Ann. sc. math. Québec, 13 (1), 1989, 79-88.

EXISTENCE OF ASYMPTOTICALLY ALMOST-PERIODIC AND OF ALMOST-AUTOMORPHIC SOLUTIONS FOR SOME CLASSES OF ABSTRACT DIFFERENTIAL EQUATIONS

Samuel ZAIDMAN

Abstract

RÉSUMÉ. Dans ce travail, on étudie le problème de l'existence des solutions asymptotiquement presque-périodiques au sens de Fréchet ou presque-automorphes au sens de Bochner pour équations différentielles dans les espaces de Banach de la forme: $u^{\prime}(t)-A u(t)=f(t)$, où A est un opérateur linéaire avec certaines propriétés, tandis que f est asymptotiquement presque-périodique ou presque-automorphe.

ABSTRACT. In this paper, we consider the problem of the existence of solutions which are asymptotically almost-periodic in the sense of Fréchet (a.a.p.) or almost-automorphic in the sense of Bochner (a.a.) for differential equations in Banach spaces which are of the form: $u^{\prime}(t)-A u(t)=f(t)$ where A is a linear operator with some special properties while f is a.a.p. or a.a.

Introduction. The present work is dedicated to non-homogeneous differential equations in a Banach space where the (forcing) term appearing in the right-hand side is asymptotically almost-periodic (a.a.p.) or almost-automorphic (a.a.); one looks for solutions belonging to the same class of functions (respectively). The asymptotically almost-periodic functions were introduced by Fréchet [5]; they appear to be quite useful in applications to ordinary differential equations (see [4]). If extension to Banach space is done, the theory is quite similar (except for a few changes, here and there) (see [8] and [13]). There are, as far as we know, some applications to abstract differential equations (as in [10], [12], [13]). Here we add one more result, giving the existence of a (non-necessarily unique) a.a.p. solution of the equation $u^{\prime}-A u=f$, when A is a simple (diagonal) linear operator with some special properties.

We note that the "solution" so far obtained will only be in the "ultra-weak" sense of Lions [7]; this is quite reasonable due to the way the construction is done.

The remaining of the paper is dedicated to almost-automorphic solutions; this class of functions (scalar-valued) was introduced by Bochner ([1]); extensions to Banach spacevalued functions and various applications are given for example, in [9]; the results have similarities to those concerning the almost-periodic solutions and this is true also for the propositions in the present paper (for their almost-periodic counterpart see [14], [15]).

1. Let X be a Banach space and $f(t),[0, \infty) \rightarrow X$ be strongly continuous and satisfying the following property:
$\forall \epsilon>0, \exists T(\epsilon) \geq 0$ such that the set of real numbers

$$
\begin{equation*}
\left\{\tau \mid \tau \geq 0, \sup _{t \geq T(\epsilon)}\|f(t+\tau)-f(t)\|<\epsilon\right\}=\lambda_{+, T}(f, \epsilon) \tag{1.1}
\end{equation*}
$$

is relatively dense on $[0, \infty)$ (i.e. for some $L(\epsilon)>0$, any interval $[a, a+L], a \geq 0$, contains at least one point of $\lambda_{+, T}(f, \epsilon)$). (This is the definition of the class $\mathcal{F}\left(R^{+} ; X\right)$ in [13]).

[^0](c)Association mathématique du Québec

Furthermore, it is proved in [13] that this class is the same as the class of asymptotically almost-periodic functions, $R^{+} \rightarrow X$, consisting of all continuous functions $g(t), R^{+} \rightarrow X$ admitting a representation of the form $g(t)=\tilde{g}(t)+w(t)$, where $\tilde{g}(t)$ is almost-periodic, $R \rightarrow X$, while $w(t), R^{+} \rightarrow X$, converges strongly to θ as $t \rightarrow \infty$. Thus, if $f(t) \in \mathcal{F}\left(R^{+} ; X\right)$ and $z(t)$ is continuous, $R^{+} \rightarrow X$ and $z(t) \rightarrow \theta$ as $t \rightarrow+\infty$, it follows that $f(t)+z(t)$ belongs again to $\mathcal{F}\left(R^{+} ; X\right)(f=\tilde{f}+w \rightarrow f+z=\tilde{f}+w+z, \tilde{f}$ a.p., $w+z \rightarrow \theta$ as $t \rightarrow+\infty)$.

