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RESONANCE AT TWO CONSECUTIVE EIGENVALUES FOR

SEMILINEAR ELLIPTIC PROBLEM: A VARIATIONAL APPROACH

A. R. EL AMROUSS AND M. MOUSSAOUI

RÉSUMÉ. Ce travail traite de l’existence de solutions d’un problème elliptique semi-
linéaire satisfaisant certaines conditions de résonnance de Ahmad-Lazer-Paul.

ABSTRACT. This paper deals with the existence of solutions for a semilinear elliptic
problem in some resonance conditions of Ahmad-Lazer-Paul occur.

1. Introduction. Let Ω be a bounded domain in Rn, and let f : Ω × R → R be a
non-linear function satisfying the Carathéodory conditions. We consider the Dirichlet
problem { −∆u = λku + f(x, u) + h(x) in Ω

u = 0 on ∂Ω
(1)

where h ∈ Lp(Ω), for some suitable p ≥ 2, is given, and λk, k = 1, 2, . . . , denote the
(order distinct) eigenvalues of problem −∆u = λu in Ω, u = 0 on ∂Ω.

Let us denote by F (x, s) the primitive
∫ s

0 f(x, t) dt, and write

l±(x) = lim inf
s→±∞

f(x, s)
s

, k±(x) = lim sup
s→±∞

f(x, s)
s

L±(x) = lim inf
s→±∞

2F (x, s)
s2 , K±(x) = lim sup

s→±∞

2F (x, s)
s2

with, for an autonomous non-linearity f(x, s) = f(s), l± instead of l±(x). Assume
that

0 ≤ l±(x) ≤ k±(x) ≤ λk+1 − λk (2)

uniformly for a.e. x ∈ Ω.
There exists a rich literature devoted to this kind of problems, starting from Berestycki

and DeFigueiredo [3], Dancer [6], Mawhin [9] and references therein.
In [7], DeFigueiredo and Gossez considered (2) (in the autonomous case), where a

so called positive density condition was introduced. Roughly speaking, this condition
imposes to f(s)/s to remain greater than 0 and less than λk+1 − λk for sufficiently
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many values of s as s → ±∞. They showed that (1) is solvable for any h. After that,
in [5], Costa and Oliveira proved an existence result when (2) occurs and

0 ≤ L±(x) ≤ K±(x) ≤ λk+1 − λk (3)

uniformly for a.e. x ∈ Ω, with strict inequalities λk < L±(x), K±(x) < λk+1 holding
on subsets of Ω of positive measure.

Beside the above considered non-resonance conditions, many papers have been
devoted to resonance ones (see e.g. [1, 8, 10, 11]).

In the present paper, we will extend the cited above non-resonance conditions to
resonance ones. First, we prove the existence of solutions for (1) in some situations of
(2), on one side of (3) we will have a classical resonance conditions of Ahmad-Lazer-
Paul and, on the other hand side, we will impose the following condition:∫

z>0
(α− k+)z2 dx +

∫
z<0

(α− k−)z2 dx > 0,

for every z ∈ Ek+1.
To state our main result, let us denote by Ej the λj-eigenspace and for each real

valued function u defined on Ω, we define Ω−(u) = {x ∈ Ω : u(x) < 0} and
Ω+(u) = {x ∈ Ω : u(x) > 0} .

Theorem 1.1. Assume that,

F0) sup|s|≤R |f(x, s)| ∈ L2(Ω), for all R > 0,
F1) 0 ≤ f(x, s)/s, for |s| ≥ r > 0 and a.e. x ∈ Ω,

k±(x) = lim sup
s→±∞

f(x, s)
s

≤ λk+1 − λk = α, uniformly on Ω,

F2) lim‖u0‖→∞,u0∈Ek

∫
F (x, u0(x)) dx =∞,

F3) ∫
z>0

(α− k+)z2 dx +
∫

z<0
(α− k−)z2 dx > 0,

for every z ∈ Ek+1.
F4) h ∈ (Ek)⊥.

Then (1) has at least one solution.

