
Ann. Sci. Math. Québec 17 (1993), no. 2, 195-224. 

REPRESENTATION-FINITE ITERATED TILTED ALGEBRAS OF TYPE fin 

MICHAE WENDERLICH 

Throughout the paper k denotes a fixed algebraically closed field. We use the term 
algebra to mean a finite dimensional k-algebra and the term module to mean a finite 
dimensional right module. 

Following [HR, B], a module T over an algebra A is called a tilting module provided 
the following conditions are satisfied 

(Tl) Ext;(T, -) = 0 
(T2) Ext;(T,T) = 0 
(T3) The number of nonisomorphic indecomposable direct summands of T equals 

the rank of the Grothendieck group Ko(A) of A. 

Given a finite quiver A without oriented cycles, an algebra A is called an iterated 
tilted algebra of type A, see [AH], if there exists a sequence of algebras A = Ao, 

Al, l  ** 9 Am, where A, is the path algebra of A, and a sequence of tilting modules 
T&(O < i < m) such that A;+I 

M satisfies either HomAi ( Ti, M) 

= End( TA. ) and every indecomposable Ai-module 

= 0 or E& i (Ti, M) = 0. Ifm < 1,Aiscalleda - 
tilted algebra of type A, see [HR]. 

The representation theory of iterated tilted algebras was proved to be related to that 
of self-injective algebras, see [AHR, ANS, BLR, H, HW, S]. They were also shown 
to arise naturally in the study of the derived category of bounded complexes of finite 
dimensional modules, see [H, HRS, AS2]. Iterated tilted algebras of type A where the 
underlying graph of A is a Dynkin diagram, were studied in [AH, AS3, Hl, K], and - 
the iterated tilted algebras of Euclidean type & (m > 1) were classified in [ASl]. 
Further, a complete description of the representation-infinite iterated tilted algebras of 
Euclidean type was given in [AS2]. It was also shown in [AS51 that a - - representation- 
finite algebra is an iterated tilted algebra of Euclidean type l& or ll!& if and only if it 
is simply connected and its (homological) quadratic for-m is positive semi-definite of 
corank one. Moreover an algebra is an iterated tilted a1 .gebra of Dynkin type if and only 
if it is simply connected and its quadratic form is positive definite (see [AS5]). 

The purpose of this article is to give a complete classification, in terms of their bound 
quivers, of the representation-finite iterated tilted algebras of Euclidean type fin in a 
spirit similar to the classification of the iterated tilted algebras of type II& presented 
in [AS3]. This completes the classification of the iterated tilted algebras of Dynkin and 
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to arise naturally in the study of the derived category of bounded complexes of finite 
dimensional modules, see [H, HRS, AS2]. Iterated tilted algebras of type A where the 
underlying graph of A is a Dynkin diagram, were studied in [AH, AS3, Hl, K], and 
the iterated tilted algebras of Euclidean type Âl, (m > 1) were classified in [ASl]. - 
Further, a complete description of the representation-infinite iterated tilted algebras of 
Euclidean type was given in [AS2]. It was also shown in [AS51 that a representation- 

finite algebra is an iterated tilted algebra of Euclidean type fin or EP if and only if it 
is simply connected and its (homological) quadratic form is positive semi-definite of 
corank one. Moreover an algebra is an iterated tilted algebra of Dynkin type if and only 
if it is simply connected and its quadratic form is positive definite (see [ASS]). 

The purpose of this article is to give a complete classification, in terms of their bound 
quivers, of the representation-finite iterated tilted algebras of Euclidean type fin in a 
spirit similar to the classification of the iterated tilted algebras of type I& presented 
in [AS3]. This completes the classification of the iterated tilted algebras of Dynkin and 
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Will play an important role in the study of simply connected algebras with positive 
semi-definite quadratic form and tame standard self-injective algebras which are not of 
polynomial growth. 

Euclidean type. It is expected, according to some conjectures raised by A. Skowron 
that the lists presented here of representation-fin ite iterated tilted algebras of type 

1. The main result. In this chapter we shall present a complete classification of the 
representation-finite iterated tilted algebras of type fin, After the main theorem there 
are given two lists of algebras. The algebras on the left side of both lists Will be called 
frames. By algebra of type (1) (respectively (2)) we mean an algebra of the form A or 
A”P where A is a full convex subcategory of an algebra on the right side of the List 1 
(respectively List 2) and containing the frame on the left side of this list. Observe that, 
by [AS3, K], the class of iterated tilted algebras of type Il& coincides with the class of 
a11 algebras of type (2). We shall now describe two kinds of glueings of algebras of 
type (2), called admissible glueings of algebras of type (2). 