Consider now a linear closed operator $A, D(A) \subset X \rightarrow X$ which is the generator of a $C o$-semigroup $S(t)$, verifying the exponential decay estimate $\|S(t)\| \leq M e^{\beta t}, \beta<0$ $(\forall t \geq 0)$. If $f(t)$ is any continuous function, $R^{+} \rightarrow X$, the mild solution over $[0, \infty)$ of the abstract differential equation

$$
\begin{equation*}
\frac{d u}{d t}=A u+f \tag{1.2}
\end{equation*}
$$

with initial data $u_{o} \in X$, is the function

$$
\begin{equation*}
u(t)=S(t) u_{o}+\int_{0}^{t} S(t-\sigma) f(\sigma) d \sigma \tag{1.3}
\end{equation*}
$$

As seen in [13], if $f \in \mathcal{F}\left(R^{+} ; X\right)$, the function given by the expression

$$
\int_{0}^{t} S(t-\sigma) f(\sigma) d \sigma, \text { belongs to the same class. }
$$

As the limit: $S(t) u_{o} \rightarrow \theta$ for $t \rightarrow+\infty$ holds we see that the mild solution $u(t)$ is also in $\mathcal{F}\left(R^{+} ; X\right)$. Therefore we have that all mild solutions on $[0, \infty)$ of the equation (1.2) are in $\mathcal{F}\left(R^{+} ; X\right)$ when $f \in \mathcal{F}\left(R^{+} ; X\right)$.

We note the particular case when A is a (complex) number with $\operatorname{Re} A<0$. All solutions of the ordinary differential equation

$$
\begin{equation*}
u^{\prime}(t)=A u(t)+f(t), \quad t \geq 0, \quad u(t): R^{+} \rightarrow \mathcal{C} \tag{1.4}
\end{equation*}
$$

are given by the formula

$$
\begin{equation*}
u(t)=e^{A t} u_{o}+\int_{0}^{t} e^{A(t-\sigma)} f(\sigma) d \sigma \tag{1.5}
\end{equation*}
$$

In particular, the solution

$$
v(t)=\int_{0}^{t} e^{A(t-\sigma)} f(\sigma) d \sigma
$$

with zero Cauchy data is a.a.p. It also verifies the following estimate:

$$
\begin{align*}
& |v(t)| \leq \sup _{R^{+}}|f| \int_{0}^{t} e^{(\operatorname{Re} A) t} e^{(-\operatorname{Re} A) \sigma} d \sigma=e^{(\operatorname{Re} A) t}\|f\|_{\infty} \int_{0}^{t} e^{(-\operatorname{Re} A) \sigma} d \sigma \\
& \quad=e^{(\operatorname{Re} A) t}\|f\|_{\infty} \frac{1}{|\operatorname{Re} A|}\left(e^{(-\operatorname{Re} A) t}-1\right)=\frac{\|f\|_{\infty}}{|\operatorname{Re} A|}\left(1-e^{(\operatorname{Re} A) t}\right) \leq \frac{\|f\|_{\infty}}{|\operatorname{Re} A|}, \forall t \geq 0 . \tag{1.6}
\end{align*}
$$

2. Consider now a separable Hilbert space H with orthonormal basis $\left(e_{j}\right)_{1}^{\infty}$ and let $\left(\lambda_{j}\right)_{1}^{\infty}$ be a given sequence of complex numbers. Define the linear operator A in H in the following way. The domain $D(A)$ consists of all finite linear combinations of basic vectors e_{j}

$$
\begin{equation*}
D(A)=\left\{\sum_{1}^{p} \alpha_{j} e_{j} l p \in \mathbf{N}, \alpha_{j} \in C\right\} \tag{2.1}
\end{equation*}
$$

and,

$$
\forall h \in D(A), h=\sum_{1}^{p} \alpha_{j} e_{j}, \text { we put } A h=\sum_{1}^{p} \alpha_{j} \lambda_{j} e_{j} .
$$

Thus A maps each e_{j} into $\lambda_{j} e_{j}, A$ is a linear operator ("diagonal" operator), and $D(A)$ is dense in H.

