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HILBERT’S SIXTEENTH PROBLEM (the second part): 
ITS PRESENT STATE 

SONGLING SHI 

RÉSUMÉ. Les développements théoriques récents et les calculs par ordinateur ouvrent de 

nouvelles perspectives concernant le lGième problème de Hilbert, deuxième partie. 
Dans cet article nous exposons la surprenante histoire et l’état actuel de ce problème. 

Contrairement à certains énoncés de la littérature récente, nous indiquons que ce problème 
reste ouvert, même dans sa version la plus simple. Néanmoins, de nouveaux développements 
permettent d’être optimiste. 

ABSTRACT. Recent theoretical developments and the new possibilities brought about by 

the computer calculations, raise new hopes concerning Hilbert’s 16th problem, second part. 
In this paper we survey the surprising history of this problem and we give an account of its 

present state. Contrary to some recent claims in the litterature, we show that this problem 
is still open, even in the simplest of its cases. Nevertheless, the latest developments in this 
area justify an increased level of optimism. 

In 1900, at the international Congress of Mathematicians in Paris, Hilbert delivered a 
lecture in which he stated 23 open problems [l], which he considered significant for the 
advancement of science. 

Hilbert said the following words: 

“Permit me in the following, tentatively as it were, to mention particular definite 
problems, drawn from various branches of mathematics, from the discussion of 
which an advancement of science may be expected.” (From D. Hilbert’s lecture, 
Paris, 1900) 

We observe that in the list of the Encyclopedic Dictionary of Mathematics [2] the 16th 
problem is given as being: 

(16) TO conduct topoïogical studies of algebraic curves and surfaces. 

This is in fact only the first part of Hilbert 16th problem. Hilbert stated the second part 
of the 16 th problem as follows. 

u 
. . . In connection with this purely algebraic problem, I wish to bring forward 

a question which, it seems to me, may be attacked by the same method of con- 
tinuous variation of coeficients, and whose answer is of corresponding value for 
the topology of f  amilies of curves defined by differential equations. This is the 
question as to the maximum number ad position of Poincaré5 boundary cycles 
(cycles limites) for a di$erential equation of the jirst order and degree of the form 
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194 Hilbert’s sixteenth problem (the second part): its present state 

dY y  --m - 
dx X 

where X and Y are rational integrak functions of the nth degree in x and y. 
Written homogeneously, this is 

where X, Y, and Z are rational integral homogeneous functions of the th n degree 
in x, y, x, and the latter are to be determined as functions of the parameter t.” 

We see that this problem has also a second part, which deals with differential equations 
involving polynomials . 

This second part of Hilbert’s 16th problem proved to be one of the most stubborn 
problems on Hilbert’s list. In the 90 years that passed, in spite of a11 attempts, this problem 
is still unsolved even in the simplest of the cases. In 1976, the American Mathematical 
Society published the Proceedings of the Symposium in pure and applied mathematics 
which was held at Northern Illinois University in May 1974 [3]. In these proceedings a11 

of Hilbert’s problems are discussed with two exceptions: the 16 th problem and the third 
problem of Hilbert which was solved shortly after Hilbert stated the problems. In this 
book there is an article entitled: “Problems of present day mathematics” whose contents 

were written by 26 authors. The short article on Hilbert’s 16th problem was written by V. 
Arnold. He said: 

Vn contra& to the recent progress with the algebraic part of the isth Hilbert’s prob- 
lem (due to Goudkov, Rohlin, Harlamov and others), there is not much progress 
with the second part, dealing with limit cycles: it is still unknown whether a plane 
vector jïeld, given by two polynomials of degree 2, cari have more than 3 limit 
cycles. ” 

Let us briefly explain the meaning of this second part of Hilbert’s 16th problem. We 
first consider some examples: 

EXAMPLE 1 (FIGURE 1). 

dz -- 
dt - -Y, 

dY -- 
dt 

- x. 

Figure 1. 
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EXAMPLE 2 (FIGURE 2). 

dz -- - 
dt 

-y + x(x2 + y2 - l), 

dY - = x + y(x2 + y2 - 1). 
dt 

Figure 2. 

EXAMPLE 3 (FIGURE 2’). 

g = [-y + x(x2 + y2 - I)][(x - q2 + y”], 

$ = [x + y(x2 + y2 - I)][(x - 1)” + y”]. 

