# A DIRECT PROOF OF POISSON'S THEOREM FOR NON-IDENTICAL BERNOULLI RANDOM VARIABLES Y.H. Wang 

## Abstract

The purpose of this note is to prove directly, by an elementary method, that the distribution of the sum of independent but not necessarily identically distributed Bernoulli random variables converges to a Poisson distribution.

Résumé

Le but du présent travail est de démontrer directement, en utilisant une méthode élémentaire, que la distribution de la somme de variables aléatoires indépendantes mais pas nécessairement identiquement distribuées, de type Bernoulli converge vers une distribution de Poisson.

## Introduction

Let $\left\{X_{n 1}, X_{n 2}, \ldots, x_{n n}\right\}$ be $n \geq 1$ independent integer-valued random variables and define the sum $S_{n}=\sum_{i=1}^{n} X_{n i}$. It is well known that if the $X_{n i}$ are identically distributed Bernoulli random variables with $E\left(X_{n i}\right)=p_{n}$, and $n p_{n} \rightarrow \lambda>0$ as $n \rightarrow \infty$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(S_{n}=k\right)=e^{-\lambda} \lambda^{k} / k! \tag{1}
\end{equation*}
$$

for all $k=0,1,2, \ldots$. This result is known in the literature as Poisson's theorem.

Von Mises [3] pointed out in 1921 that (1) also holds if the $X_{n i}$ are not identically distributed, but satisfy, for $E\left(X_{n i}\right)=p_{n i}, \sum_{i=1}^{n} p_{n i}=\lambda>0$ and $P_{n i}=O(1 / n)$. Later, Koopman [2] independently obtained the same result. We state below Von Mises' version of Poisson's theorem in the form in which it appears in the literature today, which is more general than the original one.

THEOREM (Von Mises). Let $x_{n 1}, x_{n 2}, \ldots, x_{n n}$ be $n$ independent Bernoulli random variables with $P\left(X_{n i}=1\right)=p_{n i}=1-P\left(X_{n i}=0\right)$, then (1) holds if $\lambda_{n}=\sum_{i=1}^{n} p_{n i} \rightarrow \lambda>0$ and $p_{n}=\max _{1 \leq i \leq n} p_{n i} \rightarrow 0$ as $n \rightarrow \infty$.

The original proof of Von Mises ([3]; see also [4], pp. 107-112), as well as the proofs of Koopman [2] and Feller ([1], p. 264) use generating functions and the continuity theorem. In this note we shall prove the theorem by directly proving that (1) holds for each $k$. This approach is used in most textbooks for the special case when the $P_{n i}$ do not depend on $i$.

PROOF of the Theorem. We first state a lemma. It can be proved by using the expansion $-\ln (1-x)=x+x^{2} / 2+x^{3} / 3+\ldots$ and its proof shall be omitted.

LEMMA. For each $n=1,2, \ldots$, let $\left\{\alpha_{n 1}, \alpha_{n 2}, \ldots, \alpha_{n n}\right\}$ be $n$ non-negative real numbers. If $\sum_{i=1}^{n} \alpha_{n i}^{n} \rightarrow \alpha<\infty$ and $\max _{i=1}^{n}\left(1-\alpha_{n i}\right) \rightarrow e^{-\alpha} \quad$ and $\sum_{i=1}^{n} \alpha_{n i}^{r} \rightarrow 0$, for all $r>1$, as $n \rightarrow \infty$, then

We now proceed to prove the theorem.

For $k=0$, it follows from the lemma that

$$
\begin{equation*}
P\left(S_{n}=0\right)=\prod_{i=1}^{n}\left(1-p_{n i}\right)+e^{-\lambda}, \quad \text { as } n \rightarrow \infty \tag{2}
\end{equation*}
$$

For $k \geq 1$, denote $N_{n}=\{1,2, \ldots, n\}$ ard, for $n \geq k$, define the cross product $N_{n}^{k}=N_{n} \times N_{n} \times \ldots \times N_{n}$ of $N_{n}$ with itself $k$ times.