1. Let Al and A2 be arbitrary algebras of type (2). Assume that Al and A2 contain 
starred vertices il and i2 respectively, and there are no rooted branches (in the sense 
of [AS2]) at these vertices. Assume also that il and i2 are sinks, that is, Ai contains 
an arrow ~!l ending at il and A2 contains an arrow CQ ending at i2. Let now 1C 
be an arbitrary branch with at least three vertices and assume there are two different 
sources, say j, and j,, which are starting vertices at exactly one arrow, say PI and &, 
respectively. Then the glueing of Al and A2 by JC using the arrows al, ~2, ,&, /?2 is 
obtained by identifying a1 with ,& and a2 with ,&, 

Remark. In a11 examples in this chapter a11 cycles are bound by a commutativity- 
relation, and a dotted line means a zero-relation. 

Example. Let Ii’, Al, A2 be the following bound quivers 



M. Wenderlich 197 

Then the following bound quiver algebras are examples of glueings of Al and A2 by 
7 11 . 
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In case il and i2 are sources or one of them is a source and the other a sink we cari 
make an analogous glueing. Taking the same algebras we may for example obtain 

2. Let Al and A2 be again of type (2), Al (respectively, AZ) contains an arrow --% * 

ending (respectively, z * starting) at a starred vertex and there are no rooted branches 
at these starred vertices. Then the glueing of Al and A2 using the arrows a1 and a2 is 
obtained by identifying a?1 with a~. 

Example. If we take Al and A2 as above then we obtain 

Observe that we may consider 2. as a special case of 1. when 1~ is just an arrow. 
Observe also that by these glueings we cari obtain an algebra which contains a tame 
concealed algebra as a full subcategory. 

Example. For 

Al = A2 

we have a representation-infinite glueing 

A representation-finite algebra obtained from algebras of type (2) by one of the 
glueings described above Will be called an admissible glueing. Now we may formulate 
the main result of this paper. 
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Theorem. Let A be a representation-jïnite, Jinite dimensional, basic, connected alge- 
bra over an algebraically closedfield. Then A is an iterated tilted algebra of type & 
if and only if A is an algebra of type (1) or is an admissible glueing of two algebras of 

type (2). 

Let us note a few remarks concerning lists below. We assume again that any cycle 
is commutative and its number of vertices is greater than 3. A dotted line means a 
zero-relation. We also assume that we may root any extension (coextension) branch to 
any extension (coextension) vertex which is marked by a star. Observe also that 1 .l’ 
and 1.4’ are special cases of 1 .l and 1.4 respectively. 

2. Preliminaries for the proof. Recall that a quiver Q is defined by its set of vertices 
QO and its set of arrows QI. A relation from a vertex II: to a vertex y is a linear 
combination p = x7=, Xj 3 w a, where, for each 1 < j < m, xj is a nonzero scalar, and - - 
utj is a path of length at least two from x to y. The relation p is called a zero-relation 
(respectively a commutativity relation) whenever m = 1 (respectively m = 2). The set 
of a11 relations on Q generates an ideal I in the path algebra kQ of Q. The pair (Q , 1) 
is called a bound quiver. 

We shall usually assume that an algebra A is basic and connected. In this case, there 
exists a connected bound quiver (QA, 1) and an isomorphism A N kQ /I, see [GI. 
We shall denote by mod A the category of finite dimensional right A-modules. For a 
vertex i belonging to Q A, we denote by e; the corresponding primitive idempotent of 
A, by S(i) the corresponding simple A-module, and by P(i> (respectively I(i>) the 
projective caver (respectively the injective hull) of S(i). Also, we recall from [BG] 
that a bound quiver algebra A N I&/I cari equivalently be considered as a &category 
of which the abject class Ao is the set Qo, and the set of morphisms A( x, y) from x 
to y is the quotient of the vector space I~&(X, y> of a11 linear combinations of paths in 
Q from x to y by the subspace I(x, y) = I n kQ ( X, y). A full subcategory C of A is 
called convex if any path in A with source and target in C lies entirely in C. Finally, a 
i&category A is Schurian, if, for each pair x, y E Ao, dimk A( x, y) < 1. - 

An algebra A is called simply connected if it is triangular (that is, its ordinary quiver 
has no oriented cycles) and, for any presentation A N kQ/I of A as a bound quiver 
algebra, the fundamental group of the bound quiver (Q, 1) (in the sense of [MP]) is 
trivial; see [AS4]. A representation-finite algebra is simply connected if and only if it is 
simply connected in the sense of [BG]. It was shown in [A] that iterated tilted algebras 
of Dynkin type are simply connected and in [AS41 that an iterated tilted algebra of 
Euclidean type is simply connected if and only if it is of type fin or Ep. 

