Ann. sc. math. Québec, 1988, vol. 12, no 1, pp. 125-145

NOTES ON ABSTRACT DIFFERENTIAL EQUATIONS¹ S. Zaidman

Abstract

In this paper we present a number of (new) results concerning linear differential equations in Banach spaces. The following topics are enclosed: Some regularity properties of weak solutions; mollification of weak solutions and resolvent regularization of them; bounded solutions (a necessary condition for existence and uniqueness) ; periodic solutions, existence and uniqueness theorems; almost-periodic solutions.

All the equations here considered are of the form: $u^{\prime}(t)=A u(t)+f(t)$ where $u(t), f(t)$ are functions from a real interval into a Banach space E, and A is a linear (usually unbounded) operator in E with (dense) domain $D(A)$.

Résumé

Dans ce travail on présente certains nouveaux résultats concernant les équations différentielles linéaires en espaces de Banach. On étudie des propriétés de régularité des solutions faibles; ensuite, la régularisation de ces solutions par deux procédés différents; une condition nécessaire pour l'existence et l'unicité des solutions bornées; solutions périodiques, thêorèmes d'existence et unicité; solutions presque périodiques.

[^0]Les équations considérées sont de la forme: $u^{\prime}(t)=A u(t)+f(t), u$ et f étant des fonctions d'un intervalle réel dans un espace de Banach E, tandis que A est un opérateur linéaire dans E de domaine $D(A)$.

Introduction

The present work is dedicated to some properties of differential equations in Banach spaces; precisely, we take equations of the form $u^{\prime}(t)=A u(t)+f(t)$ where $u(t)$ is a function from a real interval into a Banach space, as well as $f(t)$; the operator A is a linear operator, usually unbounded (that is, discontinuous) and with a domain $D(A)$ (strictly) contained in the Banach space X.

To start with, one defines a certain class of weak solutions (see for ex. [1], [5]). In this context we prove two kinds of results:
i) if the (weak) solution has a (strong) derivative, it belongs to the domain $D(A)$ or to $D\left(A^{* *}\right)$;
ii) if the (weak) solution belongs to $D(A)$, then the strong derivative $u^{\prime}(t)$ exists.

For another class of solutions, the ultra-weak solutions, similar investigations were done in our paper [6].

Next, we apply the usual mollification process to a weak solution u (that is, the convolution of u with a regular function α); we get a function $u * \alpha$ which has a strong derivative and belongs to $D(A)$ or to $D\left(A^{* *}\right)$.

Finally, if the operator $\left(\lambda_{0}-A\right)^{-1}$ exists as a bounded linear operator in X (for some complex number λ_{o}), and if we apply it to a weak solution u, we get a strong solution (it will have a strong derivative). Again, we already proved this kind of results for the ultra-weak solutions of Kato-Tanabe and Lions, in our previous papers [6], [7].

Another section of the paper deals with bounded solutions on the whole real line. A necessary condition for existence and uniqueness of a bounded solution u in correspondence to any (given) bounded function f, was explained in [3] for the case of operators A which are continuous and everywhere defined. It seems, as we shall see, that similar reasonings apply when A is only a linear closed operator which is densely defined.

In the final part of this article we deal with some (simple) results about periodic solutions $u(t)$ when a periodic function $f(t)$ is given, or almostperiodic solutions, in a very simple situation.

If the operator A generates a C_{0}-semigroup with exponential decay, there exists a unique periodic solution $u(t)$ in the mild or the strong sense.

Next, for a general operator (linear closed but not always generating a semi-group) we indicate how one can look for periodic solutions $u(t)$ when a periodic function $f(t)$ is given, using some simple Fourier series arguments.

A1so, in the case where A generates an unitary group of operators in a Hilbert space, we show that the existence of a bounded solution of the equation $u^{\prime}=A u+f$ implies the existence of a periodic solution with the same period as f (the result is a particular case of [8] but the proof here is somehow simpler to grasp). Finally, we consider the system $u^{\prime}(t)=A u(t)+f(t)$, where $u(t)$ is a function from R into the product space $X^{n}(X$ is a Banach space), $f(t)$ is an almost-periodic function from R into $X^{n}, \quad A=\left(a_{i j}\right)_{i, j=1}^{n}$ - a square matrix of complex numbers, and prove, extending a classical result, the almost-periodicity of functions-solutions, $u(t)$ which have relatively compact range in x^{n}; we also establish an existence and uniqueness theorem in the case where the eigen-values of the matrix A have non-zero real part.

1. Regularity properties of weak solutions

Let X be a B-space, $X *$ and $X * *$ the dual and bidual of X. Let A be a linear, closed, densely defined operator, $D(A) \subset X \rightarrow X$. The dual operator

A* is defined on the set
(1.1)

```
D(A*)}={\mp@subsup{x}{}{*}\in\mp@subsup{X}{}{*}\mathrm{ s.t. Эy* }\in\mp@subsup{X}{}{*}\mathrm{ , with }\mp@subsup{x}{*}{*}(Ax)=\mp@subsup{y}{}{*}(x)\quad\forallx\inD(A)
```

by the formula

$$
\begin{equation*}
A * x *=y^{*} \tag{1.2}
\end{equation*}
$$

Thus the relation

```
x*(Ax) = (A*x*)(x) holds \forallx 伿(A), \forallx* \subset D(A*).
```

Consider a function $f(t)$ which is Bochner integrable, $[0, T] \rightarrow X$.

DEFINITION. The strongly continuous function $u(t),[0, T] \rightarrow X$ is said to be weak solution of the equation

$$
\begin{equation*}
\frac{d u}{d t}=A u+f \text { on }[0, T] \tag{1.4}
\end{equation*}
$$

if the following holds:

For all $x^{*} \in D\left(A^{*}\right)$, the numerical-valued function $x^{*}(u(t))$ is absolutely continuous on $[0, T]$, and the equality

$$
\begin{equation*}
\frac{d}{d t} x^{*}(u(t))=\left(A^{*} x^{*}\right)(u(t))+x^{*}(f(t)) \tag{1.5}
\end{equation*}
$$

holds almost-everywhere on $[0, \mathrm{~T}]$.

