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EXISTENCE OF ASYMPTOTICALLY ALMOST-PERIODIC AND 
OF ALMOST-AUTOMORPHIC SOLUTIONS FOR SOME CLASSES 

OF ABSTRACT DIFFERENTIAL EQUATIONS 

SAMUEL ZAIDMAN 

RÉsuMÉ. Dans ce travail, on étudie le problème de l’existence des solutions asymptotique- 
ment presquapériodiques au sens de Fréchet ou presque-automorphes au sens de Bochner 
pour équations différentielles dans les espaces de Banach de la forme: u‘(t)  - Au(t) = f ( t ) ,  
où A est un opérateur linéaire avec certaines propriétés, tandis que f est asymptotiquement 
presque-périodique ou presque-automorphe. 

ABSTRACT. In this paper, we consider the problem of the existence of solutions which are 
asymptotically almost-periodic in the sense of Fréchet (a.a.p.) or almost-automorphic in the 
sense of Bochner (a...) for differential equations in Banach spaces which are of the form: 
~ ‘ ( t )  - Au(t) = f ( i )  where A is a iinear operator with some special properties whüc f is a.a.p. 
or 8.8. 

Introduction. The present work is dedicated to non-homogeneous differential equations in 
a Banach space where the (forcing) term appearing in the right-hand side is asymptoticaily 
almost-periodic (a.a.p.) or almost-automorphic (a.a.); one looks for solutions belonging to 
the same class of functions (respectively). The asymptotically almost-periodic functions 
were introduced by Fréchet [5]; they appear to be quite useful in applications to ordinary 
differential equations (see [4]). If extension to Banach space is done, the theory is quite 
similar (except for a few changes, here and there) (see [8] and [13]). There are, as far as 
we know, some applications to abstract differential equations (as in [ l O ] ,  [12], [13]). Here 
we add one more result, giving the existence of a (non-necessarily unique) a.a.p. solution 
of the equation u‘ - Au = f ,  when A is a simple (diagonal) linear operator with some 
special properties. 

We note that the “solution” so far obtained will only be in the “ultra-weak” sense of 
Lions [7]; this is quite reasonable due to the way the construction is done. 

The remaining of the paper is dedicated to almost-automorphic solutions; this class of 
functions (scalar-valued) was introduced by Bochner ([l]); extensions to Banach space- 
valued functions and various applications are given for example, in [9]; the results have 
similarities to those concerning the almost-periodic solutions and this is true also for the 
propositions in the present paper (for their almost-periodic counterpart see [14], [15]). 

1. Let X be a Banach space and f(t),[O,uo) + X be strongly continuous and satisfying 
the following property: 

Ve > O, 3 T(e)  1 O such that the set of real numbers 

is relatively dense on [O, oa) (i.e. for some L ( e )  > O,  any interval [a, a + LI, a 1 O, contains 
at least one point of X + , T ( ~ , E ) ) .  (This is the definition of the class F ( R + ; X )  in [13]). 
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hrthermore, it is proved in [13] that this class is the same as the class of asymptotically 
almost-periodic functions, R+ + X ,  consisting of al1 continuous functions g ( t ) ,  R+ -f X 
admitting a representation of the form g ( t )  = i j(t) + w(t), where i ( t )  is almost-periodic, 
R -+ X ,  while w(t), R+ -f X ,  converges strongly to 6 as t -+ 00. Thus, if f ( t )  E F(R+; X )  
and ~ ( t )  is continuous, R+ + X and ~ ( t )  + 6 as t -+ +CO, it follows that f ( t ) + z ( t )  belongs 
again to 3 ( R + ; X )  (f = f +  w -+ f + z  = f +  w + z , f  a.p., w + z  4 6  as t + +m). 

