^{0}(x)\right) d x=\infty$;
F_{3})

$$
\int_{z>0}\left(\alpha-k_{+}\right) z^{2} d x+\int_{z<0}\left(\alpha-k_{-}\right) z^{2} d x>0
$$

pour tout $z \in E_{k+1}$;
F4) $h \in E_{k}^{\perp}$.
Notons par F, la primitive de f, et par $\lambda_{k}, k=1,2, \ldots$, les valeurs propres distinctes du problème $-\Delta u=\lambda u$ dans $\Omega, u=0$ sur $\partial \Omega$, et E_{k} l'espace propre associé à λ_{k}.

Le deuxième résultat sera consacré à l'étude du problème (\mathcal{P}) sous les hypothèses suivantes, F_{0}), F_{2}),
$\left.F_{1}^{\prime}\right) 0 \leq f(x, s) / s \leq \lambda_{k+1}-\lambda_{k} \quad$ pour $|s| \geq r>0$ et p.p. x dans Ω;
$\left.F_{3}^{\prime}\right) \lim _{\left\|u^{0}\right\| \rightarrow \infty, u^{0} \in E_{k+1}} \int\left[\frac{1}{2}\left(\lambda_{k+1}-\lambda_{k}\right)\left(u^{0}\right)^{2}-F\left(x, u^{0}(x)\right)\right] d x=\infty$;
$\left.F_{4}^{\prime}\right) h \in E_{k}^{\perp} \cap E_{k+1}^{\perp}$.
Ensuite nous prouverons certaines variantes des résultats cités plus haut autour de la première valeur propre et sans supposer la condition d'Ahmad, Lazer et Paul.

La méthode utilisée pour montrer l'existence d'une solution du problème (\mathcal{P}) est variationnelle et se base sur le théorème de min-max due à Bartolo, Benci et Fortunato.

Pour la preuve des variantes nous approcherons le problème (\mathcal{P}) par une suite de problèmes $\left(\mathcal{P}_{n}\right)$ dont la troncature f_{n} de f vérifie les hypothèses des résultats cités plus haut, puis nous obtiendrons une suite de solutions bornée dans $H_{0}^{1}(\Omega)$, qui nous permettra le passage à la limite.

References

1. S. Ahmad, A. C. Lazer and J. L. Paul, Elementary critical point theory and perturbations of elliptic boundary value problems at resonance, Indiana Univ. Math. J. 25 (1976), 933-944.
2. P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some non-linear problems with strong resonance at infinity, Nonlinear Anal. 7 (1983), 981-1012.
3. H. Berestycki and D. G. DeFigueiredo, Double resonance in semilinear elliptic problems, Comm. Partial Differential Equations 6 (1981), 91-120.
4. G. Cerami, Un criterio de esistenza per i punti critici su varietá ilimitate, Istit. Lombardo Acad. Sci. Lett. Rend. A 112 (1978), 332-336.
5. D. G. Costa and A. S. Oliveira, Existence of solution for a class of semilinear elliptic problems at double resonance, Bol. Soc. Brasil Mat. 19 (1988), 21-37.
6. E. N. Dancer, On the Dirichlet problem for weakly non-linear partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 76 (1976/77), 283-300.
7. D. G. DeFigueiredo and J. P. Gossez, Conditions de non résonance pour certains problèmes elliptiques semi-linéaires, C. R. Acad. Sc. Paris Sér. I Math. 302 (1986), 543-545.
8. E. M. Landesman and A. C. Lazer, non-linear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1969/70), 609-623.
9. J. Mawhin, non-resonance conditions of nonuniform type in non-linear boundary value problems, Dynamical systems, II, Academic Press, New York - London, 1982, pp. 255-276 (Gainesville, Fla., 1981).
10. M. N. Nkashama,, Density condition at infinity and resonance in non-linear elliptic partial differential equations, Nonlinear Anal. 22 (1994), 251-265.
11. P. Omari and F. Zanolin, Resonance at two consecutive eigenvalues for semilinear elliptic equations, Ann. Mat. Pura Appl. (4) 163 (1993), 181-198.

A. R. El Amrouss and M. Moussaoui
DÉPARTEMENT DE MATHÉMATIQUES ET D'INFORMATIQUE
Faculté des sciences, Université Mohamed I
60000 OUJDA
Morocco.