We shall give now the following

THEOREM 1. Let us as sume
$\left.1^{\circ}\right) u(t)$ has a strong derivative $u^{\prime}(t)$ almost-everywhere on $[0, T]$;
2°) $u(t)$ is weak solution of $\frac{d u}{d t}=A u+f$ on $[0, T]$;
3°) the domain $D\left(A^{*}\right)$ is dense in X^{*}.
Let us call J the canonical imbedding of x into $x * *$. Then $(J u)(t) \subset D\left(A^{* *}\right)$
a.e. in $\lceil 0, T\rceil$ and the relation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{Ju})=\mathrm{A}^{* *}(\mathrm{Ju})+J f \tag{1.6}
\end{equation*}
$$

holds, a.e. in [0,T].

PROOF. From hypothesis, $\forall x^{*} \in D\left(A^{*}\right)$, we have the equality
(i) $\frac{d}{d t} x^{*}(u(t))=\left(A * x^{*}\right)(u(t))+x^{*}(f(t))$ a.e. on $[0, T]$, i.e., on $[0, T] / \varepsilon_{o}$, where $m \varepsilon_{o}=0$.
(ii) Also, the derivative $u^{\prime}(t)=\frac{d u}{d t}$ exists strongly, $\forall t \in[0, T] / \varepsilon_{1}$, $m \varepsilon_{1}=0$.

Hence, $\forall t \in[0, T] /\left(\varepsilon_{0} \cup \varepsilon_{1}\right)$, both (i) - (ii) are truc.
As $\frac{d}{d t} x^{*}(u(t))=x^{*}\left(u^{\prime}(t)\right)$ on $C\left(\varepsilon_{0} U \varepsilon_{1}\right)$, we get, a.e. on $[0, T]$, the equality

$$
\begin{equation*}
x^{*}\left(u^{\prime}(t)-f(t)\right)=\left(A^{*} x^{*}\right)(u(t)) \tag{1.7}
\end{equation*}
$$

On the other hand, let us remember that the isometric linear operator J, X into X** is defined by the relation

$$
\begin{equation*}
(J x)\left(x^{*}\right)=x^{*}(x) \quad \forall x^{*} \in X^{*} \tag{1.8}
\end{equation*}
$$

Therefore we have, $\forall t \in[0, T]$
$(J u)(t)\left(A * x^{*}\right)=\left(A * x^{*}\right)(u(t))$
and consequently, a.e. on $[0, T]$, the equality
$(J u)(t)\left(A^{*} x^{*}\right)=x^{*}\left(u^{\prime}(t)-f(t)\right), \quad \forall x^{*} \in D\left(A^{*}\right)$
is verified.

$$
\begin{aligned}
& \text { It follows that } \\
& (J u)(t)\left(A^{*} x^{*}\right)=\left(J\left(u^{\prime}(t)-f(t)\right)\right)\left(x^{*}\right), \quad \forall t \in[0, T] / \varepsilon, \quad m \varepsilon=0
\end{aligned}
$$

We can write, once t is fixed in $[0, T] / \varepsilon,(J u)(t)=F * * \in X^{* *}, J\left(u^{\prime}(t)-f(t)\right)=$ $G^{* *} \in X^{* *}$, so that we have the relation

```
F**(A*x*) = G**(x*) \forallx** D(A*).
```

Accordingly, we derive that

$$
\begin{equation*}
\mathrm{F} * * \in \mathrm{D}\left(\mathrm{~A}^{* *}\right) \text { and } \mathrm{A} * * \mathrm{~F} * *=\mathrm{G} * * \tag{1.12}
\end{equation*}
$$

that is, almost-everywhere on $[0, T]$

$$
(J u)(t) \in D(A * *) \text { and } A * *(J u)(t)=G * *=J\left(u^{\prime}(t)-f(t)\right)
$$

Note also that, when $u^{\prime}(t)$ exists, we have $J u^{\prime}(t)=\frac{d}{d t}(J u)(t)$; thus we get

$$
\begin{equation*}
\frac{d}{d t}(J u)(t)=A^{* *}(J u)(t)+(J f)(t) \tag{1.13}
\end{equation*}
$$

a.e. on $[0, T] . \square$

Consider now a somewhat different situation, expressed under the statement of

THEOREM 2. Let us assume that $u(t) \in C([0, T] ; X)$ is a weak solution of the equation (1.4) and that, furthermore, $u(t) \in D(A)$ a.e. on $[0, T]$ and $A u(t)$ is Bochner integrable on $[0, T]$. Then, the strong derivative $u^{\prime}(t)$ exists a.e. on $[0, T]$ and the equality $u^{\prime}(t)=A u(t)+f(t)$ holds, a.e. an $[0, T]$.

PROOF. We have the equality $x^{*}(A u(t))=\left(A^{*} x^{*}\right)(u(t))$ a.e. on $[0, T], \forall x^{*} \in D\left(A^{*}\right)$. Thus, from (1.5) we obtain that

$$
\begin{equation*}
\frac{d}{d t} x^{*}(u(t))=x *(A u(t)+f(t)) \text {, a.e. on }[0, T], \quad \forall x^{*} \in D\left(A^{*}\right) \tag{1.14}
\end{equation*}
$$

From the absolute continuity of the function $x^{*}(u(t))$ we obtain the equality

$$
\begin{equation*}
x *(u(t))-x^{*}(u(0))=\int_{0}^{t} \frac{d}{d s} x *(u(s)) d s \tag{1.15}
\end{equation*}
$$

and accordingly the relation
(1.16)

$$
x^{*}[u(t)-u(0)]=\int_{0}^{t} x^{*}(A u(s)+f(s)) d s=x^{*}\left(\int_{0}^{t}[A u(s)+f(s)] d s\right) \quad \forall x^{*} \in D\left(A^{*}\right) .
$$

In this theorem, the domain $D\left(A^{*}\right)$ is not assumed to be dense in X^{*}, but is in any case a "total" set in X^{*} (this means that $\left.x^{*}(x)=0 \quad \forall x^{*} \in D\left(A^{*}\right) \Rightarrow x=0\right)$.