Consider now a linear closed operator A , D ( A )  c X -+ X which is the generator of 
a Co-semigroup S(t) ,  verifying the exponentiai decay estimate IIS(t)ll 5 MePt,  P < O 
(W 2 O). If f ( t )  is any continuous function, R+ + X ,  the mild solution over [O, m) of the 
abstract differential equation 

du 
dt - = A u + f  

with initial data uo E X ,  is the function 

u( t )  = S(t)u0 + S(t - a)f(a) da. j 
AS seen in [13], if f E .F (R+;X) ,  the function given by the expression 

S(t - a )  f(a) da, belongs to the same class. i 
As the limit: S(t)uo + 6 for t -+ +m holds we see that the mild solution u ( t )  is also in 
.F(R+; X ) .  Therefore we have that al1 mild solutions on [ O ,  00) of the equation (1.2) are 
in 
F(R+; X) when f E F(R+; X ) .  

of the ordinary differential equation 
We note the particular case when A is a (complex) number with Re A < O.  Al1 solutions 

u'(t)  = Au( t )  + f ( t ) ,  t 2 O ,  u ( t )  : R+ -+ C (1.4) 

are given by the formula 

t 

u ( t )  = eAtuo + e A ( t - g ) f ( a )  da. 1 
In particular, the solution 

v ( t >  = e A ( t - g ) f ( a )  da i 
with zero Cauchy data is a.a.p. It also verifies the following estimate: 

t t 
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2. Consider now a separable Hilbert space H with orthonormal basis (ej)? and let (Xj)? 
be a given sequence of complex numbers. Define the linear operator A in H in the following 
way. The domain D ( A )  consists of al1 finite linear combinations of basic vectors e j  

l p  E N, aj E C 

and, 
P P 

V h  E D ( A ) ,  h = x a j e j ,  we put Ah = XajXje j .  
1 1 

Thus A maps each e j  into Xjej, A is a linear operator (“diagonal” operator), and D ( A )  is 
dense in H .  

Next, let f ( t ) ,  R+ + H be in .F(R+;X).  It is then obvious that the scalar-valued 
function ( f ( t ) ,  ej)H is in .F(R+; C )  V j = 1,2 . .  . (this follows directly from the definition 
of .F(R+; X) and also from the decomposition of f (as an a.a.p. function). We shall give 
below a result expressing a sufficient condition in order that the inhomogeneous equation 

u’(t) = Au(t)  + f ( t )  (2.2) 

on [O, w) admits a ultra-weak solution u( t )  belonging again to F(R+; X). 
Let us first note that the adjoint (hilbertian) operator A* has a domain containing 

D(A). (Hence D(A*) is dense in H and A* is a closed operator) (see OUT paper [15]). 
The class of vector-valued functions KA. (O, w) is composed of functions cp(t), (O,  a) -t 
D(A*) ,  such that cp(t) E C:(O, 00; H )  and A*cp E C(0,w; H ) .  Then, a continuous function 
u( t ) ,  (O, w) -+ H is an ultra-weak solution of (2.2) iff the integral relation 

M CO 

/ ( u ( t ) ,  cp’(t> + (A*cp)(t))H dt = - /(f(t), c p ( t ) ) H  dt (2.3) 
O O 

holds, for any cp E KA* ( O ,  CO). 

Note that if the functions {uN(t)}E>O, are ultra-weak solutions corresponding to { f ~ ( t ) } ?  
and if u N ( t )  -f u( t ) ,  f N ( t )  -+ f ( t )  uniformly on each compact of (O, w), then u( t )  verifies 
(2.3) with f ( t )  as right-hand side, (see [il]). 

THEOREM 1. Let A be an (unbounded) diagonal operator in the separable Hilbert space 
H with basis (ej)?, such that Aej  = Xjej V j = 1 , 2 . .  . and Re X j  < O for all j = 1,2.. . 

Let us state now (and then prove) the following. 

Let f ( t ) ,  [O, w) -+ H be an as. alm. periodic function, such that 

Then the equation d ( t )  = Au(t)+f( t )  on [O, w) possesses an ultra-weak solution OR (O,  w) 
which is in 3( R+ ; H ) . 
PROOF: Consider the scalar ordinary differential equations 

d u ,  
dt 
3 = X j U j ( t )  + fj(t) 
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where fj(t) = ( f ( t ) , e j ) ~ ,  j = 1, 2, . . . 
As noted previously, due to the condition R e  X j  < O ,  the functions 

t 

are al1 as. alm. periodic solutions of (2.5) on [O, CO), with the estimation 

Define then the function u( t ) ,  [O, a) -f H, given by the series 

M 

j = l  

In view of (2.4) we have the uniform convergence on [O, m) of the numerical series 

and accordingly the uniform convergence over R+, in H-strong sense of the sequence of 
partial sums 

