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NOTES ON ABSTRACT DIFFERENTIAL EQUATIONS’ 
S. Zaidman 

A.bstract 

In this paper we present a number of (new) results concerning linear dif- 

ferential equations in Banach spaces. The following topics are enclosed: Some 

regularity properties of weak solutions ; mollification of weak solutions and re- 

solvent regularization of them; bounded solutions (a necessary condition for exis- 

tence and uniqueness) ; periodic solutions, existence and uniqueness theorems; 

almost -periodic solut ions. 

Al1 the equations here considered are of the form: u’(t) = Au(t) t f(t) 

where u(t), f(t) are functions from a real interval into a Banach space E, and 

A is a linear (usually unbounded) operator in E with (dense) domain D(A). 

Résumé 

Dans ce travail on présente certains nouveaux résultats concernant les 

équations différentielles linéaires en espaces de Banach. On étudie des propriétés 

de régularité des solutions faibles; ensuite, la régularisation de ces solutions 

par deux procédés différents; une condition nécessaire pour l’existence et l’unicité 

des solutions bornées; solutions périodiques, théorèmes d’existence et unicité; so- 

lutions presque périodiques. 

’ This research is sponsored by a grant of the Natural Sciences and Engineering 
Research Council of Canada. 



Les équations considérées sont de la forme: u'(t) = Au(t) t f(t), u et 

f étant des fonctions d'un intervalle réel dans un espace de Banach E, tandis que 

A est un opérateur linéaire dans E de domaine D(A). 

Introduction 

The present work is dedicated to some properties of differential equations 

in Banach spaces; precisely, we take equations of the form u' (t> = Au(t) t f(t) 

where u(t) is a function from a real interval into a Banach space, as well as 

f(t); the operator A is a linear operator, usually unbounded (that is, disconti- 

nuous) and with a domain D(A) (strictly) contained in the Banach space X. 

TO start with, one defines a certain class of weak solutions (see for ex. 

CU, CU) 0 In this context we prove two kinds of results: 

il if the (weak) solution has a (strong) derivative, it belongs to the 

domain D(A) or to D(A**); 

u’ w 

ii) if the (weak) solution belongs to 

exists. 

D(A), then the strong derivative 

For another class of solutions, the ultra-weak solutions, similar investigations 

were done in our paper [6]. 

Next, we apply the usual mollification process to a weak solution u 

(that is, the convolution of u with a regular function a); we get a function 

u*a which has a strong derivative and belongs to D(A) or to D(A**). 

Finally, if the operator (x0-A)-1 exists as a bounded linear operator in 

X (for some complex number o X ), and if we apply it to a weak solution u, we get 

a strong solution (it Will have a strong derivative). Again, F;e already proved 

this kind of results for the ultra-weak solutions of Kato-Tanabe and Lions, in OUY 

previous papers C63, C71. 
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Another section of the paper deals with bounded solutions on the whole 
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real line. A necessary condition for existence and uniqueness of a bounded solu- 

tion u in correspondence to any (given) bounded function f, was explained in C31 

for the case of operators A which are continuous and everywhere defined. It 

seems, as we shall see, that similar reasonings apply when A is only a linear 

closed operator which is densely defined. 

In the final part of this article we deal with some (simple) results about 

periodic solutions u(t) when a periodic function f(t) is given, or almost- 

periodic solutions, in a very simple situation. 

If the operator A generates a CO-semigroup with exponential decay, there 

exists a unique periodic solution u(t) in the mild or the strong sense. 

Next, for a general operator (linear closed but not always generating a 

semi-group) we indicate how one cari look for periodic solutions u(t) when a 

periodic function f(t) is given, using some simple Fourier series arguments. 