Figure 2’. 

For a dynamical system, in particular for a11 the polynomial vector fields, there are three 
kinds of orbits: singular points, closed orbits and unclosed orbits, as shown in examples I-3. 
A bounded unclosed orbit must tend to a closed orbit which we cal1 limit cycle (Example 2) 
or to a boundary cycle (Example 3). A limit cycle is an isolated closed solution which is 
approched by the neighbouring solutions for t + +oo or t + -00. 

Let n be a positive integer. Consider the set K(n) of a11 polynomial systems of equations: 

dz 
-g- = P(X,Y), 

$ = &(2, Y) 
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with n = max{ degree( P), degree( Q)}. 
Let us denote by H(n) the maximum number of limit cycles which a system in K(n) 

could have. Then we cari state Hilbert’s 16 th problem, second part, as follows: 

Hilbert’s isth problem is to determine what is H(n) and the position of boundary 
cycles. 

We observe that for any given N, we cari construct a polynomial system having exactly 
N limit cycles. Indeed it is easy to show that the following system of degree n = ZN + 1 
has exactly N limit cycles: 

dz -- - 
dt 

-y + x(1 - r2)(4 - r2). . . (N2 - r2), 

dY -- - 
dt 

x + y(1 - r2)(4 - r2). . . (N2 - r2) 

where r2 = x2 + y2. Using polar coordinates x = r COS 4, y  = r sin 4, we obtain the equation 
for r: 

dr 
- = r(1 - r2)(4 - r2). . . (N2 - r2) 
dt (1) 

dr -- - 
dt cf (4 

where f(r) = (1 - r2)(4 - r2). . . (N2 - r2). This equation is clearly of degree 2N + 1. 
Using this equation, one easily shows that the system (1) has N Emit cycles. Hence we 
have that H(2N + 1) 2 N. In general if we consider an equation g = rg(r2), where g is 
a polynomial of degree N, then if g has a positive root, say a2, we have the circle r = a 
as a limit cycle for the corresponding system. From this construction we get a feeling 
that limit cycles of polynomial systems are analogous (more or less) to roots of algebraic 
equations. This analogy cari be made very precise in the case of small amplitude limit 
cycles via the Weierstrass-Malgrange preparation theorem and the Poincaré return map. 
However, we don’t know whether or not there is a theorem on limit cycles corresponding 
to the fundamental theorem of algebra. By this we mean that we do not know whether or 
not Petrovski’s conjecture in [7, 81 is true. Petrovski’s conjecture in [7, 81 cari be stated 
as follows: the polynomial vector fields of degree n have, generically, the same number of 
limit cycles. Another artificial example is constructed as follows. We consider an algebraic 
curve 

f(x, Y) = 0, 

where f  is a polynomial of degree n in x, y. Suppose that this curve has N ovals. Then, 
the system 

dx -- - 
dt $ + f(X,Y), 

dY w ---- - 
dt dX 

(2) 

has, usually, N limit cycles. For detail and more precision, see Sverdlove’s paper [4]. 
The systems (1) and (2) are very simple and for this reason they are useful for quick 

thinking about the problem of limit cycles. We used these examples in order to check 
claimed results and they helped us to construct a counterexample to a claimed result of 
Chin to which 1 shall corne back later. 
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Harnack’s theorem claims that the maximum number of ovals of real plane al.gebraic 
curves of degree n is $(n-l)( n-2)+1. SO we know from (2) that H(n) > i(n-l)(n-2)+l. 
This estimate is an improvement on the previous estimate which is : H(2n + 1) > n. 

From the above artificial constructions of limit cycles we see that it is difficu% to get 
more limit cycles if we fix the degree n of an equation. 

Trivially, there is no limit cycle for linear vector fields. What was the first example with 
limit cycles for a quadratic system, which appeared in the literature? Many people do not 
know that the first such example was the following one given by A. Sommerfield in 1929 
[5: page 458, reference 771: 

(x - l)(x + 2) + Y2 + 
3 2 

dY XY Y w-- - 
dt 

(x - 1)(x + 2) + Y2 
3 2+ -j- + 3 + PXY 

where p < 0 and 1~1 < 1. Th’ 1s is a system with two limit cycles whose phase portrait is 
given in Figure 3. 