Accordingly we get the (representation) formula

$$
\begin{equation*}
u(t)-u(0)=\int_{0}^{t}(A u+f)(s) d s \tag{1.17}
\end{equation*}
$$

As $A u+f$ is Bochner integrable on $[0, T]$ we derive the result.
2. Convolution of weak solutions with scalar regular functions (mollification)

Given any function $u(t) \in C([0, T] ; X)$, we shall consider the convolution

$$
\begin{equation*}
(u * \alpha)(t)=\int_{t-\varepsilon}^{t+\varepsilon} u(s) \alpha(t-s) d s \tag{2.1}
\end{equation*}
$$

where $\alpha \in C_{0}^{1}(\mathbb{R}), \alpha \geq 0, \alpha(t)=0$ for $|t| \geq \varepsilon$. Thus $(u * \alpha)(t)$ is welldefined for $\varepsilon<t<T-\varepsilon$. Furthermore, the strong derivative ($u * \alpha)^{\prime}(t)$ exists and $=u(t+\varepsilon) \alpha(-\varepsilon)-u(t-\varepsilon) \alpha(\varepsilon)+\int_{t-\varepsilon}^{t+\varepsilon} u(s) \alpha^{\prime}(t-s) d s=\int_{t-\varepsilon}^{t+\varepsilon} u(s) \alpha^{\prime}(t-s) d s$.

Let us assume now (1.5) for $u(t)$; we shall prove a similar relation for $(u * \alpha)(t)$, namely: $\forall x^{*} \in X^{*}$
(2.2) $\frac{d}{d t} x^{*}((u * \alpha)(t))=\left(A^{*} x^{*}\right)(u * \alpha)(t)+x *(f * \alpha)(t), \quad \varepsilon<t<T-\varepsilon$, where

$$
\begin{equation*}
(f * \alpha)(t)=\int_{t-\varepsilon}^{t+\varepsilon} f(s) \alpha(t-s) d s=\int_{0}^{T} f(s) \alpha(t-s) d s, \quad \varepsilon<t<T-\varepsilon \tag{2.3}
\end{equation*}
$$

(Note that the derivative exists $\forall t \in(\varepsilon, T-\varepsilon)$, as it exists strongly.)

We have the equality

$$
\begin{align*}
\frac{d}{d t} x^{*}((u * \alpha)(t)) & =x^{*}\left((u * \alpha)^{\prime}(t)\right)=x *\left(\int_{t-\varepsilon}^{t+\varepsilon} u(s) \alpha^{\prime}(t-s) d s\right) \tag{2.4}\\
& =\int_{t-\varepsilon}^{t+\varepsilon} x^{*}(u(s)) \alpha^{\prime}(t-s) d s
\end{align*}
$$

Now, due to absolute continuity of $x *(u(s))$ we can integrate by parts and get, after use of (1.5), the following relations

$$
\begin{aligned}
\int_{t-\varepsilon}^{t+\varepsilon} x^{*}(u(s)) \alpha^{\prime}(t-s) d s & =-\left.x^{*}(u(s)) \alpha(t-s)\right|_{t-\varepsilon} ^{t+\varepsilon}+\int_{t-\varepsilon}^{t+\varepsilon} \alpha(t-s) \frac{d}{d s} x^{*}(u(s)) d s \\
& =\int_{t-\varepsilon}^{t+\varepsilon} \alpha(t-s)\left[\left(A^{*} x^{*}\right)(u(s))+x^{*}(f(s))\right] d s \\
5) & =\int_{t-\varepsilon}^{t+\varepsilon}\left(A^{*} x^{*}\right)(\alpha(t-s) u(s)) d s+\int_{t-\varepsilon}^{t+\varepsilon} x^{*}(\alpha(t-s) f(s)) d s \\
& =\left(A^{*} x^{*}\right)(u * \alpha)(t)+x^{*}(f * \alpha)(t) .
\end{aligned}
$$

Using Theorem 1 and the above remarks we get the following mollification result:

THEOREM 3. Assume $D\left(A^{*}\right)$ is dense in $X * ; u(t) \in C([0, T] ; X)$ is weak solution of (1.4). Then $J(u * \alpha)(t) \in D\left(A^{* *}\right)$ and the equality

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~J}(\mathrm{u} * \alpha)(\mathrm{t})=\mathrm{A}^{* * J}(\mathrm{u} * \alpha)(\mathrm{t})+((. J f) * \alpha)(\mathrm{t}) \tag{2.6}
\end{equation*}
$$

holds, $\forall t \in(\varepsilon, T-\varepsilon)$.

In fact, from Theorem 1 we obtain (2.6) to hold almost-everywhere. However, left and right-hand side of (2.6) are continuous functions, so that the equality is actually true for any $t \in(\varepsilon, T-\varepsilon)$ (if it would be false in t_{0} it would be so in ($\left.t_{0}-\delta, t_{0}+\delta\right)$ for some $\delta>0$ which has positive measurc).
(It is not necessary to use Theorem 1 but just imitate its proof and get the result directly, for all $t \in(\varepsilon, T-\varepsilon)$.
3. Resolvent regularization of weak solutions

Let us assume again that the function $u(t) \in \mathcal{C}([0, T] ; X)$ is weak solution of the equality (1.4) and assume also that the resolvent $\left(\lambda_{0}-A\right)^{-1}$ exists and $\epsilon L(X)$ for some $\lambda_{0} \in \mathbb{C}$.

PROPOSITION 1. The function $v(t)=R\left(\lambda_{0} ; A\right) u(t)$ is also weak solution of (1.4) with f replaced by $R\left(\lambda_{0} ; A\right) f$.

