
Ann. Sci. Math. Québec 17 (1993), no. 2, 145-154. 

FINITELY ADDITIVE INTEGRATION: 

INTEGRAL EXTENSION WITH LOCAL CONVERGENCE 

MANUEL DIAZ CARRILLO AND PILAR MUfiOZ RIVAS 

Introduction. In this paper we present some results concerning integral extension for 
arbitrary nonnegative linear functionals on function vector lattices. For a ring s2 of sets 
from an arbitrary set X and p : fi + [0, oo [ only finitely additive, the space of Riemann 
p-integrable functions was presented essentially by Loomis in [13]; for Banach space- 
valued functions it has been introduced by Dunford-Schwartz in [6], and more generally 
by Günzler in [lO]. Analogue extension processes, without or with weaker continuity 
conditions on the elementary integral, have been treated by Aumann [2], Loomis [ 131 
and Gould [SI. 

In [3] the process of a Daniell-Bourbaki integral has been generalized, starting in this 
case with a nonnegative linear functional I (without any continuity conditions) defined 
on a vector lattice B of real- valued functions on X. The main abject of this paper is 
to introduce an analogue to “convergence in measure” for sequences, in order to obtain 
the space of Riemann I-integrable functions. We also obtain Lebesgue’s convergence 
theorems. In $3 we compare our integral with some other integrals and related ideas in 
the literature; in particular, it is possible to give a unified treatment of Riemann-p [9], 
abstract Riemann-Loomis [ 131, and Dunford-Schwartz [6] integrals. 

We are indebted to Professor H. Günzler for comments on and improvements in the 
obtained results. 

0. Preliminaries. The terminology ansd notation used is similar to that of [3,4, 111. 

Weextendtheusual+in~:=IRU{-qoo}to&kx]Wby 

(1) a+ b := 0, a J b := oo, ifa = -b E {-oo, oo}; a - b := a + (-b), etc. 

If we denote a V b := max(a, b), a A b := min(a, b), a ~7 b := (a A b) V (-b), 

a+ := aVO,a- := (-a)VO, one has for a, b, c, d E R, t E R+ := [0, oo] the following 
inequalities: 

(2) lant-bntl <2(Ia-bl~t),la~t-b~tl 5 la-bl(Birkhoffinequalities). 
(3) Ilal - IblI 5 la - bl 5 la - cl + JC - bl, I(a + b) - (c + d)J 5 la - cl + lb - dl. 

(4) For a, b, c, d E ÏÏ%+ with a < b + c, a A d < b A d + c A d (See [2, p. 4421, [lO, - - 
p. 3541.) 
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Let B be a vector lattice of real-valued functions on a nonempty set X, and I : B + R 

a nonnegative linear functional on B, i.e. under the on X pointwise defined +, ~a 

(a E w, =, 5, V, A, ) 1, B is a real space of functions f : X + R containing with f, g 
also f A g, f V g, Ifl, and 0 2 1(f) if 0 5 f E B, where I~I(Z) := If(x)1 for x E X. 

The triple (X, B, 1) is called a Loomis system, which we Will denote I/ B for short. 
In the following we assume a Loomis system and the following definitions and 

results of [3]. 
A preliminary extension is defined by 

B+={f ~ïiit~;f = =q%g E 49 52 f> - -+4* 

(5) For any f E Rx, I’(f) := sup{I(g);g E B,g 2 f}, with SU~@ := -00. 
Similarly, B- := -B+, and1-(f) := -1+(-f). 

Since I+ is not additive on BC, it is introduced the class 

(6) B+ = {f E B+; 1+( f + g) = i+(f) + I+(g) for a11 g E B+} and B- = -B+. 

Now using the classes B+ and B-, for each f E Rx the Upper and lower integrals 

1-(f) ard L(f) are defined as usual: Ï(f) := inf{i+(h); f < h, h E B,}, with 
inf 0 := 00, ancil := -Ï(-f). 

(7) Forf E IIBx,-f+(f) 5 L(f) L I(f) L I-(f)* 
With (l), Ï and I- are subadditive on Rx; and I+, Ï, 1 and I- are monotone 

increasing on ÏRx . 

(8) The elements of B := {f E Rx;L(f) = I(f) E Il%} (= BO in [3]) arecalled 
1-summable). 