Let $A_{n}^{k}$ be the subset of $N_{n}^{k}$ defined by

$$
\begin{equation*}
A_{n}^{k}=\left\{\left(i_{1}, \ldots, i_{k}\right) \in N_{n}^{k}: \quad i_{j} \neq i_{\ell} \text { for all } j \neq \ell\right\} \tag{3}
\end{equation*}
$$

and denote $B_{n}^{k}=N_{n}^{k} \backslash A_{n}^{k}$.

Because the probability $P\left(S_{n}=k\right)$ is invariant under permutations of $\left(X_{1}, \ldots, x_{n}\right)$, we can write

$$
\begin{equation*}
P\left(S_{n}=k\right)=P\left(S_{n}=0\right)\left(\$ \prod_{j=1}^{k}\left(p_{n i_{j}} /\left(1-p_{n i_{j}}\right)\right)\right) \tag{4}
\end{equation*}
$$

where the summation $\$$ is taken over the set

$$
\left\{\left(i_{1}, \ldots, i_{k}\right) \in N_{n}^{k}: 1 \leq i_{1}<\ldots<i_{k} \leq n\right\}
$$

which is a subset of $A_{n}^{k}$.

By assumption $p_{n} \rightarrow 0$ as $n \rightarrow \infty$, so we can choose an $n_{0}$ such that if
$n \geq n_{0}$, we have $p_{n i} \leq p_{n}<1$ for all $i$. For such $n$, we can write

$$
\begin{equation*}
P\left(S_{n}=0\right)\left(\prod_{j=1}^{k} p_{n i_{j}}\right) \leq P\left(S_{n}=k\right) \leq P\left(S_{n}=0\right)\left(\prod_{j=1}^{k} p_{n i_{j}}\right)\left(1-p_{n}\right)^{-k} \tag{5}
\end{equation*}
$$

Since for any set of numbers $a_{1}, \ldots, a_{n}$, we have

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{k}=k!\$ \prod_{j=1}^{k} a_{i}+\sum_{B_{n}} \prod_{j=1}^{k} a_{i_{j}},
$$

so that

$$
\begin{equation*}
\ddagger \prod_{j=1}^{k} p_{n i_{j}}=\left(\left(\sum_{i=1}^{n} p_{n i}\right)^{k}-\sum_{B_{n}} \prod_{j=1}^{k} p_{n i_{j}}\right) / k! \tag{6}
\end{equation*}
$$

In the last expression, the first term tends to $\lambda^{k} / k$ ! by assumption. The second term is defined to be 0 if $k=1$, because $R_{n}^{1}=\phi$, and for $k \geq 2$, it is upper-bounded by

$$
\begin{equation*}
\sum_{j=2}^{k}\binom{k}{j}\left(\sum_{i=1}^{n} P_{n i}^{j} \lambda_{n}^{k-j}\right) / k! \tag{7}
\end{equation*}
$$

By the lemma, this hound tends to 0 as $n \rightarrow \infty$, because the term $\sum_{i=1}^{n} p_{n i}^{j}$ tends to 0 for all $j \geq 2$.

Since $\left(1-p_{n}\right)^{-k}$ tends to 1 as $n \rightarrow \infty$ for all fixed $k$, the theorem is proved by combining (2) and (5).

## Acknowledgement

This paper was written while the author was visiting the Department of Statistics at Tunghai University (Taqwan) during the academic year 1985-1986. The author wishes to express his gratitude to the Department for their hospitality and for all the convenience rendered to him.

## References

[1] FELLER, W., An Introduction to Probability Theory and its Applications, vol. 1, John Wiley and Son, New York, 1964.
[2] KOOPMAN, B.O., Necessary and sufficient conditions for Poisson's distribution, Proc. Amer. Math. Society 1(1950), 813-823.
[3] VON MISES, R., Uber die Wahrscheinlichkeit Seltener Ereignisse, Zeitschrift fur angewandte Mathematik und Mechanik 1(1921), 121-124.
[4] VON MISES, R., Selected Papers by Richard Von Mises, vol. 2, American Mathematical Society, 1964, Edited by G. Birkhoff et al.

```
Department of Mathematics Concordia University Montréal, nuébec H3G 1M8
Manuscrit reçu le 11 février 1987. Revision le 16 auril 1987.
```