N 

C u j ( t )  e j  = w N ( t ) .  (2.10) 
j=l 

Note that the functions W N ( ~ )  are as. alm. per. as mappings, R+ + H and thus we see 
that u ( t ) ,  which is the uniform limit of { w N ( t ) } Y ,  on R+, is also as. alm. per. (a.a.p. 
function). We see also that, for al1 j = 1 , 2 ,  . . the equalities 

d 
- ( u j ( t )  e j )  = u > ( t )  e j  = X j u j ( t )  e j  + fj(t) e j  = A ( u j ( t )  e j )  + dt e j  

hold. 
Hence we get, after finite summation, the equalities 

N 
w h ( t )  = A ( w N ( ~ ) )  + C fj(t) e j  in the strong sense, over [O, m) 

1 

hence also in the (ultra) weak sense (see again [il]). 

LEMMA 1. If f ( t )  E F(R+; H) and f j ( t )  = ( f ( t ) ,  e j ) ,  then the relation 

Note also the following 

(2.11) 

(2.12) 
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hoids, in strong H, uniformly on RS 
PROOF: Consider the linear operators Pj from H into Sp(e1  . . . e j )  given by 

j 
Pjh = x ( h ,  ek)ek .  

Then Pjh -+ h V h  E H and the convergence is uniform on rel. compact sets in particular 
on the range of f ( t )  (see [2] and [SI). O 

f j ( t ) e j  -+ f ( t )  also uniformly on R+; 
we obtain that 

in the ultra-weak sense over (O, oo), that is (2.3) is satidied. This proves Theorem 1. 0 

k=l 

Thus wjv(t) -+ u( t )  uniformly on [O, oo), while 

u' ( t )  = Au(t) + f(t) 

3. Starting from this section we shall consider almost-automorphic solutions of abstract 
differential equations. Our first result, quite a simple one, is similar to one on almost- 
periodic solutions which appears in OUT recent paper [14]. Let us state it under the form 
of 

THEOREM 2. Let A = ( U , ~ ) G = ~  be a square-matrix of cornplex-numbers, such that R e X j  # 
O for al1 eigenvalues X j .  Then given any a.a. function f ( t ) ,  R + Y", there exists a unique 
a.a. function y ( t ) ,  R -+ Y",  soiving the equation y' = A y +  f (here Y is a (complex) Banach 
space). 

PROOF: The unicity is a particular case of the unicity of al1 bounded over R solutions (see 
[14]). To prove existence let us remember first the well-known. 

LEMMA 2. 3 a iinear invertibie operator B, ê" -+ ê" such that 

~ e e  131). 
LEMMA 3. If R e X  > O and f is a.a., the integral 

z ( t> = - J e A ( t - g ) f ( u )  do 
t 

is a.a. and is a solution of zf = Xz + f ;  if R e  X < O and f is a.&., the integral 
t 1 eA(t -a )  f(g) du has the same properties. 

T: he only thing which needs a proof is for example, that ~ ( t )  is &.a., Say, when R e  X < O.  
We have obviously 

-00 

O 

e A ( t - b ) f ( o )  da = - J e*u f ( t  - u )  du = Jme*uf ( t  - u )  du = ~ ( t ) .  (3.2) 
-00 1 +W O 
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In order to establish that z is a.a., note first that given any real sequence { a ~ } ~ o 3  a 
subsequence {a,}? such that 

f(s + a,) -i g ( s )  and g ( s  - a,) + f ( s ) ,  (as n --t CO), in the pointwise sense (3.3) 

(hence g ( s )  is strongly measurable and bounded over R). 
We shall now see that z ( t  +a,) + w ( t )  = JOw e x u g ( t  - u )  du (this is a Bochner integral) 

and also that w( t  - a,) -+ z ( t )  as n -+ 00, pointwise (this will prove that z is alm. aut.). 
We have: 

Z ( t  + a n )  = J e x u f ( t  - u + a,) du. (3.4) 
O 

Now: f ( t  - u + an) + g ( t  - u)Vu E R (assume t fixed). h t h e r m o r e  we have the 
estimate 

I lexuf( t  - u + a,)llx I e ( R e x ) u l l f ( l c o  E L1(O,co) (as ReX <O).  (3.5) 
Applying the dominated convergence theorem we get (strongly in X )  

CO 

Z ( t  + (Y,) -+ 1 exu"gt - u )  du = w ( t )  (Vt E R). 
O 

Next we have 

w( t  - a,) = e X u g ( t  - u - a,) du. i 
We note that 

also 

g ( t  - u - an) 4 f ( t  - u )  Vu E R (once t is fixed in R). 