We have that B is a lattice, and if f, g E B then 1 f 1, a f E B (a E R), besides 
h E R, where h(x) + f(x) = g(x) only for those x f X for which f(x), g(x)’ E Il% 

(see [3, Theorem 5.21). 

(9) B is dense in B with respect to the integral seminorm defined by (1 f (( 1 = I( 1 f 1 ), 

([3, Theorem 5.61): The necessary and sufficient condition that f E B is that, 
given any E > 0, there exists h E B such that Ï( 1 f - gi) < E. 

(10) B is klosed, i.e.: For ( fn)n c B, and f E Ïkx such that I( 1 fn - f 1) -+ 00 

then f f B, [ 11, Corollary 31. 

1. Local convergence and integrable functions. For any 7’: R$ --+ R+ monotone 
functional, an appropriate “convergence in measure” for sequences is introduced. 

Definition 1.1. Let f, ( fn)% c Ex, (fn>n -+ f (T) means that for each fixed 0 < 
- h E B one has T(if, - fl A h) -+ 0, as n -+ oo, (where e,g. oo - 00 = 0 by (1)). 

In particular for T = I-, with (5) and (6), we get 

(11) (fn>n + f (Ir-) iff for any E > 0 and 0 < h E B, there exist n&, h) E IV, 

kn. E B, such that 1 fn - f 1 A h < kn and I(Iun) < E, for a11 n > no. _ - - 

( fJn c Rx is called a T-Cauchy sequence if T( ( fn - fm 1) + 0, as n, m -3 00. 

Note that if (f& + f (T) and (sn>n --+ g (T), then (fn + sn> + f -t g (T), 

(f?2 + gn> + f + g (T), (Qfn)n -+ af (T), Q E FL 

’ 
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Lemma 1.2. Let (jnjn C B and f-Cauchy sequence such that (f& + 0 (Ïj, then 

I(lfnl>n -+O,asn+ 00. 

Proof. It is clear that one may assume 0 < fn -+ 0 (1). For every E > 0, I( Ifn - 
fmI> < E, if n, m 2 nl. By (9) and (3), I(Ïfn, - h,lj < &, for any 0 5 h, E B. 

Now, from the estimation 

IfnI 5 Ifn A hEl + lhE - fnll + lfn - fnll + Ifnl - fnl, 

and (9) the result follows. Cl 

Corollary 1.3. Let (‘n)n, (gn)n C B 1-Cauchy sequences and f E ÏEx, such that 

(fnjn + f (I-) and(gnjn + f (I-). Then, lim 1( fn) = lim I(gn), as n -+ OO. 

Proofi Since B C B and Ï 5 I-, From Lemma 1.2, II( fn) - I(gn)l = (I( fn - gn)l 5 

T(if,-gn)l+O,asn+W. Cl 

Lemma 1.4. Let f, (fn)n C rWx such that (fn - f 1 < g E B, for a11 n E N. Then 

(fn)n --+ f (Ij if and only ifr( 1 fn - f 1) -+ 0, as n --SO. 

Proof. If g E B, given any E > 0 there exists t E B+, with 0 < g < t and I+(t) < 
I(g) + & < oo. For E > 0 and 0 < t E B+, there exists h E By sueh that h < t and - - 
I+(t) 5 I(h) +E. 

Then, from the estimation 1 fn - f 1 < 1 fn - f 1 A h + (t - hj, the result follows. _ 

The converse is evident. q 

If with the assumption of Lemma 1.4, additionally fm f B and (fn) + f (I-j, 

then f E B and 1( fn) + 1( fj (Lebesgue’s bounded convergence theorem for B>. 

In fact -g 5 F( fn - f) yields 

-00 < -I(g) = Ï(g) 5 -Qfn - f) 5 Ï(fn) i I(-f) = I(fn) - Ï(f) 

bY (1) or I(f > # +oo; similarly I( fj # - 00. See [ 11, Theorem 1 and corollaries]. 
The usual Monotone convergence theorem is false for B with + (r), (see [ 11, 

Exemple 21); it becomes true for a suitable extension of B which Will be treated in the 
following. Thus, using the local convergence we Will extend the integral I on B to a 

larger class of functions such that the usual properties are preserved. 