Next, let $f(t), R^{+} \rightarrow H$ be in $\mathcal{F}\left(R^{+} ; X\right)$. It is then obvious that the scalar-valued function $\left(f(t), e_{j}\right)_{H}$ is in $\mathcal{F}\left(R^{+} ; \mathbb{C}\right) \forall j=1,2 \ldots$ (this follows directly from the definition of $\mathcal{F}\left(R^{+} ; X\right)$ and also from the decomposition of f (as an a.a.p. function). We shall give below a result expressing a sufficient condition in order that the inhomogeneous equation

$$
\begin{equation*}
u^{\prime}(t)=A u(t)+f(t) \tag{2.2}
\end{equation*}
$$

on $[0, \infty)$ admits a ultra-weak solution $u(t)$ belonging again to $\mathcal{F}\left(R^{+} ; X\right)$.
Let us first note that the adjoint (hilbertian) operator A^{*} has a domain containing $D(A)$. (Hence $D\left(A^{*}\right)$ is dense in H and A^{*} is a closed operator) (see our paper [15]). The class of vector-valued functions $K_{A^{*}}(0, \infty)$ is composed of functions $\varphi(t),(0, \infty) \rightarrow$ $D\left(A^{*}\right)$, such that $\varphi(t) \in C_{o}^{1}(0, \infty ; H)$ and $A^{*} \varphi \in C(0, \infty ; H)$. Then, a continuous function $u(t),(0, \infty) \rightarrow H$ is an ultra-weak solution of (2.2) iff the integral relation

$$
\begin{equation*}
\int_{0}^{\infty}\left(u(t), \varphi^{\prime}(t)+\left(A^{*} \varphi\right)(t)\right)_{H} d t=-\int_{0}^{\infty}(f(t), \varphi(t))_{H} d t \tag{2.3}
\end{equation*}
$$

holds, for any $\varphi \in K_{A^{*}}(0, \infty)$.
Note that if the functions $\left\{u_{N}(t)\right\}_{1}^{\infty}$, are ultra-weak solutions corresponding to $\left\{f_{N}(t)\right\}_{1}^{\infty}$ and if $u_{N}(t) \rightarrow u(t), f_{N}(t) \rightarrow f(t)$ uniformly on each compact of $(0, \infty)$, then $u(t)$ verifies (2.3) with $f(t)$ as right-hand side, (see [11]).

Let us state now (and then prove) the following.
Theorem 1. Let A be an (unbounded) diagonal operator in the separable Hilbert space H with basis $\left(e_{j}\right)_{1}^{\infty}$, such that $A e_{j}=\lambda_{j} e_{j} \forall j=1,2 \ldots$ and Re $\lambda_{j}<0$ for all $j=1,2 \ldots$

Let $f(t),[0, \infty) \rightarrow H$ be an as. alm. periodic function, such that

$$
\begin{equation*}
\sum_{j=1}^{\infty} \frac{1}{\left|R e \lambda_{j}\right|^{2}}\left(\sup _{t \in R^{+}}\left|\left(f(t), e_{j}\right)\right|\right)^{2}<+\infty \tag{2.4}
\end{equation*}
$$

Then the equation $u^{\prime}(t)=A u(t)+f(t)$ on $[0, \infty)$ possesses an ultra-weak solution on $(0, \infty)$ which is in $\mathcal{F}\left(R^{+} ; H\right)$.

Proof: Consider the scalar ordinary differential equations

$$
\begin{equation*}
\frac{d u_{j}}{d t}=\lambda_{j} u_{j}(t)+f_{j}(t) \tag{2.5}
\end{equation*}
$$

where $f_{j}(t)=\left(f(t), e_{j}\right)_{H}, j=1,2, \ldots$
As noted previously, due to the condition $R e \lambda_{j}<0$, the functions

$$
\begin{equation*}
u_{j}(t)=\int_{o}^{t} e^{\lambda_{j}(t-\sigma)} f_{j}(\sigma) d \sigma \tag{2.6}
\end{equation*}
$$

are all as. alm. periodic solutions of (2.5) on $[0, \infty)$, with the estimation

$$
\begin{equation*}
\left|u_{j}(t)\right| \leq \frac{1}{\left|\operatorname{Re} \lambda_{j}\right|} \sup _{R^{+}}\left|f_{j}(\sigma)\right|, \forall t \geq 0 \tag{2.7}
\end{equation*}
$$

Define then the function $u(t),[0, \infty) \rightarrow H$, given by the series

$$
\begin{equation*}
u(t)=\sum_{j=1}^{\infty} u_{j}(t) e_{j} \tag{2.8}
\end{equation*}
$$

In view of (2.4) we have the uniform convergence on $[0, \infty)$ of the numerical series

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left|u_{j}(t)\right|^{2} \tag{2.9}
\end{equation*}
$$

and accordingly the uniform convergence over R^{+}, in H-strong sense of the sequence of partial sums

$$
\begin{equation*}
\sum_{j=1}^{N} u_{j}(t) e_{j}=w_{N}(t) \tag{2.10}
\end{equation*}
$$