The dual notion of a tilting module is that of cotilting module: a module T is called 
a cotilting module if it satisfies (T2), (T3) and 

(Tl’) Ext;(-,T) = 0. 

Two algebras A and B are tilting-cotilting equivalent if there exists a sequence of 
algebras A = Ao, Al, . . . , A = B and a sequence of modules TA. (0 < i < m) - 
such that A;+1 = End(Ti.) and Ti. is either a tilting or a cotilting module. It follows 

from [HRS] that an algebra A is iterated tilted of type A if and only if A and kA are 
tilting-cotilting equivalent. 
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Let A be an algebra and M be an A-module. 
the matrix algebra 

r A 
A[MI = 

L 
; 

The one-point extension of A by M is 

0 
k 1 

with the usual addition and multiplication of matrices. The quiver of A[ M] contains 
Q A as a full subquiver and there is an additional (extension) vertex which is a source. 
Dually, the one-point coextension of A by M is the algebra 

[M]A = ’ ’ [ 1 DM A ’ 

Its quiver contains &A as a full subquiver and there is an additional (coextension) vertex 
which is a sink. 

Let A be a triangular algebra, and i be a sink in &A .The reflection S’A of A at i 
is the quotient of the one-point extension A[I(i)] by the two-sided ideal generated by 
e;. It is shown in [TW] that A and S:A are tilting-cotilting equivalent. The sink i of 
Q A is replaced in the quiver C@A of S$A by a source. A reflection sequence of sinks 
il, . . . , i, is a sequence of vertices of &A such that i, is a sink in o;- - 1 . . .o; QA for 

1 < p < m. Dually starting with a source in Q A we define the refiection SJy A of A at 
thesou&e j. It follows immediately from[ANS, 3.41 and the main theorem of [AS41 

that if A is a representation-finite iterated tilted algebra of type l& , then there exists a 
reflection sequence of sinks il, . . . , i, such that S2+m-1 . . . Sz\ QA is a representation- 

finite iterated tilted algebra of type l& and Slm . . . SC &A is a representation-infinite 
algebra of the same type. 

We shall need the following lemma. 

Lemma. Let A be a representation-jînite simply connected algebra and i be a sink in 
its quiver: Then S’A is Schurian. 
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Proof [ASS, 1.41. q 

For the next notion we need, that is, the notion of branch enlargement, we refer the 
reader to [AS21 (see also [ANS, AS3, AS5]). 

Proposition. Let A be an algebra. Then A is a representation-infinite iterated tilted 
of Euclidean type A if and only if there exists a (unique ) turne concealed full convex 
subcategory C of A such that A is a branch enlargement of C and its tubular type nA 
is one oj’thefollowing types (p, q), p 5 q, (2,2, r> 2 5 T, (2,3,3), (2,3,4) or (2,3,5). 
Moreover; in this case, nA equals the tubular type nkA of the hereditary algebra kA. 

Proof See [AS2]. q 

Thus we have that an algebra A is representation-infinite iterated tilted of type fir+2, 
2 < T, if and only if there exists a tame concealed full convex subcategory C of A such 
that A is a branch enlargement of C of type nA = (2,2, Y). 

An application of Bongartz’ criterion (see [B]) of representation-finiteness is the 
following corollary. 

Corollary. Let A be an iterated tilted algebra of type fi*. Then A is representation- 
finite if and only if A does not contain a turne concealed algebra as a full convex 
subcategory. 

It follows from the list of tame concealed algebras, given in [HV], that if A is a 
representation-infinite Schurian iterated tilted algebra of type 6n then its unique tame 
concealed full convex subcategory is one of the following 

9 
-0 .--* .-- o.-> 

Cl 
k-0 - - - - - - - 0 +-i 

1 

P ,0-o ----* O-0, boundbyal=oma,=P1,82 

\ 
0 

d ‘0 

where unoriented edges may be oriented arbitrarily. 
We have also the following consequence of the above corollary and the classifications 

of the iterated tilted algebras of types & , see [AH], Dn, see [AS3,K] and Âl, , see [AS 11. 

Corollary. Let A be a representation-infinite iterated tilted algebra of type Dn which 
has one of the above tame concealed algebra as a connected full subcategory and let 
B be a connectedfull subcategory of A. Then B is an iterated tilted algebra of one of 

the following types: Gm, k, III& or k& where m 5 n. 
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Lemma. Let A and B be as in the above corollary and let i be a sink in A. Then 

(i) If i does not belong to B then B is also a full subcategory of the algebra S’A. 
(ii) If i belongs to B, then the full subcategory of S’A formed by a11 abjects of B 

except i, and the new extension vertex, is isomorphic to StB. 