Definition 1.5. A function f E Rx is said to be I-integrable if there exists an 1-Cauchy 
sequence (hn)n C B such that (hn)n + f (1-j. 

The sequence (h,), is called a defining sequence for f. RI (B, Ij denotes the class 
of ail I-integrable functions. If f E R1 (B, Ij, 1( f j : = lim,,, 1( hn j. 

By Corollary 1.3 we see that expression I(f j is well defined, that is it does not 

depend on the particular choice of the sequence (hn)n defining the function f. 

It is easy to check the following: 

(12) If f E EX, fi(z) := 
f(z) iff(xj E Iw, 
o 

otherwise; 
we have for f E R&BJ), 

fi E Rl(B,Ij axl I(fi) = I(f). 
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The set R1 (B, 1) of 1-integrable functions is closed with respect %, A, Q (a E R), 
1 1, V, A (R-lattice). 

Besides, for any f, q E Rl(B,I), I@f) = ai(f), I(f + g) = I(f i q) = 

I(f) +I(q)9 II(f)1 5 Nfl>mdKf) I I(g)xf I 5 
(13) It is easy to see that B is dense in R1 (B, 1) with respect to the seminorm 

Ilf II I := I(lfl) for a11 f E Rl(B, I). 

For f E Ïkx we define f = 0 (I-) (I--nuljùnction) by fn := f + 0 (I-), i.e. for 
eachO< hE B,I-(lflAh)=O. 

N1 (B, 1) denotes the set of a11 I--nulfunctions. 
For any f, g E Rx, f = q (I-) (resp. f 5 q (I-)) means f - q E NI (B, 1) (resp. 

(9 - f>’ E N1(B,I))* 

Using I--nulfunctions we cari establish the following properties. 

(14) If 1 f 1 < q E N&&I) thon f E &(B,I). 
ith (14) and since a < b -i- (a - b)+ for a11 a, b E R, we have - 

(15) f <g (I-)iffthereexistshE Nl(B,I)suchthatf <gihonX.Notethat 
- - (I- ) is an equivalence relation in Rx, 2 (I- ) is transitive, and both are 
compatible with +, +, cx (a E Il%+). 

(16) If f, g E Rl(B,I), f 5 q (i-)9 then I(f) L I(q). 
(17) f E N&&I) iff f E R#&I) and I(lf 1) = 0. 
And finally, by (17) and (12), we conclude 

(18) f E. Rl(B, 1) iffthere exists g E Rl(B, 1) n lRx such that f = g (I-). 

Let us now consider the class of proper Riemann-integrable functions( see, for 
example [ 13, 143). 

(19) Let Rprop( B, 1) denotes the set of a11 functions f E such that for any E > 0 
there exist q, h E B with h 5 f 5 g and I(g - h) 5 E. 

J(f) := r-(f) = P(f) for a11 f E R,,,,(B,~). 

We have that R prop( B, 1) is the closure of B with respect to the integral- 
seminorm I- [2, p, 4481. 

Observe that R prop(B,I) c B* E xample 1 below shows that Rprop( B, 1) 5 

Rl(B, I>* 

We now cari characterize the notion of 1-integrability as follows. 

Theorem 1.6. Let f E Rx, then the following conditions 

0 f E Rl(B,I). 

ii> I+( If 1) 5 ooandf*AgE R prop(B,I)fora~10 < q E B. - 

equivalent: 

Proof: i) => ii) Let 0 5 f E RI( B, 1) with defining sequence (h,),; from (11) 
given& > OandO < h E B,thereexistI, E BsuchthatIh,-fIAh < I,andI(Z,) < E, - 
if n > no. Now, with (2) we get t, :=h,r\h-21,< fAhCh,Ah+21,=;-kn, 
t,, ki E B and I(k, - tn) = 4I(I,) 5 4~. 

- - 

SO that, f A h E Rprop(B, 1) for a11 0 5 h E B, and I+(f) 5 I(f) < oo. 
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ii) * i) If f E I$F, I+(f) < oo, by (5) there is an I-Cauchy sequence 
(h,jn c B such that 0 < h, < h,,l < f and I(hn) -3 I+(f), n -+ oo. 