Note that the functions $w_{N}(t)$ are as. alm. per. as mappings, $R^{+} \rightarrow H$ and thus we see that $u(t)$, which is the uniform limit of $\left\{w_{N}(t)\right\}_{1}^{\infty}$, on R^{+}, is also as. alm. per. (a.a.p. function). We see also that, for all $j=1,2 \ldots$ the equalities

$$
\begin{equation*}
\frac{d}{d t}\left(u_{j}(t) e_{j}\right)=u_{j}^{\prime}(t) e_{j}=\lambda_{j} u_{j}(t) e_{j}+f_{j}(t) e_{j}=A\left(u_{j}(t) e_{j}\right)+f_{j}(t) e_{j} \tag{2.11}
\end{equation*}
$$

hold.
Hence we get, after finite summation, the equalities

$$
\begin{equation*}
w_{N}^{\prime}(t)=A\left(w_{N}(t)\right)+\sum_{1}^{N} f_{j}(t) e_{j} \text { in the strong sense, over }[0, \infty) \tag{2.12}
\end{equation*}
$$

hence also in the (ultra) weak sense (see again [11]).
Note also the following
Lemma 1. If $f(t) \in \mathcal{F}\left(R^{+} ; H\right)$ and $f_{j}(t)=\left(f(t), e_{j}\right)$, then the relation

$$
f(t)=\lim _{N \rightarrow \infty}\left(\sum_{j=1}^{N} f_{j}(t) e_{j}\right)
$$

holds, in strong H, uniformly on R^{+}.
Proof: Consider the linear operators P_{j} from H into $S p\left(e_{1} \ldots e_{j}\right)$ given by

$$
P_{j} h=\sum_{k=1}^{j}\left(h, e_{k}\right) e_{k} .
$$

Then $P_{j} h \rightarrow h \forall h \in H$ and the convergence is uniform on rel. compact sets in particular on the range of $f(t)$ (see [2] and [6]).

Thus $w_{N}(t) \rightarrow u(t)$ uniformly on $[0, \infty)$, while $\sum_{1}^{N} f_{j}(t) e_{j} \rightarrow f(t)$ also uniformly on $R^{+} ;$ we obtain that

$$
u^{\prime}(t)=A u(t)+f(t)
$$

in the ultra-weak sense over $(0, \infty)$, that is (2.3) is satisfied. This proves Theorem 1.
3. Starting from this section we shall consider almost-automorphic solutions of abstract differential equations. Our first result, quite a simple one, is similar to one on almostperiodic solutions which appears in our recent paper [14]. Let us state it under the form of

TheOREM 2. Let $A=\left(a_{i j}\right)_{i j=1}^{n}$ be a square-matrix of complex-numbers, such that Re $\lambda_{j} \neq$ 0 for all eigenvalues λ_{j}. Then given any a.a. function $f(t), R \rightarrow Y^{n}$, there exists a unique a.a. function $y(t), R \rightarrow Y^{n}$, solving the equation $y^{\prime}=A y+f$ (here Y is a (complex) Banach space).
Proof: The unicity is a particular case of the unicity of all bounded over R solutions (see [14]). To prove existence let us remember first the well-known.

Lemma 2. \exists a linear invertible operator $B, \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ such that

$$
B^{-1} A B=\left(\begin{array}{cccc}
\lambda_{1} & c_{12} & \ldots & c_{1 n} \tag{3.1}\\
O & \lambda_{2} & \ldots & c_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
O & O & \ldots & \lambda_{n}
\end{array}\right)
$$

(see [3]).
Lemma 3. If $\operatorname{Re} \lambda>0$ and f is a.a., the integral

$$
z(t)=-\int_{t}^{\infty} e^{\lambda(t-\sigma)} f(\sigma) d \sigma
$$

is a.a. and is a solution of $z^{\prime}=\lambda z+f$; if $\operatorname{Re} \lambda<0$ and f is a.a., the integral

$$
\int_{-\infty}^{t} e^{\lambda(t-\sigma)} f(\sigma) d \sigma \text { has the same properties. }
$$

T : he only thing which needs a proof is for example, that $z(t)$ is a.a., say, when $\operatorname{Re} \lambda<0$. We have obviously

$$
\begin{equation*}
\int_{-\infty}^{t} e^{\lambda(t-\sigma)} f(\sigma) d \sigma=-\int_{+\infty}^{o} e^{\lambda u} f(t-u) d u=\int_{0}^{\infty} e^{\lambda u} f(t-u) d u=z(t) \tag{3.2}
\end{equation*}
$$