Also, in the case where A generates an unitary group of operators in a 

Hilbert space, we show that the existence of a bounded solution of the equation 

u’ = Au + f implies the existence of a periodic solution with the same period as 

f (the result is a particular case of [S-J but the proof here is somehow simpler to 

grasp) . Finally, we consider the system u’(t) = Au(t) t f(t), where u(t) is a 

function from R into the product space Xn (X is a Banach space), f(t) is an 

almost-periodic function from R into Xn, A = (a..)n 1~ i,j=l - a square matrix of 

complex numbers, and prove, extending a classical result, the almost-periodicity of 

functions-solutions, u(t) which have relatively compact range in X n ; we also 

establish an existence and uniqueness theorem in the case where the eigen-values of 

the matrix A have non-zero real part. 

1. Regularity properties of weak solutions 

Let X be a E&space, X* and X** the dual and bidual of X. Let A 

be a linear, closed, densely defined operator, D(A) c X + X. The dual operator 
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A* is defined on the set 

(l-11 D(A*)= ix* E X* s.t. 3y* E X*, with x*(Ax) = y*(x) Vx E D(A)} 

by the formula 

(14 A*x* = Y*= 

Thus the relation 

u-31 x* ml = (A*~*)(X) holds Vx E D(A), Vx* E D(A*). 

Consider a function f(t) which is Bochner integrable, iO,T1 -f X. 

DEFINITION. The strongly continuous function u(t), cO,Tl + X is said 

to be weak solution of the equation 

(1.4 *= AU +f on r-0 T] 
dt 9 

if the following holds: 

For a11 x* E D(A*), the numerical-valued function x*(u(t)) is absolutely 

continuous on C O,Tf, and the equality 

g x*(U(t)) = (A*~*)(u(t)) + x*(f(t)) 

We shall give now the following 

THEOREII 1. fat ud a&ume 

1') u(t) ha-h a n&cfng dehvative U’ (t) aLmobX--evm~4~?htie on LO,Tl; 

du 2') u(t) & HI& houun c,6 dt = AU t f Un CO,TI; 

3') ;the damain D(A*) d dwae in X*. 

(1.h) g (Ju) = A**(h) -t- Jf 
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hutib, a.e. /in [O,Tl. 

PROOF. From hypothesis, VX* E D(A*), we have the equality 

d (i) ,,x*(u(t)) = (A*~*)(u(t)) t x*(f(t)) a.e. on CO,Tl, Le., on 

wl/~O> where RE = 0. 
0 

(ii) Also, 
du 

the derivative u*(t) = dt exists strongly, Vt E CO,TI/E,, 

rnE 1 
= 0. 

Hence, vt E [O,T]/(E~ U cl), both (i) - (ii) are truc. 

As d 
dt x*(uW) = x*@'(t)) on C(E~ U E$, we get, a.e. on CO,Tl, the 

equality 

(1*7) x*(d(t) - f(t)) = (A*~*)(u(t)). 

On the other hand, let us remember that the isometric linear operator J, X into 

x** is defined by the relation 

(1.8) (Jx) (x*) = x*(x) vx* E x*. 

Therefore we have, Vt E COJI 

(1.9) (Ju)(t) (A*x*) = (A*~*)(u(t)) 

and consequently, a.e. on CO,T], the equality 

(1.10) (Ju)(t)(A*x*) = x*(u'(t) - f(t)), Vx* c D(A*) 

is verified. 

It follows that 

(Ju)(t)(A*x*) = (J(u'(t) - f(t)))(x*), kk E CO,T]/E, rn& = 0. 

We cari Write, once t is fixed in CO,T]/E, (Ju)(t) = F** E X**, J(u'(t)-f(t)) = 

G** c X**, SO that we have the relation 
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(1.11) F**(A*X*) = G**(x*) 'dx* E D(A*). 

Accordingly, we derive that 

(1.12) F** E: D(A**) and A**F** = G** 

that is, almost-everywhere on CO,Tl 

(Ju)(t) E D(A**) and A**(Ju)(t) = G** = J(u'(t) - f(t)). 