Remark 1. F3) occurs if F verified the following condition:


there exists a subset Ω′ of Ω such that mes(Ω′ ∩ Ω+(v)) > 0,

(resp. mes(Ω′ ∩ Ω−(v)) < 0) for every v ∈ Ek+1 and lim sup
s→∞

2F (x, s)
s2 ,(

resp. lim sup
s→−∞

2F (x, s)
s2

)
< λk+1 − λk, a.e. in Ω′.

Second, we prove the weak solvability when f(x, s)/s stays between 0 and λk+1−λk

for large values of |s| and we will replace (3) by Ahmad-Lazer-Paul conditions, precisely
we will prove the following.
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Theorem 1.2. Assume F0), F3), and

F5) 0 ≤ f(x, s)/s ≤ λk+1 − λk for |s| ≥ r > 0 and a.e. x ∈ Ω,

F6) lim‖u0‖→∞,u0∈Ek+1

∫
[1

2(λk+1 − λk)u02(x)− F (x, u0(x))] dx =∞,
F7) h ∈ (Ek)⊥ ∩ (Ek+1)⊥ ∩ L2(Ω).

Then (1) has at least one solution.

Next, some variants of Theorem 1.1 and Theorem 1.2 will be given.
Our approach to theorems 1.1 and 1.2, is variational and uses the general minimax

theorem proved by Bartolo et al. in [2]. The proofs of theorems 4.2 and 4.3 (see section
4) use the preceding results and an approximation argument.

We also mention that our approach can be adapted to study higher order self adjoint
elliptic partial differential equations.

2. Preliminaries.

2.1. A compactness condition. We denote by ‖ · ‖ the norm in H1
0 (Ω) induced by the

inner product

〈u, v〉 =
∫

Ω
∇u∇v, u, v ∈ H1

0 (Ω)

and by ‖ · ‖H−1 , the norm in H−1(Ω), the dual space of H1
0 (Ω).

In this section, we start by recalling a compactness condition of the Palais-Smale
type which was introduced by Cerami in [4] and which allows rather general minimax
results of [2].

A functional Φ ∈ C1(E, R), E being a real Banach space, is said to satisfy condition
(C) at the level c ∈ R if the following holds:

(C)c i) any bounded sequence (un) ⊂ E such that Φ(un) → c and Φ′(un) → 0
possesses a convergent subsequence;

ii) there exist constants δ, R, α > 0 such that

‖Φ′(u)‖‖u‖ ≥ α for any u ∈ Φ−1([c− δ, c + δ]) with ‖u‖ ≥ R.

It was shown in [2] that condition (C) actually suffices to get a deformation theorem
and then, by standard minimax arguments (see [2]), the following result was proved.

Theorem 2.1. Suppose that Φ ∈ C1(E,R), E being a real Banach space, satisfies
condition (C)c ∀c ∈ R and that there exist a closed subset S ⊂ E and Q ⊂ E with
boundary ∂Q verifying the following conditions:

i) supu∈∂Q Φ(u) ≤ α < β ≤ infu∈S Φ(u) for some 0 ≤ α < β;
ii) S and ∂Q link;

iii) supu∈Q Φ(u) <∞.

Then Φ possesses a critical value c ≥ β.

2.2. Generalities and technical lemma. Since we are going to apply the variational
characterisation of the eigenvalues, we shall decompose the space H1

0 (Ω) as following
E = E−⊕Ek⊕Ek+1⊕E+, where E− is the subspace spanned by the λj-eigenfunctions
with j < k and Ej is the eigenspace generated by the λj-eigenfunctions and E+ is the
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orthogonal complement of E− ⊕ Ek ⊕ Ek+1 in H1
0 (Ω) and we shall decompose for

any u ∈ H1
0 (Ω) as following u = u− + uk + uk+1 + u+ where u− ∈ E−, uk ∈ Ek,

uk+1 ∈ Ek+1 and u+ ∈ E+.
We verify easily∫

|∇u|2 dx− λk

∫
|u|2 dx ≥ δ‖u‖2 ∀u ∈ E+ ⊕ Ek+1 (4)

∫
|∇u|2 dx− λk

∫
|u|2 dx ≤ −δ‖u‖2 ∀u ∈ E− ⊕ Ek (5)

where

δ = min

{
1− λk

λk+1
,

λk

λk−1
− 1

}
. (6)

The idea to establish results of existence of solution to problem (1) is to use Theorem
2.1. For this purpose, we shall consider the functional Φ : E → R defined by

Φ(u) =
1
2

∫
|∇u|2dx− λk

∫
|u|2dx−

∫
F (x, u)−

∫
hu

where hereafter the integrals are over Ω.
We have the following important lemma.