Figure 3. 

In his 1985 monograph [ZO] P ro essor f  Chin Yuanxun claimed that the first example of 
a quadratic system with limit cycle is the one given by him in his 1958 paper [ZZZ]. This 
example is of a quadratic system with only one limit cycle which is an ellipse. 

In 1959 Tung obtained an example of a quadratic system with 3 limit cycles [6]. I f  we 
compare this example with the one given by Sommerfield, we see that there is a great sim- 
ilarity between these examples. In fact there is just a change of a sign from Sommerfield’s 
example to Tung’s example. Tung’s example is the following one: 

(x - 1)(x + 2) + y2 + 
3 

Tung does not mention Sommerfield’s example in his paper [6] (1959) and neither does 
he mention it in the bibliography of this paper. 

In a paper published in 1955, Petrovski and Landis claimed to have proved that H(2) = 
3 [7]. Later, in a 1957 paper [S], they claimed that 

w-4 5 
‘(6n3 - 7n2 - lin + 16) 
; 

9 for n odd, 

2 (6 n3 - 7n2 + n + 4), for n even. 
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Later on an error in the proof of [7] was found by a study group of mathematicians led 
by S.P. Novikov. Right after Petrovski and Landis informed the mathematical community 
of this error and published a note (1967) where they said the following: 

c/ln, OUT article (1955) th ere is an error in the proof of lemma 12 (p. 2& transla- 
tion p. 213) h’ h w ac was pointed to us by S. P. Novikov. A reference to this lemma 
is made on p. 153 (translation p. 158) of our (1957) article. ” 

Although the claim that H(2) = 3 was retracted by Petrovski and Landis, the statement 
H(2) = 3 remained a possibility. 

1 began working on this problem in 1970 and in 1978 1 obtained a counterexample to 
Petrovski’s claim that H(2) = 3. More precisely, 1 constructed an example of a quadratic 
system with four limit cycles. 1 presented this result at a meeting at Academia Sinica in 
Bejing on December 28, 1978 which appeared in the chinese edition of the journal Scientia 
Sinica in November 1979 and in the English version of the same journal in February 1980 
([lO], see also [13]). 

My counterexample to Petrovski and Landis’ claim that H(2) = 3 is the following one 
(Figure 4): 

dx -- - 
dt 

xx-y- 10x2 + (5 + qxy + y2, 

dY -- - 
dt 

x + x2 + (-25 + 8~ - 9S)xy 

where 

s ZZZ -1p3, 
E= -10-52, 

x = -10-200. 

Figure 4. 

Chen Lan-sun heard my lecture on December 28, 1978 and made no comment at that 
time. However, briefly afterwards he sent a joint manuscript of his together with Wang 
Mingshu (on January 6, 1979) for publication in Acta Mathematica Sinica. Their paper 
was published in November 1979, at the same time with my paper. In their original 
paper [II] Ch en and Wang copied my phase portrait (with two foci, unique singular 
point at infinity and a straight line without contact), see Figure 5, but they omitted one 
condition, i.e. S2 << 61, see [ll]. 1 pointed out this omission in the third Symposium on 
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Figure 5. 

differential equations, held in Kunming City of China on March, 1980. The authors of the 
book “Theory of Limit Cycles” [12] added th’ 1s missing condition when they discussed this 
example in their book without mentioning my name. 

TO obtain four limit cycles of a quadratic system 1 used a combination of the method of 
Sommerfield and the method of Frommer. 

In 1930s) Frommer, following a method of Poincaré, obtained a small amplitude limit 
cycle (in short SALC), th e meaning of SALC Will be explained later. His example is the 
following one [ 151: 

dx -- - 
dt -y + 2xy - y2, 

dY -- - 
dt 

x + (1 + E)X2 + zxy - y2. 

Let 

we have 

F(x) y) = ;(x2 + y") + Fx3 - xy2 - iy3 + . . . 

dF dF dz dF dy ---- - 
dt dx dt + Kdt 

& 4 7 - - --r +g6+... 
4 

where y2 = x2 + y2. Therefore F decreases for Y < 
lr 

7~ and increases for ï > 

(Figure 6). 
c $5 

“Hence, there must be, for small positive E, a limit cycle which tends to the origin 
for E + 0,” 

Frommer said. 
In this 1-parameter family of polynomial vector field we see that we have a limit cycle 

in each one of the vector fields for E > 0 and small. Furthermore these limit cycles are 
themselves small. This is the meaning of a SALC. 