Ilg(t - u - a n ) e x u l l x  5 e (ReX)ullfllm (as ll91lm 5 Ilfllw). (3.7) 

Thus we find again, for same reason as above, that 
C a  

w(t - a,) + / e x " f ( t  - u )  du = z ( t ) ,  (for al1 t E R). 
0 

This proves Lemma 3. O 
P R O O F  O F  THEOREM 2(CONTINUATION): Consider the following system of ordinary diff. 
equations 

d z i  
- =  b ( t )  + c12zz(t) + ' ' .  C l n Z , ( i )  + g 1 ( t )  d t  
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where the X i  are the eigenvalues of A, the cij  axe those appearing in Lemma 2 while the 
g i ( t )  are defined as follows: 

We know that any linear invertible operator B, ê" -t ê" is represented by a matrix 
(non-singular) B = ( ( b i j ) ) ,  where bi, E ê Vi, j = 1,2,. . . n. We c m  associate to this matrix 
a linear continuous operator Y" + Y" in the "usual" way: V y  = (y1 . . . Y n )  E Y",  

bzi ~i + b2n Y n  (3.9) 
S . . . . . . . . . . . . . . . . . . . . . . . . .  

(2  ::: :::) ( y ' )  - ( bll  Y I  + * a *  h n  

By = - ............. 
bnl . . .  b,, Y n  bnl ~i + * .. bnn Y n  

(note that B is also the name of the operator Y" + Y" thus defined). 
Now, the inverse matrix B-' = (b:,) is well defined and it also defines a linear con- 

tinuous operator Y" + Y" in a similar way (it is the inverse of the above considered 
operator B,Y" + Y",  and is denoted by B-l).  Then we put g ( t )  = B-' f ( t ) ,  and 
g ( t )  = (gl(t) ,  . . . , g n ( t ) )  E Y",Vt E R. Note that B-' E C(Y",Y"), and this implies that 
g is a.a. ( R  4 Y " )  so that al1 g i ( t )  are a.&., R -t Y .  

Apply now Lemma 3 to the last equation in (3.8), to obtain the (unique) a.a. solution 
zn(t), ( R  + Y ) .  Then again, in the next to last equation, using a.a. of Cn-l,nZn+gn-l(R + 
Y ) ,  we obtain the (unique) &.a. solution zn-l .  Continuing this way we get the unique a.a. 
solution ( z l ( t ) ,  . . . , zn(t ) ) ,  R 4 Y" of (3.8). Consider now the function y( t )  = Bz(t) ,  R + 
Y".  We see that y( t )  is a.&. Next, we have 

d y  d z  
dt dt * 
- = B- 

Actually, the system (3.8) is nothing else than the equation (in Y " )  

- dz  = (B-lAB)Z(t) + B-' f ( t ) .  
dt 

Therefore, we get the equality 

!!! = B(B-lAB)z( t )  + f ( t )  = ABz(t)  + f(t) = Ay(t) + f(t). 0 
dt 

(3.10) 

(3.11) 

4. Our next result about existence of a.&. solutions refers to the equation u' = Au+f in the 
Banach space X ,  when A is the infinitesimal generator of a Co-semigroup with exponential 
decay, while f is a.., R + X .  The function u( t ) ,  R + X is a mild solution of u' = Au + f 
if it is continuous and if the relation 

u ( t )  = S(t - a)u(a)  + S(t - u ) f ( u )  du (4.1) i 
holds, V a  E R,'dt  2 a. 