Note also that, when u'(t) exists, we have ,Ju'(t) = g (Ju)(t) ; thus we get 

(1.13) k (Ju) (t> = A**(Ju)(t) + (Jf)(t), 

a.e. on CO,TI. fl 

of 

Consider now a somewhat different situation, expressed under the statement 

THEOREM 2. f et UA a/!dume A%.at u(t) E C(CO,Tj;X) ti a u!eah aa~uikcwz 06 

u(t) E D(A) a.e. UM CO,T3 aplcf Au(t) 

ih ?3ucbwh .iticg4ab& un CO,Tl. Thon, Z/ZQ btiung cftivtive u'(t) Qx/inti ad. 

un [O,T] ad dze cquakXy d(t) = Au(t) t f(t) hokfa, a.& un CO,Tl. 

PROOF. We have the equality x*(Au(t)) = (A*~*)(u(t)) a.e. on tO,TI Y Vx* E D(A*). 

Thus, from (1.5) we obtain that 

(1.14) % x*(uW) = x*(Au(t) t f(t)), a.e. on rO,Tl, tJx* E D(A*). 
UL 

From the absolute continuity of the function x*(u(t)) w  obtain the equality 

(1.15) x"oJW) - x"(u(0)) = Ld 
o ds x* 

and accordingly the relation 

t t 
(1.16) x*Cu(t)-u(O)1 = ~*(AU(S) t f(s)) ds = x*( [Au(s) t f(s)] ds) 'J~*E D(A*). 

0 0 

In this theorem, the domain D(A*) is not assumed to ETe dense in X*, but is in 

any case a rrtotal'l set in X* (this means that x*(x) = 0 Vx* E D(A*) -> x = 0). 
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Accordingly we get the (representation) formula 
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(1.17) 
t 

u(t) - u(0) = (Au t f)(s) ds. 
0 

As Au t f is Bochner integrable on [O,Tl we derive the result. 

2. Convolution of weak solutions with scalar regular functions (mollification) - 

Given any function u(t) E C(CO,Tl;X), we shall consider the convolution 

(2.1) 
t-ix 

(u * a) (t) = u(s)a(t-s) ds 
t-E 

1 where a E CO@), a 2: 0, a(t) = 0 for lt[ 2 E. Thus (u * a)(t) is well- 

defined for E < t < T-E. Furthermore, the strong derivative (u * a)'(t) exists 
t-E tt& 

and = u(t+fz)a(-E) - U(t-C)cl(E) f U(S)&(~-s) ds = u(s)a'(t-s) ds. 
t-E t-c 

Let us assume now (1.5) for u(t); we shall prove a similar relation for 

(u * a)(t), namely: vx* E x* 

(2.2) g x*((u*a) (t)) = (A*~*)(U * a)(t) t x*(f * a)(t), E < t < T-E , 

where 

t-E T 
(2 l  3) 

(f * a)(t) = f(s)a(t-s) ds = f(s)a(t-s) ds, E < t < T-E. 
t-c 0 

(Note that the derivative exists 'dt E (&,T-E), as it exists strongly.) 

We have the equality 

(2.4) 

d t-f-& 
dt x* ((U*N w  > = x*((u * a) '(t)) = x*( U(S)&(~-S) ds) 

t-E 

=i 

t-K 
x*(u(s))a'(t-s) ds. 

t-c 

New, due to absolute continuity of X*(~(S)) we cari integrate by parts and get, 

after use of (1,5), the following relations 

. . 



t+E 
x*(u(s))a’ (t-s) ds = -x*(u(s))a(t-s) a(t-s) d ds X*(~(S)) ds 

t-c 

(2 ’ 5) 

=J t+c 
U(t--S)[(A*~*)(~(S)) t x*(f(s))l ds 

t-c 

=J 
t-f& J t-t& 

(A*x*) (a(t-S)u(s)) ds + x*(,(t-s)f (s)) ds 
t-E t-E 

= (A*x*) (u * a) (t) -t x*(f * a) (t). c 

Using Theorem 1 and the above remarks we get the following mollification 

result: 

THEOREN 3. fibaume WA*) x*; u(t) E C([O,Tl;X) 

b0.&&on 04 (1.4). 7hen J(u * a) (t) E D(A**) and ZhQ c7quULj 

(2.6) * OJ) 0) = A**J(u * a)(t) + ((Jf) * a)(t) 

CZUtdb , Vt E (EJ-E). 