Lemma 2.1. Let (un) ⊂ H1
0 (Ω) and (pn) ⊂ L∞(Ω) be sequences, and let A a

non-negative constant such that

0 ≤ pn(x) ≤ A a.e. on Ω and for all n ∈ N

and pn ⇀ 0 in the weak* topology of L∞, as n → ∞. Then, there are subsequences
(un), (pn) satisfying the above conditions and, there is a positive integer n0 such that
for all n ≥ n0, one has∫

pnun((u−n + uk
n)− (uk+1

n + u+
n)) dx ≥ −δ

2
‖u+

n + uk+1
n ‖2 (7)

where δ > 0 is given in (6).

Proof. Since pn ≥ 0 a.e. in Ω, we see that∫
pnun((u−n + uk

n)− (uk+1
n + u+

n)) ≥ −
∫

pn(u+
n + uk+1

n )2 dx

≥ −
[∫

pn

(
u+

n + uk+1
n

‖u+
n + uk+1

n ‖

)2

dx

] ∥∥∥u+
n + uk+1

n

∥∥∥2
.

(8)

Moreover, by the compact imbedding of H1
0 (Ω) into L2(Ω) and pn ⇀ 0 in the weak*

topology of L∞, when n→∞, then there are subsequences relabelled (un), (pn) such
that ∫

pn

(
u+

n + uk+1
n

‖u+
n + uk+1

n ‖

)2

dx → 0.
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Therefore, there exists n0 ∈ N such that for n ≥ n0 we have

∫
pn

(
u+

n + uk+1
n

‖u+
n + uk+1

n ‖

)2

dx ≤ δ

2
. (9)

Combining inequalities (8) and (9), we get inequality (7). �
3. Proof of theorems. We begin by proving the following lemmas.

Lemma 3.1. Φ satisfies the (C) condition on H1
0 .

Proof. Let (un)n ⊂ H1
0 be a (C) sequence, i.e.

‖Φ(un)‖ ≤ A (10)

‖un‖
〈
Φ′(un), v

〉
H1

0 ,H−1 ≤ εn‖v‖ ∀v ∈ H1
0 , (11)

where A is a constant and εn → 0.
It clearly suffices to shows that (un)n remains bounded in H1

0 . Assume by contra-
diction and defining zn = un/‖un‖, we have ‖zn‖ = 1 and, passing if necessary to a
subsequence, we may assume that zn ⇀ z weakly in H1

0 , zn → z strongly in L2(Ω)
and zn(x)→ z(x) a.e. in Ω.

We consider
(
f(·, un(·))/‖un‖

)
which, by the linear growth of f , remains bounded

in L2. Thus, for a subsequence
(
f(·, un(·))/‖un‖

)
converges weakly in L2 to some

f̃ ∈ L2 and by standard arguments based on assumptions F0), F1), f̃ can be written as

f̃(x) = m(x)z(x)

where the L∞-function m satisfies

0 ≤ m(x) ≤ λk+1 − λk a.e. in Ω

(cf. e.g. [5]).
Moreover, divide (11) by ‖un‖2 and go to the limit to get∫

∇z∇v − λk

∫
zv dx−

∫
m(x)zv dx = 0 for all v ∈ H1

0 (12)

and we verify easily that z �≡ 0.
We now distinguish three cases :

i) m(x) ≡ 0;
ii) 0 < m(x) and m(x) < λk+1 − λk on subsets of positive measure;
iii) m(x) ≡ λk+1 − λk.

Case ii). Since z �≡ 0, this case cannot occur in view of lemma 4 in [3].
Case i). In this case, it follows from (12) that z is a λk-eigenfunction.
On the other hand, by F1), for ε > 0 there exists a constant rε > r such that

0 ≤ f(x, s)
s

≤ λk+1 − λk + ε ∀ |s| ≥ rε (13)
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Let fn(x) = f(x, un(x))/un(x)χ[|un(x)|≥rε], which remains bounded in L∞, converges
weakly in L∞ to some l ∈ L∞.