Proof The first part is obvious, the second follows directly from the construction of 
the algebras S:A and S’B. 0 

Clearly we have a similar statement for a source j and algebra S3y A. Combining a11 
these results we obtain 

Corollary. Let A be a representation-Jinite iterated tilted algebra of type En and B 
a connected full subcategory of A. Then B is an iterated tilted algebra of one of the 
following types: fim, &, I& or &, where m < n. - 

These corollaries are used in the necessity part of the proof of the main theorem to 
eliminate bound quivers which contain full subcategories which are iterated tilted of a 

type different from Em, &, Il& and & (such as Il!&). 

3. Proof of the sufficiency. 

We shall start with a useful remark. Let C be a tame concealed algebra of type Cl, 
C2, C3, Cd. Let M be a simple regular C-module, 1< an extension branch (which may 
be empty) and h a nonempty coextension branch. Let B be a branch enlargement of 
C by branches K and L using the module M. Then by [ANS] there exists a reflection 
sequence of sinks il, . . . , ih such that Sz’, . . . Sz’, B is still a branch enlargement of C 
using the same module M but a coextension branch is empty. A dual result also holds. 

We may apply this fact in our situation, that is, we may assume that vertices in List 1 . 
marked by letters a and b are sinks or sources (if this is not the case, then there exists 
a reflection sequence of sources or sinks such that after applying reflection at them the 
frame Will remain unchanged, vertices a and b Will become sinks or sources and the 
algebra Will be of the same type). Then after applying the reflections at these vertices 

we obtain a representation-infinite iterated tilted algebra of type l!&. 

Exarnple. If A is of the form (again the cycles are commutative) 

then A’ = S:A is the following 
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and %S’+A is of the form b a 

Hence A is tilting-cotilting equivalent to a representation-infinite iterated tilted algebra 
of type& and does not contain a tame concealed algebra as a full convex subcategory 

and consequently it is a representation-finite iterated tilted algebra of type &. 

Let now A be obtained by an admissible glueing of two algebras Al and A2 of 
type (2): We shall consider two cases 

(i). A is either obtained by a glueing of the second kind or of the first kind but the 
branch K is a line (not bound by any relation). Then it is easy to check that A is 

representation-finite iterated tilted of type fin. Observe that A is of the following form 

where Al and A2 are of type (2) and possibly i = j. Consequently there exists a 
reflection sequence of sinks and sources belonging to Al or A2 such that after applying 
reflections at them changes only one of Al and AZ, and K remains unchanged. It is 
enough to check that there exists such a reflection sequence of sinks and sources such 
that after applying reflections at them we obtain a representation-infinite iterated tilted 
algebra of type l& . It is just a quite easy and routine verification. We shall illustrate it 
on an example. 

Example. Let Al, A2 and K be the following (with the cycle commutative) 

and A be of the form 
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i then 5’; 5’; 5’; A is the following 

and it is obviously a representation-infinite iterated tilted algebra of type 616. 

In the same way we check that a11 the remaining algebras are representation-finite 

iterated tilted of type 42. 

(ii). A is obtained from Al and A2 by a branch K bound by at least one zero-relation. 
We shall reduce this case to the previous one. 

First recall that for any algebra D and a sink i of D we may consider the APR-tilting 
module corresponding to i Z-‘D = 7-l (e$) $ ( 1 - ei)D (see [APR]) and the algebra 
B = EndD ( Z-‘D) called an APR-tilt of D. The precise description of the bound quiver 
( QB, IB) is given in [AS3, Lemma 7.41, and we shall use this description several times. 
Moreover some of the combinatorics we shall do cari also be done by using Lemma 7.4 
of [AS3]. For the convenience of the reader we recall now from [AS2,2.4] a procedure 
of making a line from a branch, called linearizing. 

Let B be a branch enlargement of a tame concealed algebra C such that at least one 
branch has a zero-relation. By passing, if necessary, to the opposite algebra, we may 
assume that there exists a sink in this branch SO that the bound quiver of B has the 
following form 

where ~7 = 0, one of B1 and B2 is a branch, while the other contains the quiver of C. 
Then it was shown in [AS2, 2.41 that B is tilting-cotilting equivalent to D which has 
the following form 

where B1 and B2 remains unchanged. Moreover the linear subquiver m + 1 + 1 + 
. . . +m- 1 -+ m is not bound, and there exists a relation of the form val in D if and 
only if there exists the corresponding relation vo = 0 in B. 

