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NOTIONS OF COMPACTNESS ON THE LATTICE 
AND ON THE POINT SET IN TERMS OF MEASURES 

CARLOS C. HUERTA 

RÉsuMÉ. Nous introduisons les concepts de presque compacité et de presque compacité 
dénombrable sur un treillis à l’aide de mesures et nous relions ces concepts à leurs contrepar- 
ties ensemblistes. Utilisant ces notions, nous donnons des représentations équivalentes de la 
pseudocompacité. 

ABSTRACT. We introduce the concept of almost compact and the concept of almost count- 
ably compact on a lattice in terms of measures and tie them in to their counterparts on the 
point set. With these notions, we give equivalent representations of pseudocompactness. 

1. Introduction. The concept of almost compact has been around for a while [l, 21. What 
we wish to do here is define almost compact and almost countably compact on an arbitrary 
lattice of subsets of an arbitrary space X ,  in terms of measures. We will see that almost 
compact on the lattice will reduce to the usual notion of almost compact in the point 
set framework, and that our definition of almost countably compact will reduce to lightly 
compact [3, 41 in the point set framework. What makes this note of particular interest 
will be the measure representations of these concepts we give along with the measure style 
proofs. We will dso give some new results involving these notions of compactness on the 
lattice. Our notation will be that already standard in the literature [5 ] .  Al1 Our lattice of 
subsets from the set X will contain both 0 and X .  

We can take Our lattice t and extend it to the smallest boolean algebra containing L, 
A(L) .  We denote the complemented lattice of t as LI and note that A(L)  = A(L‘) .  The 
set of al1 zero-one valued measures defined on A(L)  we denote I (L ) .  We Say a measure is 
L-regular or just regular if t is clear, if 

We denote the set of al1 regular memures by  IR(^). A measure is a-smooth on the lattice 
if for L, E t such that n, L,  = 0 with L, decreasing (we denote this by Ln 1 0) we 
have lim, p(L,) = O. We denote this subset of I ( t )  as Iu(C). If the above holds true for 
al1 A ,  E A(C)  then Our measure is a-smooth on the algebra which we denote I @ ( t ) .  We 
note that if p E IR(,C) then p E I ‘ ( t )  iff p E Iu(t). For any measure p,  we define its 
support by s ( ~ )  = m a L a  I p ( ~ a )  = 1, L,  E cl. 
2. Results on a lattice. 

DEFINITION 1. A lattice t is a lmos t  compac t  if for p E IR(C’), Sc(p) # 0. 

DEFINITION 2. A lattice t is a lmos t  countably compact  if IR(C’) c Iu(L). 
DEFINITION 3. A lattice L is countably  compact  if I ( L )  C Iu(C). 
DEFINITION 4. A lattice C is compact  if S(p) # 0 for p E I (C) .  
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REMARK 1. It is immediate from the definitions that C countably compact implies C 
almost countably compact. 

THEOREM 1. If the lattice C is almost compact then C is almost countably compact. 

PROOF: Let L, E C be such that n, L, = 0 with L, decreasing. If p E IR(L')  and 
limp(L,) = 1, this implies L, is considered in the support of p and since S(p) # 0 this 
contradicts n, L, = 0. O 

THEOREM 2. Let Cl and C2 be two lattices such that Li 2 C2. If& is almost countably 
compact, then Ci is almost countably compact. 

PROOF: Let p E I R ( C ~ ) ,  we can find X E I R ( C ~ )  such that p = XI,,,:, (see [SI). But C2 
8.c.c. gives us p E Iu(C2) and since Iu(C2) 2 Iu(C1) Our result follows. O 

Now we give conditions where almost countably compact implies almost compact. We 
first r e c d  two definitions [5] .  

DEFINITION 5 .  A lattice C is p r i m e  complete  if for p E I&), S(p)  # 0. 

DEFINITION 6. A lattice L is a lmos t  replete if S r ( p )  # 0 for p E IR(L ' )  

THEOREM 3. Let C be almost countably compact and prime complete then L is almost 
compact. 

PROOF: Obvious. O 

THEOREM 4. Let C be almost countably compact and aimost replete then C is almost 
compact. 

PROOF: If p E IR(L') then p E IR(L')  nI,,(C) and since S(p) # 0 Our result follows. 

16(L). 

3. Applications to topology. Our first application will be to show that if we let Our 
lattice be the lattice of closed sets, i.e. L = 7 then almost compactness on the lattice 
reduces to almost compactness on the point set. 

THEOREM 5 .  Let X be a T3+ topoiogical space. Then for any arbitraxy open covering 
of X there exists a h i t e  subfmily whose closures cover X iff for p E IR(O)  we have 
S&) # 0. (O is the lattice of open sets). 

PROOF: 
(1) Take X = U, O, and suppose X # Uy='=, ÜQi then X # 0, for any a or 0 # 0,' 

for any a. We see that the 0,' constitute a filter base. We take the filter formed 
by O,' and enlarging it to an ultrafilter we now can construct a p E IR(O)  such 
that ~ ( 0 ~ ' )  = ~ ( 0 ; )  = 1 for al1 a (see [SI). Considering the support of p we have 
n,OQ = 0 by OUT assumption which gives s ~ ( p )  = 0 and OUT result follows one 
way. 