In fact, from Theorem 1 we obtain ( 2.6) to hold almost -everywhere. HOW- 

ever, left and right-hand side of ( 2.6) are continuous funct ions, SO that the equa- 

lity is actually true for any t E @,T+) (if it would be false in t it would 
0 

be SO in (t -6,t -M) for some 6 > 0 
0 0 

which has positive measure) . 

(It is not necessary to use Theorem 1 but just imitate its proof and get 

the result directly, for a11 t E @,T-E).) 

3. Resolvent regularizat ion of weak solut ions 

Let us assume again that the funct ion u(t) E C([O,Tj;X) is weak solution 

(X0-A) -’ exists and of the equality (1.4) and assume also that the resolvent 

E L(X) for some X0 E K. 

PROPOSITION 1. The &.4ntioM v 

(1.4) ci&?% f tt@&ti by R(Ao;A)f. 
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PROOF. We first need to establish the absolute continuity of the function 

x*(W)> in c @,Tl Y Vx* E D(A*) (and even for a11 X*E X*). We have in fact, 

yx" tg x* the equality 

(3-l) x*(ROo;A)uCt)) = ((R(~o;A))*x*lu(t). 

We know also that 1, E p(A*) (resolvent set of A*) and that R(Ao;A*) = 

[ R(Ao;A)l”. It follows that (R(~))*x* = R(Xo;A*)x* = (Ao-A*)-lx* which be- 

longs to D(A*) for a11 x* E X*. Therefore X*(V(~)) = y*(u(t)) where 

y* = (X,-A*)-lx* belongs to D(A*); hence X*(v(t)) is absolutely continuous on 

c VI 9 vx* E x*. Next, we have the simple relation 

(3.2) & X*(v(t)) = g y*(u(t)) = @*Y*1 CU w  1 t y*(f(t)) a.e. 

which is written as 

133 & x*ww = (A*(h,-A*)-lx*)(u(t)) t ((X0-A*)-'x*)(f(t)) a.e. 

Note now that, for x* E D(A*), the commutativity property A*(Xo-A* 

= (Xo-A*)-lA*x*, holds. Hence, we derive from (3.3), the equality 

g X*(v(t)) = ((ho-A*) -1 
A*~*)(u(t)) t ([(A,-A)+*x*)(f(t)) 

(L- (X0-A) -‘l*A*x*) (u(t)) + (I: (x0-A) -‘I*x*) (f(t)) 

1 -lx* 

= (A*x*) ((X0-A) -'u(t)) + x*((h,-A)-if(t)) 

= (A*x*)(v(t)) t x*(g(t)), g(t) = R(Xo;A)f(t). 

This proves the proposition. 

Note also that v(t) E D(A) Vt E CO,T] and that AV(t) = -u(t) -t 

AoR(Xo;A)u(t) belongs to C(CO,TI;X). 

From Theorem 2 we infer that v*(t) QxLHa n.tmrzg.ty, a. e. oy1 cO,Tl, a~d 

l%.at 

(3.5). v ' w  = AV(t) + R(Xo;A)f(t), 
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a.e. un tO,T]. 

If f(t) is continuous on L O,Tl we get that v’ (t) is also continuous 

and consequently vf (t) = AV(t) t R(Xo;A)f(t) Vt E TO,Tl. 