In order to establish that z is a.a., note first that given any real sequence $\left\{\alpha_{n}^{\prime}\right\}_{1}^{\infty} \exists \mathrm{a}$ subsequence $\left\{\alpha_{n}\right\}_{1}^{\infty}$ such that

$$
\begin{equation*}
f\left(s+\alpha_{n}\right) \rightarrow g(s) \text { and } g\left(s-\alpha_{n}\right) \rightarrow f(s),(\text { as } n \rightarrow \infty) \text {, in the pointwise sense } \tag{3.3}
\end{equation*}
$$

(hence $g(s)$ is strongly measurable and bounded over R).
We shall now see that $z\left(t+\alpha_{n}\right) \rightarrow w(t)=\int_{o}^{\infty} e^{\lambda u} g(t-u) d u$ (this is a Bochner integral) and also that $w\left(t-\alpha_{n}\right) \rightarrow z(t)$ as $n \rightarrow \infty$, pointwise (this will prove that z is alm. aut.).

We have:

$$
\begin{equation*}
z\left(t+\alpha_{n}\right)=\int_{0}^{\infty} e^{\lambda u} f\left(t-u+\alpha_{n}\right) d u \tag{3.4}
\end{equation*}
$$

Now: $f\left(t-u+\alpha_{n}\right) \rightarrow g(t-u) \forall u \in R$ (assume t fixed). Furthermore we have the estimate

$$
\begin{equation*}
\left\|e^{\lambda u} f\left(t-u+\alpha_{n}\right)\right\|_{X} \leq e^{(R e \lambda) u}\|f\|_{\infty} \in L^{1}(0, \infty)(\text { as } \operatorname{Re} \lambda<0) \tag{3.5}
\end{equation*}
$$

Applying the dominated convergence theorem we get (strongly in X)

$$
\begin{equation*}
z\left(t+\alpha_{n}\right) \rightarrow \int_{0}^{\infty} e^{\lambda u} g(t-u) d u=w(t)(\forall t \in R) \tag{3.6}
\end{equation*}
$$

Next we have

$$
w\left(t-\alpha_{n}\right)=\int_{0}^{\infty} e^{\lambda u} g\left(t-u-\alpha_{n}\right) d u
$$

We note that

$$
g\left(t-u-\alpha_{n}\right) \rightarrow f(t-u) \forall u \in R \text { (once } t \text { is fixed in } R \text {). }
$$

also

$$
\begin{equation*}
\left\|g\left(t-u-\alpha_{n}\right) e^{\lambda u}\right\| x \leq e^{(R e \lambda) u}\|f\|_{\infty}\left(\text { as }\|g\|_{\infty} \leq\|f\|_{\infty}\right) \tag{3.7}
\end{equation*}
$$

Thus we find again, for same reason as above, that

$$
w\left(t-\alpha_{n}\right) \rightarrow \int_{0}^{\infty} e^{\lambda u} f(t-u) d u=z(t),(\text { for all } t \in R)
$$

This proves Lemma 3.
Proof of Theorem 2 (continuation): Consider the following system of ordinary diff. equations

$$
\begin{align*}
& \frac{d z_{1}}{d t}=\lambda_{1} z_{1}(t)+c_{12} z_{2}(t)+\ldots c_{1 n} z_{n}(t)+g_{1}(t) \\
& \frac{d z_{2}}{d t}=\lambda_{2} z_{2}(t)+\ldots c_{2 n} z_{n}(t)+g_{2}(t) \\
& \vdots \tag{3.8}\\
& \frac{d z_{n-1}}{d t}=\lambda_{n-1} z_{n-1}(t)+c_{n-1, n} z_{n}(t)+g_{n-1}(t) \\
& \frac{d z_{n}}{d t}=\lambda_{n} z_{n}(t)+g_{n}(t)
\end{align*}
$$

where the λ_{i} are the eigenvalues of A, the $c_{i j}$ are those appearing in Lemma 2 while the $g_{i}(t)$ are defined as follows:

We know that any linear invertible operator $B, \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is represented by a matrix (non-singular) $B=\left(\left(b_{i j}\right)\right)$, where $b_{i j} \in \mathbb{C} \forall i, j=1,2, \ldots n$. We can associate to this matrix a linear continuous operator $Y^{n} \rightarrow Y^{n}$ in the "usual" way: $\forall y=\left(y_{1} \ldots y_{n}\right) \in Y^{n}$,

$$
B y=\left(\begin{array}{ccc}
b_{11} & \ldots & b_{1 n} \tag{3.9}\\
b_{21} & \ldots & b_{2 n} \\
\ldots & \ldots & \ldots \\
b_{n 1} & \ldots & b_{n n}
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{cccccc}
b_{11} & y_{1} & + & \ldots & b_{1 n} & y_{n} \\
b_{21} & y_{1} & + & \ldots & b_{2 n} & y_{n} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
b_{n 1} & y_{1} & + & \ldots & b_{n n} & y_{n}
\end{array}\right)
$$

(note that B is also the name of the operator $Y^{n} \rightarrow Y^{n}$ thus defined).
Now, the inverse matrix $B^{-1}=\left(b_{i j}^{\prime}\right)$ is well defined and it also defines a linear continuous operator $Y^{n} \rightarrow Y^{n}$ in a similar way (it is the inverse of the above considered operator $B, Y^{n} \rightarrow Y^{n}$, and is denoted by B^{-1}). Then we put $g(t)=B^{-1} f(t)$, and $g(t)=\left(g_{1}(t), \ldots, g_{n}(t)\right) \in Y^{n}, \forall t \in R$. Note that $B^{-1} \in \mathcal{L}\left(Y^{n}, Y^{n}\right)$, and this implies that g is a.a. $\left(R \rightarrow Y^{n}\right)$ so that all $g_{i}(t)$ are a.a., $R \rightarrow Y$.

Apply now Lemma 3 to the last equation in (3.8), to obtain the (unique) a.a. solution $z_{n}(t),(R \rightarrow Y)$. Then again, in the next to last equation, using a.a. of $c_{n-1, n} z_{n}+g_{n-1}(R \rightarrow$ Y), we obtain the (unique) a.a. solution z_{n-1}. Continuing this way we get the unique a.a. solution $\left(z_{1}(t), \ldots, z_{n}(t)\right), R \rightarrow Y^{n}$ of (3.8). Consider now the function $y(t)=B z(t), R \rightarrow$ Y^{n}. We see that $y(t)$ is a.a. Next, we have

$$
\begin{equation*}
\frac{d y}{d t}=B \frac{d z}{d t} \tag{3.10}
\end{equation*}
$$

Actually, the system (3.8) is nothing else than the equation (in Y^{n})

$$
\begin{equation*}
\frac{d z}{d t}=\left(B^{-1} A B\right) z(t)+B^{-1} f(t) \tag{3.11}
\end{equation*}
$$

Therefore, we get the equality

$$
\frac{d y}{d t}=B\left(B^{-1} A B\right) z(t)+f(t)=A B z(t)+f(t)=A y(t)+f(t)
$$

4. Our next result about existence of a.a. solutions refers to the equation $u^{\prime}=A u+f$ in the Banach space X, when A is the infinitesimal generator of a C_{0}-semigroup with exponential decay, while f is a.., $R \rightarrow X$. The function $u(t), R \rightarrow X$ is a mild solution of $u^{\prime}=A u+f$ if it is continuous and if the relation

$$
\begin{equation*}
u(t)=S(t-a) u(a)+\int_{a}^{t} S(t-\sigma) f(\sigma) d \sigma \tag{4.1}
\end{equation*}
$$

holds, $\forall a \in R, \forall t \geq a$.
The unicity of a.a. mild solutions follows from the unicity of any bounded mild solution. The existence of the a.a. solutions is now quite standard ${ }^{1}$. Precisely, we shall see that the expression

$$
\begin{equation*}
v(t)=\int_{-\infty}^{t} S(t-\sigma) f(\sigma) d \sigma \tag{4.2}
\end{equation*}
$$

[^1](an absolutely convergent integral for bounded f) is a.a. whenever f is so).
a) We have
$$
v(t)=\int_{o}^{\infty} S(s) f(t-s) d s
$$

If $\left\{\alpha_{n}^{\prime}\right\}_{1}^{\infty}$ is any real sequence, $\exists\left\{\alpha_{n}\right\}_{1}^{\infty}$ contained in $\left\{\alpha_{n}^{\prime}\right\}_{1}^{\infty}$ such that $f\left(\sigma+\alpha_{n}\right) \rightarrow$ $g(\sigma)$ and $g\left(\sigma-\alpha_{n}\right) \rightarrow f(\sigma), \forall \sigma \in R$, in strong X-topology.