(2) Now, suppose S&) = 0 for p E IR(O).  This gives p(F,)  = 1 and n, F, = 0 for 
al1 a. We can write X = U, FL and p(FQ) = O for al1 a. Now if X = U y = l T  
we see that p ( E )  = O and p ( X )  5 x:=l p ( K )  = O but p ( X )  = 1 and Our result 
stands. O 

Now for almost countably (lightly compact). 
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THEOREM 6. Let X be a T3+ topologicd space. Then for any countable open cover of X 
there exists a finite subfamily whose closures cover X iff IR(O) C I u ( 3 ) .  
PROOF: - 

(1) Take F, E 3 such that F, 1 0 or X = U, FA. Assuming X = U;=, FA, we 
can wnte 0 = Fi,. Now if lim, p(F,) = 1 for p E IR(O) this gives us 
lim, p(F,O) = 1 but this contradicts 0 = n;=, Fi,  and we have p E I u ( 3 ) .  

(2) Take X = U, O, with O, increasing and suppose X # U:=, O,, . This gives us 
O,b’ which can serve as a filter base. Taking that filter and enlarging it to an 
ultrafilter, we can construct p E IR(O) such that p(O, ,  ) = 1 = p(O;,)  for al1 n 
and k. Now 0 = n, 0; and limk p(On,) # O therefore p $! I u ( 3 )  and the theorem 
stands. O 

REMARK 2. The fact that almost compactness for a topological space implies almost 
countably compact (lightly compact) follows immediately from Theorem 1. 

THEOREM 7. Let X be a T33, aJmost redcompact, and dmost countably compact topo- 
logical space, then X is dmost compact. 

PROOF: Let ,C = 3 the lattice of closed sets, then almost replete is equivalent to almost 
realcompact [7]. With Theorem 4 the result follows. 

We have shown [8] that if I ( L )  = IR(,C), then the lattice L is complemented and therefore 
a boolean algebra. We now see the following: 

THEOREM 8. Let X be T34 and dmost compact, and Jet I ( 3 )  =  IR(^), then X is 
compact. 

PROOF: Take p E I ( F )  = IR(F)  which is equivalent to I ( 3 )  = IR(O) ,  but & ( p )  # 0 
since X is almost compact and the result follows. O 

THEOREM 9. Let X be T3+ dmost countably compact and let I ( 3 )  =  IR(^), then X is 
coun tably compact. 

PROOF: We see that p E I ( 3 )  = IR(O)  
REMARK 3. Since I ( 3 )  =  IR(^) implies X is extremely disconnected [8], we see that if X 
is T34 and extremely disconnected then almost compact and compact coincide and almost 
countably compact and countably compact coincide. 

REMARK 4. When we impose the condition that I ( 3 )  =  IR(^) on the space X we can then 
bring the Theorems about C ( X ) ,  the space of al1 real values continuous functions on X ,  
and PX, the Stone-Zlech compactification of X ,  to bear, i.e.: C ( X )  with the condition, is 
now a conditionally complete lattice, and PX with the condition is extremely disconnected. 

We shall now give some equivalent representations of pseudocompactness in terms of 
the lattice of closed sets 3, the 6-lattice formed from taking countable intersections and 
finite unions of regular closed sets 6(3~), and the lattice of zero sets 2. We note that 
3 2 ~ ( F R )  2 2. We can now show 

THEOREM 10. Let X be a T34 topological space then the following are equivalent: 

- 
- 

-/ 

I u ( 3 ) .  O 

(1) X is pseudocompact. 
(2) The iattice of ciosed sets 3 is almost countabiy compact (iightiy compact). 
(3) The delta lattice formed from regular closed sets  FR) is almost countably compact. 
(4) The lattice of zero sets 2 is aJmost countably compact. 
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PROOF: 
(1) implies (2) we can see in [4]. 
(2) implies (3) implies (4) follows from Theorem 2. 
(4) implies (1). Take p E 1(2) = I (2’ ) ,  there exist 7 E 1~(2 ’ )  such that p 5 y on 

2’ [6], but since 2 is almost countably compact, we have p 5 y E 142‘) C 142). 
This now gives us y 5 p on 2 with y E Io( 2)  but since 2 is normal and countably 
paracompact this implies that p E I u ( 2 )  therefore 2 is countably compact which 
gives us X pseudocompact. O 

COMMENTS. The introduction of measures to define topological properties is a valuable 
tool that can be used to investigate topological spaces. Yet, many questions remain unan- 
swered. Not al1 topological properties have yielded measure equivalents (metacompactness, 
paracompactness) and further investigation is needed to determine if they exist. h t h e r -  
more, there are measure properties that as of yet have no topological counterpart. This 
interplay with measures and topologies still has much information to yield. 
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