Frommer’s method is essentially a degenerate Hopf bifurcation. The main difficulty is 
to answer how many times one cari use Hopf bifurcations for a polynomial vector field. 

In 1952, Bautin extended Frommer’s result and proved that we could have 3 and at most 
3 SALCs in a quadratic system. 

In [l’ï’] 1 generalized an algorithm Poincaré gave for the tenter problem [Oeuvre de Henri 
Poincaré, vol. 1, Gauthier-Villars et Cie, Paris, 1928, p. 95-1001 and proved the following: 

-  , :  

r  



.  
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dF 
dt 

Figure 6. 

MAIN LEMMA. For a polynomial vector field 

dx -- - 
dt 

h - y  + P(X,Y), 

dy 
dt=~+Ax+Q(x,~) (E > n 

where P and Q are polynomials of degree n, there exists a forma1 series 

F = F3 + F3 + . . . 

where 

F2=qx + 2 + Y217 

such that 
dF 

dt 
= XF2 + VIF; + V2F; + V3F; +. . . 

where Vi are homogenious polynomial of degree 2i in the coefficients of P and Q. 

In the proof we find that the functions Fi are not uniquely determined and the same 
thing holds for the constants Vi. For each i, there is an infinite number of constants Vi. 
The set of a11 such E is a coset modulo the ideal generated by VI,. . . , E-1. We may cal1 
this coset the ith Poincaré-Lyapunov constant [ 181. 

THEOREM ( POINCARÉ-FROMMER-BAUTIN-SHI) . The maximum number of SALCs of ( En) 
is the number M(n) of algebraically independent Poincaré-Lyapunov constants 117, 181 
and M(n) is finite. 

Bautin (1952) proved that M(2) = 3. SO far we do not know the value of M(n) for 
n > 3. 

In my example with 4 limit cycles, 1 synthesized Sommerfield’s and Bautin’s methods. 
Sommerfield’s method is via a bifurcation of a limit cycle from a boundary cycle at 

infinity. It cari be realized by rotating a specific vector field. 
I f  the singular point A is stable and if 0 is unstable (Figure 7), then we rotate the vector 

field by a small negative angle such that the singular points A and 0 don% change their 
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Figure 8. 

stability and we obtain two limit cycles (Figure 8). Similarly, if the points A and 0 have 
the same stabilities, then we get only one limit cycle by the rotation of the vector field. 
For more detail, see [13]. 

It remains to combine those two methods and see which one is realizable and which one 
is not. 

For a system 

dx -- - 
dt 

xz - y+lx2+mxy+ny2, 

dz 
- = x + ax2 + bxy 
dt 

there are two foci if and only if 

Xb2 + 2X(ab - mb + 2am) + (a + m)2 - 41(n + b) < 0 

with n # 0, 1x1 < 2, (Xn + m)2 + 4n(b + n) < 0. Th ere exists a unique singular point at 
infinity if and only if 

P an - m(b - Z)]” - 4[(b - Z)” + 3am][m2 + 3n(b - Z)] > 0. 

The relative position of the straight line without contact and the saddle point at infinity 
is decided by the sign of this quantity: a2n - abm + Zb2. The origin is a weak focus of order 

3 if and only if 

x = 0, 

an # 0, 
m = 5a, 

b = 31+ 5n 
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and 

h = @a2 + 2n2 + zn)[(b + ZZ)(l+ n)(b + n) - am(2E + b + n)] # 0. 