We may apply the same procedure in our situation, when B = A, B1 = Al U I<l, 
B2 = A2 U K2, where 1’1 and K2 are disjoint parts of Ii’, K3 = 1 + 2 + l  . l  t- 
m-l +--- m +--- m+l isalsoapartofKandK = Ii’1 uK~uK~. Itisclear 

rl 0 
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that after linearizing of A we obtain a new algebra A’ (tilting-cotilting equivalent to A) 
consisting of Al, A2 and a line K’ (possibly bound by some zero-relations) connecting 
Al and AZ. Assume now that the vertices i, j belong K’, i # j and there exist arrows 
01, ,0, y, S such that i is a source of a and a sink of /?, j is a source of y and a sink of 6, 
cl!/? = 0 = yS and there are no other arrows between i and j involved in a zero-relation, 
that is, it is of one of the forms 

p i a Yh or sir 
4. -o---o --- -o-E-@E--o 

pia 

--._ .*- -. w__.-- ---___..- .-- 
Q.. +o-+T--0 *. --- -o*y-+a-+o 

-.---- --* ---.,__-- .-- 

where unoriented edges may be oriented arbitrarily. Then applying APR-tilting modules 
at vertices between i and j, the part of K’ lying between i and j takes one of one of the 
forms 

pia sir 
Q.. 

pia 
-0 .-- 

ri 6 
--- - --- --- o-o- -. .- QS. O-+-0 --- 

--._ _e--- -. .- -. 
-0-o .- 
--_..- ,- 

O*U-+-,o 
-..,,- 

-. -._..-- *- 

Observe that the two parts of A’ out of the part between i and j remain unchanged. 
After applying the above process to II’ we obtain a new line K” called an ordered line. 

Example. Let A be given by the following bound quiver 

v-0 ;  1 

- ,  
- - e , . - , - -  

. - -  #’ a’ 

,’ 
,  

.  
,  , - -  

-l-T!LP 

. - -  J 
,  ,  , -  

.  
,’ 

.’ 

8’ .  a’ 
. - -  ,  b 

,  

After linearizing we obtain A’ of the form 

Then S:A’ is the following 

Applying the APR-tilting module at lu we obtain 
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and now we apply the APR-tilting module at I obtaining 

Then after applying the APR-tilting module at j we obtain 

P 
. ya+-o- 0’ ’ 
P , ’ 

--hi 
\ 

0 

Further S!A” is of the form 

Applying again the linearizing we obtain that S;A” is tilting-cotilting equivalent to A 
of the form 

P 

Suppose now that after applying APR-tilting modules and linearizing we have ob- 
tained an algebra consisting of Al and A2 (which are of type (2)) and an ordered line 
K”. Suppose that we have a situation 

where Aa contains A;, fori = 1,2. 

A; 
9 . . . . . 04 -_-__ 

Then 

r 
-0 i 

S’A has the form 
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and after linearizing we obtain the following algebra 

We may obviously do the same with AOP. Let now A be the following 

where Ai contains Al and Ai = AZ. Observe first that because of pa = 0 then after 

applying any reflection to A at a vertex belonging to A/2 the part 

remains unchanged. Let A2/ be a full subcategory of A with vertex set consisting of 
thoseofAiand1,2,..., i& Then A2 is an algebra of type (2). Let il, . . . , i, be a 
reflection sequence of sinks belonging to A; such that i, = 1. Then A’ = Sz: . . . S2< A 
has the following form 

where A2 is of type (2). After linearizing we obtain the algebra 

Applying the procedures described above we may remove a11 zero-relations from 
2-C”. We shall illustrate this process on an example. 

Example. Let A be the following 
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and it is tilting-cotilting equivalent to 

But S; SC S;A’ is the following 

and after linearizing we obtain an algebra of type 617. 

In the same way we cari show that a11 admissible glueings of algebras of type (2) are 

representation-finite iterated tilted of type fi!. This finishes the sufficiency part of the 
proof. 

4. Proof of the necessity. In order to prove the necessity part of the theorem we need 
three lemmas. 

Lemma 1. Let A be an algebra of type (1) consisting of one frame from the left side of 

List 1, one starred vertex i and an arrow connecting i to the frame. Let B be obtained 
from A and one of the algebras 

bound by ap = yS, o-o 7 ----------. 