By (13) this function satisfies

0 ≤ l(x) ≤ λk+1 − λk + ε.

Multiply fn by z2
n, integrate on Ω and take the limit to get∫
fn(zn)2 dx −→

∫
l(x)z2 dx =

∫
m(x)z2(x) dx = 0.

By the unique continuation property of ∆ and l ≥ 0, we must have l ≡ 0 a.e. on Ω.
The contradiction of case ii) will be divided into several steps:

Step 1. We claim that uk
n/‖un‖ → z strongly in H1

0 .
By using the fact that Ek is finite dimensional and the compact imbedding of (Ek)⊥

into L2(Ω), it follows that there are z1 ∈ Ek, z2 ∈ (Ek)⊥ such that (by using an
appropriate subsequence similarly relabelled if necessary)

uk
n

‖un‖
→ z1 strongly in H1

0 and in L2,

u−n + u+
n + uk+1

n

‖un‖
→ z2 strongly in L2.

On the other hand, we have z ∈ Ek and un/‖un‖ → z, which implies that z = z1 + z2.
Thus, z = z1 and z2 = 0. The result follows.
Step 2. We are now ready to prove that the sequence (‖u−n + u+

n + uk+1
n ‖)n is uniformly

bounded in n.
Take v = (u−n + uk

n)− (u+
n + uk+1

n ) in (11) and pn(x) = fn(x), we get

Λ ≤ Γ (14)

where

Λ =

{
−

∫
|∇u−n |2 + λk

∫
|u−n |2 dx +

∫
|∇(u+

n + uk+1
n )|2

− λk

∫
|u+

n + uk+1
n |2 dx +

∫
pnun((u−n + uk

n)− (uk+1
n + u+

n)) dx

}

and

Γ =

{
εn +

∫
h((u+

n + uk+1
n )− u−n ) dx

+
∫

|un(x)|≤rε

|f(x, un(x)||(u+
n + uk+1

n )− (u−n + uk
n)| dx

}
.
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By the Poincaré inequality and from (4), (5), (7), (14), there exist two constants Aε, Bε

such that

δ

2
‖u−n + (u+

n + uk+1
n )‖2 ≤ εn + Aε‖u−n + (u+

n + uk+1
n )‖ + Bε.

This gives that (‖u−n + (u+
n + uk+1

n )‖)n is uniformly bounded in n.
Step 3. We will now reach a contradiction with assumption F2).

From (10), and Poincaré inequality, we have∫
F (x, uk

n/2) dx ≤ A +
∫

[F (x, uk
n/2)− F (x, un)] dx

+
1
2
‖u+

n + uk+1
n + u−n ‖2 +

1√
λ1
‖h‖L2‖u+

n + uk+1
n + u−n ‖.

However, by the mean value theorem, we get for a.e. x ∈ Ω and t = t(x) ∈ [0, 1] such
that∫

[F (x, uk
n/2)− F (x, un)] dx =

∫
f(x, tuk

n/2 + (1− t)un)(uk
n/2− un) dx

=
∫
|tuk

n/2+(1−t)un|≤rε
f(x, tuk

n/2 + (1− t)un) dx

+
∫
|tuk

n/2+(1−t)un|≥rε

f(x, tuk
n/2 + (1− t)un)

tuk
n/2 + (1− t)un

t(uk
n/2− un)2 + (uk

n/2− un)un dx.
(16)

So that using (16) and the Poincaré inequality again, we have∫
[F (x, uk

n/2)− F (x, un)] dx ≤ 2√
λ1
‖ sup
|s|≤rε

|f(x, s)|‖L2‖u−n + u+
n + uk+1

n ‖

+ rε‖ sup
|s|≤rε

|f(x, s)|‖L1 +
λk+1 − λk + ε

4λ1
‖u−n + u+

n + uk+1
n ‖2. (17)

From (15) and (17), there exists M > 0 such that∫
F (x, uk

n/2) dx ≤M.