4. A necessary condition for existence and uniqueness of bounded solutions 

In the B-space X consider a linear closed operator A, with dense do- 

main D(A). ‘ille prove the following 

t3 = Au(t) + f(t) 

SU~ Iiu(t)lI < 03. 

td? 

If not, there exists r. E R and x0 E D(A), x0 $I 0 SUC~ t hat i-rx = 0 0 

AxO’ 

Consider the vector-function u,(t) = e 
i-r,t 

xo. Ne see that /juo (t) il = 

il Xo!l J SO that uo(t) is bounded over IR. Furthermore, we have u;(t) = iTouo = 

Au (t), vt E K 
0 

Hence, the homogeneous equat.ion ut (t) = Au(t) has a non-trivial bounded 

so lut ion over Ip\, a contradiction. 

LENMA 2. ?%e upenah4 (i-c-A) mapb D (A.) CV&~! X, V-r E tfi. 
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x. 

Consider the function f(t) = e i.Tt fo, where f. is any fixed element of 

f(t) is bounded over Let x(t) be the unique bounded solution of 

t he equat ion 

(4.31 x’(t) = Mt) + f(t) 

. 
and put y(t) = e-lTtx(t). Then y(t) is bounded over R and 

(44 Y’@) = (A-i-t)y(t) + fo. 

Actually, the equation (4.4) has at most one bounded solution (otherwise, if yl, 
. . 

y2 are two bounded solutions of it, Xl(t) = elrtYl WI 9 x2(t) = e lTty2(t) would 

be two bounded solutions of (4.3)). It follows that the translated function y(t+a) 

Ca being any real number), which is again a bounded solution of (4.4), must coin- 

cide with y(t) a Thus, we get: y(t+a) = y(t), Vt E IR; hence y(a) = y(0). But 

a is any real number, hence y(t) is constant. From (4.4) we derive 

e = (A-i-r)y(O) t f f 0' 0 = (A-ir)(-y(0)). This proves Lemma 2. 

\\le now end the proof of the theorem. We obtained that, VT E IR, the opera- 

tor (i-ï -A) -1 exists and is everywhere defined. It is also closed, like i'r-A, 

hence it is bounded by the closed graph theorem. 

5. Periodic solutions 

We consider again non-homogeneous differential equations in Banach spaces: 

u’ w = Au(t) i- f(t), where A is a certain linear unbounded operator while WI 9 

Il? + X (the B-space) is periodic with period w  (f (ttw) = f(t) vt E in>. 

First, we prove existence and uniqueness of a periodic strong solution 

u(t) with the same period, under the hypothesis that A is the infinitesimal 

generator of a CO-semigroup with exponential decay as t -+ 00. 

Let S(t), t CI tRt' -+ L(X) be a CO-operator semigroup, verifying an 

est imat e !IS(t)li i MePt, Vt 2 0, where M > 0, 6 < 0, and let A S(n)-1 = lim - 
?-)+o q 

be its inf init esimal generator. 
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Ke have 

and OK& une (n;Dtong ) mtutiun uv~h 

(5-U 

PROOF. Uniqueness : 

periodic 

bounded) 

Any periodic continuous function is bounded over IR. If y’ u* are 

solutions with period cc), their difference u(t) is a periodic (hence a 

solution of u’ = Au, over the rirhole R. 

This implies u(t) 5 0 by Th. 1.1, Ch. V in r9l. 

Existence: 

As is quite easy to see, for any real number 
t 

S(t-a 
A 

f(o) do exist s 

u’ (t> = Au(t) + f 

cent inuity of 

A, the integral 

in Riemann’s sense) , because one cari establis h easily the 

0 + S(t-@f(a) for 

Next, we have the estimat e 

A<a<t. 

I!S(t-o)f (a);1 5 bIeB(t-a) sup /if (a)1 
ad? 

Also e! BIa do = ’ e/B/L = ’ evpt is convergent 
l-v J-F 

. Thus the integral 
t I ! 