PROOF. We first need to establish the absolute continuity of the function $x^{*}(v(t))$ in $[0, T], \forall x^{*} \in D\left(A^{*}\right)$ (and even for all $\left.x^{*} \in X^{*}\right)$. We have in fact, $\forall x^{*} \in X^{*}$ the equality

$$
\begin{equation*}
x^{*}\left(R\left(\lambda_{0} ; A\right) u(t)\right)=\left(\left(R\left(\lambda_{0} ; A\right)\right) * x *\right) u(t) \tag{3.1}
\end{equation*}
$$

We know also that $\lambda_{0} \in \rho\left(A^{*}\right)$ (resolvent set of $\left.A^{*}\right)$ and that $R\left(\lambda_{0} ; A^{*}\right)=$ $\left[R\left(\lambda_{0} ; A\right)\right]^{*}$. It follows that $\left(R\left(\lambda_{0} ; A\right)\right) x^{*}=R\left(\lambda_{0} ; A^{*}\right) x^{*}=\left(\lambda_{0}-A^{*}\right)^{-1} x^{*}$ which belongs to $D\left(A^{*}\right)$ for all $x^{*} \in X^{*}$. Therefore $x^{*}(v(t))=y^{*}(u(t))$ where $y^{*}=\left(\lambda_{0}-A^{*}\right)^{-1} x^{*}$ belongs to $D\left(A^{*}\right)$; hence $x^{*}(v(t))$ is absolutely continuous on $[0, T], \forall x^{*} \in X^{*}$. Next, we have the simple relation

$$
\begin{equation*}
\frac{d}{d t} x^{*}(v(t))=\frac{d}{d t} y^{*}(u(t))=\left(A * y^{*}\right)(u(t))+y^{*}(f(t)) \text { a.e. } \tag{3.2}
\end{equation*}
$$

which is written as

$$
\begin{equation*}
\frac{d}{d t} x^{*}(v(t))=\left(A^{*}\left(\lambda_{0}-A^{*}\right)^{-1} x^{*}\right)(u(t))+\left(\left(\lambda_{0}-A^{*}\right)^{-1} x^{*}\right)(f(t)) \quad \text { a.e. } \tag{3.3}
\end{equation*}
$$

Note now that, for $x^{*} \in D\left(A^{*}\right)$, the commutativity property $A^{*}\left(\lambda_{0}-A^{*}\right)^{-1} x^{*}$ $=\left(\lambda_{0}-A^{*}\right)^{-1} A^{*} x^{*}$, holds. Hence, we derive from (3.3), the equality

$$
\begin{align*}
\frac{d}{d t} x^{*}(v(t)) & =\left(\left(\lambda_{0}-A^{*}\right)^{-1} A^{*} x^{*}\right)(u(t))+\left(\left[\left(\lambda_{0}-A\right)^{-1}\right] * x *\right)(f(t)) \\
& =\left(\left[\left(\lambda_{0}-A\right)^{-1}\right] * A * x^{*}\right)(u(t))+\left(\left[\left(\lambda_{0}-A\right)^{-1}\right] * x *\right)(f(t)) \tag{3.4}\\
& =\left(A * x^{*}\right)\left(\left(\lambda_{0}-A\right)^{-1} u(t)\right)+x^{*}\left(\left(\lambda_{0}-A\right)^{-1} f(t)\right) \\
& =\left(A^{*} x^{*}\right)(v(t))+x^{*}(g(t)), \quad g(t)=R\left(\lambda_{0} ; A\right) f(t)
\end{align*}
$$

This proves the proposition.

Note also that $v(t) \in D(A) \quad \forall t \in[0, T]$ and that $A v(t)=-u(t)+$ $\lambda_{0} R\left(\lambda_{0} ; A\right) u(t)$ belongs to $C([0, T] ; X)$.

From Theorem 2 we infer that $v^{\prime}(t)$ exists strongly, a.e. on $[0, T]$, and that

$$
\begin{equation*}
v^{\prime}(t)=A v(t)+R\left(\lambda_{0} ; A\right) f(t) \tag{3.5}
\end{equation*}
$$

a.e. on $[0, T]$.

If $f(t)$ is continuous on $[0, T]$ we get that $v^{\prime}(t)$ is also continuous and consequently $v^{\prime}(t)=A v(t)+R\left(\lambda_{0} ; A\right) f(t) \quad \forall t \in[0, T]$.
4. A necessary condition for existence and uniqueness of bounded solutions

In the B-space X consider a linear closed operator A, with dense domain $D(\Lambda)$. We prove the following

THEOREM 4. Let us assume that for any continuous function $f(t), \mathbb{R} \rightarrow X$ such that $\sup _{t \in \mathbb{R}}\|f(t)\|<\infty$ there exists one and only one solution $u(t)$ of the equation

$$
\begin{equation*}
u^{\prime}(t)=A u(t)+f(t) \tag{4.1}
\end{equation*}
$$

over the real line, such that

$$
\begin{equation*}
\sup _{t \in \mathbb{R}}\|u(t)\|<\infty . \tag{4.2}
\end{equation*}
$$

Then, any number on the imaginary line $\{i \tau\}{ }_{\tau \in \mathbb{R}}$ belongs to the resolvent set of A.
LEMMA 1. The operator $(\mathrm{i} \tau-\mathrm{A})^{-1}$ exists $\forall \tau \in \mathbb{R}$.

If not, therc exists $\tau_{0} \in \mathbb{R}$ and $x_{0} \in D(A), x_{0} \neq \theta$ such that $i \tau_{0} x_{0}=$ Ax_{0}.

Consider the vector-function $u_{0}(t)=e^{i \tau_{0}} x_{0}$. We see that $\left\|u_{0}(t)\right\|=$ $\left\|x_{0}\right\|$, so that $u_{0}(t)$ is bounded over \mathbb{R}. Furthermore, we have $u_{0}^{\prime}(t)=i^{\tau} \tau_{0} u_{0}(t)=$ $A u_{0}(t), \quad \forall t \in \mathbb{R}$.

Hence, the homogeneous equation $u^{\prime}(t)=A u(t)$ has a non-trivial bounded solution over \mathbb{R}, a contradiction.

LEMMA 2. The operator (it-A) maps $D(A)$ onto $X, \forall \tau \in \mathbb{R}$.

Consider the function $f(t)=e^{i \tau t} f_{o}$, where f_{o} is any fixed element of x. Hence $f(t)$ is bounded over \mathbb{R}. Let $x(t)$ be the unique bounded solution of the equation

$$
\begin{equation*}
x^{\prime}(t)=A x(t)+f(t) \tag{4.3}
\end{equation*}
$$

and put $y(t)=e^{-i \tau t} x(t)$. Then $y(t)$ is bounded over R and

$$
\begin{equation*}
y^{\prime}(t)=(A-i \tau) y(t)+f_{0} \tag{4.4}
\end{equation*}
$$

Actually, the equation (4.4) has at most one bounded solution (otherwise, if y_{1}, y_{2} are two bounded solutions of it, $x_{1}(t)=e^{i \tau t} y_{1}(t), \quad x_{2}(t)=e^{i \tau t} y_{2}(t)$ would be two bounded solutions of (4.3)). It follows that the translated function $y(t+a)$ (a being any real number), which is again a bounded solution of (4.4), must coincide with $y(t)$. Thus, we get: $y(t+a)=y(t), \forall t \in \mathbb{R}$; hence $y(a)=y(0)$. But a is any real number, hence $y(t)$ is constant. From (4.4) we derive $\theta=(A-i \tau) y(0)+f_{o}, f_{o}=(A-i \tau)(-y(0))$. This proves Lemma 2.