Set Ih, - fl A h = j% (hi+ h) -h,. 

Fort, := f A (b-L + h) E qmq@, I), g iven E > 0 there exist k, I E B, k < t, < i! - - 
and I(1) 5 I’(f) + E. SO that I(l - h,) -+ 0, as n + 00. 

Besides, since 1 h, - f 1 A h = t, - h, 5 I - h,, n E IV, we conclude that (h,), -+ f 
- 

(1 > 
Using f = f’ - f- and 1 f 1 = f+ + f - the result follows for arbitrary f E Rx. CI 

Corollary 1.7. Let f E Rl(B, 1), then f E Rprop( B, 1) ifand only if1 f 1 < h E B. - 

Corollary 1.8. 

RdBJ) = {f E ~x;I'(lfl) L m,f’A h E R,,,(B,I), fora110 5 h E B}. 

2. Convergence theorems. Note that in the finitely additive case (see for example [6, 
pp. 101-104]), to get convergence theorems it is not sufficient a.e. or the everywhere 
convergence; thus, in our situation, one has to use a suitable “convergence in measure”, 
although localized ([ 11, Definition l] or Definition 1.1). 

The following lemma is basic in the sequel. 

Lemma 2.1. Let 0 5 f E Rl(B, 1), then f A g E B and Ï( f A g) 5 I(f) for a11 

O<gEB. - 

Proof: We cari assume 0 < h, + f (I-j, hence (h, A g) + f A g (I-j, with 

h,Age B,Ih,Agl <g.&omLemma1.4,~(lh,,Ag- f Agl)++Oasn+oo,and 

by (10) f A g e B. 

Finally, Ï(h, A g) 5 1( hn) + i(f), as n + oo, implies Ï(f A g) < 

From Lemma 2.1 and [3, Corollary 5.10 a)] we easily get: 

(20) If f E Rl(B, 1) and 1 f 1 < g f B, then f E B. The condition 
weakened to 2 (1-j. - 

r(f)* cl 

fl 5 gcanbe 

Lemma 2.2. Let (fnjn C Rl(B, I), with I(I fnl) --) 0, then ( fnjn -+ 0 (I-j. 

Proof: FromLemma2.1 (fnlAh E BforallO 5 h E B. Besides,T((f&h) 5 i(lfnl), 
Ifnl A h E &(B,I), n f N, 0 < h E B. Therefore, IA(IfnI A h) = I+(lfnl A h) 5 - 

qlfnlj + 0. q 

The following closedness property of R1 (B, I) holds. 

Theorem 2.3. Let f E Ïkx, ( fnjn c RI( B, I) an 1-Cauchy sequence with ( fnjn + f 
(I-j. Then f E Rl(B, 1) andlim,,, I(fn) = I(f). 

Proof: By (13), given n E IV there exists h, c B such that I( 1 fn - h, 1) 5 i. 

Now, using that 1 h, - f 1 < Ih, - fnI + Ifn - f 1, andLemma2.2, weget (h,), -+ f 
- (I-), where (h,), c B is an I-Cauchy sequence. q 

By [ 11, Example 21 an analogue for B is false with -+ (1). 

Theorem 2.3 allows us to derive the convergence theorems. 



150 M Diaz Carrillo and Fi Muiïoz Rivas 

Thesrem 2.4 (Nh~stone convergence theorem). ket  f E Rx, ( fn)n c &(B, 1), 
fn i fn+l (Iv), n E N, witii (f&,, -+ f (I-) and p := sup{I(f,); n E IV} 5 OO. 
Then 

i) f E RI( B, I) and lim,,, 1( fn) = I(f) = ,0. 
ii) fn<f (I-),nEIV. - 

Proof. TO prove i), by Theorem 2.3, we have only to show that (f& is an I-Cauchy 
sequence. 

Using (15) and (17), it is easy to see that I(I fn - fmI) < I(fm> - I(fn> 5 OO, for 
a11 m 2 n, and the required result follows. 

TO prove ii), observe that 0 5 ( fn - f)’ 5 ( fm - f)+ i u 5 1 fm - f 1 i U, with 
m ? n and 0 < - - u E &(B,I). 0 

Le a 2.5. If f E Rl(B, I) and f < g E BS, then I(f) < I+(g). 