This is a contradiction with assumption F2).
Case iii). If m(x) ≡ λk+1 − λk = α
Dividing (11) by ‖un‖2, then we have

Φ(un)
‖un‖2 → 0, as n→∞.

Since zn → z strongly in H1
0 (Ω), we get∫

F (x, un(x))
‖un‖2 dx→ 1

2

[∫
|∇z|2 dx− λk

∫
|z|2 dx

]
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and using Fatou’s lemma, we also have

α

∫
z2 ≤

∫
lim sup

2F (x, un(x))
|un|2

u2
n

‖un‖2 dx

≤
∫

z>0
lim sup

2F (x, un(x))
|un|2

z2 dx +
∫

z<0
lim sup

2F (x, un(x))
|un|2

z2 dx.

Therefore, we obtain∫
z>0

(α− k+)z2 dx +
∫

z<0
(α− k−)z2 dx > 0.

But this gives us once more a contradiction from F3). This completes the proof. �
Lemma 3.2. Under hypotheses of Theorem 1.1, the functional Φ has the following
properties:

i) Φ(w)→∞, as ‖w‖ → ∞, w ∈ Ek+1 ⊕ E+

ii) Φ(v)→ −∞, as ‖v‖ → ∞, v ∈ Ek ⊕ E−

Proof. i) Suppose by contradiction that

Φ(wn) =
1
2

[∫
|∇wn|2 dx− λk

∫
|wn|2 dx

]
−

∫
F (x, wn)−

∫
hwn dx ≤ B (18)

for some constant B and some sequence (wn) ⊂ E+ with ‖wn‖ → ∞.
Let ε > 0. From F1), there exists Bε(x) ∈ L1(Ω) such that

F (x, s) ≤ α
s2

2
+ εs2Bε(x) a.e. in Ω, ∀ s ∈ R. (19)

However, by (18) and (19) we get that ‖wn‖2 →∞, as n→∞, otherwise, we would
obtain

‖wn‖2 ≤ λk+1‖wn‖2
2 + 2ε‖wn‖2 + 2

∫
Bε(x) dx +

∫
|hwn| dx + 2B.

If we take 0 < ε < 1
2 , we obtain

‖wn‖ ≤ cst.

Letting zn = wn/‖wn‖2 and dividing (18) by ‖wn‖2
2, we obtain in view of (19) and of

the continuous imbedding H1
0 (Ω) ↪→ L2(Ω) that

‖zn‖2 − λk ≤ λk+1 − λk + 2ε‖zn‖2 +
2

∫
Bε(x) dx + 2B

‖wn‖2
+

∫
|hzn| dx

‖wn‖2
.

As ‖wn‖2 →∞, there exist constants M, N > 0 such that

‖zn‖2 − λk ≤ εM‖zn‖2 + N.
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If we take 0 < ε < min
{

1
2 , 1

M

}
, we get

‖zn‖ ≤ cst.

Using a subsequence if necessary, we obtain

zn → z a.e. on Ω and in L2

for some z ∈ H1
0 (Ω) with ‖z‖2 = 1 (since ‖zn‖2 = 1).

As z ∈ Ek+1 ⊕ E+ we have necessarily that z is λk+1-eigenfunction. Dividing (18)
by ‖wn‖2

2 and using Fatou’s lemma, we get

α

∫
z2 dx ≤

∫
z>0

k+(x)z2 dx +
∫

z<0
k−(x)z2 dx > 0.

Hence ∫
z>0

(α− k+)z2 dx +
∫

z<0
(α− k−)z2 dx > 0.

But this yields us a contradiction.
ii) Assume by contradiction there exist a constant B and a sequence (vn) ⊂ V such
that

B ≤ Φ(vn) ≤ −δ‖v−n ‖2 −
∫

hv−n dx.

Therefore, ‖v−n ‖ is bounded and by a similar argument to that one given in step 3, we
obtain

lim inf
∫

F (x,
vk

n

2
) dx ≤ cst.

