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ON THE ASYMPTOTIC BEHAVIOUR OF SUMS

2g(n) {xn=}"
Armel Mercier and Werner Georg Nowak*

Résumé

Dans ce papier, nous prouvons que l'ordre de grandeur de la différence en-
tre la somme donnée en titre (oli g(t) est une fonction 3 valeurs réelles, positi-
ve, non décroissante, m est un entier positif et la sommation se fait sur tous les
entiers positifs n® < x) et 1'intégrale correspondante est O(g(xl/a)xx(a) X
(log x)sa’z). De plus, nous montrons que ces différences, pour toutes valeurs de

m, sont 'pratiquement toutes €gales" avec un terme d'erreur égal 3 O(g(xl/a)xu(a)).

Abstract

In this paper we estimate the difference between the sum given in the title
(where g(t) is an arbitrary real-valued, positive, non-decreasing function, m is
a positive integer and summation is extended over all positive integers < x)

l/a)xk(a)(log x) a,z).

and the corresponding integral, obtaining the bound O(g(x
Furthermore, we show that these differences (for given g and varying m) are all

“"approximatively equal" with an error term of O(g(xl/a)xu(a)).

* Ce travail a &t& &crit lors du sé&jour du Dr Nowak & Chicoutimi. De plus, ce tra-
vail a ét€ fait dans le cadre de la subvention C.R.S.N.G. A-3508 obtenu par le
premier auteur.
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1. Introduction

This paper is a continuation of the authors article [5] where the special
case o = 1 was dealt with. Again g(t) is supposed to be a real-valued, positive,
non-decreasing function defined for t > 1, m=>1 and o > 1 are arbitrary real
numbers, x 1is a large variable and {.} denotes the fractional part. We study
the asymptotic behaviour of the sums

¢} T, = [ gm{xn™}",

(¢}
n <x

(for x o, m and o fixed), in particular the difference between Tm(x) and
the corresponding integral

1/0

X X
(2) I (x)= f g(t){xt ™M™ g¢ = L, 1/ f
m 1 o

g(xl/au-l/a){u}mu—l—l/a du

b

1

(some remarks on Im(x) itself will be formulated at the end of the paper). As in
[51, it follows that

rl

(3) LG - T, = | s,008) dt v oGl /),

where

4 s,06t) = T (glnrt) {x(nre) T - g(m){xn™M),
nsx /%1

Our main results reads

THEOREM 1. Under the suppositions given above, we have

1/a

§
5) s00,t) = 0(g(x'/M M (¥ (10g x) ¥,

uniforumly in 0 < t < 1, and therefore, by (3),

§

10y, M0 (10g x) %7y,

(6) T,(6,t) = I (x,t) + 0(g(x

whene
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2 .
( HC R
Afa) =
2
TIErD’ 8t ¢ 2

and & 48 Kronecker's symbol.

Secondly, we obtain a result which says that, roughly speaking, the dif-

ferences in question are all '"approximately equal" for different values of m.
THEOREM 2. Under the assumptions of Theorem 1, we have

(x,t) = o(g(x (™),

X

—
~
—
|
—~
o
r+
—
1
[72]

uniformly gon 0 < t < 1, and therefore, by (3),

u(o)
b

S ) 1/
(8 T,00t) - L (1) = Ti(x,1) - I(x,t) + 0(g(x/)x"),

where u(e) = 4(9+50L)_1 gon 1 <a <3 and u(a) < A(@) for any o > 1.

2. Proof of Theorem 1

In view of Theorem 2, we have only to consider the case m = 1. Proceeding

exactly as in [5], we can show that

9 5,06,8) = 0(g(x/*) (m +1),
with
m_ = max . Iou(x)[,
usx
0,00 = [ (™ - x(mr) ™D = H (x,u) - H (x,u)
nsu
H (x,u) := ) {x(n+1) ™%} (t=0 or t, hence 0 <1 <1).
n<u

To evaluate HT, we use a lattice point counting argument. Consider the planar

. x1/(0t+1)

domain (in the (p,q)-plane, say) BT <ps<u, 0<gq£¢%s FT(p) where

FT(p) H x(p+r)_a; denote by L(BT) the number of lattice points in BT and by
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A(BT) the area. Then we obtain

(10) L(B) = ) [E_(p)] = ) Fo(p) - H (ow + S+ X/
x1/((x+l)<pSu xl/(a+1)<pSU
with
(11) Sl,r = ’ Y(E.(P), Y(w) := {w} - 3.
lspsxl/(a+l)

We evaluate Z FT(p) by Euler's summation formula and infer from the second mean-

value theorem that

U
f ¥(p)F!(p) dp = O max  [F[] = 0(1).
x1/(ot+1) X1/(0L+1)<pSu
Thus we obtain from (10)
(12) L(BT) = A(BT) - W(u)FT(u) + y(xl/(a+l))FT(x1/(u+l)) - H (xu) + 31,1