We now end the proof of the theorem. We obtained that, $\forall \tau \in \mathbb{R}$, the operator $(i \tau-A)^{-1}$ exists and is everywhere defined. It is also closed, like it-A, hence it is bounded by the closed graph theorem.

5. Periodic solutions

We consider again non-homogeneous differential equations in Banach spaces: $u^{\prime}(t)=A u(t)+f(t)$, where A is a certain linear unbounded operator while $f(t)$, $\mathbb{R} \rightarrow X \quad$ (the B-space) is periodic with period $\omega(f(t+\omega)=f(t) \quad \forall t \in \mathbb{R})$.

First, we prove existence and uniqueness of a periodic strong solution $u(t)$ with the same period, under the hypothesis that A is the infinitesimal generator of a C_{o}-semigroup with exponential decay as $t \rightarrow \infty$.

Let $S(t), \quad t \in \mathbb{R}^{+}+L(X)$ be a C_{0}-operator semigroup, verifying an estimate $\|S(t)\| \leq M e^{\beta t}, \quad \forall t \geq 0$, where $M>0, \quad B<0$, and let $A=\lim _{\eta \downarrow 0} \frac{S(\eta)-I}{\eta}$ be its infinitesimal generator.

We have

THFOREM 5. Given $f(t) \in C^{1}(\mathbb{R} ; x)$, periodic of period w, there exists one and only one (strong) solution over \mathbb{R} of

$$
\begin{equation*}
u^{\prime}(t)=A u(t)+f(t) \tag{5.1}
\end{equation*}
$$

which is periodic with the same period ω.

PROOF. Uniqueness:
Any periodic continuous function is bounded over \mathbb{R}. If u_{1}, u_{2} are periodic solutions with period ω, their difference $u(t)$ is a periodic (hence a bounded) solution of $u^{\prime}=A u$, over the whole \mathbb{R}.

This implies $u(t) \equiv \theta$ by Th. 1.1, Ch. V in [9].

Existence:

As is quite easy to see, for any real number A, the integral
$\int_{A}^{t} S(t-\sigma) f(\sigma) d \sigma$ exists (in Riemann's sense), because one can establish easily the continuity of $\sigma \rightarrow \mathrm{S}(\mathrm{t}-\sigma) \mathrm{f}(\sigma)$ for $\mathrm{A}<\sigma<\mathrm{t}$.

Next, we have the estimate

$$
\|S(t-\sigma) f(\sigma)\| \leq M e^{\beta(t-\sigma)} \sup _{\sigma \in \mathbb{R}}\|f(\sigma)\|=C e^{\beta t} e^{|\beta| \sigma}
$$

Also $\int_{-\infty}^{t} e^{|\beta| \sigma} d \sigma=\frac{1}{|\beta|} e^{|\beta| t}=\frac{1}{|\beta|} e^{-\beta t}$ is convergent. Thus the integral $\int_{-\infty}^{t} S(t-\sigma) f(\sigma) d \sigma$ is absolutely convergent and the estimate

$$
\begin{equation*}
\left\|\int_{-\infty}^{t} S(t-\sigma) f(\sigma) d \sigma\right\| \leq \frac{M}{|\beta|}\|f(.)\|_{\infty} \tag{5.2}
\end{equation*}
$$

holds.

Next, we prove that the function

$$
\begin{equation*}
u(t)=\int_{-\infty}^{t} S(t-\sigma) f(\sigma) d \sigma \tag{5.3}
\end{equation*}
$$

is periodic, with the same period w. In fact, we have

$$
\begin{gather*}
u(t+\omega)=\int_{-\infty}^{t+\omega} S(t+\omega-\sigma) f(\sigma) d \sigma=(\sigma-\omega=s) \\
\int_{-\infty}^{t} S(t-s) f(s+\omega) d s=\int_{-\infty}^{t} S(t-s) f(s) d s=u(t), \quad \forall t \in \mathbb{R} . \tag{5.4}
\end{gather*}
$$

Next, one has to prove that $u(t)$ is strongly continuous and also a strong solution over \mathbb{R} of $u^{\prime}=A u+f$. This is done in [9], in the more general case where f is almost-periodic over \mathbb{R}. (Note that $f \in C^{1}(\mathbb{R} ; X)$ and periodic implies that f^{\prime} is also continuous periodic, hence bounded over \mathbb{R}.)

Somewhat simpler is the study of periodic mild solutions over \mathbb{R} of $u^{\prime}=A u+f$.

DEFINITION. Given the continuous function $f(t) ; \mathbb{R} \rightarrow X$, the continuous function $u(t), \mathbb{R} \rightarrow X$ is said to be a mild solution of the equation

$$
u^{\prime}=A u+f
$$

if the functional relation

$$
\begin{equation*}
u(t)=S(t-a) u(a)+\int_{a}^{t} S(t-\sigma) f(\sigma) d \sigma \tag{5.5}
\end{equation*}
$$

holds, $\forall a \in \mathbb{R}$ and $\forall t \geq a$.

We have now

THEOREM 6. Given $f \in C(\mathbb{R} ; x)$, periodic of period w, there exists one and only one mild solution over \mathbb{R} of $u^{\prime}=A u+f$, which is periodic with period w. PRCOF. Uniqueness:

If u_{1}, u_{2} are two periodic mild solutions with period $\omega, u=u_{1}-u_{2}$ verifies

$$
\begin{equation*}
\mathrm{u}(\mathrm{t})=\mathrm{S}(\mathrm{t}-\mathrm{a}) \mathrm{u}(\mathrm{a}), \quad \forall \mathrm{t} \geq \mathrm{a}, \quad \forall \mathrm{a} \in \mathbb{R} \tag{5.6}
\end{equation*}
$$

and is periodic, of period ω, hence bounded over \mathbb{R}. Thus

$$
\|u(t)\| \leq M e^{B(t-a)} \sup _{\mathbb{R}}\|u(.)\| \rightarrow 0 \text { as } a \rightarrow-\infty
$$

Existence:

Consider the periodic function $u(t)=\int_{-\infty}^{t} S(t-\sigma) f(\sigma) d \sigma$ which was previously defined.