This is a contradiction with assumption F2). �
Proof of Theorem 1.1. In view of Lemmas 3.1 and 3.2, we may apply Theorem 2.1
letting S = W and Q = {v ∈ E− ⊕ Ek : ‖v‖ ≤ R}, with R > 0 being such that

α = max
∂Q

Φ < inf
E+⊕Ek+1

Φ = β

It follows that the functional Φ has a critical value c ≥ β and, hence, problem (1) has a
solution u ∈ H1

0 . �
In the following result we will be interested in the case when the Ahmad-Lazer-Paul

conditions at λk and at λk+1 are considered.

Proof of Theorem 1.2. The proof of Theorem 1.2 will be divided into two steps.
Step 1. We prove that Φ satisfies the condition (C) on H1

0 (Ω).
As in the proof of lemma 3.1, we put

fn(x) =
f(x, un(x))

un(x)
χ[|un(x)|≥r]

and l ∈ L∞ such that

fn → l in the weak* topology of L∞, as n→∞.
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After dividing (11) by ‖un‖2 and taking the limit, we get∫
∇z∇v − λk

∫
zv dx−

∫
l(x)zv dx = 0 for all v ∈ H1

0

with z �≡ 0.
We now separate three cases:

i) l(x) ≡ 0. It is similar to case i) of Lemma 3.1 and therefore, this case cannot
occur.

ii) 0 < l(x) and l(x) < λk+1 − λk on subsets of positive measure. Since z �≡ 0,
this case cannot occur in view of lemma 4 in [3].

iii) l(x) ≡ λk+1−λk. In this case we are just going to follow the same lines of case
i) as in Lemma 3.1.

So we write (11) as follows∫
∇un∇v−λk+1

∫
unv dx+

∫
[λk+1−λk)un−f(x, un)]v−

∫
hv dx ≤ εn‖v‖. (20)

Then let v = (u−n + uk
n)− (uk+1

n + u+
n) in (19) and

pn(x) =
(λk+1 − λk)un(x)− f(x, un(x))

un(x)
χ[|un(x)|≥r].

We obtain that a sequence (‖(u−n + uk
n + u+

n‖)n is uniformly bounded in n. In a way
similar to the followed in step 3 of case i) of Lemma 3.2, we get∫ [

λk+1 − λk

2
(uk

n/2)2 − F (x, uk
n/2)

]
dx ≤M.

This is a contradiction with assumption F3).
Step 2. Φ has the following properties:

i) Φ(w)→∞, as ‖w‖ → ∞, w ∈ Ek+1 ⊕ E+

ii) Φ(v)→ −∞, as ‖v‖ → ∞, v ∈ Ek ⊕ E−.

We verify easily as in ii) of Lemma 3.2, that Φ has the preceding properties. Then
Theorem 1.2 follows from Theorem 2.1. The proof is complete. �
4. Variant results. When k > 2 we can state a “dual” version of Theorem 1.1.

Theorem 4.1. Suppose k > 2, F0), F4) and

F ′1)
f(x, s)

s
≤ 0 for |s| ≥ r > 0 and a.e. x ∈ Ω,

lim inf
s→±∞

f(x, s)
s

≥ λk−1 − λk = α′ uniformly on Ω

F ′2) lim
‖u0‖→∞,u0∈Ek

∫
F (x, u0(x)) dx = −∞,

F ′3)
∫

z>0
(α′ − l+)z2 dx +

∫
z<0

(α′ − l−)z2 dx < 0, for every z ∈ Ek−1.
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Then (1) has at least one solution.

Remark 2. For some R > 0,

c = inf
g∈H

max
u∈BR

Φ(g(u))

where BR = {u ∈ E1 : ‖u‖ ≤ R} and H = {g ∈ C(BR, H1
0 ) : g(u) = u if u ∈

∂BR} is a negative critical value of Φ when k = 1.
Indeed, from theorem 1.1 c is a critical value of Φ. In the other hand, we have

c ≤ maxu∈BR
Φ(u) ≤ 0 because i : BR → E, x �→ x is continuous and Φ(u) =

−
∫

F (x, u) ≤ 0 for all u ∈ E1.
In the next results we will be interested in the case where k = 1 and where the

Ahmad-Lazer-Paul conditions fails.