Then:

$$
\begin{equation*}
v\left(t+\alpha_{n}\right)=\int_{o}^{\infty} S(s) f\left(t+\alpha_{n}-s\right) d s \rightarrow \int_{o}^{\infty} S(s) g(t-s) d s=w(t) \tag{4.3}
\end{equation*}
$$

(by the dominated convergence theorem; g is now a strongly measurable bounded function, $R \rightarrow X$, the integral is a Bochner integral).

Next we have that

$$
w\left(t-\alpha_{n}\right)=\int_{0}^{\infty} S(s) g\left(t-\alpha_{n}-s\right) d s \text { converges to } \int_{0}^{\infty} S(s) f(t-s) d s=v(t) \forall t \in R
$$

b) $v(t)$ is continuous, $R \rightarrow X$. In fact, let $t_{n} \rightarrow t_{o} \in R$.

We have

$$
\begin{equation*}
v\left(t_{n}\right)=\int_{o}^{\infty} S(s) f\left(t_{n}-s\right) d s \tag{4.4}
\end{equation*}
$$

Then $S(s) f\left(t_{n}-s\right) \rightarrow S(s) f\left(t_{0}-s\right) \forall s \in R^{+}$(by continuity of f and boundedness of $S(s)$).

Next:

$$
\left\|S(s) f\left(t_{n}-s\right)\right\| \leq M e^{\beta s}\|f\|_{\infty} \in L^{1}(0, \infty)(\beta \text { is }<0)
$$

Hence we can apply the dominated convergence theorem. Thus, v is a.a. Finally, v is a mild solution of $v^{\prime}=A v+f$. In fact (as in our paper [14]), we note that

$$
\begin{equation*}
S(t-a) v(a)=S(t-a) \int_{-\infty}^{a} S(a-\sigma) f(\sigma) d \sigma=\int_{-\infty}^{a} S(t-\sigma) f(\sigma) d \sigma \tag{4.5}
\end{equation*}
$$

If we add

$$
\int_{a}^{t} S(t-\sigma) f(\sigma) d \sigma \text { we find } \int_{-\infty}^{t} S(t-\sigma) f(\sigma) d \sigma=v(t)
$$

5. In this (final) section of our paper we prove existence and uniqueness of a.a. solutions for the equation $u^{\prime}=A u+f, f$ being a.a. in a Hilbert space, in a situation similar to that of the article [15]. As in the previous section 2, we consider a separable Hilbert space H with orthonormal basis $\left(e_{j}\right)_{1}^{\infty}$ and a diagonal (unbounded) operator A defined on the linear span of $\left(e_{j}\right)_{1}^{\infty}$ by: $A h=\sum \alpha_{j} \lambda_{j} e_{j} \forall h=\sum_{\text {finite }} \alpha_{j} e_{j},\left(\lambda_{j}\right)_{1}^{\infty}$ being a given sequence of complex numbers.

We shall prove the following

Theorem 3. Assume that $\operatorname{Re} \lambda_{j} \neq 0 \forall j=1,2 \ldots$ Let $f, R \rightarrow H$ be a.a. such that

$$
\begin{equation*}
\sum_{j=1}^{\infty} \frac{1}{\left|\operatorname{Re} \lambda_{j}\right|^{2}} \cdot\left(\sup _{R}\left|\left(f(t), e_{j}\right)\right|\right)^{2}<+\infty \tag{5.1}
\end{equation*}
$$

Then the equation $u^{\prime}=A u+f$ on the (whole) real line admits an (unique) ultra-weak solution which is almost-automorphic.
Proof: The unicity of the almost-automorphic ultra-weak solution is a consequence of its boundedness over R (as in the final part of the paper [15]) and of the sole assumption that $\operatorname{Re} \lambda_{j} \neq 0, \forall j=1,2 \ldots$ The existence is proved as in [15], in the following way. Note first that the scalar-product $\left(f(t), e_{j}\right)_{H}=f_{j}(t)$ is a scalar-valued a.a. function, $\forall j=1,2 \ldots$ and then define the a.a. (scalar) function $u_{j}(t)$ which is

$$
\int_{-\infty}^{t} e^{\lambda_{j}(t-s)} f_{j}(s) d s \text { for } R e \lambda_{j}<0 \text { or }-\int_{t}^{\infty} e^{\lambda_{j}(t-s)} f_{j}(s) d s \text { if } R e \lambda_{j}>0
$$