Pro05 a) Let 0 < f E RI( B, 1) with defining sequence 0 < 
lary 1.8, h, A f E Rprop(B, I) 

(h& 

9 andI(h, A f) 5 I+(f), n E-Ï!% 

c B, by Corol- 

Now, since (h, A f>n -3 f (I-> aid h, A f < g, we have I(f) 2 I+(g). 

b) Forg E BQhereexistsh E Bwithh < g, Putf -h < (f-h)+ < g-h,where - - - 
g - h f B+, therefore, by a), I(f - h) < I+(g) - I(h), and the proof is completed. 0 - 

Corollary2.6. Forany f E Rl(B,I), I’(f) 5 -l(f) 5 I(f) 5 Ï(f). 

Baecsre csnvergence thesre ). Let f E Rx, (fn)n c Rl(B,I), 

g E Rl(B, 1) such that 1 fnI 5 g (I-), n E N, and (fn)n + f (I-). 
Then f E Rl(B, 1) and lim,,, I(fn> ---+ I(f). 

Pr~of: Again by Theorem 2.3, we need to prove that (f& is an i-Cauchy sequence. 
Suppose that there is ~0 > 0 such that given k E IV there exist nk, ;P~C E IF, with 

I(lf nk - f*JJ 2 Eoe 
fitgr, := Ifnk - fpk 1, then gk E Rl(B, 1) and gk < 2g (I-); by (15), there exists - 

0 < uk E N1(B, 1) such that gk < 2g + uk, k f N. - - 
Now from the estimation 

kd fi h 5 l,fnk - f 1 A h + If - f*k 

for a11 0 < h E B, we get - 

(9 > kk+o -. (1 > 

On the other hand, applying (13) to 2g E R1 (B, 1) with 
such that 

I(2g - 2g A h) 5 I(l29 - hi) 2 :. 

0 a 

$0 > 0, there exists h E B 

09 

Note that one cari assume h 2 0, since 129 - Ihll < 12g - hi. 

Also, using (a) and Ï 5 I- we have Ï( (gk A hi) -+ 0, as k -+ oo. 
Indeed, by Lemma2.1, lgk A hl E Rl(B,I) n a, SO that 

I(lgrc A hi) = Ï(lgk A hl) --+ 0 as k -3 00. ( > C 
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Now, it is easily verified the estimation 

Finally, from (b), (c) and (d) we conclude that EO 5 I(gk) 5 I(gk A h) + I(2g - 
2g A h j < ~0, which is a contradiction, and the theorem is proved. q 

Remarks. This extension process I/ B -+ J/R1 (B, I> is iteration complete, i.e. 

Rl(B,ij = R@,Ij with 5 := Rl(B, Ij n Rx, f := I/B. Observe that for 

(fnjn c RX9 (fnjn -+ 0 (f-j implies (&jn -+ 0 (I-j. If(fnjn c R@,Ij the 
converse holds. 

Most the above cari be extended to Banach space valued functions, using a n b of 

(0 (sec lxl). 

3. Applications. 

1. If I/B is monotone-net-continuous = Bourbaki’s continuity condition, then 
Daniel1 L’(B, Ij =: L1 c B = Bourbaki extension L’(B,Ij =: LT, (see [15, 
71). By [3, p. 2471, B = V. Besides, in this case B+ = B+, I+ = 1 (Upper Bourbaki 
integral on B+); and L1 is always contained in L7. 

For example, let B = CO( X, R j (continuous functions with compact support on 
X locally compact Hausdorff space) and I: Co(X, R > + R any nonnegative linear 
functional, then I/ B is automatically monotone-net-continuous. 

2. Assume I/l?, for any f, (fn jn c Rx (fn jn is said to converge o-uniformly to f 

((fnjn 3 f>, ‘ff 1 or any E: > 0, there exist no E PJ and (gmjm c B, g, > 0, such that - 
If?2 - fl 5 ~~&h?2 and CmEW I(gm> 5 E, for a11 n 2 no. 

By means of this type of convergence and following the lines of the Daniel1 theory, 
in [ 12,551, it is obtained the class of Lebesgue-integrable functions. 