The origin is stable if V3 < 0, and unstable if V3 > 0. The focus A(0, J-) is stable if 
A+ F < 0 and unstable if X + F > 0. The conditions 

3a 2 - Z(Z + 2n) < 0, 

25a2 +lZn(Z+Zn)< 0, 

Z(3Z+ 5n)2 -5a2(31+5n) +na2 < 0, 

a2(5Z+8n)- [(ZZ +5n)2 +15a2][25a2 +3n(ZZ+5n)] > 0 

and V3 > 0 are realizable. Hence, we perturb the system 

dx -- - 
dt 

-y + 1x2 + 5axy + ny2, 

dY 
-- = II= + ax2 + (3Z+ 5n)xy dt 

such that we get a new system which has at least 4 limit cycles. 
At the beginning 1 thought that since from Sommerfield’s method one could obtain 2 

limit cycles and from Bautin’s method one could obtain 3 limit cycles by combining the 
two methods we could obtain five limit cycles for a quadratic systems and hence H(2) > 5. - 

This meant that the conditions 

3a2 - Z(Z + 2n) < 0, 

25a2 +lZn(Z+ 2n) < 0, 

Z(3Z + 5n)2 -5a2(3Z+5n)+na2 < 0, 

a2(5Z + 8n)2 - [(ZZ + 5n)2 + 15a2][25a2 + 3n(2Z + 5n)] > 0, 

v3 < 0 

( > * 

were a11 realizable. 1 gave a lecture on this on December 18, 1978 at Institute of Applied 
Mathematics, Academia Sinica in Beijing. From the arguments 1 gave at that time it 
followed that the 3 + 1, the 2 + 1 and the 1 + 1 configurations cari also a11 be realized 
(Figure 9). 

0 00 

Figure 9. 
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Upon checking my preprint on H(2) 2 5,1 discovered that the calculation of Bautin for 
the Poincaré-Lyapunov constants for the quadratic systems are not a11 correct. Indeed, [13] 
found that there is a mistake in the calculation of Vs of Bautin’s paper. This quantity 
appears there with the wrong sign. This error influences the existence of one of the limit 
cycles. In my first preprint, in connection with Bautin’s wrong calculation, 1 obtained 5 
limit cycles. After 1 corrected this mistake, 1 could only obtain 4 limit cycles. The reason 
is that the above conditions (*) are not realizable (!). 

K.S. Sibirsky proved that Vi are algebraic invariants under the rotation group of plane. 
Other conditions are a11 represented by algebraic invariants. 1 believe that the algebraic 
invariants would control the number of limit cycles. Now, we may state the conjecture. 

Conjecture: H(2)=4. In 1983, in a symposium held in Beijing, Chin Yuanshun pur- 
ported that H(2) = 4. H e used complex variable arguments. But as 1 pointed out in that 
meeting, Chin’s arguments contain assertions which are not proved and some are incorrect. 
However, Chin’s paper was published in the Springer Lecture Notes in Mathematics, Vol. 
1151 1191, and its review in the Mathematical Reviews did not mention the gaps and the 
errors. In 1987, 1 gave a counterexample to two of Chi& main assertions. This paper 
recently appeared in the Bulletin of the London Mathematical Society [Zl]. 

Let us describe Chin’s arguments. Chin begins with a study in the complex domain. 
The system under consideration is a natural extension of the real system 

f$ = U(u,x), 

g = X(u,x) CE) 

where U, X are real polynomials, to the complex system 

2 = W(w,z), 
dz -- - 
dt qw, 2) * (E > 

where w = u + iv, x = x + iy, T = t + ir and W(w,z) = U(w,z), Z(w,z> = X(w,z). 
The geometrical figures of a general solution for (E*): F(w,z) = constant, are 2- 

dimensional manifolds in the real 4-dimensional (u, v, x, y) space. We shall cal1 t hem 
solution surfaces. The real curves defined by the system (E) are just the intersections of 
the surfaces of (E*) with the plane v = y = 0. 

DEFINITION. A solution surface F is called an isolated limit surface (ILS) if there exists 
another solution surface FI such that Fr 3 F but FI Ç F. 

The limit cycle in the real domain corresponds to the limit surface in the complex 
domain. 

The mainstay of Chin’s argument is the following one: The number of ILSs of the 
complex system (E*) controls the number of Emit cycles of the real system (E). But Chin 
did not study the ILS. In particular he did not give an answer to anyone of the following 
questions: 

(1) 1s there a Emit cycle on the isolated limit solution surface? 
(2) How many limit cycles are there on an isolated limit solution surface? 
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The idea of my counterexample to Chin’s statements regarding Hilbert’s 16th problem 
is very simple. Any two circles which do not have the same tenter must have points of 
intersection in the complex plane. Hence we have two limit cycles as two circles which are 
on the same ILS. This is contrary to the main argument of Chin. SO, Chin did not prove 
the conjecture H(2) = 4. 