It is continuous, due to uniform continuity of f over \mathbb{R}.

It is a mild solution: In fact the right-hand side in (5.5) becomes:
$S(t-a) \int_{-\infty}^{a} S(a-\sigma) f(\sigma) d \sigma+\int_{a}^{t} S(t-\sigma) f(\sigma) d \sigma$

$$
\begin{align*}
& =\int_{-\infty}^{a} S(t-a+a-\sigma) f(\sigma) d \sigma+\int_{a}^{t} S(t-\sigma) f(\sigma) d \sigma \tag{5.7}\\
& =\int_{-\infty}^{t} S(t-\sigma) f(\sigma) d \sigma=u(t) .
\end{align*}
$$

Consider now a linear closed operator A with domain $D(A)$ in the Banach space X and then a continuous periodic function (period T), $f(t)$, from \mathbb{R} into X. Let us define the Fourier coefficients f_{k} of f, by the usual formula

$$
\begin{equation*}
f_{k}=\frac{1}{T} \int_{0}^{T} f(t) e^{-i k t \frac{2 \pi}{T}} d t, \quad k \in Z \tag{5.8}
\end{equation*}
$$

Next, let us assume that $u(t), \mathbb{R} \rightarrow X$ is a solution of the equation $u^{\prime}(t)=A u(t)+f(t), \quad t \in \mathbb{R}$, which is also periodic with the same period T as f. Thus, its Fourier coefficients u_{k} are given by

$$
\begin{equation*}
u_{k}=\frac{1}{T} \int_{0}^{T} u(t) e^{-i k t \frac{2 \pi}{T}} d t, \quad k \in \mathbb{Z} \tag{5.9}
\end{equation*}
$$

We are now looking for some connection between u_{k} and f_{k} :

$$
\text { From the equality: } u^{\prime}=A u+f \text { we derive that }
$$

(5.10) $e^{-i k t \frac{2 \pi}{T}} u^{\prime}(t)=e^{-i k t \frac{2 \pi}{T}} A u(t)+e^{-i k t \frac{2 \pi}{T}} f(t), \quad t \in \mathbb{R}, \quad k \in \mathbb{Z}$.

It follows, integrating from 0 to T and using closedness of A

$$
\begin{equation*}
\frac{1}{T} \int_{0}^{T} e^{-i k t \frac{2 \pi}{T}} u^{\prime}(t) d t=A u_{k}+f_{k} \tag{5.11}
\end{equation*}
$$

The left-hand side integral is transformed, using partial integration and $u(T)=$ $u(0)$, into $\frac{2 k \pi i}{T} u_{k}$. Therefore we get

$$
\begin{equation*}
\left(\frac{2 k \pi i}{T}-A\right) u_{k}=f_{k}, \quad \forall k \in \mathbb{Z} \tag{5.12}
\end{equation*}
$$

which is the connection we were looking for

Let us assume now that

$$
\begin{equation*}
\left(\frac{2 k \pi i}{T}-A\right)^{-1} \in L(X) \quad \forall k \in \mathbb{Z} . \tag{5.13}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
u_{k}=\left(\frac{2 k \pi i}{T}-A\right)^{-1} f_{k} . \tag{5.14}
\end{equation*}
$$

Assume now that

$$
\begin{equation*}
\left\|(i \tau-A)^{-1}\right\| \leq \frac{C}{|\tau|^{2}} \text { for large real } \tau \tag{5.15}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\left\|u_{k}\right\| \leq \frac{C}{\left(\frac{2 \mathrm{k} \pi}{\mathrm{~T}}\right)^{2}}=\frac{\mathrm{CT}^{2}}{4 \pi^{2} \mathrm{k}^{2}} \tag{5.16}
\end{equation*}
$$

and accordingly the Fourier series of $u: \sum_{k \in \boldsymbol{Z}} u_{k} e^{\frac{2 \pi}{T} i k t}$ is absolutely and uniformly convergent.

Another question to te considered is the following:
In the Banach space X consider a family $A(t)$ of linear operators with domain $D(A(t)) \subset X$, where $t \in \mathbb{R}$ and $A(t+\omega)=A(t) \quad \forall t \in \mathbb{R}$ and somc $\omega>0$.

Assume that $u(t), \quad 0 \leq t \leq \omega \rightarrow D(\Lambda(t))$ is a solution of the equation $u^{\prime}(t)=A(t) u(t)$ on $[0, \omega]$ (with right-derivative for $t=0$ and left-derivative for $t=\omega)$. Then, if $u(0)=u(\omega)$, there exists a solution $v(t)$, $t \in \mathbb{R} \rightarrow D(A(t))$, of the equation $v^{\prime}(t)=A(t) v(t)$, such that $v(t+\omega)=v(t)$ $\forall t \in \mathbb{R}$.

Let us define in fact a function $v(t)$ by means of the relation $v(t)=$ $u(t-n \omega)$ for $n \omega \leq t<(n+1) \omega$ (thus $0 \leq t-n \omega<\omega), \forall n \in \mathbb{Z}$. Assume $t=n \omega+\alpha$, $0 \leq \alpha<\omega$; then $v(t)=u(\alpha)$ and $v(t+\omega)=v((n+1) \omega+\alpha)=u(\alpha)=v(t)$. Hence v is periodic, with period ω. We must also prove that $v^{\prime}(t)$ exists strongly $\forall t \in \mathbb{R}$. This is obvious for $n \omega<t<(n+1) \omega$; in this case $v^{\prime}(t)=u^{\prime}(t-n \omega)=$ $A(t-n \omega) u(t-n \omega)=A(t) v(t)$. Let now $t=n \omega \quad$ (some $n \in \mathbb{Z}$). We have for $h>0$, $\frac{1}{h}[v(t+h)-v(t)]=\frac{1}{h}[u(h)-u(0)] \rightarrow u_{+}^{\prime}(0)=A(0) u(0) ;$ for $h<0$ we have

$$
\begin{aligned}
\frac{1}{h}[v(t+h)-v(t)] & =\frac{1}{h}[u(\omega+h)-u(0)]=\frac{1}{h}[u(\omega+h)-u(\omega)] \rightarrow u_{-}^{\prime}(\omega) \\
& =A(\omega) u(\omega)=A(0) u(0)
\end{aligned}
$$