Theorem 4.2. Let Ω a bounded domain in RN (N ≥ 2) with a boundary of class C2

and h ∈ Lp(Ω) with p > N .
Assume k = 1, F0), F3), F4) and

F8) 0 ≤ sign(s)f(x, s) for s ∈ R and a.e. x ∈ Ω,

lim sup
s→±∞

f(x, s)
s

≤ λ2 − λ1 uniformly on Ω.

Then (1) has at least one solution.

For the proof of Theorem 4.2, we shall use an approximation argument. So we
consider the family of following problems.

(Pn)
{ −∆u = λ1u + fn(x, u) + h(x) in Ω

u = 0 on ∂Ω

with

fn(x, s) =




f(x, s) + 1
n ifs ≥ 1

n

f(x, s) + s if −1
n ≤ s ≤ 1

n

f(x, s)− 1
n if s ≤ −1

n

and the functional associated to our problem (Pn) is

Φn(u) =
1
2

∫
|∇u|2dx− λ1

∫
|u|2dx−

∫
Fn(x, u)−

∫
hu

with Fn(x, s) =
∫ s

0 fn(x, t) dt.
We see that fn satisfies the conditions of Theorem 1.1, thus the existence of solutions

un for the problem (Pn).

Lemma 4.1. The sequence (un)n is bounded in H1
0 (Ω).

Proof. Assume by contradiction that ‖un‖ → ∞, as n→∞. Letting zn = un/‖un‖,
and take a subsequence such that zn ⇀ z weakly in H1

0 , zn → z strongly in L2.
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Dividing 〈Φ′n(un), v〉 by ‖un‖ and by an argument similar to that one given in (12), we
obtain ∫

∇z∇v − λ1

∫
zv dx−

∫
m(x)zv dx = 0 for all v ∈ H1

0 (21)

with 0 ≤ m(x) ≤ λ2 − λ1 a.e. in Ω.
We now distinguish three cases:

i) m(x) ≡ 0;
ii) 0 < m(x) and m(x) < λ2 − λ1 on subsets of positive measure;
iii) m(x) ≡ λ2 − λ1.

Case i). From (21) we have z is λ1-eigenfunction.
Dividing the equation

−∆un = λ1un + fn(x, un) + h(x) (22)

by ‖un‖, the standard Lp-theory for the Dirichlet problem and the compact imbedding
of W 2,p(Ω) in C1(Ω̄), we can assume (by going if necessary to subsequences) that
there exists z ∈W 1.p

0 ∩W 2.p such that

zn → z in C1(Ω̄), asn→∞ (23)

with ‖z‖C1 = 1.
Since ‖z‖C1 = 1, we have that either z > 0 in Ω and ∂z/∂n < 0 on ∂Ω, or z < 0 in Ω

and ∂z/∂n > 0 on ∂Ω. Here ∂/∂n denotes the outward normal derivative. Assuming,
for instance, that the first eventuality holds, we deduce from (23), that un > 0 in Ω, for
all large n. Now, multiplying (22) by the positive λ1-eigenfunction ψ and integrating
over Ω, we deduce that, for n sufficiently large∫

fn(x, un(x))ψ(x) dx = 0.

Hence
1
n

∫
0≤un(x)≤ 1

n

un(x)ψ(x) dx = − 1
n

∫
0≤un(x)≤ 1

n

ψ(x) dx. (24)

This is a contradiction, since by F8) and un > 0 in Ω, we have the first term of equality
(24) is positive, but the second term of (24) is not positive.

Case ii). This case does not occur.
Case iii). If m(x) ≡ λ2 − λ1, by a simple computation we have∫

z>0
(α− kn

+ )z2 dx +
∫

z<0
(α− kn

−)z2 dx > 0,

with lim sups→±∞ fn(x, s)/s = kn
±(x).

On the other hand, by the Remark 2, we have Φn(un) ≤ 0 and thus similarly to case
3 of proof of Lemma 3.1, we have a contradiction. �
Proof of Theorem 4.2. Since (un)n is bounded in H1

0 (Ω), we can assume (by going if
necessary to a subsequence) that there exists u ∈ H1

0 (Ω) such that un ⇀ u weakly in
H1

0 (Ω) and un → u strongly in L2(Ω).