Suppose that I/B satisfies the following conditions: 

i) Daniell’s continuity condition: 0 5 fn. E B, f E B, f 5 C, fn =) I(f j 5 

c, I(fnj. (Sec L-14, p* 5211) 
ii> 0 5 fn E B, fn I g E B, n E N (fnjn l’ f * f E B. 

For f f Rx, ( fnjn c B, we bave that ( fn jn + f implies (fnjn -+ f (I-). In 
fa& for any 0 5 h f B one has 1 fn - f 1 A h < c, g, A h, by ii) Em=, g, A h 1‘ 
xrz1 g, A h E B ad by i) I(XE1 g, A h) < CE1 I(gn> < E for any E > 0, - - - - 
n L no(+). 

3. Using Theorem 1.6 and Corollary 2.6, since if 0 < f E Rl(B, Ij n Rx, we have - 

f l = sup{g E B;O 5 g < f} E En -h(B,Ij, 
s  l  

alld I(f) = I(fs), one cari generalize the theorem [4, p. 2621 that is: R1 (B, I j c B 
modulo I- -nulfunctions. Besides this is the only relation that one has in general 
between Rl(B, Ij and B ( see examples below and [ll, pp. 88-891). 

By [ 11, Example 31, the inclusion B c Daniel1 L1 (B, I) is false. 
In the Daniel1 situation, in [ 11, Theorem 51 is showed that B c L1 (B, I) n &Il% +B,, 

with Bn := {f E B; I( 1 f 1) = 0) and I = Daniel1 integral on L1 n B. 
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4. In [16], Schafke gives only RI( B, 1) n Iwx = Schafke’s local J+osure of B, 
where 1’ : = sup{l- (f A 1 hi); h E B}. In this situation the bounded convergence 
theorem is applicable only if his condition @ Satz 2.8 holds, which is very restrictive 
(for example Co(X, W) does not satisfy 0). 

Besides, using Theorm 1.6, the Loomis’ extension U (“one-sided-completion”) of 
[13, p. 1781 is precisely Rl(B, 1) n Iwx. Also Rl(B, 1) 2 R,,,(B, 1) = “two-sided- 
completion” of Loomis [ 13, p. 1701. 

Thus, for Loomis’ finitely additive “one-sided-completion” integral a new definition 
is given and convergence theorems are obtained. 

5. In the following the assumption ~/0 is assumed, which means: 0 a semiring of 
subsets of X and p a nonnegative finitely additive measure on Q. 

Bn denotes the set of a11 step-functions S( fi, Il%), and Ip( h) := s h dp, h E Ba , 
. where S(Sr,R) contains a11 h = CyC1 a;&$ with n E IY, ai E Iw, Ai E 0 and 

J h dp = CyZ1 aip(Ai). Then (X, BO, Ip) is a Loomis system. Now starting from 
BQ and IP by using the above methods, we obtain an integral extension to the Ip- 
integrable functions class RI (Bn , Ip). 

For X - Et, fl = {[a, b[; -0~ < a 2 b < oo> and p([a, b[) = b - a, then 
Rprop( BQ , &) gives the classical proper Riemann-integrable functions [ 10, p. 2161. 

For p/s;b one cari define p-local convergence, (fn>n -+ f (p), (see [9, p. 1721) 
and by the lemma in [lO, p. 72, A.2.721, one gets using Definition 1.1, (1 l), and 

q-u> := inf{&(h); f 5 h E Ba}: For (fJn, f c Ex 

(fn>n + f (j-0 w (fn>n + f CI& 

(See [ll, Lemma 91). 
Therefore, we have that RI (B1;2, Ip) 7 RI (CL, R) = abstract Rieman p-integrable 

functions of Günzler in [9,10]; and a11 results of Sections l-2 are applicable. 
In particular, with @, the condition ii) given in Theorem 1.6 which characterizes 

1-integrability is often used as definition of Riemann p-integrability (see [ 11, p. 2131). 

6. The space L(p,R) = L(X, fi, p, R) of p-integerable functions of Dunford- 
Schwartz [6, III, 2.17, p. 1121 has been generalized to RI(~,@ in [lO, p. 70 1991 (p- 
local convergence localizes the convergence in p-measure of [6, p. 1041). In general, 

L(P3) 5 Rl(Bd-p~? and only if X E s2 (0 algebra) and p(X) < 00, both concepts 
coincide (convergence in p-measure, locally p-convergence and Ii -convergence are 
equivalent). 