Our present discussion ends with a result where existence of a bounded solution implies existence of a periodic solution. In the Hilbert space H consider a unitary group $U(t)$ of linear transformations: that is $U^{*}(t)=[U(t)]^{-1}$ $=U(-t), \quad \forall t \in \mathbb{R}$, with infinitesimal generator A. Given a continuous periodic function $f(t), \mathbb{R} \rightarrow I I$ (period p), we define mild solutions of the cquation $u^{\prime}(t)=A u(t)+f(t)$ as continuous functions $u(t), \mathbb{R} \rightarrow H$, admitting the representation formula

$$
\begin{equation*}
u(t)=u(t) u(0)+\int_{0}^{t} u(t-\sigma) f(\sigma) d \sigma, \quad \forall t \in \mathbb{R} \tag{5.17}
\end{equation*}
$$

Let us assume existence of a mild solution $u(t)$ which is bounded over the real line: $\sup \|u(t)\|<\infty$. Then, using Theorem 4.1 in [10], we infer existence and $t \in \mathbb{R}$ unicity of a bounded mild solution w, such that $\sup _{t \in \mathbb{R}}\|w(t)\| \leq \sup _{t \in \mathbb{R}}\|v(t)\|$ for all bounded mild solutions of (5.17) (minimal bounded mild solution).

We shall now see that this minimal bounded solution is periodic with the same period as f.

Note first that from the relation

$$
\begin{equation*}
w(t)=U(t) w(0)+\int_{0}^{t} U(t-\sigma) f(\sigma) d \sigma \tag{5.18}
\end{equation*}
$$

we infer

$$
\begin{align*}
w(t+p) & =U(t+p) w(0)+\int_{0}^{t+p} U(t+p-\sigma) f(\sigma) d \sigma \\
& =U(t)\left[U(p) w(0)+\int_{0}^{t+p} U(p-\sigma) f(\sigma) d \sigma\right] \\
& =U(t)\left[U(p) w(0)+\int_{0}^{p} U(p-\sigma) f(\sigma) d \sigma+\int_{p}^{t+p} U(p-\sigma) f(\sigma) d \sigma\right] \tag{5.19}\\
& =U(t) w(p)+U(t) \quad \int_{p}^{t+p} U(p-\sigma) f(\sigma) d \sigma
\end{align*}
$$

If $\sigma=s+p$, we have

$$
\begin{gather*}
\int_{p}^{t+p} U(p-\sigma) f(\sigma) d \sigma=\int_{0}^{t} U(-s) f(s) d s \tag{5.20}\\
w(t+p)=U(t) w^{\prime}(p)+\int_{0}^{t} U(t-s) f(s) d s, \quad t \in \mathbb{R} .
\end{gather*}
$$

This shows that the translated function: $t \rightarrow w(t+p)$ is also a mild solution of (5.17).

Furthermore, $\sup _{t \in \mathbb{R}}\|w(t+p)\|=\sup _{t \in \mathbb{R}}\|w(t)\|$, indicates that w is a minimal mild solution, hence, by unicity, $w(t+p)=w(t) \quad \forall t \in R$.
(Remark: A similar result for semigroups instead of groups appears in our paper [8].)

6. Almost-periodic solutions

Let R b the real line, Y a Banach space over $\mathbb{C} ; A=\left(a_{i j}\right)_{i, j=1}^{n} a$ square-matrix of complex numbers, $n \times n ; Y^{n}$ being the product Banach space with norm: $\|y\|_{Y^{n}}=\left(\sum_{1}^{n}\left\|y_{i}\right\|_{Y}^{2}\right)^{\frac{1}{2}} \quad \forall y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in Y^{n}$. Our first result is

THEOREM 7. Let $f(t) ; \mathbb{R} \rightarrow Y^{\mathrm{n}}$ be an almost-periodic function while $y(t)$, $\mathbb{R} \rightarrow \mathrm{Y}^{\mathrm{n}}$ is a solution of the equation

$$
\begin{equation*}
\frac{d y}{d t}=A y(t)+f(t), \quad t \in \mathbb{R} \tag{6.1}
\end{equation*}
$$

Then, in $y(t)$ has relatively compact range in X^{n}, it is almost-periodic.

We shall use the following

LEMMA. There exists a linear operator $B, \mathbb{C}^{\mathrm{n}} \rightarrow \mathbb{C}^{\mathrm{n}}$, which has an inverse, such that

$$
B^{-1} A B=\left(\begin{array}{cccc}
\lambda_{1} & C_{12} & \ldots & C_{1 n} \\
0 & \lambda_{2} & \ldots & C_{2 n} \\
\ldots & \ldots & \ldots & \cdots
\end{array}\right] \cdot \cdots .
$$

where the $\lambda_{i}^{\prime} \mathrm{s}$ are the eigenvalues of A (see [2], pp. 91-92).
PROOF of Theorem. Let $Z(t)=B^{-1} y(t)$, a function from \mathbb{R} into Y^{n} (here B^{-1} is the operator generated by the matrix B^{-1}, acting linearly from Y^{n} into itself). As B^{-1} is also continuous from Y^{n} into itself, we see that $Z(t)$ has also a relatively compact range in Y^{n}. Similarly, the function $g(t)=B^{-1} f(t)$, $\mathbb{R} \rightarrow \mathrm{Y}^{\mathrm{n}}$, is almost-periodic. We obtain now

$$
\begin{equation*}
\frac{d Z}{d t}=B^{-1} \frac{d y}{d t}=B^{-1} A y(t)+B^{-1} f(t)=B^{-1} A B Z(t)+g(t) . \tag{6.2}
\end{equation*}
$$