S(t-@f(o) do is absolutely convergent and the estimate 

t 
11 

-CO 
S(t-@f(o) doil 2 ,& 

1 

Next, we prove that the function 

(5.3) u(t) = 1 S(t-o)f (o) do 
-02 

is periodic, with the same period L In fact, le have 

i 
0.3 
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ttw 
u(ttw) = 

i, 
s(ttwu)f(a) do = (CM = s) 

S(t-s)f(stw) ds = S(t-s)f(s) ds = u(t), vt E El. 

Next, one has to prove that u(t) is strongly continuous and also a strong solu- 

tion over IR of u' = Aut f. This is done in [91, in the more general case where 

f is almost-periodic over IR. (Note that f E c 
1 

(R;X) 

f' is also continuous periodic, hence bounded over 

Somewhat simpler is the study of periodic mk&f solutions over IR of 

u' = Au + f. 

function 

DEFINITION. 

u(t) 9 R-, x 

Given the continuous function 

is said to be a mild solution of the equation 

and periodic implies that 

f(t); Ip.-+ X, the continuous 

U’ = Autf 

if the functional relation 

(5.5) 
t 

u(t) = S(t-a)u(a) t S(t-a)f(a) do 
a 

holds, Va E lR and Vt>a. 

V?e have now 

THEOREM 6. Giv en f E C(W;X) 1 ptiad.ic 06 petiod 

PROOF. Uniqueness: 

If "1, u2 are two periodic mild solutions with period w, u = u -u 12 

verifies 

0) = S(t-a)u(a), Vt 2 a, Va E W 

and is periodic, of period w, hence bounded over IR. Thus 



Existence: 

Consider the periodic function u(t) = S(t-a)f (a) do which was pre- 

viously def ined. 

It is continuous, due to uniform continuity of f over R. 

It is a mild solution: In fact the right-hand side in (5.5) becornes: 

S(t-a) 
J 

t 
S(a-@f(a) dcr + S(t-a)f(@ dcr 

a 

a 

= I, J 
t 

S (t -ata-0) f (0) da + s(t-O)f (a) da 
a 

t 
=I, S(t-O)f(o) da = u(t). C 

Consider now a linear closed operator A with domain D(A) in the Banach 

space ;Y and then a continuous periodic function (period T), f(t), from IR into 

X. Let us define the Fourier coefficients fk of f, by the usual formula 

(5.8) 

27r -ikt T 
dt, k E Z. 

Next, let us assume that u(t), [R + X is a solution of the equation 

u’ w = Au(t) + f(t), t (5 P, which is also periodic with the same period T as 

f. Thus, its Fourier coefficients uk are given by \ 

2Tr -ikt T 
d-L k E Z. 

We are now looking for some connection t;et\ieen uk and fk: 

From the equality: u’ = A-u + f we derive that 

27-f -ikt 7 27T 

(5.10) e u’(t) = e 
-ikt F 2?T 

Au(t) t e 
-ikt T 

f(t) 9 t t: w, k 6 z. 

1t follows, integrating from 0 to T and using closedness of A 

(5.11) 
1 T 
ri- J 

-ikt F 
e 

0 
u’(t) dt = Auk i- fk’ 
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The left-hand side integral is transformed, using partial integration and u(T) = 

into 2k7ri 
T Uk’ Therefore we get u(O) 9 

(5.12 
2krri 

(T-- A)uk = fk' Vk E Z 

which is the connection we were looking for. 

Let us assume now that 

(5.13) ( 
2kri 

T 
- A)-1 E L(X) Vk E Z. 

It follows that 

(5.14) 2kTi uk= (TT- A)-lf,. 

Assume now that 

(5.15) 

It follows that 

(5.16) 

/I (i-r-A) 
-1 

!! 
C 

2 - 
1 I 

2 for large real T. 
LT 

Ilu II 5 
C CT2 -=-- 

k 41r2k2 

and accordingly the Fourier series of 

2rr 
T ikt 

u : c u e 
kc2: k 

is absolutely and uni- 

formly convergent. 