Since the bounds claimed by Petrovski and Landis were obtained by using a lemma 
which had an error, we have no proof that these are really bounds for H(n). This prompts 
the question: Are there any bounds for H(n) to be found in the literature? 

In a paper published in 1957 N.N. Molcanov [25] claimed the result that 

H(n) < (2& - 2)n2 

for large n. S. A. Gal’pern pointed out in USSR Mathematical Review, 6 (1959), No. 5813 
that the assertions in this paper are either introduced without proof or depend on other 
assertions which are not proved. 1 have a counterexample to Molcanov’s conclusion which 
1 shall include in a forthcoming preprint. 

In spite of the negative result concerning Hilbert’s 16th problem, there is hope due 
to the new developments in this subject. Thus we have the general and powerful re- 
sults on the maximum number of small amplitude limit cycles and the following result : 

THE FINITENESS THEOREM OF DULAC (1923), IL’YASHENKO, ECALLE, MARTINET, 
MOUSSU AND RAMIS. Any polynomial system 

has a finite number of Emit cycles. 

This theorem was first claimed bv Dulac in a 1923 paper 1261. In the 1980s Il’yashenko 
[27] noticed an error in one of the lemmas used by Dulacand’proved the 
for polynomial vector fields with nondegenerate singular points [28]. 
Moussu, Ramis wrote a preprint in 1987 [29] in which they announced 
heard that Ecalle is in the process of writing its complete proof. 

finiteness theorem 
Ecalle, Martinet, 

this result and we 

Although we know that each quadratic system has a finite number 
Upper bound is known for H( 2). 

of limit cycles no 

Also the problem of determining H( 3) or at least giving an Upper bound for it is a very 
difficult one. Before solving it one would have to study many more cubic systems than 
this has been done UP to now. 

Hilbert’s 16th problem, second part, is not only an open problem; it is also a research 
field. The aspects involved in this problem are the following ones: 

Analytical Aspects. In the proof of finiteness theorem [2’i’, 28, 291 Il’yashenko and 
Ecalle et al. used modern developments in singularity theory and the theory of normal 
forms. Also, bifurcation theory methods. 

Algebraic Aspects. For example, K.S. Sibirsky developped the theory of algebraic in- 
variants of polynomial vector fields and he applied this theory to obtain specific results in 
the theory of quadratic systems. 
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Geometric Aspects. In [3O] J. Guckenheimer introduced the 5-dimensional or%t s-Qace 
of quadratic systems under the action of the affine group and positive time rescaling. Dana 
Schlomiuk [31] got the first result about a subspace of this orbit space, namely she obtained 
the bifurcation diagram of the subspace of a11 quadratic systems possessing a tenter. She 
pro-ved in a forthcoming preprint that this bifurcation diagram is completely controlled by 
the invariant algebraic curves of degree at most three and that the algebraic conditions for 
the tenter cari be stated in geometrical terms by using these invariant algebraic curves. 

Computer Aspects. With the help of the computer techniques, N. Lloyd et al. recently 
announced with a special cubic system [24] that M(3) > 6. Several papers, using computer - 
methods, announced that H(3) > 9. D - ue to computer algebra results are produced faster 
nowadays than it was the case before. 

In conclusion, since 1900, there has been no answer to Hilbert’s 16th problem, second 
part, not even for the case of quadratic systems. We still do not know the value of H(2). 
Up to now only isolated and special questions (even if highly interesting in themselves) 
have been handled successfully. We need a more comprehensive point of view because of 
the importance and variety of the questions which face us. We do not deal here with only 
one problem, but with a whole variety of problems [27, 30, 311. As the history of the 
subject has shown, in this area of study one has to proceed with special rigor. At the 
present time, there is a lot of activity in this area of study. There is renewed hope that 
a combination of the more powerful newly discovered theoretical methods, such as those 
developed by Ecalle et al with the computer techniques Will bring about a solution to 
Hilbert’s 16th problem, at least for the case of quadratic systems. 

Acknowledgement. 1 am very grateful to Professor Dana Schlomiuk for helpful and 
stimulating discussions. 
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