\ 
dk-o& 

0 

by identifying i with one of the vertices of these algebras. Then B is not iterated tilted 

of QPe 6% l  

Proof: It is just an easy, routine verification. Cl 

,_ _  - 
3  

: 
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Example. Consider the following glueings of algebras of type 1.1 

Al 

(with a11 cycles commutative). Then B1 = SiA1, B2 = SQA2, B3 = SQA3 are the 
following 

B2 

A 
?1: 

, 
4’ 

B3 0 
.’ 

y.. c/ -0 

CA 

(with a11 the cycles commutative). They are representation-infinite but they are not - 
iterated tilted of type ll& . Indeed, each of them contains a tame concealed algebra as a 
full convex subcategory, but they are not en1 argements of these a1 .gebras. 

In the same way we check a11 other possible cases. 

Lemma 2. Let A be a frame from the left side of List 1. Assume that B is either 

a) obtained from A by adding a new vertex i, an arrow CI connecting i with A, 
possibly some relations involving a and such that B is not of type (1) or 

b) obtainedfrom A and the commutative square 

D - - 

by identifying a vertex or some arrows of A and D, and possibly adding some 
relations involving arrows from D. 

Then B is not an iterated tilted algebra of type I&. 

Proo$ It is also an easy task. The general idea is the following. First we may assume 
that the vertices marked by a and b in the algebras from the List 1 are sinks or sources 
(if this is not the case we may apply some reflections not changing A as long as a and 
b Will not be sinks or sources). Next, applying reflections at these vertices we obtain 
an algebra which contains a tame concealed algebra as a full convex subcategory but is 
not a branch enlargement of this algebra of type (2,2, r), T < 2. q - 
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Example. If B is the following extension of an algebra of type 1.1 

(with both cycles commutative) 

then SZB is the following 

and it is not an iterated tilted algebra of type & because it is not a branch enlargement 
of its unique tame concealed subcategory. 

If B is of the form 

(with a11 cycles commutative) 

then SzSgB is the following 

(with the cycle commutative) 

and obviously again it is not an 
In the same way we check a1 l 

terated tilted algebra 
other possible cases. 

of type i& . 

As a consequence we obtain that any representation-finite iterated tilted algebra of 

type fin containing a frame from the List 1 is of type (1). 

Lemma 3. Let A be an iterated tilted algebra of type II& containing two algebras of 
type (2) and a branch (possibly empty) as full convex subcategories. Then A is an 
admissible glueing of these algebras. 

Prooc The proof is exactly the same as above. cl 

Observe now that admissible glueings of two frames of type (2) except 2.1 and 2.2 
(possibly by branch being a line possibly bound by some zero-relations) and the frames 
of type (1) are minimal in the sense that any proper full convex subcategory is not an 
iterated tilted algebra of type @. It may happen that some admissible glueings of an 
algebra of type 2.1 and some other (but not of type 2.2) are also minimal. Observe also 
that admissible glueings of a frame of type 2.1 or 2.2 and any other frame of type (2) 
possibly by a line (with possibly some zero-relations) are also minimal in the sense that 
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no proper full, convex subcategory of this glueing, such that if one vertex of the cycle 
belongs to this subcategory then a11 the cycle belongs to it, is an iterated tilted algebra 

of type &. 
It follows immediately from the above lemmas that it is enough to show that any 

representation-finite iterated tilted algebra of type fin must contain a minimal algebra 
(in one of the above senses), that is it must contain a frame of type (1) or an admissible 
glueing of two frames of type (2). We shall show it in several steps. 

a1 
1. Assume first that the algebra has a cycle. Since representation 

gebras of type fin are simply connected this cycle must be of the 

-finite iterated tilted 

following form 

6 

0 bound by ~1~2.. .an = ,01p2.. .& 

P m -..- 

But the algebra 

P2 

is tilted of type & (see [HI]) SO our cycle is of the following form 

bound by a1 . . . a,‘= ,&p2 

and it is a tilted algebra of type I&+l. 
From now on, we shall assume that each such cycle is commutative. 

a). We shall now find a11 algebras which contain two such cycles having at least one 
common vertex. 

(i). Observe first that these algebras cannot share three or more arrows. Consider an 
algebra 

A 
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Because the algebras 

are tilted of type Il!!& it follows that in A there are two zero-relations containing paths 

and this algebra contain a wild hereditary algebra as a full convex subcategory, a 
contradiction. 

(ii). Assume now that two cycles share 2 arrows. Up to duality we have the following 
possibilities (algebras must be representation-finite) 

f43 

a b 

: 0 : I I 

+ m n 

a 

m>3orn>3 - 

A4 

, . . , q 

- 4  _  r - d  

- , ._ _- / 
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IV 
,- ,- 

. _‘- 

But SzSlA1, SzA2, SaA3, SaA4 are the following 

9\ 
p-+-o - ----- ~(y+--.0 f -. --_- o+- 

\ 
, , 

*’ 
0 

N 
0 

.- .- .* 

F 

P 
0 

Observe that ~$S’~+AI and S:A3 contain a wild algebra, SaA2, SiA4 are representation- 

infinite but not iterated tilted of type fin. Thus there remains only A5 which is of 
type 1.1. 