¢ x| gy,

Counting the lattice points of BT "from the other direction" (and writing

G_ = F;l, ie., G(q = /DM - 1), we get
Le) = (ful - YOI i+ ) - [G(a)]
F(u) <q<F(x )
R IO RASE L SIS I N AN
Defining
(13) Sy.¢ i ) ¥(G (Q),

F(u) <qsF(x/ (@1

eliminating the square-brackets by [wl = w - ¥(w) - I and applying again Euler's

formula, we arrive at

1) LY = AG) - bu+ kO v @ v vt/ @) (e,

FT(XI/(a+1))
+ ¥(q)G1(q) dq - S, .+ 0(1).
Fo(u) ’
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We now compare (12) and (14) to conclude that

FT(xl/(owl))

(15) Ho(x,u) = lu + Sl,r + SZ’T - j ¥(q)G!(q) dq + 0(1).
F ()

To deal with the remaining integral, we put

Fr(w -1 (7
Jo(xu) := J1 ¥(q)6](q) dq, C:=a Jl ¥(q)q

2 2

-1-1/0 da,

and infer from the second mean-value theorem that

Y(q)G!(q) dq = 0(1).
IFT(XI/(a+1)) T

Hence

FT(xl/(a+1))

¥(@6L(Q) da = -cxM* - 3w + 0(),

F{ )

and (15) simplifies to

-1 1/a

(16) HT(x,u) = zu + Cx + JT(x,u) + Sl,T + SZ,T + 0(1).
Since

_ F_(u) 1. _ F(w _,_
I, ()T () = - kO I Ty I gq e gL e j 0 Y ggne <,

F,(u) F, ()

we get (recalling the definition of ou(x))
17 ou(x) = Ht(x,u) - Ho(x,u) = Sl,t + Sz,t - sl,o - Sz,o + 0(1).
It remains to estimate Sl T and 82 - To this end we employ the method of expo-

nent pairs (see H.E. Richert [8], [9], or for a more general survey, the paper [6]
of E. Phillips and the recent textbook of A. Ivi€ [1]), in particular lemma 17 in [9]
(noting that our additional constant T in Sl,T is easily covered by Richert's
proof). We choose the exponent pair (k,£) = (2/7,4/7) and obtain after a short

computation that

$

S 0?3 (150 %) B2y for 1 <o

A

2

and
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R AR ICR N

1,1 for o > 2.

1/a /o

Applying the same procedure to S (with x instead of x and q1

2,T
of n%, in the notation of Richert's lemma) we get (since FT(xl/(a+l)) = O(xl/(a+l))

instead

and 1/a < 2)

Sz,r - O(x2/3(a+l)).

Entering these estimates into (17) we arrive at
A @) 8,2
0,(x) = 0(x (log x) %),
which, in view of (9), completes the proof of Theorem 1 for m = 1.

(REMARK. Properly speaking, the above lattice point counting argument

(formula (10) and sequel) applies only to the case that u > xl/(a+1).

xl/(a+1)

But for

u <

, it is easy to see that HT(x,u) - u/2 can be estimated in the same

way as S1 T above; this yields the required estimate for ou(x) for this case

also.)

3. Proof of Theorem 2

Writing f () = I - {y} m>1) and proceeding as in [5] (formulae

(15) f) we can show that

(18) [s,00,8) - 5,000 < g+ max [ 0D,
1/a
usx

where
(19) S, = [ (£,a™ - £ (x(net)™) = % cp iy (x,u),

n<u |h[=1

W Oow) i= I (e(hxn™®) - e(hx(ntt)™®),

n<u
e(z) := e?™2  and the Fourier coefficients of £ .(y) satisfy c = O(Ih[_z),
1/(a+l)

(heZ, h4+0). Weput U, = | hx | and consider the sum
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W) =T (e(han™) - e(hx(net) ™)

Uh<nsu

(if nonempty). Observing that

e(hxn™®) - e(hx(ntt) ™) = 2michx IZ (ew) %7 e(hx(ntw) ) dw,
we conclude that
(20 w}(ll) = 2miahx J: S(w) dw,
so) = 7 () 7 e(hx(nin) ™).
Uy <nsu

We now split up the interval of summation by a sequence (nr), defined by n, = Uh’
n, = min(an_l,u). By a classical lemma of Van der Corput (see [11], p. 90), we get

for each subinterval

7 m+w) ¢ e(hx(niw) ™ O(n;a Ihxn;a_zlé) + O(n;,m'l lhxn;“'zl'%)

1}

0(nl;1'3°‘/2 Inx| 3 + ocn;"‘/2 Inx| 2 ).

Summation over r yields (since both exponents of n, are negative)

S(w) = O([hxl_(1+2a)/2(a+1)),

thus, by (20),
(21) i) o(|nx |21y,

We now put Uﬁ = min(Uh,u), then it remains to estimate

[o]

1}3:1 op | I, Cetmn™) - elmnie) )| < l } Inl "2l | + 15D

where

E_:= )} e(hx(n+t) ™™ (t=0 or t).