A. R. El Amrouss and M. Moussaoui 169

Letting n tend to∞ in∫
∇un∇v − λ1

∫
unv dx−

∫
fn(x, un)]v −

∫
hv dx = 0

we obtain ∫
∇u∇v − λ1

∫
uv dx−

∫
f(x, u)v −

∫
hv dx = 0.

The proof is completed. �
In a similar way, we have the following result.

Theorem 4.3. Assume k = 1, F0), F7) and

F ′5) 0 ≤ sign(s)f(x, s) for s ∈ R, a.e. x ∈ Ω and

f(x, s)
s

≤ λ2 − λ1 for |s| ≥ r > 0 and a.e. x ∈ Ω

F ′6)

lim
‖u0‖→∞,u0∈Ek+1

∫
1
2
(λ2 − λ1)u02

(x)− F (x, u0(x)) dx =∞.

Then (1) has at least one solution.

Remark 3. Similar results to previous theorems carry over to the problem{ −Lu = g(x, u) + h(x) in Ω

u = 0 on ∂Ω

where L is given by:

Lu =
∑

i,j=1,...,n

∂

∂xi
(aij(x)

∂u

∂xi
) + a0(x)u

is a symmetric uniformly strongly elliptic second order differential operator, acting on
real valued functions u defined on Ω. The coefficients aij are real valued functions
defined on Ω̄, with aij ∈ C1(Ω̄) for i, j = 1, . . . , n and a0 ∈ C(Ω̄), a0 ≥ 0 in Ω.
The unique continuation property which is needed in the proofs, now follows and it is
well-known that the first eigenvalue of L in H1

0 (Ω) is simple and that there exists a
corresponding smooth eigenfunction φ, with φ > 0 in Ω and ∂φ/∂n < 0 on ∂Ω.

Résumé substantiel en français. Soit Ω un domaine borné dans Rn, et soit f :
Ω×R→ R, une fonction de Carathéodory. Nous montrerons l’existence des solutions
du problème semi-linéaire elliptique

(P)
{ −∆u = λku + f(x, u) + h(x) dans Ω

u = 0 sur ∂Ω
(P)

où h ∈ Lp(Ω), pour p ≥ 2.
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Dans le premier résultat, nous ferons les hypothèses suivantes :

F0) sup|s|≤R |f(x, s)| ∈ L2(Ω) pour tout R > 0;
F1) λk ≤ f(x, s)/s pour |s| ≥ r > 0 et p.p. x ∈ Ω;

k±(x) = lim sup
s→±∞

f(x, s)
s

≤ λk+1 − λk = α uniformément sur Ω;

F2) lim‖u0‖→∞,u0∈Ek

∫
F (x, u0(x)) dx =∞;

F3) ∫
z>0

(α− k+)z2 dx +
∫

z<0
(α− k−)z2 dx > 0

pour tout z ∈ Ek+1;
F4) h ∈ E⊥k .

Notons par F , la primitive de f , et par λk, k = 1, 2, . . . , les valeurs propres distinctes
du problème −∆u = λu dans Ω, u = 0 sur ∂Ω, et Ek l’espace propre associé à λk.

Le deuxième résultat sera consacré à l’étude du problème (P) sous les hypothèses
suivantes, F0), F2),

F ′1) 0 ≤ f(x, s)/s ≤ λk+1 − λk pour |s| ≥ r > 0 et p.p. x dans Ω;
F ′3) lim‖u0‖→∞,u0∈Ek+1

∫ [
1
2(λk+1 − λk)(u0)2 − F (x, u0(x))

]
dx =∞;

F ′4) h ∈ E⊥k ∩ E⊥k+1.

Ensuite nous prouverons certaines variantes des résultats cités plus haut autour de la
première valeur propre et sans supposer la condition d’Ahmad, Lazer et Paul.

La méthode utilisée pour montrer l’existence d’une solution du problème (P) est
variationnelle et se base sur le théorème de min-max due à Bartolo, Benci et Fortunato.

Pour la preuve des variantes nous approcherons le problème (P) par une suite de
problèmes (Pn) dont la troncature fn de f vérifie les hypothèses des résultats cités
plus haut, puis nous obtiendrons une suite de solutions bornée dans H1

0 (Ω), qui nous
permettra le passage à la limite.
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