We have the obvious estimate

$$
\begin{equation*}
\left|u_{j}(t)\right| \leq \frac{1}{\left|\operatorname{Re} \lambda_{j}\right|}\left\|f_{j}\right\|_{\infty} \tag{5.2}
\end{equation*}
$$

and accordingly the series of numerical-valued functions

$$
\sum_{j=1}^{\infty}\left|u_{j}(t)\right|^{2} \text { is uniformly convergent over } R
$$

Hence, the series of vector-valued functions

$$
\begin{equation*}
\sum_{j=1}^{\infty} u_{j}(t) e_{j} \tag{5.3}
\end{equation*}
$$

is uniformly convergent on R, in H-norm (this is due to the equality)

$$
\begin{equation*}
\left\|\sum_{N}^{N+p} u_{j}(t) e_{j}\right\|^{2}=\sum_{N}^{N+p}\left|u_{j}(t)\right|^{2} . \tag{5.4}
\end{equation*}
$$

As all the finite sums

$$
\sum_{j=1}^{N} u_{j}(t) e_{j}
$$

are H-valued a.a. functions, it follows (by a known result about uniformly convergent sequences of a.a. functions, [13]) that

$$
u(t)=\sum_{1}^{\infty} u_{j}(t) e_{j}
$$

is a.a., $R \rightarrow H$ as well.
Finally, in order to establish that u is (ultra)-weak solution of $u^{\prime}=A u+f$ we can follow the proof in [15]; we only have to note that, if $f_{j}(t)=\left(f(t), e_{j}\right)$, then

$$
f(t)=\lim _{N \rightarrow \infty} \sum_{j=1}^{N} f_{j}(t) e_{j}
$$

uniformly on R; this is due to the relative compactness of the range of f by [2].

References

1. S. Bochner, A new approach to almost-periodicity, Proc. Nat. Acad. Sci. USA 48 (1962), 2039-2043.
2. S. Bochner and J. von Neumann, On compact solutions of operational-differential equations, I. Ann. Math. 36 (1935), 255-290.
3. C. Corduneanu, "Almost periodic functions," Interscience Publishers, New York-London-Toronto, 1968.
4. A.M. Fink, "Almost periodic differential equations," Springer-Verlag, Berlin-Heidelberg-New York, 1974.
5. M. Fréchet, Fonctions asymptotiquement presque-périodiques, Revue Scientifique (Revue Rose Illustrée) 79 (1941), 341-354.
6. B.M. Levitan and V.V. Zhikov, "Almost periodic functions and differential equations," Cambridge University Press, Cambridge-London-New York, 1982.
7. J.L. Lions, Equations différentielles à coefficients opérateurs non-bornés, Bull. Soc. Math. France 86 (1958), 321-330.
8. S. Zaidman, Qualitative theorems for partial differential equations (Romanian), Studii şi Cercetări Matematice 6 (1955), 645-666.
9. S. Zaidman, Almost automorphic solutions of some abstract evolution equations, Istituto Lombardo, Acc. di Scienze e Lettere, Rendiconti (A) 110 (1976), 578-588.
10. S. Zaidman, Notes on abstract almost-periodicity, Riv. Mat. Univ. Parma 5 (1979), 837-845.
11. S. Zaidman, "Abstract differential equations," Pitman Advanced Publishing Program, San Fran-cisco-London-Melbourne, 1979.
12. S. Zaidman, Behavior of trajectories of C_{0}-semigroups, Istituto Lombardo, Acc. Sci. Lett., Rend. A 114 (1980-1982), 205-208.
13. S. Zaidman, "Almost-periodic functions in abstract spaces," Pitman Advanced Publishing Program, R.N.M., Boston-London-Melbourne, 1985.
14. S. Zaidman, Notes on abstract differential equations, Ann. Sci. Math. Québec 12 (1988), 125-145.
15. S. Zaidman, Almost-periodic solutions of differential equations with diagonal operators, Ann. Sci, Math. Québec 12 (1988), 287-291.

Département de mathématiques et de statistique

Université de Montréal
C.P. 6128-A, Montréal, Québec, H3C 3J7

[^0]: Reçu le 12 octobre 1987 et, sous forme révisée, le 8 décembre 1987.
 This paper was written while the author was supported by a grant of the N.S.E.R.C. of Canada and was a visiting fellow of the "Centre de recherches mathématiques" at the Université de Montréal.

[^1]: ${ }^{1}$ See, for a special case, Th. 2 in [9].