T 1
nsUh

We define Ph = [hx[B (B at our disposition) and split up the interval 1 <n < Uﬂ
by a sequence (nr), n, = min(zr,Uﬁ). According to Richert [9], p. 76 (see also

(8], lemma 6), we have for any exponent pair (k,£)
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(22) ) e(hx(n+1) ™) << Ihxlk nf‘0]+l)k + | hx|”

n <nsn
T

%nl+a/2.
T

r-1

For n. > Ph, we choose the exponent pair (k&) = (2/7,4/7), then in (22) the first

exponent of n_ is negative, and we obtain
1
(2%) ) ) e(hx (1) %) << Ihx|2/7+8(4/7-2(a+1)/7) N lhx|201+1).
<

For n, < Ph’ however, we choose (k) = (1/6,2/3) (in the case a < 3), then both

exponents of n, in (22) are positive, and we get (with Pﬂ = min(u,Ph))
1
20 ] I elhx(mn)™®) << x| V/OBQ3DI6) gy 20rD)
n<P! n <n<n
r h ‘r-1 T

We now choose (for o < 3), B = 5(4+5(a+1))'1, and infer from (23) and (24), by a
short computation, that

E_ = o(| x| ¥/ (975,

Together with (21, (19) and (18), this completes the proof of Theorem 2 for the case
a < 3. In order to show that, for any o > 1, we can always obtain an exponent

H(a) < A(a) in Theorem 2 (A(a) being defined in Theorem 1), we let the estimate
(23) unchanged and replace the exponent pair (1/6,2/3) (used to derive (24)) by
some (k,£) ¥ (0,1) with k sufficiently small for given a and (1-£)/k > 3/2.
(By theorem 3 in [6], there exists an infinite sequence of exponent pairs (k,{) %
(0,1) such that k> 0 and (1-£)/k » ».) For this (k,£), £ - (a+l)k > 0, and
we obtain an exponent k + B(£ - (a+l)k) in (24) which, for B = BO = 2(3+2(a+1))'l
is less than Bo (as a short computation shows). Therefore, choosing B slightly
greater than 80, we obtain both in (24) and in (23) exponents less than Bo’ thereby

completing the proof of Theorem 2 for the case o > 3 also.

REMARK. As in most applications of the method of exponent pairs, our re-
sults are capable of slight improvements by a more elaborate choice of the exponent
pairs employed (depending on the value o). To give an example, we consider the

special case o = 2: Again by lemma 17 from [9], we get
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max(|S; |, [, (1) = 0¥ (1) 156 )

for any exponent pair (k,£) with £ = 2k. Appealing to the work of R.A. Rankin

( 6+1 6+1
2(0+2) > 842

exponent pair, 6 = 0,3290213568... being Ranking's constant (cf. [7], formula (3)).

[7], we may conclude that, for any €' > 0, + €' + 2¢ ) is such an

Therefore, for any ¢ > 0,
max([S; [, 15, () = 0",

where vy = (6+1)/(36+5) = 0,22198215... . Since u(2) < y, the estimates of Theorem

1 may thus be refined, for o = 2, to

(s") s (x,1) = 0(g(x)x""%)
and
(6" T (x) - 1 (x) = 0(g(x)x"*E)

4. Remarks on Im(x)

As enunciated in the introduction, we have to justify that the integral
Im(x) actually dominates the error term we have estimated by our theorems, at least
for a reasonably large class of functions g(t). In fact, if g(t) is regularly

varying (see E. Seneta [11] for an enlightening study of this concept), i.e., that

Lin £ty = hew

exists for every u > 0 (and equals h(u) P  for some p > 0, according to [10],

p. 9), we can show by the same argument as in [5], that

1/a 1/a

1,00 ~ A % g/
where
m) ,_1 ® m _ -1-(1l+p) /o
Au,p := E-Jl {u}’ u d

In the special case g(t) = tp, this asymptotic relation can be refined to
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I = Ag“g 'x(“")/“ + 01,

which, together with our theorems, gives rather precise asymptotic formulas for the
corresponding sums Sm(x). Furthermore, like in [5], we can give explicit evalua-
tions for Aémg in terms of the Riemann zeta-function and Euler's constant Y,

3

provided that m is and integer and m < (1+p)/o: Writing r = (1+p)/a, for short

we have

A(m) R ? m!g(r-mt+j)

T r-om T(r-1)...(@x-m+j)j "'

for m< 1,
0,0 T-m

j=1

A o oy Y Lag-y for mo=r.
P 2<j<m J

The first author takes the opportunity to thank Prof. I. Kitai for suggest-
ing (when he visited Chicoutimi) a problem which is similar to the one studies in

this paper.
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