(iii). In the same way we prove that 1.2 is the only frame which contains two cycles 
sharing one arrow. 

(iv). Again making the same analysis we see that if two cycles have exactly one 
common vertex then they are of one of the forms 

Observe that these algebras are of type 1,3, 1.4, 1.4’ and 1.5 respectively. In order to 
prove for instance that the fourth frame is the unique frame containing two commutative 
cycles connected by a sink from the first one and the source from the second one, and 
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I  

not of the form 1.4’ observe that the algebras 

217 

are representation-infinite. If A is of the form 

a 

then SdScf SC S:A is the following 

and this algebra contains a tilted algebra of type &j as a full convex subcategory. In 
the same way we prove that the algebras 

<$jco!p ~~> ~~~ 

-..____....--- 
-. 

--... . . . . . ..-- 

(y& <qJ/  <2> 

*_m----...._ 
..--- -.__ 

, 

--__ 
, 

-.__..’ 

have as a full convex subcategory an algebra which is iterated tilted of type I&j. 

b). Let us consider a single cycle having at least 5 vertices. We shall find a11 iterated 
tilted algebras of type fin containing this cycle. First observe that the algebras 

are tilted of type Il!&. Thus algebras like 
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and any other containing one of the above two algebras as a full subcategory are not 

iterated tilted of type l& 
Let A, B, C, D be the following 

a 

# , 

. . 

a 

.' : 9. 
.' '. '. , , '. , . , . 

J 

+ 'j 
0 

a 

Then S:A, S;B, SZC, S:D are of the respective forms 

The first and the second algebra contain a tilted algebra of type E(j as a full subcategory, 
and the remaining ones are wild. Continuing such an analysis we obtain the following 
frames 
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to a wild algebra. 

SO we have the following frames 

v 

P 
n 

.- _.---._ .* --. .---I. 
c 

-. -. * #’ /f . I 8, ,‘* \ 0’ ’ , s , , , Aa* ,’ : 0::::::-.-* ____ 2 _.-- ___....... -.-- .- . &O+ -. -. -. --.- --._ e --._ /p 
--.. -0 

-.-- .- _-_.----------.__-- --._ 
-.-- 

c& . . 

--.- -. 

. . . . n-l 4 n m -..... m-l r” -A 1 0 
0 

n>landm>O - - 

They are of types 2.2, 1.5, 1.8, 1.9, 1.14, 1.6 respectively. 

2. Now we shall find iterated tilted algebras of type fin without a cycle. 

a). First consider the situation when the algebra has a zero-relation of length > 4. It - 
is easy to see (by applying reflections) that the first four among the following algebras 

219 
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They 

..-- ___m.--.e__- --._ 
&--:::-:;Y@::-:-& ~-~:::::~~~~~----~:.~o 

0 n > 1 and m >‘O - - 

are of types 2.2, 1.5, 1.8, 1.9, 1.14, 1.6 respectively. 

2 . Now we shall find iterated tilted algebras of type fin without a cycle. 

Representation-jînite iterated tilted algebras of type f& 

a). First consider the situation when the algebra has a zero-relation of length > 4. It - 
is easy to see (by applying reflections) that the first four among the following algebras 
contain an iterated tilted algebra of type Il!$, as a full convex subcategory, and the two 
remaining ones contain an algebra which is not tilting-cotilting equivalent to a branch 
enlargement of a tame concealed algebra. 

-... --.. --.. v --- 0 

SO we have the following frames 

0+--O ----- 

.  
.  

.  
.  

‘. 
.  

\  . . . . . *. . . P 
‘0 

They are of types 2.3, 1.15, 1.14, 1.16 respectively. 

b). Consider now algebras with zero-relations of length 3. It is obvious that if we 
replace any zero-relation of length > 4 in a) by a zero-relation of length 3 then we shall - 

I 
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I obtain algebras of the same type. Now we shall find other ones. In the same way as 
before we obtain the frames 

They are of types 1.9, 1.12, 1.13 and 2.4 respectively. 

c). We shall describe algebras without cycles and zero-relations of length > 3. First - 
we shall check in which configurations may occur 5 arrows having one common vertex. 
Up to duality there are 8 possibilities (note that I& is representation-infinite) 

a b a b a b 

a b 

A5 

a b 

A6 

After applying reflections at the vertices a and b we see that Al, AZ, A3 are iterated 
tilted of type Q , Ad, A5 are tilting-cotilting equivalent to wild algebras. Observe also 
that A6 is of type 1.5, A7 is of type 1.14 and As of type 2.5. Using these facts it is 
easy to see that the only configuration of 6 arrows having one common vertex is the 
following 

and it is of type 1.5. Because of representation-finiteness there are no configurations of 
seven or more arrows having one common vertex. Observe now that the algebras 

are iterated tilted of type &, iterated tilted of type & and of type 1.5 respectively, and 
a11 the remaining configurations of four or three arrows having one common vertex are 
algebras of type (2). 