If fl is a a-ring and p : 0 + [0, oo[ a-additive, then R1 = L1 =: Ll+(f E Ïkx; f = 

0 p-a.e. on each A E Q} c B modulo nullfunctions, and one gets the usual Lebesgue 
convergence theorems. 

In fact with B = step functions Bn, I = Ip, RI c B modulo nullfunctions by [4] 
or Remark 3, and L1 = RI by [lO, A146, p. 2651. 

7. In Aumann [2, p. 781 it is assumed p/Q with X E iR. Here, we get N = IiL 

and L” = exactly Rprop(pL/[a, b], rw>, T* = classical proper Riemann integral J’ dx, 

pL(l%PC) := P - a* 
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I 4. Examples. 

1. Let (X, 0, p) be a finitely additivé measure space, such that X # X0 : = 
U{A; A E Q-.(A) < oo>. Th en if f E Rx. is defined as f(Xo) = (0) and 

f(X - x0) = {l}, we have f E R1 (p, IR) s f dp = 0, but f does not belongs to Bn, 

sincef,(f) = 00. 

2. Let X = R, and let fi be the ring consisting of a11 the finite unions of disjoint half- 
open intervals in R, and p : = Lebesgue measure on Q. Let P : = {r; r rational, 0 < 
T < 1). Then xp E & = L~(P) (= usual Lebesgue-integrable functions on IR>, but 

xp does not belong to RI(~, IFP). 

3. LetX = R,s1 = {{I~};X E Iw)U{0} andp: Q -+ {O,l)a-additive,p({z)) = 

1 if II: E X, s f @ = xzEx f(x). We have R,,,,(p,R) = s(fi,R) C Rl(p,R) = 
L’(nx,IR). 

4. Let X = lEY, p : = Lebesgue measure & on Q : = 0, := { njn, [aj, bj [ ; aj < - - 

bj,aj,bj E R,n. E N}. Then, we have Rl(p,@ c &. 

Résumé substantiel en français. Considérons un système de Loomis (X, B, 1), où 

B désigne un espace vectoriel réticulé de fonctions réelles définies sur un ensemble 
abstrait X, et I une fonctionnelle non négative et linéaire sur B 

On utilise le processus et la terminologie que nous avons développé dans [3] pour 
définir la classe des fonctions sommables B. 

De façon précise, on se donne la classe 

B+={f ~ïËi~;f = suP%g E Kg 5 f> - {-CO) 

et on considère pour toute f E Rx, I+(f) := sup{l(g); g E B, g < f }. Similairement - 
B 

- 
l = -B+, et I-(f) := -I+(-f). . 

On définit ensuite une notion adéquate de convergence en mesure locale séquentielle : 

f9 (fn)n C Rx9 (fn)n + f (I-) si et seulement si pour chaque 0 < h E B, - 

i-(lfn - fi A h) + 0, n + 00. 
Une fonction f de Ïkx est dite I-intégrable s’il existe une suite (hn)n C B telle que 

IUh - h, 1) -+ 0, n, m -+ 00 (suite I-Cauchy) et (hn)n -+ f (I-). 

On désigne par R1 (B, 1) l’ensemble des fonctions I-intégrables. Pour toute f E 

R1 (B, r>, le nombre I(f) défini par I(f) = lim J( hn) n -+ oo est appelé intégrale de 

1 
’ Rl(BJ) t es un espace vectoriel réticulé et I est linéaire et non négative sur RI (B, I). 

Quelques propriétés importantes de l’intégrale (notamment les théorèmes de con- 
vergence monotone et dominée) sont établies. 

Soit f E Rx et (fn)n une suite de fonctions de R1 (B, 1), telles que (fn)n + f 

(I-). On a f E Rl(B,I) et limI(fn) = I(f), n -+ oo, si l’une quelconque des 
conditions (a), (b) ou (c) suivantes est remplie 

(a> r(lfn - f77J) + 0, n, m + 00. 

Cb) fn I fn+l, n E PJ et SUp{i(fn); n E IX} < 00. 

cc> Ifnl L g E Rl(B,I). 
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