The unicity of &.a. mild solutions follows from the unicity of any bounded mild solution. 
The existence of the a.&. solutions is now quite standard1. Precisely, we shall see that the 
expression 

v ( t )  = S(t  - u ) f ( a )  dg  (4.2) 
-m i 

'See, for a special case, Th. 2 in [9]. 
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(an absolutely convergent integral for bounded f )  is 51.51. whenever f is so). 
a) We have 

CO 

v( t )  = / S(s) f ( t  - s) ds. 
J 
O 

If {ak}y is any real sequence, 3{a,}y contained in { ( Y R } ~  such that f(a + a,) + 
g ( a )  and g ( o  - a,) + f (a) ,Va E R, in strong X-topology. 

Then: 

v( t  + a,) = S ( s ) f ( t  + a, - s) ds 4 S(s)g(t  - s) ds = w(t)  (4.3) f f 

JO O 

(by the dominated convergence theorem; g is now a strongly measurable bounded 
function, R + X ,  the integral is a Bochner integral). 

Next we have that 
CO 

w(t - an> = S(s)g( t  - a, - s )  ds converges to J s ( s ) f ( t  - s) ds = v( t>  vt E R. 

b) v ( t )  is continuous, R -+ X .  In fact, let t ,  + to  E R. 

CO 
We have 

v ( t n )  = J S ( S ) f ( t ,  - s ) d s .  (4.4) 
O 

Then S ( s ) f ( t ,  - s )  --t S(s ) f ( to  -s)Vs E R+ (by continuity of f  and boundedness 

Next: 
of S ( S ) ) .  

Ils(s)f(t, - s)Il I MePsIlflloo E L ~ ( O , O O )  ( P  is < 0) 

Hence we can apply the dominated convergence theorem. Thus, v is &.a. Finally, 
v is a mild solution of v’ = Av + f. In fact (as in Our paper [14]), we note that 

a a 
c 

S(t - u ) ~ ( u )  = S(t - U )  S(U - a)f(a) d a  = S(t - a)f(~) da (4.5) 
-00 -00 

If we add 
t 

i / S(t  - a)f(a) da we find S(t - a)f(a) da = v(t). O 

5 .  In this (final) section of Our paper we prove existence and uniqueness of a.a. solutions 
for the equation u’ = Au + f, f being &.a. in a Hilbert space, in a situation similar to that 
of the article [15]. As in the previous section 2, we consider a separable Hilbert space 
H with orthonormal basis ( e j ) ?  and a diagonal (unbounded) operator A defined on the 
linear span of (e j )?  by: Ah = C a j X j e j V h  = Cfinite a je j ,  ( X j ) ?  being a given sequence 
of complex numbers. 

We shall prove the following 
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THEOREM 3. Assume that Re X j  # O V j  = 1 ,2 . . .. Let f, R + H be a.a. such that 

Then the equation u' = Au + f on the (whole) r e d  line admits an (unique) ultra-weak 
solution which is aimost-automorphic. 

PROOF: The unicity of the almost-automorphic ultra-weak solution is a consequence of its 
boundedness over R (as in the final part of the paper [15]) and of the sole assumption that 
Re X j  # 0,Vj = 1 , 2 . ,  . . The existence is proved âs in [15], in the following way. Note first 
that the scalar-product ( f ( t ) , e j ) ~  = f j ( t )  is a scalar-valued a.a. function, V j  = 1 ,2 . .  . 
and then define the &.a. (scalar) function uj(t)  which is 

exj(t-s) f j (s)  ds for Re X j  < O or - exj(t-u)fj(s) ds if Re X j  > O. 
-00 t 

and accordingly the series of numerical-valued functions 
m C l ~ , ( t ) / ~  is uniformly convergent over R. 

j=i  
Hence, the series of vector-valued functions 

m C uj(t> e j  
j=l 

is uniformly convergent on R, in H-norm (this is due to the equality) 

(5.3) 

As al1 the finite sums 
N 

C uj( t> e j  

are H-valued a.a. functions, it follows (by a known result about uniformly convergent 
sequences of a.a. functions, [13]) that 

j=1 

1 

is &.a., R 3 H as well. 

the proof in 1151; we only have to note that, if f j ( t )  = ( f ( t ) ,  ej) ,  then 
Finally, in order to establish that u is (ultra)-weak solution of u' = Au + f we can follow 

N 

uniformly on R;  this is due to the relative compactness of the range of f by [2]. O 
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