Another question to t-e considered is the following: 

domain 

In the Ranach space 

D(A(t)) c X, where 

X 

t ER 

consider a family A(t) 

and A(t+m) = A(t) 

of linear operators with 

vt E !R and some w > 0. 

Assume that u(t), 0 5 t 5 cc) + D(A(t)) is a solution of the equation 

u'(t) = A(t)u(t) on rO,wl (with right-derivative for t = 0 and left-derivative 

for t = w). Then, i6 u(0) = u(w), kh.Uw cxdta a AoUun v(t), 

t E R -5 D@.(t)), 06 /thé Qciuatictn IP (t) = A(t)v(t), /juch /thti v(ttw) = v(t) 

vt E R. 
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Let us define in fact a function v(t) by means of the relation v(t) = 

u(t-nw) for nw 5 t < (n+l)w (thus 0 5 t-nw < w), k'n E Z. Assume t = no3 + a, 

0 2 a < w; then v(t) = u(a) and v(ttcù) = v((ntl)Lti t a) = u(a) = v(t). Hence v 

is periodic, with period 03. 

vt E IR. This is obvious for 

IVe must also prove that v ' It> exists strongly 

nw < t < (ntl)w; in this case v’ w = uf(t-nw) = 

A(t-nw)u(t-nw) = A(t)v(t). Let now t = nw (some n E Z). Vie have for h > 0, 

k Cv(t+h) - v(t)] = k Eu(h) - u(O)] -+ u:(O) = A(~)U(O); for h < 0 we have 

; Cv(t+h) - v(t)1 = +- Cu(wth) - u(O)! = i ru(wth) - u(w)1 -+ u’(w) 

= A(~)u(w) = A(O)u(Oj. 

Our present discussion ends with a result where existence of a bounded 

solution implies existence of a periodic solution. In the Gilbert space lf con- 

sider a unitary group U(t) of linear transformations: that is U*(t) = [U(t) 1-l 

= U(-t), vt E IF., with infinitesimal generator A * Given a. cent inuous Feriodic 

function f(t), R -+ II (period p), we define mild solutions of the equation 

u’ w> = Au(t) + f(t) as continuous functions u(t), R -+ I-I, admitting the repre- 

sentation formula 

(5.17) 
t 

u(t) = U(t)u(O) t U(t-o)f(c) do, vt E R. 
0 

Let us assume existence of a mild solution u(t) which is bounded over the real 

line: sup Ilu(t)!l < 03. Then, using Theorem 4.1 in ClOl, we infer Uh&M.CQ GIyt(i 
ta 

WCC&/ of a bounded mild solution w, such that sup _ !i w(t) Ij 5 sup [iv(t)!i for a11 
tEIl? t& 

bounded mild solutions of (5.17) (mi~ti&. bounded mild solution). 

f. 

Note first that from the relation 

(5.18) W) = U(t)w(O) i- u(t-@f(c) dcr 
0 

we infer 
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J 
t+r, 

w (t+p> = U(t+p)w(O) t U(t+p-o)f(o) d0 
0 

J t-v 
= U(t)CU(p)w(O) f u(p-O)f(a) dal 

0 
(5.19) 

P t+P 
= U(t)CU(p)w(O) t 

J 
U(p-@f(a) do t 

J 
U(p-O)f(o) dal 

0 P 

J t+P 
= U(t)w(p) t u(t) U(p-a)f(a) dcr. 

P 

If CT = SfP, we have 

(5.20) 
J t+P J 

t 
U(p-@f(a) do = U(-s)f(s) ds 

P 0 

J 
t 

w(t+p) = U(t)w(p) t U(t-s)f(s) ds, t f R. 
0 

This shows that the translated function: t -+ w(ttp) is also a mild solution of 

(5.17). 