, ; . 
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Let us recapitulate our analysis of the necessity part of the proof. We have obtained 
two kinds of algebras: they are frames of type (1) and (2). Algebras containing frames 
of type (1) are completely described. We shall consider now frames of type (2). As 
before, applying reflections, it is an easy but rather tedious task to check that two such 
frames may be connected only by admissible glueings and any connection of three 

frames does not give us an iterated tilted algebra of type fin. This finishes the necessity 
part of the proof and hence the proof of the theorem. 

Résumé substantiel en français. Un module T sur une algèbre A est appelé un module 
inclinant (voir [HR, B]) si les conditions suivantes sont satisfaites : 

(Tl) Ext;(T, -) = 0 
(T2) Ext;(T,T) = 0 
(T3) Le nombre de facteurs direct indécomposables non isomorphes de T est égal 

au rang du groupe de Grothendieck KO( A) de A. 

Étant donné un carquois fini A sans cycles orientés, une algèbre A sera dite 
préinclinée de type A (voir [AH]) s’il existe une suite d’algèbres A = Ao, Al, . . . , 
A,, où A, est l’algèbre des chemins de A, et une suite de modules inclinants Ti. 

(0 < i < m) tels que Ai+l = End(Ti .) et chaque Ai-module indécomposable k! 

satisfait soit HornA; ( Ti, AI) = 0, soit Ex&(Ti,M) = 
une algèbre inclinée de type A (voir [HR]).’ 

OSim < l,onditqueAest _ 

Soit A une algèbre et M un A-module. L’extension ponctuelle de A par M est 
1’ algèbre matricielle 

A[M] = ; ; 1 1 
avec l’addition et la multiplication usuelles des matrices. 

Soit A une algèbre triangulaire et i un puits de Q A. La réflexion S[A de A en i 
est le quotient de l’extension ponctuelle A[i(i)] par l’idéal bilatère engendré par e;. 
Il est montré dans [TW] que A et S’A sont équivalentes pour les inclinaisons et les 
coïnclinaisons. Le puits i de Q A est remplacé dans le carquois alA de S2$A par une 
source. Dualement, a partir d’une source j de &A, nous définissons la réflexion SJyA 
de A à la source j. 

Passons m.aintenant aux deux listes d’algèbres présentées dans la section 1. Par 
algèbre de type (1) (respectivement (2)), nous entendons une algèbre de la forme A 
ou S’A, où A est une sous-catégorie pleine et convexe d’une algèbre se trouvant dans 

la colonne de droite de la liste 1 (respectivement de la liste 2) et contenant le cadre 
se trouvant dans la colonne de gauche de la même liste. Le théorème principal de cet 
article est le suivant : 

Théorème. Soit A une algèbre de dimension fi nie sur un corps algébriquement clos, 

sobre, conn exe et de représentationfinie. Alors A est une algèbre préinclinée de type fin 
si et seulement si A est une algèbre de type (1) ou un collage admisssible (tel que défini 
en section 1) de deux algèbres de type (2). 

Dans la démonstration, nous utilisons la description des algèbres préinclinées de 

type l& et de représentation infinie contenue dans [AS2], et le fait qu’après application 
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d’une suite de réflexions à une algèbre préinclinée de type & et de représentation 
infinie, nous obtenons une algèbre de représentation finie et préinclinée du même type. 
Cela nous permet de prouver la suffisance. Pour la nécessité, nous éliminons les algèbres 

qui ne sont pas préinclinées de type fin au moyen du corollaire suivant: 

Corollaire. Soit A une algèbre préinclinée de type fin et de représentation fi nie, et 

B une sous-catégorie pleine et connexe de A. Alors B est une algèbre préinclinée de 
typeCm, &,Dm ou&, où m < 12. - 

WI 
[AHI 

ww 

[ANSI 

CAPW 

l-AS11 

W21 

[AS31 

[AS4 

[AS5 

FI 
[BGI 

[IBLRI 

[HI 

Wll 
WI 

[HRSI 

[Jw 

WWI 

WI 

ww 
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