Using the above lemma, we derive from (6.2) the following system:

$$
\begin{aligned}
& \frac{d Z_{1}}{d t}=\lambda_{1} Z_{1}(t)+C_{12} Z_{2}(t)+\ldots+C_{1 n} Z_{n}(t)+g_{1}(t) \\
& \frac{d Z_{2}}{d t}=\quad \lambda_{2} Z_{2}(t)+\ldots+C_{2 n} Z_{n}(t)+g_{2}(t)
\end{aligned}
$$

$$
\begin{array}{rlrl}
\frac{d Z_{n-1}}{d t}= & \lambda_{n-1} Z_{n-1}(t)+C_{n-1, n} Z_{n}(t)+g_{n-1}(t) \tag{6.3}\\
\frac{d Z_{n}}{d t}= & & \lambda_{n} Z_{n}(t)+g_{n}(t),
\end{array}
$$

where $Z(t)=\left(Z_{1}(t), \ldots, Z_{n}(t)\right), g(t)=\left(g_{1}(t), \ldots, g_{n}(t)\right)$.
Now, if $P_{j}, Y^{n} \rightarrow Y$ is the projection $Z \rightarrow P_{j} Z=Z_{j}$ (for $Z=\left(Z_{1}, Z_{2}\right.$, $\left.\ldots, Z_{n}\right)$, we see that p_{j} is a linear continuous mapping; therefore, each function $Z_{i}(t), \mathbb{R} \rightarrow Y$ has relatively compact range, and each function $g_{i}(t)$ is almost -
periodic, $\mathbb{R} \rightarrow Y$. We shall apply a result by Kopec [4], several times, starting with the last equation in (6.3), and obtain that each function $Z_{i}(t)$ is almostperiodic, $\mathbb{R} \rightarrow Y$.

Our last result is the

THEOREM 8. Let $A=\left(a_{i j}\right)_{i, j=1}^{n}$ a square-matrix of complex numbers, such that, for each eigenvalue $\lambda_{j}, \mathbb{R e} \lambda_{j} \neq 0$ holds. Then, given any almost-periodic function $f(t), \mathbb{R} \rightarrow Y^{n}$, there exists one and only one almost-periodic function $y(t), \mathbb{R} \rightarrow Y^{n}$, solving the equation

$$
\begin{equation*}
\frac{d y}{d t}=A y+f \tag{6.4}
\end{equation*}
$$

PROOF. Uniqueness:
Let $u(t)$ be a bounded over \mathbb{R} solution of $\frac{d u}{d t}=A u$. Then $Z(t)=$ $B^{-1} u(t)$ is a bounded solution, $\mathbb{R} \rightarrow Y^{n}$ of $Z^{\prime}(t)=B^{-1} A B Z(t)$. Hence we get

$$
\frac{\mathrm{d} Z_{1}}{\mathrm{dt}}=\lambda_{1} Z_{1}(t)+C_{12} Z_{2}(t)+\ldots+C_{1 n} Z_{n}(t)
$$

(6.5)

$$
\begin{aligned}
& \frac{d z_{n-1}}{d t}= \lambda_{n-1} Z_{n-1}(t)+c_{n-1, n_{n}} Z_{n}(t) \\
& \frac{d Z_{n}}{d t}= \\
& \lambda_{n} z_{n}(t)
\end{aligned}
$$

The last equation gives (as for scalar-valued functions) that $Z_{n}(t)=e^{\lambda_{n}} Z_{n}(0)$. As $Z_{n}(t)$ is bounded over \mathbb{R} and $\mathbb{R e} \lambda_{n} \neq 0$ we get $Z_{n}(t) \equiv 0$. Next, $\frac{d Z_{n-1}}{d t}=\lambda_{n-1} Z_{n-1}(t)$ and again $Z_{n-1}(t) \equiv 0$, and so on.

Existence:

We solve first the system (6.3). From the last equation we get an almostperiodic $Z_{n}(t)$ which is $\int_{-\infty}^{t} e^{\lambda_{n}(t-\sigma)} g_{n}(\sigma) d \sigma$ for $\mathbb{R e} \lambda_{n}<0$ or $-\int_{t}^{\infty} e^{\lambda_{n}(t-\sigma)} g_{n}(\sigma) d \sigma$ for $\mathbb{R e} \lambda_{n}>0$.

Then we find an almost-periodic Z_{n-1} and inductively, almost-periodic $z_{1}, z_{2}, \ldots, z_{n-2}$. Next, put $y(t)=B Z(t)$.

References

[1] BALL, J.M., Strongly cont inuous semigroups, weak solutions and the variation of constants formula, Proc. Amer. Math. Soc. 63(1977), 370-373.
[2] CORDUNEANU, C., Almost-Periodic Functions, Interscience Publishers, New York-London-Sydney-Toronto, 1968.
[3] DALECKIǏ, Ju.L., KREIN, M.G., Stability of Solutions of Differential Equations in Banach Space, Izdat. "Nauka", Moscow, 1970.
[4] KOPEC, J., On lincar differential equations in Banach spaces, Zeszuty Naukowe Uniwersytetu Im. A. Mickiewicza, 1957, 3-7.
[5] PAZY, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1983.
[. 6] ZAIDMAN, S., Remarks on weak solutions of differential equations in Banach spaces, Boll. U.M.I. (4) 9(1974), 638-643.
[7] ZAIDMAN, S., Improving regularity of weak solutions of abstract differential equations, Ann. sc. math. Québec, vol. 10, no 1, 1986, 103-108.
[8] ZAIDMAN, S., Periodic solutions of abstract differential equations with periodic right-hand side, Istituto Lombardo (Rend. Sci.) 1118 (1984), 95-98.
[9] ZAIDMAN, S., Abstract Differential Equations, Pitman Publishing, R.N.M., vol. 36, 1979, San Francisco-London-Melbourne.
[10] ZAIDNAN, S., Solutions presque périodiques des équations différentielles abstraites, L'Enseignement mathématique, Tome XXIV, 1078, 87-110.
[11] ZAIDMAN, S., Almost-Periodic. Functions in Abstract Spaces, Pitman Advanced Publishing Program, R.N.M., Vol. 126, 1985, Boston-London-Melbourne.

Département de mathématiques et de statistique
université de Montréal
C.P. 6128, Succ. "A"

Montréal, Québec H3C 3J7
Manuscrit reçu le 25 mai 1987.

[^0]: ${ }^{1}$ This research is sponsored by a grant of the Natural Sciences and Engineering Research Council of Canada.