Furthermore, sup IIw(ttp)II = sup /lw(t)I(, indicates that w  is a VJ&&I~ 
tdR tdR 

mild solution, hence,by unicity, w(ttp) = w(t) vt E R. n 

(Remark: 

paper rsl.) 

6. Almost-periodic solutions 

A similar result for semigroups instead of groups appears in our 

d 

Let R e real line, Y a Banach space over G; A = (a..)n 
1J qj=l a 

square-matr& of complex numbers, nxn; Y being the product Banach space with 

noïm: /iyli = 
Yn 

( y IiYillyI” 
1 

Vy = (yl,y2,...9yn) E Yn. Our first result is 

dY 
dt = Ay t f(t), t E R. 



We shall use the following 

-1 B AB= 

xl '12 l  ** 'ln 

0 x2 ..* '2n I 

PROOF of Theorem. Let Z(t) -1 = B y(t), a function from IR into Yn (here B -1 

is the operator generated by the matrix B 
-1 

, acting linearly from Y 
n into it- 

self). As B-l is also continuous from Y n into itself, we see that Z(t) has 

also a relatively compact range in Y n . Similarly, the function gw = B-if(t), 

n 
R-+Y, is almost-periodic. IVe obtain now 

(6.2) 
dZ 
dt 

= B-l g = B-lAy t B-if(t) = B-IAB Z(t) t g(t). 

Using the above lemma, we derive from (6.2) the fol lowing system: 

dZ1 -= 
dt hlZ1 (t) t C12Z2 (t) t . . . t ClnZn(t 

dz, 

1 t g,(t) 

-= 
dtL X2Z2@) + . . . t CZnZn(t) t g,(t) 

(6.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,.r.*......‘.............*.. 

dzn-l - = 
dt 

dZn -= 
dt 

where Z(t) = (Zl(t),...,Z (t n 

A n-lzn-l(t) -+ cnDl,nZn(t) +- gn-lCt) 

ynwl -t g,(t), 

Now, if P., Yn -+ Y is the projection Z -+ PjZ = Z. 
3 3 (for z = (ZyZz' 

. . . , zn>) 9 we see that P. 
3 

is a linear continuous mapping; therefore, each function 

'iCt) 9 OR -+ Y has relatively compact range, and each function g (tj 
i 

is almost- 
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periodîc, IR -+ Y. We shall apply a result by Kopec C4 1, several times, starting 

with the last equation in (6.3)) and obtain that each function Zi(t) is almost- 

periodic, IR + Y. 

Our last result is the 

TFIEOREM 8 . LeA A = (a. .)n 1-j l,j=l 
a hpcne-mtix 06 compikx numbeU, du& 

(6.4) dY 
dt 

= Ay t f, 

PROOF. Uniqueness: 

du Let u(t) be a bounded over IR solution of dt = Au. Then Z(t) = 

B-lu(t) is a bounded solut ion, R-+Y n of Z'(t) = B-lAE Z(t). Hence we get 

-= 
dt XlZl(t) + C&@l + l  l  l  + c&p 

(6.5) 
x z n-l n-l w i- c n-l nZn@) 9 

dZn -= 
dt x,z ,  w l  

The last equation gives (as for scalar-valued functions) that Zn(t) = e 'nt 
znco>  l  

As ZJt) is bounded over I.R and iReIn # 0 we get n Z (t) E 0. Next, 

dZn 1 ---=A z 
dt n-l n-l w  and again Z n-l w  f 0, and SO on. 

Existence: 

We so?ve first the system (6.3). From the last equation we get an almost- 

i 

t 
periodic Z*(t) \<hich is 

An (t -0) 
e g,(o) do for IReAn < 0 or 

-03 

-i 

cm X,(t-a) 
e 

t 
g,(o) do for lRehn > 0. 



Then we find an almost-periodic Z n-l 
and inductively, almost-periodic 

Zl’Z2>“4,~2. Next, put y(t) = B Z(t). @ 
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